
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1995-08

A slicing method for semantics-based

change-merging of software prototypes

Dampier, David A.

http://hdl.handle.net/10945/42324

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36734548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

' ARMY RESEARCH LABORATORY

A Slicing Method for
Semantics-Based Change-Merging

of Software Prototypes

CPT David A. Dampier
U.S. ARMY RESEARCH LABORATORY

V aldis Berzins
Lu qi

DTIC
ELECTED
OCJ.JU21122.51 ' - .

ARL-TR-840

Mantak Shing
Daniel R. Dolle

Craig W. Rasmussen
NAVAL POSTGRADUATE SCHOOL

B

August 1995

19951011 076
APPROVED FOR PUBUC RELEASE; DISTRIBUilON IS UNLIMITED.

D'l'II QUALITY INSPECTED 6

..

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

ng uvflilOll ror INS c0Uecuu11 "' ntonnaaon 19 ..umaiaa to average 1 nour per rasponN, S1duamg uni uma tor rav1ewM"1g 1natrucaona. .. ,w .. ng muaang aatl 80Uf'C89,
galherlng and malnlllnlng Iha dalO Meded, and complllllng and rwlewlng Iha collecllon of lntonnallon. Send commanlO regarding 1111• burden-• or.,, other ui-t of 1111•
coUecllon of lnlormallon, lnctudlng auggaadona for redudng 1111• burden, to Waahlngton Headquarwa Ser.rlcea, DI-• for lntonnallon Operallon1 and Report9, 1215-
Davia II""- SUI• 1204 Arlin""'" VA 22202-4302 and to Iha Office of Manaaament and Bud-• P·-rwork Raducdon Prolact10704-0188> Walhln- DC 20503.

1. AGENCY USE ONLY (Leave blank) , 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

August 1995 Final, Jan 93 - Sep 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Slicing Method For Semantics-Based Change-Merging of Software Prototypes NIA

6. AUTHOR(S)

CPT David A. Dampier, Valdis Berzins, Luqi, Mantak Shing, Daniel R. Dolk,
and Craig R. Rasmussen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory CS, SM and MA Departments REPORT NUMBER

ATTN: AMSRL-SC-IS Naval Postgraduate School
115 O'Keefe Bldg., GIT Monterey, CA 93943 ARL-TR-840

Atlanta, GA 30332-0800

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

This report was presented as a paper at the Computers in Engineering Symposium in Houston, TX, on
30 January 1995.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report outlines a formal method for merging changes in independently developed versions of software
prototypes. A useful semantics-based method, which is guaranteed to detect all conflicts, is outlined. Prototype
slicing is used to determine the affected parts of each variation and the preserved part of the base in both variations.
The affected parts are then combined with the preserved part to complete the merge. Our slicing theorem guarantees
that this method produces a prototype that correctly exhibits the significant behavior of each of the input versions,
provided the changes do not conflict. Correctness is achieved by comparing the slices of the variation and the merged
program with respect to the affected parts of each variation. If the slices are the same, then the result is correct,
otherwise a diagnostic message results. Preliminary testing shows that this tool will enhance the ability of the
prototype developer to deliver a prototype more quickly by allowing more concurrency in the development effort.

14. SUBJECT TERMS 15. NUMBER OF PAGES

21
change-merging, formal methods, software development, semantics-based, prototype 16. PRICE CODE

17. SECURITY CLASSIACA TION 18. SECURITY CLASSIACATION 19. SECURITY CLASSIACATION 20. UMTATION OF ABSTRAC1
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

PRISCl'ibed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFf BLANK.

ii

1.

2.

3.

3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3

4.

5.

6.

7.

TABLE OF CONTENTS

LIST OF FIGURES . v

INlRODUCTION .. .

RAPID PROTOTYPING .. .

MODEL

Traces and Stream Behaviors
Trace Tuples and Prototype Behaviors
Possibility Functions

Example 1 .. .
Example 2 .. .

Prototype Slicing
Definition 1: PSDL Prototype Dependence Graph
Definition 2: Slice of a PSDL Prototype
Therom: Slicing Theorem for PSDL Prototypes

ME'I'HOD .. .

CHANGE-MERGE ALGORITHM

SUMMARY .. .

REFERENCES

1

1

2

3
3
3
4
4
4
4
5
8

8

13

14

17

DISTRIBUTION LIST . 19

1 looese101:1 ror ________
rns GRA&I
tine 'IAE o
UuannotUtced []
!ust i.i"ication:-----ii;

iii

INTENTIONALLY LEFf BLANK.

iv

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

LIST OF FIGURES

Fish farm control system, fishiesu

Slice of jishiesu with respect to 02, NH3, H20

Slice of fishiesu with respect to drain_setting

Slice of fishiesu with respect to drain_setting and inlet setting

Version 1.2 of fish farm control system,jishies12

Version 2.2 of fish farm control system, fishies22 •........................

Sfishiesl.1 (Activate_Drain)

Sfishiesl.2 (Activate_Drain)

Preserved parts of fzshiesu in both modifications

Affected part of fzshies12 ..••.•.......••.........•.•...•..•...•.•..

Affected part of fzshies22

Change-merged version of the fishies prototype .

Algorithm change-merge .

v

Page

6

6

7

7

8

9

10

10

11

11

12

13

14

INTENTIONALLY LEFf BLANK.

vi

1. INTRODUCTION

During iterative development of software prototypes, different variations are generally developed where

each of the versions contains a portion of the desired capability. Because these prototypes can be very

large, tools that automatically determine the differences between these versions and produce a new version

exhibiting significant behavior from each are desirable. Tilis report describes a change-merging method

for the Prototype System Description Language (PSDL) (Luqi, Berzins, and Yeh 1988), a prototype that

is semantics-based and guarantees that if a conflict-free result is produced, it is semantically correct. A

full definition of this method and the associated tool can be found in Dampier (1994).

2. RAPID PROTOTYPING

Rapid prototyping is an approach to software development that was introduced to overcome the

following weaknesses of traditional approaches:

1. fully developed software systems that do not satisfy the customer's needs, or are obsolete upon

release

2. no capability for accurately evaluating real-time requirements before the software system has been

built

Rapid prototyping overcomes these weaknesses by increasing customer interaction during the

requirements engineering phase of development, providing executable specifications that can be evaluated

for conformance to real-time requirements, and producing a production software system in a fraction of

the time required using traditional methods. Rapid prototyping allows the user to get a better

understanding of requirements early in the conceptual design phase of development. It involves the use

of software tools to rapidly create concrete executable models of selected aspects of a proposed system

to allow the user to view the model and make comments early. The prototype is rapidly reworked and

redemonstrated to the user over several iterations until the designer and the user have a precise view of

what the system should do. In this approach to rapid prototyping, software systems can be delivered

incrementally as parts of the system become fully operational.

1

Change-merging is an integral part of the rapid prototyping methodology. During prototype

development, multiple variations of a large prototype are likely to be developed. This can happen when

different development teams are working on different aspects of a system, or when different possible

solutions to a problem are explored in different ways. Our change-merging method will allow the

combination of these independently developed variations to be done automatically, ensuring that the

resultant prototype is semantically correct, with respect to all of the input variations. If the pieces are not

compatible with regard to the semantics of the prototype, then our method will identify the parts of the

prototype containing the conflictso This technology encourages the designer to explore different solutions

to a problem, and to spread the development workload in a large project without concern for the

subsequent integration of these independent efforts.

The earliest work on program merging relied on combining changes made to the text files containing

the source code for the program (Silverberg 1992; Tichy 1982)0 These syntax-based methods proved

insufficient to guarantee the correctness of the resultant programo Early semantics-based methods

concentrated on higher level domains (Berzins 1986) and simple while programs (Horwitz, Prins, and

Reps 1988; Reps and Yang 1988; Yang 1990). This work showed that calculating an exact

semantics-based change-merge is not possible in the general case, but useful approximations are possible

and feasible.

30 MODEL

PSDL programs are executable specifications that approximate the functionality of a production

software system. To describe our method of change-merging as semantics-based, we must first describe

the semantics of the language. We chose to model the behavior of a prototype by observing the data flow

history over its data streams. A prototype's behavior is represented by sets of possible histories over the

streams we call trace_ tuples. These trace_tuples are composed of sequences of data_tuples called traces.

Each trace_tuple contains precisely one trace per stream. Since PSDL prototypes are nondetenninistic,

one trace_tuple does not necessarily reflect the set of possible histories associated with a prototype; thus,

we must consider the behavior of a prototype to be the set of all possible trace_tuples over its data

streams. Since PSDL prototypes are intended to prototype embedded real-time systems that may never

be turned off, this behavior is likely to be of infinite length. The following subsections describe the model

starting with traces and building up to the behavior of a prototype and the possibility functions we use

to construct the behaviors.

2

3.1 Traces and Stream Behaviors. A trace is a sequence {d1, di· "3· ... } of possible data tuples

written to a data stream. Each di contains a data element x, the name o of the operator that wrote x to

the stream, the time tw that x was written to the stream, and the time tr that o last read its input streams

before producing x. A truncated trace of length k is a sequence containing no more than k data tuples.

A stream behavior is a set of possible traces for a stream.

3.2 Trace Tuples and Prototype Behaviors. A trace tuple over a set of streams is a tuple containing

one trace for each stream in the set. This trace tuple can be viewed as a tuple of traces or a sequence of

incremental trace tuples, according to Dampier's (1994) Theorem 2. It is, in fact, this latter representation

that allows us to prove our semantic invariance theorem using induction over the length of the trace tuple.

A truncated trace tuple of length k is a tuple of truncated traces of length no more than k.

A prototype's behavior, B, is defined as the set of all possible trace tuples over the streams of the

prototype. A truncated behavior of length k, B I k, is the set of all possible trace tuples for the prototype

truncated at length k. Constructing the behavior of a prototype is done inductively by using the

prototype's behavior of length k to produce the behavior of length k + 1 as follows:

This construction uses the prototype's truncated behavior of length k, and for every truncated trace

tuple in B I k, it produces a set of incremental trace tuples that are appended to the end of each of the T's.

This construction produces a new set of trace tuples of length no more than k + 1. Incremental trace

tuples are trace tuples where each trace contains zero or one data tuple.

3.3 Possibility Functions. At the heart of this construction is the possibility function for each operator

in the prototype, F 0 • To define the possibility function for an operator o, we look at a trace tuple

projection of the behavior aeB1(o) as a sequence of input vectors too .. For every finite prefix of a applied

too, the result is a set of possible incremental trace tuples over the output streams of o. F
0

takes as input

a projected trace tuple over the input streams of o and a read time, and produces a set of possible behavior

3

projections over the output streams of o. The read time is the time at which the last read operation was

performed by o on its input streams, and defines which values were read by o to perform this computation.

3.3.1 Example 1: Possibility function for an operator p that implements the function: Yk = xk2

FP = { ({3 },9),({3,4} ,16),({3,4,9},81),.'°,({3,-4,9, ... ,xk},xk2), ... }

3.3.2 Example 2: Possibility function for an operator q that implements the state machine:

k-1

FP = {({3},3),({3,-4},-l),({3,-4,9},8), ... ,({3,4,9, ... ,xk}, E xi + xJ, ... }
i=l

In Dampier (1994), the Independent Operator Lemma guaranteed us that an operator has the same

possibility function regardless of the context in which it is placed; therefore, it can be shown that the

inductive construction shown above produces a unique prototype behavior.

3.4 Prototype Slicing. It has been shown that a portion of a program's behavior can be captured by

a slice of the program with respect to a single point in the program (Horwitz, Prins, and Reps 1988; Reps

1989; Weiser 1984). We have developed a similar method for isolating a portion of the behavior of a

prototype. This section describes our method for taking slices of PSDL prototypes. One of the

differences between slicing for PSDL prototypes and slicing for while programs is that PSDL programs

are inherently concurrent and nondeterministic. While programs represent individual deterministic

sequential processes. This represents a major contribution of this work.

To capture all of the prototype's dependencies using our slicing method, we must enhance the

prototype's implementation graph as follows:

3.4.1 Definition 1: PSDL Prototype Dependence Graph: A Prototype Dependence Graph (PDG) for

a prototype Pis a fully expanded PSDL implementation graph Gp. In the PDG, Gp= (V, E, C), the set

of vertices has been augmented with an external vertex, EXT, and the set of edges, E, has been augmented

with a timer dependency edge from oi to oi, for each pair of vertices oi, oi e V, such that the control

4

with a timer dependency edge from oi to oj, for each pair of vertices oi, oj e V, such that the control

constraints of oi contain timer operations which affect the state of a timer read by the control constraints

of oj.

A slice of a PSDL prototype is defined in tenns of the prototype's dependence graph. It contains the

portion of the prototype that affects the history of a set of streams. This is useful in isolating changes

made to a base version of a prototype in a modification. If the slices of two versions with respect to the

same set of streams are different, then there are significant changes that have been made to one version

and not the other.

Infonnally, a slice is an upstream closure of a set of edges in the graph that includes all the source

nodes for the edges in the slice. A fonnal definition of a slice follows.

3.4.2 Definition 2: Slice of a PSDL Prototype: A slice Sp(XJ of a PSDL prototype P with respect

to a set of data streams Xis the subgraph (V, E, CJ of the PDG Gp where:

(1) Vis the smallest set that contains all vertices oi e Gp that satisfy at least one of the following

conditions:

a) oi writes to one of the data streams in X

b) oi precedes oj in Gp and oj e V

(2) E is the smallest set that contains all of the edges xk e Gp. which satisfy at least one of the

following conditions:

a) xk e X

b) xk is directed to some oi e V

(3) C is the smallest set that contains all of the timing and control constraints associated with each

operator in V and each data stream in E.

Figure 1 shows a prototype for a fish fann control system called Fishies. Figures 2, 3, and 4 display

different slices of Fishies.

5

Feeding

Activ

Feed_Schedule
Inlet Valve_Position ~

F ed_Sched
ttin

Activate_Drain Feed_Schedule

Figure I. Fish fann control system. fishiesu.

Figure 2. Slice of fishiesu with respect to 02. NH3. H20.

6

Activate_Drain

Figure 3. Slice of fishies1•1 with respect to drain_setting.

Inlet Valve_Position

1

Activate_Drain

Figure 4. Slice of fishies1.1 with respect to drain_setting and inlet setting.

7

3.4.3 Theorem: Slicing Theorem for PSDL Prototypes. Let Sp(X) be the slice of a prototype P with

respect to a set of streams X. Then Sp(X) and P have the same behavior on any subset of the streams in

Sp(X).

The proof of this theorem is contained in (Dampier 1994). The significance of this theorem is that

a slice captures a fragment of the semantic behavior of a prototype, and the behavior captured by that slice

remains the same even if that slice is made a part of a different prototype, provided that it is also a slice

with respect to that new prototype. This property is the basis for constructing a change-merging operation

that can provide semantic guarantees of correctness.

4. METHOD

Our change-merging method for PSDL prototypes uses prototype slicing to detennine auto.matically

what parts of the prototype have been affected by a change and what parts have been preserved. Figures 5

and 6 show multiple modified versions of the Fishies prototype.

Feeding

pH_Status

Activate_Drain
Feed_Schedule

Figure 5. Version 1.2 of fish fann control system. fishies, 2 •

8

Feeding

Activate_Drain

Figure 6. Version 2.2 of fish fann control system. fishies,,.

If the slice of a changed version of a prototype, with respect to a stream present in both the base

version and the modified version, is different than the same slice of the base version, then the behavior

on that slice is likely to be different. Therefore that change is significant, and must be presezved in the

merged version. For example, consider the slice of Fishies1•1 with respect to the stream Activate _Drain

illustrated in Figure 7, and the same slice of Fishies1:i., illustrated in Figure 8. It is easy to see a portion

of the effect of the change that produced Fishies1.2 from Fishiesu. If we were to take the same slice of

Fishies2:i., we would discover that it is identical to the slice of the base version Fishiesu. This illustrates

that this part of the Fishies prototype is not affected by the change that produced Fishies2.2. Since this

change is significant in version 1.2, it must be reflected in the merged version.

Slices are important because they capture all of the parts of a program that can affect the behavior

visible in a set of data streams. If two different programs have the same slice for a set of streams, they

also have the same behavior over that set of streams. The presezved part of a prototype is then the largest

set of streams that have the same single stream slice in all three versions, and the affected streams of each

modification are those that have a different single stream slice in the modified version than in the base

version. Performing a change-merge using Fishiesu as the base version, and Fishiesl.2 and Fishies.i.2 as

the modified versions, we get the presezved part as shown in Figure 9 and affected parts as shown in

Figures 10 and 11.

9

100ms

Activate_Drain

Figure 7. Sfishiesl.1 (Activate_Drain).

100ms 100ms

100ms

100ms

pH_Status

Activate_Drain

Figure 8. Sfishiesl.2 (Activate_Drain).

10

Figure 9. Preserved parts of fishiesu in both modifications.

Activate_Drain

Figure 10. Affected part of fishies11.

11

Feeding

Feed_Schedule

Figure 11. Affected part of fishies22.

In constructing the preserved part, we consider each stream individually, taking the slice of each

version with respect to that stream. If the slices are the same, then that slice is added to the preserved

part. After all streams have been checked, the preserved part is complete.

The affected parts are constructed by comparing the slices of each stream in the modified version

against the same slice of the base version. The stream is included in the affected part if the slices are

different.

The merged version is fonned by taking the union of the preserved part of all three versions and the

affected parts of the two modified versions. If the slice of the merged version with respect to the streams

affected by each modification is the same as the corresponding slice of the modified version, then semantic

correctness of the merged version with respect to the modifications is established. The result of

change-merging Fishiesu, Fishiesi.2, and Fishies2.2 is shown in Figure 12.

Our slicing method has the advantage of a clear semantic criterion for correctness, and the

disadvantage of reporting conflicts whenever two changes can affect the same stream, regardless of

whether there exists a computation history in which the two changes actually interact or conflict with each

other.

12

Feeding

Activate_Drain
Feed_Schedule

Figure 12. Change-merged version of the fishies prototype.

5. CHANGE-MERGE ALGORITHM

An algorithm for our method is shown in Figure 13. The sub-algorithms for each of the individual

parts of change_merge can be found in Dampier (1994).

The algorithm change_ merge accepts three expanded versions of a PSDL program as input. It then

extracts all of the PSDL components from each version of the program. The atomic components are held

in storage to be included in the change-merged version of the program, if needed. The composite

component of each program is divided into a specification part and an implementation part.

Each of these parts are change-merged separately and the results are recombined to create the

change-merged composite component. From the implementation part of the change-merged composite

component, the algorithm can deduce which of the atomic components need to be included in the

change-merged program. The change-merged program is then returned. If a conflict is detected during

the change-merging process, the CONFUCT variable is set to true, and a flag is placed into the

change-merged program at the location of the conflict to aid the designer in locating and resolving it

13

Algorithm change_merge(BASE,A,B: in psdl_program;
CONFUCT: out boolean) return psdl_program

begin
1. Extract the psdl_components from each of the input programs.
2. Change-merge the specification parts for the three input composite components.

a. Change-merge the state declarations.
b. Change-merge the exception declarations.
c. Change-merge the maximum execution times.
d. Change-merge the formal and informal descriptions.

3. Change-merge the implementation parts for the three input composite components.
a. Create the prototype dependency graphs for each version.
b. Create the affected parts of each modified version.
c. Create the preserved part of the base in all three versions.
d. Change-merge the graphs.
e. Change-merge the stream declarations.
f. Change-merge the timer declarations.
g. Change-merge the control constraints.

(1) Change-merge the trigger constraints.
(2) Change-merge the execution guard constraints.
(3) Change-merge the periods.
(4) Change-merge the finish_withins.
(5) Change-merge the minimum calling periods.
(6) Change-merge the maximum response times.
(7) Change-merge the output guard constraints.
(8) Change-merge the exception trigger constraints.
(9) Change-merge the timer operations.

4. Create the change-merged program.
a. Combine the change-merged specification and implementation.
b. From the resulting implementation, determine which of the atomic components from each of the

input versions is to be included in the change-merged program.
5. Return the change-merged program.
end change_ merge;

Figure 13. Algorithm change _merge.

6. SUMMARY

We have provided a method for aiding the prototype designer in independently developing different

parts of a software prototype, and automatically integrating the results of the independent efforts. This

will allow multiple designers to work on the same prototype independently, or different versions of the

prototype to be developed independently, with the knowledge that these independent results can be

integrated after the fact with some guarantee of correctness.

14

Our method has been implemented and a tool is available for use with the CAPS prototyping

environment to perform change-merging on real software prototypes. Research continues to provide more

useful conflict resolution techniques and add the ability to change-merge abstract data types. Other future

work will concentrate on realizing a method for change-merging programs written in an implementation

language such as Ada.

15

INTENTIONALLY LEFf BLANK.

16

7. REFERENCES

Berzins, V. "On Merging Software Extensions." Acta Infonnatica. Springer-Verlag, pp. 607-619, 1986.

Dampier, D. "A Formal Method for Semantics-Based Change-Merging of Software Prototypes." Ph.D.
Dissertation, Naval Postgraduate School, Monterey, CA, June 1994.

Horwitz, S., J. Prins, and T. Reps. "Integrating Non-Interfering Versions of Programs." Conference
Record of the Fifteenth ACM Symposium on Principles of Programming Languages, Association for
Computing Machinery, New York, NY, 13--15 January 1988.

Luqi, V. Berzins, and R. Yeh. "A Prototyping Language for Real Time Software." IEEE Transactions
on Software Engineering. pp. 1409-1423, October 1988.

Reps, T. "On the Algebraic Properties of Program Integration." University of Wisconsin-Madison
Technical Report CS-856, June 1989.

Reps, T., and W. Yang. "The Semantics of Program Slicing." University of Wisconsin-Madison
Technical Report CS-777, 1988.

Silverberg, I. Source File Management with SCCS, Englewood Cliffs, NJ: Prentice-Hall, 1992.

Tichy, W. "Design, Implementation, and Evaluation of a Revision Control System." Proceedings of the
6th International Conference on Software Engineering, IEEE, Tokyo, pp. 58-67, September 1982.

Weiser, M "Program Slicing." IEEE Transactions on Software Engineering, IEEE, pp. 352-357,
July 1984.

Yang, W. "A New Algorithm for Semantics-Based Program Integration." University of Wisconsin
Madison Technical Report CS-962, 1990.

17

INTENTIONALLY LEFT BLANK.

18

NO.OF
COPIES ORGANIZATION

2 ADMINISTRATOR
ATIN DTIC DDA
DEFENSE 1ECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

1 DIRECTOR
ATIN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER Mil..L RD
ADELPHI MD 20783-1145

3 DIRECTOR
ATIN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER Mil..L RD
ADELPHI MD 20783-1145

1 DIRECTOR
ATIN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER Mil..L RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL
ATIN AMSRL OP AP L (305)

19

NO.OF
COPIES ORGANIZATION

DIR USARL
ATIN AMSRL SC I
115 OKEEFE BLDG
A1LANTA GA 30332-0800

50 DIR USARL
ATIN AMSRL SC IS
115 OKEEFE BLDG
ATLANTA GA 30332-0800

2 DIR USARL
ATIN AMSRL SC IS CPT DAVID A DAMPIER
115 OKEEFE BLDG
ATLANTA GA 30332-0800

2 NAVAL POSTGRADUATE SCHOOL
ATIN DR VALDIS BERZINS
COMPUTER SCIENCE DEPT
833 DYER RD
MONTEREY CA 93943

2 NAVAL POSTGRADUATE SCHOOL
ATINDRLUQI
COMPUTER SCIENCE DEPT
833DYERRD
MONTEREY CA 93943

2 NAVAL POSTGRADUATE SCHOOL
ATIN DR MANTAK SHING
COMPUTER SCIENCE DEPT
833 DYER RD
MONTEREY CA 93943

NAVAL POSTGRADUATE SCHOOL
ATIN DR DAN DOLK
SYSTEMS MANAGEMENT DEPT
MONTEREY CA 93943

1 NAVAL POSTGRADUATE SCHOOL
ATIN DR CRAIG RASMUSSEN
MATIIBMATICS DEPT
MONTEREY CA 93943

ABERDEEN PROVING GROUND

DIR USARL
ATIN AMSRL SC

20

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number ___ ARL=._-TR;;;;..;.;:.-...,8,,,;,,40...__ ________ Date of Report A u..,.gu s t 1 ... 99 5....._ ___ _

2. Date Report Received---------------------------

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report

will be used.)------------------------

4. Specifically, how is the report being used? (Infonnation source, design data, procedure, source of ideas, etc.)

5. Has the infonnation in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate. ---------

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to

organization, technical content, format, etc.) -----------------

CURRENT
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the
Old or Incorrect address below.

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

