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and Applications
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Abstract. Optimality functions define stationarity in nonlinear programming, semi-infinite opti-

mization, and optimal control in some sense. In this paper, we consider optimality functions for

stochastic programs with nonlinear, possibly nonconvex, expected value objective and constraint

functions. We show that an optimality function directly relates to the difference in function values

at a candidate point and a local minimizer. We construct confidence intervals for the value of the

optimality function at a candidate point and, hence, provide a quantitative measure of solution

quality. Based on sample average approximations, we develop two algorithms for classes of stochas-

tic programs that include CVaR-problems and utilize optimality functions to select sample sizes as

well as “active” sample points in an active-set strategy. Numerical tests illustrate the procedures.

Keywords: Stochastic programming; nonlinear programming; optimality conditions; validation analysis; al-

gorithms.

1 Introduction

Stochastic optimization problems arise in numerous contexts where decisions must be made in

the presence of data uncertainty; see the books [18, 12, 31, 26, 62, 57] and references therein for

algorithms, models, and applications. In this paper, we deal with a class of stochastic optimization

problems defined in terms of expected values of random functions. Let F j : IRn × Ω → IR,

j = 0, 1, 2, ..., q, be random functions defined on a common probability space (Ω,F ,P), with Ω ⊂ IRd

and F ⊂ 2Ω being the Borel sigma algebra. Moreover, let the expected value functions f j : IRn →
IR ∪ {−∞,∞} be defined by

f j(x)
△
= E[F j(x,w)]

for all j ∈ q0
△
= {0} ∪ q, with q

△
= {1, 2, ..., q}, where E is the expectation with respect to P.

Problems involving such expected value functions are generally challenging to solve due to the need

for estimating expectations repeatedly. Even assessing how “close” a given candidate point x ∈ IRn
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is to optimality or stationarity may be nontrivial. We specifically consider the problem

P : min
x∈IRn

{f0(x) | f j(x) ≤ 0, j ∈ q}, (1)

where we adopt assumptions as in Theorem 7.52 and p. 146 of [57] that ensure that expectation

and gradient operators interchange and f j(·) are continuously differentiable. However, f j(·) may

be nonconvex. We do allow certain classes of nonsmoothness in F j(·, ω), j ∈ q0, as described

below, which may arise in two-stage stochastic programs with recourse [26], investment portfolio

optimization [49], inventory control [65], and engineering design optimization [51, 48]. Inventory

control and engineering design optimization as well as estimation of mixed logit models [4] may

result in nonconvex models. Expected value constraints appear, for instance, in investment portfolio

and engineering design optimization with restrictions on the Conditional Value-at-Risk (CVaR)

(also called superquantile) [49, 48]. Throughout the paper, we assume that an infeasible x ∈ IRn is

meaningful, but undesirable, as often is the case for CVaR-constrained problems. If an infeasible

point has little meaning and practical use, a chance-constrained model may be more suitable than

P ; see for example [33] and [57], Chapter 4. That topic, however, is outside the scope of the paper

as in that case F j(·, ·) is an indicator function, which is discontinuous and cannot easily be handled

by our framework.

We consider two aspects of P . First, we focus on the assessment of the “quality” of a candidate

point x ∈ IRn for P , which we refer to as validation analysis. In that portion of the paper, we

adopt assumptions that ensure a central limit theorem. Second, we deal with algorithms that

generates such candidate points. We then adopt a more specific assumption that requires F j(·, ω)
to be given in terms of the maximum of a finite number of smooth random functions. We are

especially motivated by applications involving CVaR and in one algorithm take advantage of the

special structure of P in such cases to develop an active-set strategy.

Stationary points of P are defined by the Karush-Kuhn-Tucker (KKT) or the Fritz-John (FJ)

first-order necessary optimality conditions. (Recall that the conditions are equivalent for example

under the Slater constraint qualification with convex inequality constraints.) However, the verifi-

cation of these conditions at a given x ∈ IRn in the present context is challenging as it requires

estimation of f j(x) and ∇f j(x), j ∈ q0.

Under the assumption of deterministic constraints, [58] develops confidence regions for ∇f0(x)
as well as hypothesis tests for whether a point x ∈ IRn satisfies the KKT conditions; see also [19].

The results in [58] can be extended to constraints defined in terms of expectations [56]. The hy-

pothesis tests require that the gradients of the active constraints are linearly independent, the strict

complimentary condition holds at x, and that the inverse of an estimate of a variance-covariance

matrix is nonsingular. For P , [10] develops a series of hypothesis tests using bootstrapping for

verification of KKT conditions that require relatively small sample sizes. Other hypothesis tests

for KKT conditions are found in [52, 53], which also consider equality constraints.
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Section 5.2 of [57] (see also [55, 17, 4]) uses stochastic variational inequalities to analyze

optimality conditions for P . The results include conditions for almost sure convergence of stationary

points of sample average problems (constructed by replacing the expectations in P by their sample

averages) to stationary points of P as the sample size grows. Extension of such results to second-

order optimality conditions are found in [4]. A similar result for the case with a nonsmooth

objective function and deterministic constraints is found in [65]. We find also in Section 5.2 of

[57] that under the linear independence constraint qualification and the strict complementarity

condition, a stationary point of a sample average problem with sample size N is approximately

normally distributed with mean equal to a stationary point of P and with standard deviation

proportional to N−1/2.

Another approach to validation analysis in stochastic programming is based on estimating

bounds on the optimal value of P ; see [20, 37, 34, 5, 6]. Estimation of bounds in the case of

constraints on expected value functions utilizes the Lagrangian function as described in [63] and

[57], p. 208. These bounding procedures are essentially limited to convex problems as they require

global minima of sample average problems, or as they make use of strong duality. Even if global

minima can be computed, nonconvex problems may have substantial duality gaps and bounds based

on the Lagrangian function may be weak.

There are numerous algorithms for solving stochastic programs similar to P including decom-

position algorithms in cases with special structure (see, e.g., [24, 18]), stochastic approximations

(see, e.g., [13, 9, 31, 35]), other versions of stochastic search (see, e.g., [60]), and various algorithms

based on sample average approximations (SAA) (see, e.g., [57]). Since P may involve constraints

on nonconvex expected value functions, stochastic approximations may not be applicable and we

focus on SAA. The SAA approach solves a sample average problem obtained from P by replacing

P by an empirical distribution based on a sample from P. Under mild assumptions, global mini-

mizers and global minima of sample average problems converge to a global minimizer and a global

minimum of P , respectively, as the sample size increases to infinity; see for example [57], Section

5.1 for an overview. The advantage of this approach is it simplicity and the fact that a large library

of deterministic optimization algorithm may be applicable to solve the sample average problem. A

more involved version of SAA approximately solves a sequence of sample average problems with

gradually larger sample size as for example discussed in [22, 4, 51, 39]. This version may reduce the

computational effort required to reach a near-optimal solution as early iterations can utilize small

sample sizes, but it needs a rule for selecting the sequence of sample sizes [43, 39].

There are several algorithms for the special case of P arising in CVaR minimization and

correspondingly constrained problems. In [49], a nonsmooth sample average problem is transcribed

into a smooth problem using auxiliary variables. While the smooth problem may have special

structure, it is typically large-scale and potentially difficulty to solve by standard algorithms [1].

Alternative approaches solve the sample average problem directly using nonsmooth algorithms
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[8, 32, 25, 38], decomposition [14, 30], or smoothing [1, 65, 61].

In this paper, we propose optimization algorithms and validation analysis techniques for P

based on optimality functions. Optimality functions are optimal values of certain quadratic pro-

grams involving linearizations of objective and constraint functions and were introduced by E.

Polak for use in nonlinear programming, semi-infinite optimization, and optimal control to charac-

terize stationary points [40, 41, 42]. To the author’s knowledge, optimality functions have not been

applied previously for validation analysis and algorithm development in stochastic programming.

As we see in this paper, the use of optimality functions in the context of P appears promising for

three reasons. First, they result in validation analysis procedures that appear more applicable than

hypothesis test of KKT conditions as they deal with the more general FJ conditions and do not re-

quire a constraint qualification. Second, they lead to bounds on the distance between the objective

function value at a feasible point and a local minimum. Third, they result in sample-size adjustment

rules that ensure convergence of implementable algorithms for P based on approximately solving

sequences of sample average problems.

The contributions of the paper are four-fold. (i) We introduce an optimality function to the

area of stochastic programming and establish the properties of its estimator. (ii) We derive bounds

in terms of the optimality function on the distance between the objective function value at a feasible

point and a local minimum of P . (iii) We construct validation analysis techniques for P based on

the optimality function and the FJ conditions. (iv) We develop two implementable algorithms for

classes of P and prove their convergence to FJ points. The first algorithm deals with the case when

F j(·, ·), j ∈ q0, are max-functions and the second considers a situation that arises for example in

CVaR applications, which allows the development of an active-set strategy.

Section 2 defines optimality conditions for P in terms of an optimality function and show how

that function relates to the distance to a local minimum of P . Section 3 constructs an estimator

for the optimality function and derives its asymptotic distribution. Section 4 develops procedures

for validation analysis. Section 5 derives two implementable algorithms for P . Section 6 gives

illustrative numerical examples.

2 Optimality Function

In this section, we introduce an optimality function and prove a relationship between the optimality

function at a feasible point x ∈ IRn and the distance between f0(x) and a local minimum of P .

We start by giving assumptions that ensure that f j(·), j ∈ q0, are finite valued and continuously

differentiable and by stating optimality conditions. We observe that since F j(·, ω), j ∈ q0, are

random functions, it follows by definition that F j(x, ·), j ∈ q0, are measurable for every x ∈ IRn.

Assumption 1. For a given set S ⊂ IRn, the following hold for any nonempty compact set X ⊂ S

and for all j ∈ q0:
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(i) There exists a measurable function C : Ω → [0,∞) such that E[C(ω)] < ∞ and |F j(x, ω)| ≤
C(ω) for all x ∈ X and almost every ω ∈ Ω.

(ii) There exists a measurable function L : Ω → [0,∞) such that E[L(ω)] <∞ and

|F j(x, ω)− F j(x′, ω)| ≤ L(ω)∥x− x′∥

for all x, x′ ∈ S and almost every ω ∈ Ω.

(iii) For every x ∈ X, F j(·, ω) is continuously differentiable at x for almost all ω ∈ Ω.

Assumption 1 is commonly made in the literature (see for example Theorem 7.52 in [57]) and

allows for certain classes of nonsmoothness in F j(·, ω) that may be satisfied in two-stage stochastic

programs with recourse [26], CVaR problems [49], inventory control problems [65], and engineering

design problems [51] when P has a continuous cumulative distribution function. Assumption 1(iii)

excludes the possibility of atoms at a point ω ∈ Ω for which F j(·, ω) is nonsmooth at some x ∈ IRn.

This occurs, for example, in the newsvendor problem with a discrete demand distribution.

If Assumption 1 holds on an open set S and X ⊂ S is compact, then it follows from The-

orem 7.52 in [57] that f j(·), j ∈ q0, are continuously differentiable on X and that ∇f j(x) =

E[∇xF
j(x, ω)] for all x ∈ X and j ∈ q0.

We need the following notation. For any vector v, vj denotes the vector’s j-th component. Let

Σ0
q
△
=

{
µ ∈ IRq+1

∣∣∣∣∣ ∑
j∈q0

µj = 1, µj ≥ 0, j ∈ q0

}
,

ψ(x)
△
= maxj∈q f

j(x), and the constraint violation ψ+(x)
△
= max{0, ψ(x)}.

The FJ first-order necessary conditions for P take the following form.

Proposition 1. If x̂ ∈ IRn is a local minimizer for P and Assumption 1 holds on an open set

S ⊂ IRn containing x̂, then there exists a multiplier vector µ̂ ∈ Σ0
q such that∑

j∈q0

µ̂j∇f j(x̂) = 0 (2)

and ∑
j∈q

µ̂jf j(x̂) = 0. (3)

We refer to a point x̂ ∈ IRn that satisfies (2) and (3) for some µ̂ ∈ Σ0
q as a FJ point.

We follow [42], see p. 190, and express the FJ conditions by means of a continuous optimality

function θ : IRn → (−∞, 0] defined by

θ(x)
△
= min

h∈IRn

{
max

{
− ψ+(x) + ⟨∇f0(x), h⟩,max

j∈q
{f j(x)− ψ+(x) + ⟨∇f j(x), h⟩}

}
+ 1

2∥h∥
2

}
. (4)

5



We observe that θ(x) is the minimum value of a linear approximation of objective and constraint

functions at x with a quadratic “regularizing” term. The dual problem of (4) takes the following

form after simplifications; see Theorem 2.2.8 in [42]:

θ(x) = − min
µ∈Σ0

q

{
µ0ψ+(x) +

∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2}. (5)

It is clear that the optimality function equivalently expresses the FJ conditions in the sense stated

next; see Theorem 2.2.8 in [42]. We let Xψ
△
= {x ∈ IRn | ψ(x) ≤ 0} denote the feasible region of P .

Proposition 2. Suppose that x̂ ∈ Xψ and Assumption 1 holds on an open set S ⊂ IRn containing

x̂. Then, θ(x̂) = 0 if and only if there exists a multiplier vector µ̂ ∈ Σ0
q such that (2) and (3) hold.

From Proposition 2 and the continuity of θ(·), we see that an x ∈ IRn close to a feasible FJ

point yields a near-zero value of θ(x). Under a positive definite assumption at a local minimizer

x̂ of P , θ(x) also gives a bound on the distance between f0(x) and f0(x̂) for x ∈ Xψ near x̂ as

the next result shows. We find related results for finite minimax problems in [42], p. 176, and

for two-stage stochastic program with recourse in [19], but the present result is new. We need the

notation IB(x, ρ)
△
= {x′ ∈ IRn | ∥x′ − x∥ ≤ ρ} for any x ∈ IRn and ρ > 0.

Theorem 1. Suppose that x̂ ∈ IRn is a local minimizer of P and f j(·) is finite valued and twice

continuously differentiable near x̂ with ∇2f j(x̂) being positive definite for all j ∈ q0. Then, there

exist constants ρ ∈ (0,∞), c ∈ (0,∞), m ∈ (0, 1], and M ∈ [1,∞) such that

θ(x)− c
√

−θ(x)
m

≤ f0(x̂)− f0(x) ≤ θ(x)/M (6)

for any x ∈ IB(x̂, ρ) ∩Xψ.

Proof: Due to its length, we refer to the Appendix for the proof.

An examination of the proof of Theorem 1 reveals that c is given by the size of ∥∇f0(x)∥
near x̂. Moreover, if f j(·), j ∈ q0, satisfy a strong convexity assumption (specifically (51) for all

x, x′ ∈ IRn), then (6) holds for all x ∈ Xψ with x̂ being a global minimizer.

In view of the above results, the optimality function offers a way of measuring the quality of

a candidate point. The computation of θ(x) for a given x ∈ IRn requires the solution of a convex

quadratic program with linear constraints (see (5)), which can be achieved in finite time. However,

the definition of θ(x) involves f j(x) and ∇f j(x), j ∈ q0, that, in general, cannot be computed in

finite time. Consequently, we define an estimator for θ(x) using the sample average estimators for

f j(x) and ∇f j(x), j ∈ q0, that leads to validation analysis procedures.
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3 Estimator of Optimality Function

Let ω1, ω2, ... be an infinite sequence of independent random vectors each with value in Ω and

distributed as P. Let IIN
△
= {1, 2, 3, ...}. We define for any N ∈ IIN, j ∈ q0, and x ∈ IRn, the estima-

tors for f j(x),∇f j(x), ψ(x), and ψ+(x) by f jN (x)
△
= 1

N

∑N
l=l F (x, ωl),∇f

j
N (x)

△
= 1

N

∑N
l=l∇xF (x, ωl),

ψN (x)
△
= maxj∈q f

j
N (x), and ψ

+
N (x)

△
= max{0, ψN (x)}, respectively. We refer to [15] for an overview

of alternative approaches to estimating ∇f j(x). In some situations it may be possible to use vari-

ance reduction techniques to define alternative estimators with smaller variance than those defined

above; see for example Section 5.5 in [57]. However, such estimators are beyond the scope of the

paper. Finally, we define the estimator of θ(x) by

θN (x)
△
= min

h∈IRn

{
max

{
− ψ+

N (x) + ⟨∇f0N (x), h⟩,

max
j∈q

{f jN (x)− ψ+
N (x) + ⟨∇f jN (x), h⟩}

}
+ 1

2∥h∥
2

}
.

As commonly done, we view f jN (x), j ∈ q0, ψN (x), ψ
+
N (x), and θN (x) as random variables and

∇f jN (x), j ∈ q0, as random vectors defined on the product space generated by (Ω,F ,P) and denote

the resulting probability measure by P; see Chapter 7 of [57] for further background. Similar to

(5), we deduce from Theorem 2.2.8 of [42] the following equivalent and useful expression for θN (x):

θN (x) = − min
µ∈Σ0

q

{
µ0ψ+

N (x) +
∑
j∈q

µj [ψ+
N (x)− f jN (x)] +

1
2

∥∥∥ ∑
j∈q0

µj∇f jN (x)
∥∥∥2}. (7)

We next derive properties of θN (x) using proof techniques found, for example, in Chapter 5 of

[57]. We start by stating that θN (x) is a strongly consistent estimator of θ(x). This result is similar

to classic results about almost sure convergence of optimal values of sample average problems to

the optimal value of an original problem; see, e.g., [28, 47]. The proof follows standard arguments

(see for example the proof of Proposition 5.2 in [57]) and we therefore omit it.

Proposition 3. Suppose that Assumption 1 holds on an open set that contains a given x ∈ IRn.

Then, θN (x) → θ(x), as N → ∞, almost surely.

We next examine the asymptotic distribution of an appropriately shifted and scaled θN (x) for

a given x ∈ IRn and need the following notation. Let for any x ∈ IRn,

Σ̂0
q(x)

△
=

{
µ ∈ Σ0

q

∣∣∣ θ(x) = µ0ψ+(x) +
∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2}, (8)

q̂(x)
△
= {j ∈ q | ψ(x) = f j(x)}, and

q̂+(x)
△
=


q̂(x) ∪ {0} if ψ(x) = 0

q̂(x) if ψ(x) > 0
{0} otherwise.
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We use v′ to denote the transpose of a vector v and define the following quantities:

f(x)
△
= (f1(x), f2(x), ..., f q(x))′,

fN (x)
△
= (f1N (x), f

2
N (x), ..., f

q
N (x))

′,

∇f(x) △
= (∇f0(x)′,∇f1(x)′, ...,∇f q(x)′)′,

and

∇fN (x)
△
= (∇f0N (x)′,∇f1N (x)′, ...,∇f

q
N (x)

′)′.

We need the following light-tail assumption to ensure a central limit theorem.

Assumption 2. For a given x ∈ IRn, E[F j(x, ω)2] <∞ for all j ∈ q and E[(∂F j(x, ω)/∂xi)2] <∞
for all j ∈ q0 and i = 1, 2, ..., n.

In practice, one may need to have this assumption satisfied for all x in a region of interest as

a specific candidate point is typically not known a priori.

For any x ∈ IRn, we let Y (x) denote the q + (q + 1)n-dimensional normal random vector with

zero mean and variance-covariance matrix V (x), where V (x) is the variance-covariance matrix

of the random vector (F 1(x, ω), F 2(x, ω), ..., F q(x, ω),∇xF
0(x, ω)′,∇xF

1(x, ω)′, ...,∇xF
q(x, ω)′)′.

Moreover, we define the q-dimensional random vector Y−1(x) and the n-dimensional random vectors

Yj(x), j ∈ q0, such that Y (x) = (Y−1(x)
′, Y0(x)

′, Y1(x)
′, ..., Yq(x)

′)′.

We use ⇒ to denote convergence in distribution. The following vector-valued central limit

theorem is well known; see, for example, Theorem 29.5 in [11].

Proposition 4. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds

on an open set containing x ∈ IRn. Then,

N1/2

((
fN (x)

∇fN (x)

)
−

(
f(x)

∇f(x)

))
⇒ Y (x),

as N → ∞.

We next examine the asymptotic distribution of a scaled and shifted θN (x). The proof follows

by an application of the Delta Theorem 7.59 (see also Exercise 5.4, p. 249) in [57].

Theorem 2. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 is satisfied

on an open set containing x ∈ IRn. Then,

N1/2(θN (x)−θ(x)) ⇒ − min
µ∈Σ̂0

q(x)

{
µ0W (x)+

∑
j∈q

µj [W (x)−Y j
−1(x)]+

∑
j∈q0

µj
⟨ ∑
k∈q0

µk∇fk(x), Yj(x)
⟩}
(9)

as N → ∞, where W (x)
△
= maxj∈q̂+(x) Y

j
−1(x), with Y

0
−1(x)

△
= 0.
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Proof: See Appendix.

In general, the right-hand side in (9) is not a normal random variable. Hence, θN (x) cannot

be expected to be approximately normal even for large N . In special cases, we find the following

interesting corollaries.

Corollary 1. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 is

satisfied on an open set containing x ∈ IRn. Then, the following statements hold:

(i) If the vectors ∇f j(x), j ∈ q0, are linearly independent, then Σ̂0
q(x) = {µ̂(x)} is a singleton and

N1/2(θN (x)− θ(x)) (10)

⇒ −µ̂0(x)W (x)−
∑
j∈q

µ̂j(x)[W (x)− Y j
−1(x)]−

∑
j∈q0

µ̂j(x)
⟨ ∑
k∈q0

µ̂k∇fk(x), Yj(x)
⟩
,

as N → ∞.

(ii) If x is a local minimizer of P and the vectors ∇f j(x), j ∈ q̂(x), are linearly independent, then

Σ̂0
q(x) = {µ̂(x)} is a singleton and

N1/2θN (x) ⇒ −W (x) +
∑

j∈q̂+(x)

µ̂j(x)Y j
−1(x) (11)

as N → ∞. Moreover, if in addition q̂(x) = {j(x)} is a singleton, then

N1/2θN (x) ⇒

{
−max{0, Y j(x)

−1 }+ µ̂j(x)(x)Y
j(x)
−1 (x) if f j(x)(x) = 0

0 if f j(x)(x) < 0
(12)

as N → ∞.

Proof: If the vectors ∇f j(x), j ∈ q0, are linearly independent, then the matrix A(x) = (∇f0(x),
∇f1(x), ..., ∇f q(x)) has rank q+1. Hence, A(x)′A(x) is positive definite and the objective function

in (5) is strictly convex. Consequently, Σ̂0
q(x) is a singleton and part (i) follows directly.

Next, consider part (ii). Since x ∈ IRn is a local minimizer of P , ψ(x) ≤ 0 and, from

Proposition 2, θ(x) = 0. Hence, it follows from (5) that there exists a µ̂(x) ∈ Σ̂0
q(x) such that∑

j∈q0
µ̂j(x)∇f j(x) = 0 and

∑
j∈q µ̂

j(x)[ψ+(x)− f j(x)] = 0. Consequently, µ̂j(x) = 0 for all j ∈ q

such that j ̸∈ q̂+(x). We deduce from the KKT conditions for P that under the stated linear

independence assumption, Σ̂0
q(x) is a singleton. Since Y 0

−1(x) = 0 by definition, (9) reduces to (11).

Finally, (12) follows from (11).

Corollary 2. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds on

an open set containing x ∈ IRn. If all constraints are deterministic, i.e., F j(·, ω) = F j(x), j ∈ q,

then

N1/2(θN (x)− θ(x)) ⇒ − min
µ∈Σ̂0

q(x)
µ0

⟨ ∑
k∈q0

µk∇fk(x), Y0(x)
⟩
, (13)

as N → ∞.
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Proof: This result follows by similar argument as those leading to Theorem 2.

We see from (13) that θN (x) is approximately normal when Σ̂0
q(x) is a singleton. Moreover,

the limiting distribution degenerates to the constant zero when θ(x) = 0.

The next corollary deals with the special case of no constraints.

Corollary 3. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds

on an open set containing x ∈ IRn. If there are no constraints in P , then

N1/2(θN (x)− θ(x)) ⇒ N (0,∇f0(x)′V0(x)∇f0(x)),

as N → ∞, where V0(x) is the n-by-n variance-covariance matrix of Y0(x) (and ∇xF
0(x, ω)) and

N (0, σ2) denotes a zero-mean normal random variable with variance σ2.

Proof: This result follows from Theorem 2. It can also be shown using Delta Theorem 7.59 in [57]

and the fact (see p. 6 in [42]) that in this case we obtain the simplifications

θ(x) = −1
2∥∇f

0(x)∥2 (14)

and

θN (x) = −1
2∥∇f

0
N (x)∥2. (15)

We next consider the bias EθN (x) − θ(x), where E denotes the expectation with respect to

P. Convergence in distribution do not necessarily imply convergence of expectations. Under an

uniform integrability property, however, the convergence of expectations is ensured; see for example

p. 338 of [11]. The property holds under several assumptions, one of which is used in the next

result.

Proposition 5. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds

on an open set containing x ∈ IRn. Moreover, suppose that there exists an ϵ > 0 such that

sup
N∈IIN

E[|N1/2(θN (x)− θ(x))|1+ϵ] <∞.

Then,

EθN (x)− θ(x) (16)

= N−1/2E
[
− min
µ∈Σ̂0

q(x)

{
µ0W (x) +

∑
j∈q

µj [W (x)− Y j
−1(x)] +

∑
j∈q0

µj
⟨ ∑
k∈q0

µk∇fk(x), Yj(x)
⟩}]

+ o(N−1/2).

Moreover, if Σ̂0
q(x) is a singleton, then

EθN (x)− θ(x) = −N−1/2E[W (x)] + o(N−1/2). (17)
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Proof: From Theorem 25.12 in [11] and Theorem 2, we directly obtain (16). Since Y j
−1, j ∈ q, and

Yj(x), j ∈ q0, have zero mean and
∑

j∈q0
µj = 1 for all µ ∈ Σ0

q , (17) also holds.

Conditions that ensure that Σ̂0
q(x) is a singleton is given in Corollary 1. We observe that

the bias identified above is similar to the well-known bias of the optimal value of minx∈Xψ f
0
N (x)

relative to the optimal value of minx∈Xψ f
0(x); see, for example p. 167 in [57]. In that case, the

bias is always nonpositive. In the present case, EθN (x) may be larger than θ(x). However, in the

absence of constraints in P , it follows directly from (14) and (15), and Jensen’s inequality that for

any N ∈ IIN,

EθN (x) ≤ θ(x). (18)

4 Validation Analysis

In this section, we develop procedures for assessing the quality of a candidate point x ∈ IRn.

Specifically, we develop confidence intervals and probabilistic bounds on θ(x) and ψ(x). Using such

bounds, we may claim with some confidence that x satisfies the conditions ψ(x) ≤ δ and θ(x) ≥ −ϵ
for given δ ≥ 0 and ϵ > 0. We first consider the situation with no constraints in P , second deal

with near feasibility, and third bound the optimality function of the full problem.

4.1 Unconstrained Optimization

Suppose that there are no constraints in P and let x ∈ IRn be a candidate solution. In view of

Corollary 3, θN (x) is approximately normal with mean θ(x) and variance ∇f0(x)′V0(x)∇f0(x)/N
for large N . Hence, it is straightforward to construct a confidence interval for θ(x). Let

V0,N (x)
△
=

1

N − 1

N∑
l=l

(∇xF
0(x, ωl)−∇f0N (x))(∇xF

0(x, ωl)−∇f0N (x))′.

be the standard unbiased estimator of V0. Then for large N ,[
θN (x)− zα

√
∇f0N (x)′V0,N (x)∇f0N (x)/N, 0

]
(19)

is an approximate 100(1 − α)%-confidence interval for θ(x), where zα is the standard normal α-

quantile. In (19) and other confidence intervals below we use a quantile of the standard normal

distribution instead of one of the t-distribution as the sample size is typically relatively large.

We observe that the approximate normality of θN (x) does not directly reflect the fact that

θN (x) ≤ 0 almost surely. However, in practice, validation analysis is almost always carried out at

an x ∈ IRn with θ(x) < 0 in which case the truncation at zero is insignificant for large N . Our

numerical experiments indicate that the normal model of θN (x) is quite accurate for both θ(x) < 0

and θ(x) = 0; see Section 6. The confidence interval (19) is one-sized, as are the confidence intervals

derived below. While it is easy to convert (19) into a two-sided confidence interval, we believe that

one-sided confidence intervals are more suitable in the present context as θ(x) ≥ −ϵ is a natural

11



(though conceptual) criterion for stopping an algorithm applied to P . Hence, if (19) is contained

in [−ϵ, 0], then we would be 100(1− α)% confident that θ(x) ≥ −ϵ is satisfied.

4.2 Near Feasibility in P

We next consider the full problem P and develop a procedure for determining whether x ∈ IRn is

nearly feasible, i.e., ψ(x) ≤ δ for some δ ≥ 0. We adopt a simple batching approach to estimate the

value of ψ(x). In the ranking and selection literature, we find more sophisticated and potentially

more efficient ways of determining whether x is nearly feasible; see for example [27] and references

therein. It is also possible to estimate f j(x) independently for each constraints j ∈ q; see [53].

However, we do not explore those possibilities further.

By Jensen’s inequality, we find that ψ(x) ≤ EψN (x). Hence, a confidence interval for EψN (x)

provides a conservative confidence interval for ψ(x), which we construct next.

For given N and M , let ψN,k(x), k = 1, 2, ...,M , be independent random variables distributed

as ψN (x). Then,

ψN,M (x)
△
=

1

M

M∑
k=1

ψN,k(x)

is an unbiased estimator of EψN (x). If E[F j(x, ω)2] < ∞ for all j ∈ q, then a central limit

theorem holds for ψN,M (x), i.e., ψN,M (x) is approximately normal with mean EψN (x) and variance

V ar[ψN (x)]/M for large M . Let s2ψ,N,M (x) be the unbiased estimator of V ar[ψN (x)] given by

s2ψ,N,M (x) =
1

M − 1

M∑
k=1

(ψN,k(x)− ψN,M (x))2.

Then, it follows that

(−∞, ψN,M (x) + zαsψ,N,M (x)/
√
M ] (20)

is an approximate 100(1−α)%-confidence interval for EψN (x) for large M and also a conservative

100(1− α)%-confidence interval for ψ(x).

4.3 Constrained Optimization

We propose two approaches for obtaining confidence intervals for θ(x). We note that the optimality

function synthesizes the lack of feasibility and optimality at a particular point into a real number.

Hence, it is natural to supplement a confidence interval for θ(x) by one for ψ(x) (see (20)), which

assesses feasibility exclusively.

The first approach for obtaining confidence intervals for θ(x) makes use of the following result.

Proposition 6. Suppose that Assumption 1 holds on an open set containing a given x ∈ IRn.

Then, for any µ ∈ Σ0
q,

θ(x) ≥ E
[
− µ0ψ+

N (x)−
∑
j∈q

µj(ψ+
N (x)− f jN (x))−

1
2

∥∥∥ ∑
j∈q0

µj∇f jN (x)
∥∥∥2]. (21)
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Proof: For any µ ∈ Σ0
q , let η̃ : IRq+(q+1)n → IR be defined by

η̃(ζ)
△
= max{0,max

j∈q
ζj−1} −

∑
j∈q

µjζj−1 +
1
2

∥∥∥ ∑
j∈q0

µjζj

∥∥∥2
for any ζ = (ζ ′−1, ζ

′
0, ζ

′
1, ...ζ

′
q) ∈ IRq+(q+1)n, with ζ−1 ∈ IRq and ζj ∈ IRn, j ∈ q0. Since η̃(·) is convex,

it follows from Jensen’s inequality that

Eη̃((fN (x)
′,∇fN (x)′)′) ≥ η̃((f(x)′,∇f(x)′)′). (22)

From (5) and (22), we see that

η̃((f(x)′,∇f(x)′)′) = µ0ψ+(x) +
∑
j∈q

µj(ψ+(x)− f j(x)) + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2 ≥ −θ(x).

The result then follows from the fact that Eη̃((fN (x)
′,∇fN (x)′)′) equals the negative of the right-

hand side in (21).

In view of Proposition 6, we construct a conservative confidence interval for θ(x) by com-

puting a confidence interval for the right-hand side in (21). We adopt a batching approach and,

for given N and M , let ηN,k, k = 1, 2, ...,M , be independent random variables distributed as

η̃((fN (x)
′,∇fN (x)′)′). Then,

ηN,M
△
=

1

M

M∑
k=1

ηN,k

is an unbiased estimator of E[η̃((fN (x)
′,∇fN (x)′)′)]. Under sufficient integrability assumptions for

(fN (x)
′,∇fN (x)′), a central limit theorem holds for ηN,M and, consequently, ηN,M is approximately

normal with mean E[η̃((fN (x)
′,∇fN (x)′)′)] and variance V ar[η̃((fN (x)

′,∇fN (x)′)′)]/M for large

M . Let s2η,N,M be the standard unbiased estimator of V ar[η̃((fN (x)
′,∇fN (x)′)′)] given by

s2η,N,M =
1

M − 1

M∑
k=1

(ηN,k − ηN,M )2.

Then, it follows that

[−ηN,M − zαsη,N,M (x)/
√
M, 0] (23)

is an approximate 100(1− α)%-confidence interval for E[−η̃((fN (x)′,∇fN (x)′)′)] for large M and

also a conservative 100(1 − α)%-confidence interval for θ(x). To compute the above confidence

interval, it is necessary to select a µ ∈ Σ0
q . In view of the proof of Proposition 6, we see that a

tighter confidence interval can be expected when µ ∈ Σ̂0
q(x). Hence, we recommend to select µ as

the optimal solution of (7) for some large N . We note, however, that even when using µ ∈ Σ̂0
q(x),

the inequality in (21) may be strict.

The second approach to constructing a confidence interval for θ(x) is motivated by a proce-

dure for obtaining bounds on the optimal value of optimization problems with chance constraints

13



[36]; see also Section 5.7.2 in [57]. The approach requires a slightly different sampling scheme.

While we above use common random numbers, i.e., f jN (x), ∇f
j
N (x), j ∈ q0, ψN (x), ψ

+
N (x), and

θN (x) are computed using the same sample, we now generate a sample of size N for each vector

(f jN (x),∇f
j
N (x)

′), j ∈ q0, independently, and also independently generate a sample of size N to

compute ψN (x). (Such independent sampling is for example discussed in [57], Chapter 5, Remark

9.) In contrast to the common random number scheme, we refer to this modified scheme as the

function-independent sampling scheme. Since the function-independent sampling scheme is only

discussed in this subsection and used in numerical tests in Section 6, we slightly abuse notation

by using the same notation for both sampling schemes. We specifically state when the function-

independent sampling scheme is applied.

It is beneficial to “decompose” the optimality function into feasibility and optimality parts.

From (4) we see that θ(x) = −ψ+(x) + u(x), where

u(x)
△
= min

(h,z)∈IRn+1
{z + 1

2∥h∥
2 | ⟨∇f0(x), h⟩ ≤ z, f j(x) + ⟨∇f j(x), h⟩ ≤ z, j ∈ q}. (24)

Here, −ψ+(x) is a measure of feasibility and u(x) is a measure of optimality. Using the function-

independent sampling scheme, we similarly let

uN (x)
△
= min

(h,z)∈IRn+1
{z + 1

2∥h∥
2 | ⟨∇f0N (x), h⟩ ≤ z, f jN (x) + ⟨∇f jN (x), h⟩ ≤ z, j ∈ q}. (25)

The next lemma provides a useful relationship between u(x) and uN (x).

Lemma 1. Suppose that Assumption 2 holds at a given x ∈ IRn, that Assumption 1 holds on an

open set containing x ∈ IRn, and that the function-independent sampling scheme is used. Let P∗

denote the probability measure generated by this sampling scheme. Then,

lim inf
N→∞

P∗
[uN (x) ≤ u(x)] ≥ 1

2q+1
. (26)

Proof: Suppose that (ĥ, ẑ) ∈ IRn+1 is a feasible point in (24). We want to determine the probability,

denoted p̂N , that (ĥ, ẑ) is feasible in (25). Since (ĥ, ẑ) ∈ IRn+1 is feasible for (24), we obtain that

p̂N
△
= P∗

[{
⟨∇f0N (x), ĥ⟩ ≤ ẑ

}∩ ( ∩
j∈q

{
f jN (x) + ⟨∇f jN (x), ĥ⟩ ≤ ẑ

})]
≥ P∗

[{
⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0

}∩
(27)( ∩

j∈q

{
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

})]
.

In view of the function-independent sampling scheme, it follows that

p̂N ≥ P∗
[
⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0

]∏
j∈q

P∗
[
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

]
.
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By Proposition 4, N1/2⟨∇f0N (x) − ∇f0(x), ĥ⟩ converges in distribution to a zero-mean normal

random variable. Hence,

lim
N→∞

P∗
[
⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0

]
≥ 1/2. (28)

We observe that the limit in (28) is not equal to 1/2 as the zero-mean normal random variable may

have zero variance. Similarly, for all j ∈ q, N1/2(f jN (x)− f j(x)+ ⟨∇f jN (x)−∇f j(x), ĥ⟩) converges
in distribution to a zero-mean normal random variable. Hence, for all j ∈ q,

lim
N→∞

P∗
[
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

]
≥ 1/2.

Consequently, lim infN→∞ p̂N ≥ 1/2q+1. Since this result holds for any (ĥ, ẑ) ∈ IRn+1 that is

feasible in (24), it also holds for the optimal solution in (24). If (ĥ, ẑ) ∈ IRn+1 is the optimal

solution in (24) and it is also feasible in (25), then

uN (x) ≤ ẑ + 1
2∥ĥ∥

2 = u(x).

This completes the proof.

Lemma 1 provides the basis for the following procedure for obtaining a probabilistic lower

bound on u(x). This procedure is essentially identical to the one proposed in [36] in the context of

chance constraints.

Let uN,k(x), k = 1, 2, ...,K, be independent random variables distributed as uN (x). After

obtaining realizations of these random variables, we order them with respect to their values. Let

ũN,1, ũN,2, ..., ũN,K , with ũN,k ≤ ũN,k+1, be this ordered sequence. That is, ũN,1 is the smallest

value of uN,k(x), k = 1, 2, ...,K, ũN,2 is the second smallest, etc. Suppose that γ̂N is a lower bound

on P∗
[uN (x) ≤ u(x)] and suppose that for a given β ∈ (0, 1), K and L satisfy

L−1∑
k=0

(
K
k

)
γ̂kN (1− γ̂N )

K−k ≤ β. (29)

Then, using the same arguments as in Section 5.7.2 of [57], we obtain that P[ũN,L > u(x)] ≤ β.

Hence, [ũN,L, 0] is a 100(1 − β)%-confidence interval for u(x). In view of Lemma 1 and its proof,

we recommend a number slightly smaller than 1/2q+1 as an estimate of the lower bound γ̂N when

N is moderately large.

If the confidence interval for ψ(x) in (20) is computed independently of the confidence interval

for u(x), then [
−max{0, ψN,M (x) + zαsψ,N,M (x)/

√
M}+ ũN,L, 0

]
(30)

is an approximate 100(1− α)(1− β)%-confidence interval for θ(x) for large M and N . We observe

that the first approach to computing a confidence interval for θ(x) requires the solution of only one

convex quadratic optimization problem to obtain µ ∈ Σ0
q . The second approach requires K such

solutions. If L = 1, then K ≥ log β/ log(1− γ̂N ). Hence, K is typically moderate. For example, if

β = 0.01 and γ̂N = 0.49, then K = 7 suffices.
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5 Algorithms and Consistent Approximations

In this section, we use the optimality function θ(·) and optimality functions of approximating prob-

lems to construct two implementable algorithms for P under additional assumptions on F j(·, ω),
j ∈ q0. The first algorithm deals with the situation where F j(·, ω), j ∈ q0, are given by the

maximum of continuously differentiable random functions. The second algorithm also considers

max-functions, but focuses on a more specific class that arises, for instance, in problems involving

CVaR. This specialization allows the development of an active-set strategy. We therefore replace

Assumption 1 by the following more specific assumption.

Assumption 3. The random functions F j : IRn × Ω → IR, j ∈ q0, are given by

F j(x, ω) = max
k∈rj

gjk(x, ω), j ∈ q0, (31)

where rj = {1, 2, ..., rj}, rj ∈ IIN, and for a given set S ⊂ IRn, the following hold for all j ∈ q0:

(i) For all k ∈ rj and almost every ω ∈ Ω, gjk(·, ω) is continuously differentiable on S.

(ii) There exist a nonnegative-valued measurable function Cj : Ω → [0,∞) such that E[Cj(ω)] <

∞, |gjk(x, ω)| ≤ Cj(ω), and ∥∇xg
jk(x, ω)∥ ≤ Cj(ω) for all x ∈ S and k ∈ rj, and for almost

every ω ∈ Ω.

(iii) For all x ∈ S, the set r̂j(x, ω)
△
= {k ∈ rj | F j(x, ω) = gjk(x, ω)} is a singleton for almost every

ω ∈ Ω.

Assumption 3(iii) excludes the possibility of atoms at a point ω ∈ Ω for which there is more

than one maximizer in (31) at a given x. If Assumption 3 holds on S ⊂ IRn, then Assumption 1

also holds on S as the next result states.

Proposition 7. Suppose that Assumption 3 holds on an open set S ⊂ IRn. Then, (i) Assumption

1 holds on S and (ii) for any compact X ⊂ S, f j(·), j ∈ q0, are finite valued and continuously

differentiable on X with

∇f j(x) = E[∇xg
k̂j(x,ω)j(x, ω)],

where k̂j(x, ω) ∈ r̂j(x, ω).

Proof: Assumption 1(i) holds directly from Assumption 3(i). For all j ∈ q0 and almost every

ω ∈ Ω, F j(·, ω) is Lipschitz continuous on bounded sets and has a directional derivative at x ∈ IRn

in direction h ∈ IRn given by dF j(x, ω;h) = maxk∈r̂j(x,ω)⟨∇xg
jk(x, ω), h⟩; see for example Theorem

5.4.5 in [42]. Hence, in view of Assumption 3(ii), F j(·, ω) is Lipschitz continuous on bounded sets

with an integrable Lipschitz constant. Hence, Assumption 1(ii) holds. From Assumption 3(iii) we

conclude that for all x ∈ S, F j(·, ω) is continuously differentiable at x and r̂j(x, ω) = {k̂j(x, ω)}
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for almost every ω ∈ Ω. Hence, ∇xF
j(x, ω) = ∇xg

k̂j(x,ω)j(x, ω) and Assumption 1(iii) holds. The

conclusions then follows from Theorem 7.52 in [57].

If Assumption 1 holds on an open set S ⊂ IRn containing a compact set X, then f jN (x)

converges to f j(x) uniformly on X, as N → ∞, almost surely for any j ∈ q0; see Theorem 7.48

in [57]. While this fact is useful, f jN (·) is nonsmooth and, hence, standard nonlinear programming

algorithm may fail when applied to P with f j(·) replaced by f jN (·) for a given realization of {ωl}Nl=1.

Consequently, following the smoothing approach in [29], we construct smooth approximations of

f jN (·), j ∈ q0.

5.1 Sample Average Approximations and Exponential Smoothing

We adopt the exponential smoothing technique first proposed in [29]; see also [1, 65, 61] for recent

applications. For any ϵ > 0 and j ∈ q0, we define the smooth approximation F jϵ : IRn ×Ω → IR by

F jϵ (x, ω)
△
= ϵ log

∑
k∈rj

exp[gjk(x, ω)/ϵ]. (32)

Under Assumption 3, F jϵ (·, ω), j ∈ q0, ϵ > 0, are continuously differentiable for almost every ω ∈ Ω,

with

∇F jϵ (x, ω) =
∑
k∈rj

µjkϵ (x, ω)∇xg
jk(x, ω), (33)

where

µjkϵ (x, ω)
△
=

exp[gjk(x, ω)/ϵ]∑
k′∈rj exp[g

jk′(x, ω)/ϵ]
, k ∈ rj . (34)

Moreover, for any j ∈ q0, ϵ > 0, x ∈ IRn, and ω ∈ Ω,

0 ≤ F jϵ (x, ω)− F j(x, ω) ≤ ϵ log rj . (35)

For any j ∈ q0, ϵ > 0, and N ∈ IIN, we define the smoothed sample average f jNϵ : IR
n → IR by

f jNϵ(x)
△
=

1

N

N∑
l=1

F jϵ (x, ωl). (36)

Finally, we define for any ϵ > 0 and N ∈ IIN the smoothed sample average problem

PNϵ : min
x∈IRn

{f0Nϵ(x) | f
j
Nϵ(x) ≤ 0, j ∈ q}. (37)

For given ϵ > 0, N ∈ IIN, and realization of {ωl}Nl=1, PNϵ is a smooth problem and, hence, can be

solved by standard nonlinear programming algorithms. Moreover, if gjk(·, ω), j ∈ q0, k ∈ rj , are

convex for almost every ω ∈ Ω, then f jNϵ(·), j ∈ q0, are convex almost surely for any choice of

N ∈ IIN and ϵ > 0. We note that if rj is a singleton for all j ∈ q0, then smoothing is not required

and the above expressions simplify.
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One simple approach for solving P is to select a small ϵ and a large N to ensure small smoothing

and sampling errors, respectively, and then to apply a standard nonlinear programming algorithm

to PNϵ. In the case of deterministic constraints in P , the results of [65] provide theoretical backing

for this approach by showing that every accumulation point of a sequence of stationary points

of smoothed sample average problems of PNϵ (but with deterministic constraints) is a stationary

point of P . In the next subsection, we extend the result of [65] in one direction by considering a

sequence of near-stationary points of PNϵ (with expectation constraints) as expressed by optimality

functions. In the subsequent subsection, we utilize this result to obtain convergent algorithms that

approximately solve sequences of smoothed sample average problems PNϵ for gradually smaller ϵ

and larger N . There is evidence that such a gradual increase in precision tends to perform better

numerically than the simple approach of solving a single approximating problem with high precision;

see [58, 23, 22, 3, 51, 43, 7, 39] for applications of this idea in SAA and [66, 44, 45] in the area

of smoothing of max-functions. This effect is often caused by the fact that substantial objective

function and constraint violation improvements can be achieved with low precision in the early

stages of the calculations without paying the price associated with high precision. In the present

context, a high precision requires a large N , which results in expensive function evaluations, and a

small ϵ, which may cause ill-conditioning as demonstrated in [44]. Hence, we proceed by considering

a sequence of smoothed sample average problems with gradually higher precision.

5.2 Consistent Approximations

We analyze PNϵ within the framework of consistent approximations (see [42], Section 3.3), which

allow us to related near-stationary points of PNϵ to stationary points of P through their respective

optimality functions. We start by defining an optimality function for PNϵ.

For any N ∈ IIN and ϵ > 0, let θNϵ : IRn → (−∞, 0] denote an optimality function for PNϵ

defined by

θNϵ(x)
△
= − min

µ∈Σ0
q

{
µ0ψ+

Nϵ(x) +
∑
j∈q

µj [ψ+
Nϵ(x)− f jNϵ(x)] +

1
2

∥∥∥ ∑
j∈q0

µj∇f jNϵ(x)
∥∥∥2}, (38)

where ψ+
Nϵ(x)

△
= max{ψNϵ(x), 0}, with ψNϵ(x) = maxj∈q f

j
Nϵ(x). Similar results as in Propositions

1 and 2 hold for PNϵ and θNϵ(·), and hence if x ∈ IRn is feasible for PNϵ, then x is a FJ point of

PNϵ if and only if θNϵ(x) = 0.

To avoid dealing with N and ϵ individually, we let {ϵN}∞N=1 be such that ϵN > 0 for all N ∈ IIN

and ϵN → 0, as N → ∞. We adopt the following definition of weakly consistent approximations

from Section 3.3 in [42].

Definition 1. The elements of the sequence {(PNϵN , θNϵN (·)}∞N=1 are weakly consistent approxi-

mations of (P, θ(·)) if (i) PNϵN epi-converges to P , as N → ∞, almost surely, and (ii) for any
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x ∈ IRn and sequence {xN}∞N=1 ⊂ IRn with xN → x, as N → ∞, lim supN→∞ θNϵN (xN ) ≤ θ(x),

almost surely.

We proceed by showing that {(PNϵN , θNϵN (·)}∞N=1 indeed are weakly consistent approximations

of (P, θ(·)). We need the following intermediate result.

Proposition 8. Suppose that Assumption 3 holds on an open set S ⊂ IRn and that X ⊂ S is

compact. Then, for all j ∈ q0,

(i) f jNϵN (x) converges to f j(x) uniformly on X, as N → ∞, almost surely, and

(ii) ∇f jNϵN (x) converges to ∇f j(x) uniformly on X, as N → ∞, almost surely.

Proof: Let j ∈ q0. First, we consider (i). Let δ > 0 be arbitrary. By Theorem 7.48 in [57], f jN (x)

converges to f j(x) uniformly on X, as N → ∞, almost surely. Hence, there exists N0 ∈ IIN such

that for all x ∈ X and N ≥ N0, |f jN (x)− f j(x)| ≤ δ/2, almost surely. In view of (35), there exists

an N1 ≥ N0 such that for all x ∈ IRn and N ≥ N1, 0 ≤ f jNϵN (x)− f jN (x) ≤ δ/2, for every {ωl}∞l=1,

with ωl ∈ Ω, l ∈ IIN. Consequently, for all x ∈ X and N ≥ N1,

|f jNϵN (x)− f j(x)| ≤ |f jNϵN (x)− f jN (x)|+ |f jN (x)− f j(x)| ≤ δ,

almost surely, which completes the proof of (i).

Second, we consider (ii) and adopt a similar argument as in Theorems 4.3 and 4.4 of [65] (see

also Theorem 2 in [59]). We define the set-valued random function G : IRn × [0, 1]× Ω → 2IR
n
by

Gj(x, ϵ, ω) △
=

{
∇xF

j
ϵ (x, ω), if ϵ > 0

cok∈r̂j(x,ω){∇xg
jk(x, ω)}, if ϵ = 0,

where co{·} denotes the convex hull. From (34), we find that for any k ∈ rj ,

µjkϵ (x, ω) =
exp[(gjk(x, ω)− F j(x, ω))/ϵ]∑

k′∈rj exp[(g
jk′(x, ω)− F j(x, ω))/ϵ]

. (39)

Let {xi}∞i=1 ⊂ S, {ϵi}∞i=1 ⊂ (0, 1], and x̂ ∈ S be such that xi → x̂ and ϵi → 0, as i → ∞. Also,

let ω ∈ Ω be such that gjk(·, ω), k ∈ rj , are continuously differentiable on S. From (39) we see

that if k /∈ r̂j(x̂, ω), then µjkϵi (xi, ω) → 0, as i → ∞. Moreover, since µjkϵi (xi, ω) ⊂ (0, 1) and∑
k∈rj µ

jk
ϵi (xi, ω) = 1 for all i ∈ IIN, it follows from (33) that the outer limit of {∇xF

j
ϵi(xi, ω)}∞i=1

in the sense of Painleve-Kuratowski is contained in cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}. Hence, it follows that

Gj(·, ·, ω) is outer semi-continuous in the sense of Rockafellar-Wets for almost every ω ∈ Ω.

Next, let {xN}∞N=1 ⊂ S, {ϵN}∞i=1 ⊂ (0, 1], and x̂ ∈ S be such that xN → x̂ and ϵN →
0, as N → ∞. Then using the fact that Gj(·, ·, ω) is outer semi-continuous for almost every

ω ∈ Ω and the proofs of Theorems 4.3 and 4.4 in [65], we obtain that {∇xf
j
NϵN

(xN )} tends to

E[cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}], as N → ∞, almost surely. In view of Assumption 3 and Proposition

7, we find that E[cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}] = {∇f j(x̂)} and the result follows.

We need the following constraint qualification to ensure epi convergence.
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Assumption 4. For a given set S ⊂ IRn the following holds almost surely. For every x ∈ S ∩Xψ,

there exists a sequence {xN}∞N=1 ⊂ S, with ψN (xN ) ≤ 0, such that xN → x, as N → ∞.

Theorem 3. Suppose that Assumptions 3 and 4 hold on an open set S ⊂ IRn, that X ⊂ S is

compact, and that Xψ ⊂ X. Then, {(PNϵN , θNϵN (·)}∞N=1 are weakly consistent approximations of

(P, θ(·)).

Proof: Using Theorem 3.3.2 in [42], it follows directly from Proposition 8(i) and Assumption 4

that {PNϵN }∞N=1 epi-converges to P , as N → ∞, almost surely.

Next, we consider the optimality functions. Let η : Σ0
q ×X → IR and ηNϵN : Σ0

q ×X → IR be

defined by

η(µ, x)
△
= µ0ψ+(x) +

∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2

and

ηNϵN (µ, x)
△
= µ0ψ+

NϵN
(x) +

∑
j∈q

µj [ψ+
NϵN

(x)− f jNϵN (x)] +
1
2

∥∥∥ ∑
j∈q0

µj∇f jNϵN (x)
∥∥∥2.

In view of Proposition 8, ηNϵN (µ, x) converges to η(µ, x) uniformly on Σ0
q ×X, as N → ∞, almost

surely. Since θ(x) = −minµ∈Σ0
q
η(µ, x) and θNϵN (x) = −minµ∈Σ0

q
ηNϵN (µ, x), we conclude that

θNϵN (x) converges to θ(x) uniformly on X, as N → ∞, almost surely, which completes the proof.

As we see in the next section, this result directly leads to an implementable algorithm for P

under Assumptions 3 and 4.

5.3 Algorithms

We next construct two algorithms for classes of instances of P that approximately solve sequences

of problems {PNϵN }N∈K, where K is an order set of strictly increasing positive integers with infinite

cardinality. As N increases, the precision with which PNϵN is solved increases too. We measure

the precision of a solution of PNϵN by means of the optimality function θNϵN (·). When a point of

sufficient precision is obtained for PNϵN , then the algorithm starts solving PN ′ϵN′ , where N
′ is the

next integer in K after N . We allow great flexibility in the choice of optimization algorithm for

approximately solving {PNϵN }N∈K. Essentially, all convergent nonlinear programming solvers can

be used. For any realization {ωl}∞l=1, N ∈ IIN, and ϵ > 0, let ANϵ : IR
n → 2IR

n
be an algorithm

map that represents a specific number of iterations of a nonlinear programming solver as applied

to PNϵ. We assume that the algorithm map satisfies the following assumption.

Assumption 5. The following holds almost surely. For any N ∈ IIN and ϵ > 0, every accumulation

point x̂ ∈ IRn of a sequence {xi}∞i=0 generated by the algorithm map ANϵ(·) using the recursion

xi+1 ∈ ANϵ(xi), i = 0, 1, 2, ..., satisfies θNϵ(x̂) = 0 and ψNϵ(x̂) ≤ 0.
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The first algorithm, stated next, is a straightforward adaptation of Algorithm Model 3.3.14 in

[42]. We use the notation K(N) to denote the smallest N ′ ∈ K strictly greater than N .

Algorithm 1 (Solves P under Assumptions 3, 4, and 5)

Input. Function ∆ : IIN → (0,∞) such that ∆(N) → 0, as N → ∞; an ordered set K of strictly

increasing positive integers with infinite cardinality; a sequence {ϵN}N∈K, with ϵN > 0 for all

N ∈ K and ϵN →K 0, as N → ∞; parameters δ1, δ2 > 0; N0 ∈ K; x0 ∈ IRn; and realizations

{ωl}∞l=1 obtained by independent sampling from P.

Step 0. Set i = 0, x∗0 = x0, and N = N0.

Step 1. Compute xi+1 ∈ ANϵN (xi).

Step 2. If θNϵN (xi+1) ≥ −δ1∆(N) and ψNϵN (xi+1) ≤ δ2∆(N), then set x∗N = xi+1 and replace N

by K(N).

Step 3. Replace i by i+ 1, and go to Step 1.

In view of Theorem 3, convergence of Algorithm 1 follows from Theorem 3.3.15 in [42]:

Theorem 4. Suppose that Assumptions 3, 4, and 5 hold on a sufficiently large open subset of

IRn. Moreover, suppose that Algorithm 1 has generated the sequences {x∗N} and {xi}∞i=0 and they

are bounded. Then, {x∗N} is an infinite sequence and every accumulation point x̂ of {x∗N} satisfies

θ(x̂) = 0 and ψ(x̂) ≤ 0 almost surely.

Since PNϵN may be computationally expensive to solve for large N , we also construct a second

algorithm that utilizes an active-set strategy. The second algorithm deals with a class of instances of

P that arises in portfolio optimization with CVaR expressions, engineering design with the buffered

failure probability, and other applications. In portfolio optimization, P may take the following form.

Let xi ∈ IR be allocation of funds to asset i, i = 1, 2, ..., n− 1, xn be an auxiliary decision variable,

and g̃ : IRn−1×Ω → IR be a continuously differentiable loss function that measures the performance

of a portfolio x̃
△
= (x1, x2, ..., xn−1) under market condition ω ∈ Ω. Then, in view of [49], the CVaR

minimization problem at confidence level α ∈ (0, 1) takes the form

min
x∈IRn

{
xn +

1

1− α
E[max{g̃(x̃, ω)− xn, 0}]

∣∣∣∣ x ∈ X

}
, (40)

where X ⊂ IRn is a simple feasible region given by deterministic quantities only. Hence, this

problem is a special case of P with a function of the form (31). Similarly in engineering design,

x̃ = (x1, x2, ..., xn−1) may be a vector of design variables, xn be an auxiliary design variable,

g̃k : IRn−1 × Ω, k = 1, 2, ..., r̃, be limit-state functions describing performance criteria for the
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system, and c(x̃) be the cost of design x̃. According to [48], the minimum cost problem subject to

a buffered failure probability constraint then takes the form

min
x∈IRn

{
c(x̃)

∣∣∣∣ xn + 1

1− α
E[max{ max

k=1,2,...,r̃
{g̃k(x̃, ω)− xn}, 0}] ≤ 0, x ∈ X

}
, (41)

where X ⊂ IRn is a set given by deterministic quantities only and α ∈ (0, 1) is a confidence level.

While Algorithm 1 applies to these cases, we derive a second algorithm that takes advantage of the

special structures that arise in these applications. We start by adopting the following assumption.

Assumption 6. For all j ∈ q0 and k ∈ rj, gjk(·, ·) takes the form

gjk(x, ω) =

{
ϕj(x) + g̃jk(x, ω), if k ∈ r̃j

△
= {1, 2, ..., rj − 1}

ϕj(x), if k = rj ,

where ϕj : IRn → IR is a continuously differentiable functions and g̃jk : IRn × Ω → IR, k ∈ r̃j,

satisfy Assumption 3, with gjk(·, ·) replaced by g̃jk(·, ·).

We note that under Assumptions 3 and 6, f j(x) = ϕj(x)+E[max{maxk∈r̃j g̃
jk(x, ω), 0}], j ∈ q0,

and, consequently, Assumption 6 encapsulates (40) and (41).

The second algorithm utilizes the situation that under Assumption 6, we may have that

g̃jk(x, ω) < 0 for all k ∈ r̃j , and many x ∈ IRn and ω ∈ Ω. This happens, for example, in de-

sign of highly reliable engineering systems. Hence, in that case, f j(x) essentially equals ϕj(x),

which is a smooth deterministic function. Given realization {ωl}∞l=1, we exploit this situation by

partially ignoring any ωl with g̃
jk(x, ωl) < 0 for all k ∈ r̃j at a current point x ∈ IRn. This may

result in a significant reduction in the computing effort required per application of the algorithm

map. To carry out this plan, we need the following notation.

For any N ∈ IIN, j ∈ q0, ϵ > 0, Nj ⊂ {1, 2, ..., N}, and ρj = {ρjl}l∈Nj , with ρjl ⊂ r̃j , for all

l ∈ Nj , we define f̃ jNϵ(·;Nj , ρj) : IRn → IR as

f̃ jNϵ(x;N
j , ρj)

△
= ϕj(x) +

1

N

∑
l∈Nj

F̃ jϵ (x, ωl; ρ
jl), (42)

where for all l ∈ Nj , F̃ jϵ (·, ωl; ρjl) : IRn → IR is given by

F̃ jϵ (x, ωl; ρ
jl)

△
= ϵ log

1 +
∑
k∈ρjl

exp[g̃jk(x, ωl)/ϵ]

 .

We observe that F̃ jϵ (x, ωl; ρ
jl) is the smooth approximation of max{maxk∈ρjl g̃

jk(x, ωl), 0} using

the exponential smoothing technique (32). If g̃jk(x, ωl) < 0 for k /∈ ρjl, then F̃ jϵ (x, ωl; ρ
jl) is also

a smooth approximation of max{maxk∈r̃j g̃
jk(x, ωl), 0}. If maxk∈r̃j g̃

jk(x, ωl) < 0 for l /∈ Nj and

g̃jk(x, ωl) < 0 for k /∈ ρjl and l ∈ Nj , then the samples excluded in Nj do not contribute signifi-

cantly. Hence, under a strong law of large numbers and with the proper construction of the “active”
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sets Nj and ρj ,
∑

l∈Nj F̃
j
ϵ (x, ωl; ρ

jl)/N is a smooth approximation of E[max{maxk∈r̃j g̃
jk(x, ωl), 0}]

and f̃ jNϵ(x;N
j , ρj) is a smooth approximation of f j(x). The second algorithm approximately solves

a sequence of problems involving such approximations.

For any realization {ωl}∞l=1, N ∈ IIN, ϵ > 0, N
△
= {Nj}j∈q0 , with Nj ⊂ {1, 2, ..., N} for all

j ∈ q0, and ρ
△
= {ρjl}l∈Nj ,j∈q0

, with ρjl ⊂ r̃j for all l ∈ Nj and j ∈ q0, we define the approximate

problem

P̃Nϵ(N, ρ) : min
x∈IRn

{f̃0Nϵ(x;N0, ρ0) | f̃ jNϵ(x;N
j , ρj) ≤ 0, j ∈ q}. (43)

If Nj = {1, 2, ..., N} and ρjl = r̃j for all j ∈ q0 and l ∈ Nj , then P̃Nϵ(N, ρ) is identical to PNϵ. By

considering strict subsets of {1, 2, ..., N} and rj , j ∈ q0, we hope to reduce computational effort.

We define the optimality function θ̃Nϵ(·;N, ρ) : IRn → (−∞, 0] for P̃Nϵ(N, ρ) to be given by

θ̃Nϵ(x;N, ρ)
△
= − min

µ∈Σ0
q

{
µ0ψ̃+

Nϵ(x;N, ρ) (44)

+
∑
j∈q

µj [ψ̃+
Nϵ(x;N, ρ)− f̃ jNϵ(x;N

j , ρj)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f̃ jNϵ(x;N
j , ρj)

∥∥∥2},
where ψ̃+

Nϵ(x;N, ρ)
△
= max{0, ψ̃Nϵ(x;N, ρ)}, with ψ̃Nϵ(x;N, ρ)

△
= maxj∈q f̃

j
Nϵ(x;N

j , ρj). In view of

Proposition 2, we deduce that if x ∈ IRn is feasible in P̃Nϵ(N, ρ), then θ̃Nϵ(·;N, ρ) = 0 if and only

if x is a FJ point of P̃Nϵ(N, ρ).

We denote by ÃNϵ(·;N, ρ) : IRn → 2IR
n
an algorithm map that represents a specific number of

iterations of a nonlinear programming solver as applied to P̃Nϵ(N, ρ) and that satisfies the following

assumption.

Assumption 7. The following holds almost surely. For any N ∈ IIN, ϵ > 0, N = {Nj}j∈q0,

with Nj ⊂ {1, 2, ..., N}, j ∈ q0, and ρ = {ρjl}l∈Nj ,j∈q0
, with ρjl ⊂ r̃j, l ∈ Nj and j ∈ q0, every

accumulation point x̂ ∈ IRn of a sequence {xi}∞i=0 generated by the algorithm map ÃNϵ(·;N, ρ) using
the recursion xi+1 ∈ ÃNϵ(xi;N, ρ), i = 0, 1, 2, ..., satisfies θ̃Nϵ(x̂;N, ρ) = 0 and ψ̃Nϵ(x̂;N, ρ) ≤ 0.

We are now ready to state the second algorithm, which generalizes Algorithm 1 by considering

P̃NϵN (N, ρ) instead of PNϵN and by constructing and updating the “active sets” N and ρ.

Algorithm 2 (Solves P under Assumptions 3, 4, 6, and 7)

Input. Function ∆ : IIN → (0,∞) such that ∆(N) → 0, as N → ∞; an ordered set K of strictly

increasing positive integers with infinite cardinality; a sequence {ϵN}N∈K, with ϵN > 0 for all

N ∈ K and ϵN →K 0, as N → ∞; parameters δ1, δ2 > 0 and γ2 ≥ γ1 > 0; N−1 ∈ K; x0 ∈ IRn;

and realizations {ωl}∞l=1 obtained by independent sampling from P.

Step 0. Set i = −1, x∗0 = x0, N = N−1, N
j
−1 = ∅, ρjl−1 = ∅, j ∈ q0, l ∈ {1, 2, ..., N}, and go to

Step 2.
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Step 1. Compute xi+1 ∈ ÃNϵN (xi;Ni, ρi).

Step 2. Compute active sets Ni+1 = {Nj
i+1}j∈q0 , where Nj

i+1 = Nj
i ∪ N̂j

i+1, with

N̂j
i+1 = {l ∈ IIN | max

k∈r̃j
g̃jk(xi+1, ωl) ≥ −γ1, l ≤ N}, j ∈ q0, (45)

and ρi+1 = {ρjli+1}l∈Nj
i+1,j∈q0

, where ρjli+1 = ρjli ∪ ρ̂jli+1, with

ρ̂jli+1 = {k ∈ r̃j | g̃jk(xi+1, ωl) ≥ −γ2}, j ∈ q0, l ∈ Nj
i+1. (46)

Step 3. If

θ̃NϵN (xi+1;Ni+1, ρi+1) ≥ −δ1∆(N) (47)

and

ψ̃NϵN (xi+1;Ni+1, ρi+1) ≤ δ2∆(N), (48)

then set x∗N = xi+1, N∗
N

△
= {N∗j

N }j∈q0 , with N∗j
N = Nj

i+1, j ∈ q0, ρ
∗
N

△
= {ρ∗jN }j∈q0 , with

ρ∗jN
△
= {ρ∗jlN }

l∈N∗j
N

and ρ∗jlN = ρjli+1, l ∈ N∗j
N , j ∈ q0, replace N by K(N), and go to Step 4.

Else, go to Step 5.

Step 4. Reset active sets by computing Ni+1 = {Nj
i+1}j∈q0 , where Nj

i+1 equals the right-hand

side of (45) and ρi+1 = {ρjli+1}l∈Nj
i+1,j∈q0

, where ρjli+1 equals the right-hand side of (46).

Step 5. Replace i by i+ 1, and go to Step 1.

In Algorithm 2, the active sets are monotonically increasing as long as the sample size N remains

fixed; see Step 2. However, when the sample size is increased, the active sets are reset to only

include those elements that are near-active at the current iterate; see Step 4. While the resetting is

not required by the convergence proof below, we find it beneficial computationally as it reduces the

sizes of the active sets. We need the following intermediate results before we state the convergence

result for Algorithm 2.

Lemma 2. Suppose that Assumptions 3 and 4 hold on a sufficiently large open subset of IRn and

that Assumptions 6 and 7 are also satisfied. Moreover, suppose that Algorithm 2 has generated an

infinite bounded sequence {x∗N}N∈K. Then, for every accumulation point x̂ of {x∗N}N∈K there exists

a K ⊂ K such that x∗N →K x̂, as N → ∞, and

f̃ jNϵN (x
∗
N ;N

∗j
N , ρ

∗j
N ) →K f j(x̂), j ∈ q0, (49)

and

∇f̃ jNϵN (x
∗
N ;N

∗j
N , ρ

∗j
N ) →K ∇f j(x̂), j ∈ q0, (50)

as N → ∞, almost surely.
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Proof: Due to its length, we refer to the Appendix for the proof.

Lemma 3. Suppose that Assumptions 3 and 4 hold on a sufficiently large open subset of IRn and

that Assumptions 6 and 7 are also satisfied. Moreover, suppose that Algorithm 2 has generated an

infinite bounded sequence {x∗N}N∈K. Then, for every accumulation point x̂ of {x∗N}N∈K there exists

a K ⊂ K such that x∗N →K x̂, as N → ∞, and

θ̃NϵN (x
∗
N ;N

∗
N , ρ

∗
N ) →K θ(x̂),

as N → ∞, almost surely.

Proof: In view of Lemma 2, the conclusion follows using similar arguments to those in the proof

of Theorem 3.

Convergence of Algorithm 2 is ensured by the next result.

Theorem 5. Suppose that Assumptions 3 and 4 hold on a sufficiently large open subset of IRn and

that Assumptions 6 and 7 are also satisfied. Moreover, suppose that Algorithm 2 has generated the

sequences {x∗N} and {xi}∞i=0 and they are bounded. Then, {x∗N} is an infinite sequence and every

accumulation point x̂ of {x∗N} satisfies θ(x̂) = 0 and ψ(x̂) ≤ 0 almost surely.

Proof: Suppose that {x∗N} is a finite sequence. Then there exists i1 ∈ IIN such that either (47) or

(48) in Step 3 fail for all i ≥ i1. Hence, the sample size N is constant for all i ≥ i1. Also, for all

j ∈ q0 and i > i1, N
j
i and ρjli , l ∈ Nj

i , are monotonically increasing. Since Nj
i ⊂ {1, 2, ..., N} and

ρjli ⊂ r̃j , l ∈ Nj
i , j ∈ q0, it follows that there exists an i2 > i1 such that Ni = Ni2 and ρi = ρi2

for all i ≥ i2. Since {xi}∞i=0 is bounded, it has an accumulation point x̂ ∈ IRn that, in view of

Assumption 7, satisfies θ̃NϵN (x̂;Ni2 , ρi2) = 0 and ψ̃NϵN (x̂;Ni2 , ρi2) ≤ 0. Hence, there exists i3 ≥ i2

such that θ̃NϵN (xi3 ;Ni2 , ρi2) ≥ −δ1∆(N) and ψ̃NϵN (xi3 ;Ni2 , ρi2) ≤ δ2∆(N), which contradicts the

fact that (47) and/or (48) fail for all i ≥ i1. Consequently, {x∗N} is an infinite sequence.

Suppose that x̂ ∈ IRn is an accumulation point of {x∗N}N∈K. LetK ⊂ K be such that x∗N →K x̂,

as N → ∞. Then, by construction

θ̃NϵN (x
∗
N ;N

∗
N , ρ

∗
N ) →K 0,

as N → ∞. Using this fact and Lemma 3, we obtain the conclusions that

|θ(x̂)| ≤ |θ(x̂)− θ̃NϵN (x
∗
N ;N

∗
N , ρ

∗
N )|+ |θ̃NϵN (x

∗
N ;N

∗
N , ρ

∗
N )| →K 0,

as N → ∞, almost surely. A similar argument shows that ψ(x̂) ≤ 0 almost surely.

Algorithms 1 and 2 do not include a stopping criterion. One might run Algorithms 1 and 2

until a predetermined computing budget is exhausted and then carry out validation analysis on

the candidate points {xi} or a subset thereof using a sample that is independent of the one used

in Algorithms 1 and 2.
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Confidence intervals
N θ(x̂) θ(x1) θ(x2) θ(x3)

102 [−259.0865, 0] [−459.8441, 0] [−696.60, 0] [−6459, 0]
103 [−76.3627, 0] [−31.1599, 0] [−83.49, 0] [−6070, 0]
104 [−2.8845, 0] [−6.0065, 0] [−67.19, 0] [−5793, 0]
105 [−0.2897, 0] [−0.6515, 0] [−62.09, 0] [−5774, 0]
106 [−0.0427, 0] [−0.5771, 0] [−57.98, 0] [−5747, 0]
107 [−0.0043, 0] [−0.4617, 0] [−57.55, 0] [−5743, 0]
∞ 0 −0.4420 −57.40 −5740

Table 1: 95%-confidence intervals in Example 1 for θ(x̂), θ(x1), θ(x2), and θ(x3) using (19) with
varying sample size N . The last row gives the corresponding true values.

6 Numerical Examples

In this section, we present numerical tests of Algorithms 1 and 2 as well as the validation analysis

procedures in Section 4 as applied to six examples. All calculations are performed in Matlab 7.4

on a 2.16 GHz laptop computer with 1 GB of RAM and Windows XP, unless stated otherwise.

6.1 Example 1: Validation Analysis for Unconstrained Problem

We consider an instance of P where there are no constraints, n = 20, and F 0(x, ω) =
∑20

i=1 a
i(xi−

biωi)2, where ai = i, bi = 21− i, i = 1, 2, ..., 20, and ω = (ω1, ω2, ..., ω20)′ is a vector of independent

and uniformly distributed random variables between 0 and 1. In this instance, both ∇f0(x) and

the unique global minimizer x̂ = (10, 9.5, 9, 8.5, ..., 0.5)′ are easily computed analytically. However,

we still use the validation analysis of Section 4.1 and compare the resulting confidence interval of

θ(x) with the true value of θ(x). Assumption 3 holds for this problem instance.

We consider four candidate points: the optimal solution x̂, a near-optimal point x1 = (10.0029,

9.4866, 9.0071, 8.5162, 7.9931, 7.5086, 7.0125, 6.4841, 5.9856, 5.5057, 4.9960, 4.5069, 4.0082, 3.5071,

3.0129, 2.5067, 2.0119, 1.4880, 0.9998, 0.4984)′ obtained by randomly perturbing x̂, a further-away

point x2 = (9.9, 9.4, 8.9, ..., 0.4)′, and a relatively far-away point x3 = (9, 8.5, 8, ...,−0.5)′.

Table 1 gives 95%-confidence intervals for θ(x̂), θ(x1), θ(x2), and θ(x3) in columns 2-5, respec-

tively, using (19) with varying sample size N . The last row gives the corresponding true values.

We observe that the confidence intervals cover the true value of the optimality function. When the

value of the optimality function is some distance from zero, a tight confidence interval is obtained

using a moderate sample size N . However, when the optimality function is close to zero, tightness

can only be obtained by using a large sample size.

We also apply a hypothesis test based on a Chi-square statistic proposed in [58]. The test

involves the null hypothesis that the current point satisfies the KKT conditions and the alternative

hypothesis that they are not. For x̂, we compute a p-value of 0.20 using a sample size of N = 105.

Hence, with a test size of (for example) 0.05, we are unable to reject the null hypothesis. For
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x1, x2, and x3, we compute p-values of essentially zero. Hence, in those cases we reject the null

hypothesis with high confidence. While these conclusions are reasonable, they do not directly

provide information about how “close” a candidate solution is to a FJ point. In practice, we are

rarely able to obtain a candidate solution that is a FJ point. Hence, the “distance” to such a

point becomes important. While [58] provides expressions for a confidence region for ∇f0(x) that
can be computed and compared with a user-defined region containing 0 ∈ IRn, it is more natural

and convenient to condense ∇f0(x) into a single number as achieved with the optimality function.

In view of Section 4, the approach based on the optimality function generalizes to constrained

problems as illustrated next.

6.2 Example 2: Validation Analysis for Deterministically Constrained Problem

The next problem instance generalizes a classical problem arising in search and detection appli-

cations. Consider an area of interest divided into n cells. A stationary target is located in one

of the cells. A priori information gives that the probability that the target is in cell i is pi,

i = 1, 2, ..., n, with
∑n

i=1 pi = 1. The goal is to optimally allocate T time units of search effort

such that the probability of not detecting the target is minimized (see, e.g., p. 5-1 in [64]). We

generalize this problem and consider a random search effectiveness in cell i per time unit and min-

imize the expected probability of not detecting the target. We let x ∈ IRn, with xi representing

the number of time units allocated to cell i, and let ω = (ω1, ω2, ..., ωn)′ be independent lognor-

mally distributed random variables (with parameters1 ξi = 100ui and λi = 0, where ui ∈ (0, 1)

are given data generated by independent sampling from a uniform distribution) representing the

random search effectiveness in cell i. Then, the expected probability of not detecting the target is

f0(x) = E[F 0(x, ω)], where F 0(x, ω) =
∑n

i=1 pi exp(−ωixi). The decision variables are constrained

by
∑n

i=1 x
i ≤ T and x ≥ 0, where we use T = 1. We consider n = 100 cells. Assumption 3

holds for this problem instance. We consider three candidate solutions: x1 ∈ IR100, which is nearly

optimal, x2 = (1/100, 1/100, ..., 1/100)′∈ IR100, and x3 = (1/50, 1/50, ..., 1/50)′ ∈ IR100, which is

infeasible. Hence, ψ(x1) = ψ(x2) = 0 and ψ(x3) = 1. We verify using long simulations (N = 108)

that θ(x1) ≈ 8 · 10−7, θ(x2) ≈ −0.00736, and θ(x3) ≈ −0.99318; see the last row of Table 2.

We consider both confidence intervals (23) and (30). To compute (23), we first estimate µ

by solving (7) using sample size N . Second, we compute ηN,M using the estimated µ with M

replications. In (30), we use L = 1 which leads to K = 5 when β = 0.05; see (29).

Table 2 provides 95%-confidence intervals for θ(x1), θ(x2), and θ(x3) using (23) (rows 3-6)

and (30) (rows 7-10) with varying sample size N and replications M and K. We note that since

ψ(x3) = 1, θ(x3) is near −1; see (4).

While the confidence intervals reported are from a single generation, we also verify the coverage

1We note that λi and ξi are the mean and standard deviation, respectively, of the normal distribution from which
the lognormal distribution is obtained.
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Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

102 30 - [−0.004254, 0] [−0.008125, 0] [−1.049167, 0]
103 30 - [−0.000630, 0] [−0.007837, 0] [−1.048609, 0]

(23) 104 30 - [−0.000050, 0] [−0.007783, 0] [−1.048554, 0]
105 100 - [−0.000006, 0] [−0.007483, 0] [−1.009602, 0]

102 - 5 [−0.001886, 0] [−0.007628, 0] [−0.994375, 0]
103 - 5 [−0.000464, 0] [−0.007497, 0] [−0.993391, 0]

(30) 104 - 5 [−0.000049, 0] [−0.007359, 0] [−0.993278, 0]
105 - 5 [−0.000006, 0] [−0.007365, 0] [−0.993201, 0]

“Exact” ≈ 8 · 10−7 ≈ −0.00736 ≈ −0.99318

Table 2: 95%-confidence intervals in Example 2 for θ(x1), θ(x2), and θ(x3) using (23) (rows 3-6)
and (30) (rows 7-10) with varying sample size N and replications M and K. The last row gives
approximate values of θ(x1), θ(x2), and θ(x3).

and variability of the confidence intervals across independent replications. Specifically, we confirm

the confidence level in (30) by estimating coverage probabilities, i.e., the probability that the

random confidence interval (30) includes θ(x). We find that 100%, 99%, 98% and 99% of 1000 (200

in the case of N = 105) independent replications of (30) cover θ(x1) for N = 102, 103, 104, and

105, respectively. Similar calculations for θ(x2) and θ(x3) result in coverage percentages of at least

97%. All these percentages are well above the stipulated 95%. We also compute the coefficients of

variation across 20 replications of (23) and (30), and obtain at most 11%, 2%, and 0.01% coefficients

of variation in confidence interval for θ(x1), θ(x2), and θ(x3), respectively, regardless of sample size

or method used in Table 2. Hence, the variability of the confidence intervals is modest across

independent replications.

We also apply the hypothesis test of [58] and find a p-value of 0.65 for the case with x1. Hence,

we are unable to reject the null hypothesis that x1 is a KKT point using any reasonable test size.

In the case of x2 and x3, the p-values are essentially zero and the null hypothesis is rejected even

with a small test size. As discussed in Section 6.1, we believe that results of the kind presented in

Table 2 are more informative than such hypothesis tests.

6.3 Example 3: Validation Analysis for Problem with Expectation Constraint

We next consider an engineering design problem where the cost of a short structural column needs

to be minimized subject to constraints on the failure probability and the aspect ratio; see [50].

The design variables are the width x1 and depth x2 of the column. In [51], we find that the failure

probability for design x = (x1, x2) can be approximated with high-precision by the expression E[1−
χ2
4(r

2(x, ω))], where ω is a four-dimensional standard normal random vector modeling random loads

and material property, χ2
4(·) is the cumulative distribution function of a Chi-squared distributed

random variable with four degrees of freedom, and r(x, ω) is the minimum distance from 0 ∈ IR4
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Confidence Intervals
N M ψ(x1) ψ(x2) ψ(x3)

102 30 (−∞, 0.1338] (−∞, 0.9153] (−∞, 10.1632]
103 30 (−∞, 0.0079] (−∞, 1.0616] (−∞, 10.1894]
104 30 (−∞,−0.0014] (−∞, 0.8175] (−∞, 10.2649]
105 100 (−∞,−0.0067] (−∞, 0.7898] (−∞, 9.9154]

Table 3: 95%-confidence intervals in Example 3 for ψ(x1), ψ(x2), and ψ(x3) using (20) with varying
sample size N and replications M .

Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

102 30 - [−0.2597, 0] [−0.8055, 0] [−10.2772, 0]
103 30 - [−0.0554, 0] [−0.7856, 0] [−10.0301, 0]

(23) 104 30 - [−0.0074, 0] [−0.8179, 0] [−10.1692, 0]
105 100 - [−0.0014, 0] [−0.7816, 0] [−9.8631, 0]

102 30 5 [−0.1540, 0] [−0.9465, 0] [−12.1029, 0]
103 30 5 [−0.0595, 0] [−0.8129, 0] [−10.6630, 0]

(30) 104 30 5 [−0.0031, 0] [−0.8229, 0] [−10.1777, 0]
105 30 5 [−0.0003, 0] [−0.8137, 0] [−10.3143, 0]

Table 4: 90%-confidence intervals in Example 3 for θ(x1), θ(x2), and θ(x3) using (23) (rows 3-6)
and (30) (rows 7-10) with varying sample size N and replications M and K.

to a limit-state surface describing the performance of the column given design x and realization

ω; see [50, 51]. The failure probability is constrained to be no greater than 0.00135. Hence,

we set f1(x) = E[1 − χ2
4(r

2(x, ω))]/0.00135 − 1. As in [50], we adopt the objective function

f0(x) = x1x2 and the additional constraints f2(x) = −x1, f3(x) = −x2, f4(x) = x1/x2 − 2, and

f5(x) = 0.5− x2/x1. In view of results in [51], Assumption 3 holds for this problem instance.

We consider three designs: x1 = (0.334, 0.586)′ is the best point reported in [50]; x2 =

(0.346, 0.553)′ is an infeasible solution reported in [50], and x3 = (0.586, 0.334)′ is the “mirror

image” of x1. Table 3 gives 95%-confidence intervals for ψ(x1), ψ(x2), and ψ(x3) for various sam-

ple sizes and replications. Table 4 presents confidence intervals for θ(x1), θ(x2), and θ(x3), with

α = 0.1 in (23) and α = β = 0.05 in (30). We see that (23) and (30) give comparable results. As

observed earlier, a near optimal solution may require a relatively large sample size to ensure a tight

confidence interval.

6.4 Example 4: Optimization and Validation Analysis for Full Problem

We illustrate Algorithm 1 by considering an extension of Example 1. Let F 0(·, ·) be as defined in

that example and also define F 1(·, ·) and F 2(·, ·) similarly, but with ai and bi being randomly and

independently generated from a uniform distribution supported on [0, 10] and [0, 2], respectively.

Moreover, we subtract 100 from these expression to construct constraints of the form E[
∑20

i=1 a
i(xi−
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Candidate Confidence Intervals
Point N #iter. ψ(x∗N ) θ(x∗N ) f0(x∗N )

x∗0 100 - (−∞,−48.1472] [−431.1261, 0] [5296, 5447)
x∗100 100 302 (−∞,−2.0657] [−8.9403, 0] [3411, 3533]
x∗200 200 106 (−∞,−0.4903] [−3.5880, 0] [3439, 3521]
x∗400 400 104 (−∞, 0.5280] [−2.0762, 0] [3419, 3477]
x∗800 800 149 (−∞, 0.0672] [−1.4028, 0] [3458, 3498]
x∗1600 1600 66 (−∞,−0.0001] [−0.7915, 0] [3453, 3482]
x∗3200 3200 60 (−∞,−0.0107] [−0.4043, 0] [3462, 3482]
x∗6400 6400 75 (−∞, 0.0785] [−0.2027, 0] [3466, 3481]
x∗12800 12800 129 (−∞, 0.0125] [−0.1082, 0] [3470, 3480]
x∗25600 25600 79 (−∞, 0.0607] [−0.1085, 0] [3467, 3474]
x∗51200 51200 99 (−∞, 0.0499] [−0.0609, 0] [3467, 3472]

Table 5: 95%-confidence intervals in Example 4 for ψ(x∗N ) and f
0(x∗N ), and 90%-confidence intervals

for θ(x∗N ) for candidate points generated by Algorithm 1.

biωi)2− 100] ≤ 0. Hence, the resulting instance of P involves 20 decision variables, 60 independent

random variables with uniform distribution each supported on [0, 1], an expected value objective

function, and two expected value constraint functions.

We apply Algorithm 1 to this problem instance using x0 = 0 ∈ IR20, N0 = 100, ∆(N) = 1/
√
N ,

and δ1 = δ2 = 1. Moreover, we let K(N) = 2N . The algorithm map ANϵ(·) is one iteration of the

Polak-He Phase 1-Phase 2 algorithm; see Section 2.6 in [42]. We refer to the iterations of Algorithm

1 with the same sample size N as a stage. No smoothing is required as F j(·, ω), j = 0, 1, 2, are

already smooth for all ω ∈ Ω. We run Algorithm 1 for ten stages and generate the candidate points

x∗0, x
∗
100, x

∗
200,..., x

∗
51200. For each candidate point x∗N , we compute the confidence intervals (20) and

(30) using sample size 10N (1000 for x∗0), replications M = 30 and K = 23, and L = 1; see Table

5. This selection of M , K, and L results in 95% confidence intervals for ψ(x∗N ) and 90%-confidence

intervals for θ(x∗N ). Columns 2 and 3 give the sample size and number of iterations used in each

stage, respectively. Columns 4 and 5 give 95% confidence intervals for ψ(x∗N ) and 90% confidence

intervals for θ(x∗N ), respectively. We also compute two-sided 95% confidence intervals for f0(x∗N )

using the standard sample average estimator; see column 6. The ten stages required 6900 seconds

of run time. The verification analysis needed 3300 seconds.

6.5 Examples 5 and 6: Engineering Design Optimization

We also consider two more complex engineering design problems where the goal is to minimize

the design cost subject to a buffered failure probability constraint and other constraints and hence

is of the form (41) [48]. The first design example, referred to as Example 5, is taken from [54]

and involves seven design variables (x̃ ∈ IR7 in (41)), seven random variables (Ω ⊂ IR7), and 10

limit-state functions (r̃ = 10 in (41)). The second design example, referred to as Example 6, is
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Final Confidence Intervals
Algorithm γ1 sample size ψ(x∗N ) θ(x∗N )

1 - 65624 (−∞, 0.0066] [−0.0154, 0]
2 0.1 2491871 (−∞, 0.0000] [−0.0017, 0]
2 1 2691871 (−∞, 0.0004] [−0.0018, 0]
2 10 2591871 (−∞, 0.0003] [−0.0007, 0]

Table 6: Final sample sizes, 95%-confidence intervals for ψ(x∗N ), and 90%-confidence intervals for
θ(x∗N ) in Example 5 by Algorithms 1 and 2 after one hour of computations for variable active-set
strategy parameter γ1.

taken from [46], pp. 472-473, and involves seven design variables, seven random variables, and nine

limit-state functions. We refer to [2] for further details.

We apply Algorithms 1 and 2 to these problem instances setting x0 equal to the variables upper

bounds (see [2]), N0 = 1000, N−1 = 1000, ϵN = 1000/N , K(N) = N +min{104, ⌊0.5N⌋}, γ2 = ∞,

and γ1 is varied in the interval [0.1, 10] as indicated below. Since we set γ2 = ∞, all functions

g̃jk(·, ·) are included; see (46). It appears that rj must be large to incur substantial computational

savings from setting γ2 < ∞. Hence, we focus on reducing the number of “active” sample points

by setting γ1 <∞; see (45).

Instead of defining ∆(·) for the tests in Step 2 of Algorithm 1 and Step 3 of Algorithm 2, we

simply set ∆(N) = 1 for all N and multiply the parameters δ1 and δ2 by a factor ζ ∈ (0, 1) after

each time both tests are satisfied. We use ζ = 0.1 and 0.8 in Examples 5 and 6, respectively. Since

Examples 5 and 6 are much more complex than Example 4, we utilize SNOPT [16] as implemented

in TOMLAB [21] and set the algorithm map ÃNϵ(·) equal to 20 iterations of that solver. These

calculations are carried out using a desktop computer at 3.16 GHz with 3GB of RAM.

Tables 6 and 7 present final sample sizes (column 3), 95%-confidence intervals for ψ(x∗N )

(column 4), and 90%-confidence intervals for θ(x∗N ) (column 5) at the last point obtained by

Algorithms 1 and 2 after one hour of computations for variable active-set strategy parameter γ1.

The confidence intervals are based on (20) and (30) using sample size 106, replications M = 30

and K = 5, and L = 1. Table 6 shows results for Example 5 and illustrates that the active-set

strategy of Algorithm 2 enables the use of much larger sample sizes than in Algorithm 1, where

no active-set strategy is employed. Algorithm 2 obtains at least an order of magnitude smaller

constraint violation and optimality function intervals across several values of the parameter γ1.

Table 7 shows similar results for Example 6. In this case, Algorithm 2 still utilizes larger sample

sizes and obtain better results, but the performance is sensitive to the choice of γ1. If the active-

set strategy is aggressive (γ1 close to zero), then the resulting small set of “active” sample points

may not accurately approximate the full sample and result in additional iterations. In this case,

Algorithm 2 with γ1 = 0.1 is not significantly better than Algorithm 1. However, other choices of

γ1 yield an advantage over Algorithm 1.
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Final Confidence Intervals
Algorithm γ1 sample size ψ(x∗N ) θ(x∗N )

1 - 65624 (−∞, 0.2132] [−0.2408, 0]
2 0.1 129721 (−∞, 0.2168] [−0.2314, 0]
2 1 129721 (−∞, 0.0402] [−0.0588, 0]
2 10 129721 (−∞, 0.0834] [−0.1026, 0]

Table 7: Similar results as in Table 6 but for Example 6.

In view of the numerical results, the proposed procedures for estimating the optimality function

and constraint violation result in informative confidence intervals. The required sample size and

number of replications are typically modest except when estimating θ(x) for a solution x close

to a stationary point, where a large sample size is needed. We see that optimality functions

help determine sample sizes in each stage of the calculations of algorithms and therefore ensure

convergence. The numerical results also indicate that when possible, it may be computationally

beneficial to only consider a subset of sample points by means of an active-set strategy.

7 Conclusions

We have proposed the use of optimality functions for validation analysis and algorithm development

in nonlinear stochastic programs with expected value functions as both objective and constraint

functions. The validation analysis assesses the quality of a candidate solution x ∈ IRn by its

proximity to a Fritz-John stationary point as measured by the value of an optimality function at

x or, in practice, by a confidence interval for that value. In algorithmic development, optimality

functions determine the sample size in variable-sample size schemes. Preliminary numerical tests

indicate that the approach is promising.
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Appendix

Proof of Theorem 1. Since f j(·) is finite valued and twice continuously differentiable near x̂ and

∇2f j(x̂) is positive definite for all j ∈ q0, there exist constants ρ̂ > 0 and 0 < m ≤ 1 ≤ M < ∞
such that f j(·), j ∈ q0, are finite valued and twice continuously differentiable on IB(x̂, ρ̂) and that

m∥x′ − x∥2 ≤ ⟨x′ − x,∇2f j(x)(x′ − x)⟩ ≤M∥x′ − x∥2, (51)
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for all x ∈ IB(x̂, ρ̂), x′ ∈ IRn, and j ∈ q0.

For a given x ∈ IRn, we define ψ̃(x, ·) : IRn → IR for any x′ ∈ IRn by ψ̃(x, x′)
△
= max{f0(x′)−

f0(x), ψ(x′)}. It follows by the mean value theorem and (51) that for any x ∈ IB(x̂, ρ̂) ∩ Xψ,

x′ ∈ IB(x̂, ρ̂), and some sj ∈ [0, 1], j ∈ q0,

ψ̃(x, x′) = max
{
⟨∇f0(x), x′ − x⟩+ 1

2⟨x
′ − x,∇2f0(x+ s0(x′ − x))(x′ − x)⟩,

max
j∈q

{f j(x) + ⟨∇f j(x), x′ − x⟩+ 1
2⟨x

′ − x,∇2f j(x+ sj(x′ − x))(x′ − x)⟩}
}

≤ 1

M
max

{
⟨∇f0(x),M(x′ − x)⟩+ 1

2∥M(x′ − x)∥2, (52)

max
j∈q

{f j(x) + ⟨∇f j(x),M(x′ − x)⟩+ 1
2∥M(x′ − x)∥2}

}
,

where we use that M ≥ 1 and x ∈ Xψ, and therefore Mf j(x) ≤ f j(x) for all j ∈ q.

Let h(x) denote the optimal solution of (4), which according to Theorem 2.2.8 in [42] is unique

and continuous as a function of x. Since x̂ is a FJ point, h(x̂) = 0. Hence, there exists a ρ′ > 0 such

that ∥h(x)∥ ≤ mρ̂/2 for all x ∈ IB(x̂, ρ′). Let ρ = min{ρ̂/2, ρ′}. For any x ∈ IB(x̂, ρ)∩Xψ, in view of

(4) and the property ψ+(x) = 0, the minimization of the right-hand side in (52) with respect to x′

yields an optimal value θ(x)/M . Let ξx ∈ IRn be the optimal solution of that minimization. Then,

due to the equivalence between minimization of the right-hand side in (52) with respect to x′ and

the minimization in (4), we find thatM(ξx−x) = h(x). Hence, ∥ξx−x∥ = ∥h(x)∥/M ≤ mρ̂/(2M).

Moreover, ∥ξx− x̂∥ ≤ ∥ξx−x∥+∥x− x̂∥ ≤ mρ̂/(2M)+ ρ̂/2 ≤ ρ̂. We therefore obtain by minimizing

the left-hand size of (52) with respect to x′ over IB(x̂, ρ̂) that

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) ≤ θ(x)/M (53)

for all x ∈ IB(x̂, ρ) ∩Xψ. Using similar arguments, we also obtain that

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) ≥ θ(x)/m (54)

for all x ∈ IB(x̂, ρ̂) ∩Xψ.

First, consider an x ∈ IB(x̂, ρ) ∩ Xψ and let x̂′ ∈ IRn be the unique optimal solution of

minx′∈IB(x̂,ρ̂) ψ̃(x, x
′). Since ψ̃(x, x) = 0, it follows that x̂′ ∈ Xψ. From (53), we obtain that

f0(x̂)− f0(x) = min
x′∈IB(x̂,ρ̂)

{f0(x′)− f0(x) | ψ(x′) ≤ 0}

≤ min
x′∈IB(x̂,ρ̂)

{ψ̃(x, x′) | ψ(x′) ≤ 0} = ψ̃(x, x̂′) ≤ θ(x)/M,

which proves the right-most inequality in (6).

Second, we prove the left-most inequality and consider three cases. Let x ∈ IB(x̂, ρ̂) ∩Xψ and

x̂′ be as in the previous paragraph.

(i) Suppose that ψ(x̂′) < ψ̃(x, x̂′) and f0(x̂′)− f0(x) = ψ̃(x, x̂′). Then,

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) = min
x′∈IB(x̂,ρ̂)

{f0(x′)− f0(x) | ψ(x′) ≤ 0} = f0(x̂)− f0(x).
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Hence, by(54), θ(x)/m ≤ f0(x̂)− f0(x).

(ii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′) − f0(x) = ψ̃(x, x̂′). If x̂′ = x̂, then we find that

minx′∈IB(x̂,ρ̂) ψ̃(x, x
′) = ψ̃(x, x̂) = f0(x̂) − f0(x). Hence, in view of (54), θ(x)/m ≤ f0(x̂) − f0(x).

We next consider the possibility x̂ ̸= x̂′ and define ĥ = x̂− x̂′. Since x̂′ is the constrained minimizer

of ψ̃(x, ·) over IB(x̂, ρ̂), it follows that the directional derivative of ψ̃(x, ·) at x̂′ is nonnegative in all

feasible directions, i.e.,

dψ̃(x, x̂′; y − x̂′) = max{⟨∇f0(x̂′), y − x̂′⟩, dψ(x̂′, y − x̂′)} ≥ 0,

for all y ∈ IB(x̂, ρ̂). By strong convexity of f0(·) on IB(x̂, ρ̂),

⟨∇f0(x̂′), ĥ⟩ < (f0(x̂)− f0(x))− (f0(x̂′)− f0(x)) < 0. (55)

Consequently,

dψ(x̂′, ĥ) ≥ 0. (56)

Now, let j′ ∈ q̂(x̂′) (= {j ∈ q | ψ(x̂′) = f j(x̂′)}) be such that dψ(x̂′; ĥ) = ⟨∇f j′(x̂′), ĥ⟩. Then, by

the mean value theorem and (51) ,

f j
′
(x̂) ≥ f j

′
(x̂′) + ⟨∇f j′(x̂′), ĥ⟩+ 1

2m∥ĥ∥2.

Hence, using (56) and (54), we obtain

ψ(x̂) ≥ f j
′
(x̂) ≥ ψ(x̂′) + dψ(x̂′; ĥ) + 1

2m∥ĥ∥2 ≥ θ(x)/m+ 1
2m∥ĥ∥2. (57)

Since ψ(x̂) ≤ 0, we find that ∥ĥ∥ ≤
√

−2θ(x)/m. There exists a constant c ∈ (0,∞) such that

∥∇f0(x′)∥ ≤ c/4 for all x′ ∈ IB(x̂, ρ̂). It now follows from (55) and (54) that

f0(x̂)− f0(x) > f0(x̂′)− f0(x) + ⟨∇f0(x̂′), ĥ⟩

≥ θ(x)/m− ∥∇f0(x̂′)∥∥ĥ∥ ≥ (θ(x)− c
√

−θ(x))/m.

(iii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′)− f0(x) < ψ̃(x, x̂′). Then, due to the optimality

of x̂′ for ψ̃(x, ·), dψ(x̂′, x′ − x̂′) ≥ 0 for all x′ ∈ IB(x̂, ρ̂). Using similar arguments as in (57), we

obtain that for any x′ ∈ IB(x̂, ρ̂),

0 ≥ ψ(x′) ≥ ψ(x̂′) + dψ(x̂′;x′ − x̂′) + 1
2m∥x′ − x̂′∥2 ≥ θ(x)/m+ 1

2m∥x′ − x̂′∥2

and ∥x′− x̂′∥ ≤
√

−2θ(x)/m. Hence, ∥x̂−x∥ ≤ ∥x̂− x̂′∥+∥x− x̂′∥ ≤ 2
√

−2θ(x)/m. It now follows

from strong convexity of f0(·) and (54) that

f0(x̂)− f0(x) > ⟨∇f0(x), x̂− x⟩ ≥ −∥∇f0(x)∥∥x̂− x∥ ≥ − c

m

√
−θ(x).

The left-most inequality (6) now follows as a consequence of these three cases.

34



Proof of Theorem 2: The proof is based on the Delta Theorem 7.59 (see also Exercise 5.4, p.

249) in [57]. Let g : IRq+(q+1)n → IR be defined for any ζ = (ζ−1, ζ
′
0, ζ

′
1, ..., ζ

′
q) ∈ IRq+(q+1)n, with

ζ−1 ∈ IRq, ζj ∈ IRn, j ∈ q0, by

g(ζ)
△
= − min

µ∈Σ0
q

{
µ0w(ζ) +

∑
j∈q

µj [w(ζ)− ζj−1] +
1
2

∥∥∥ ∑
j∈q0

µjζj

∥∥∥2},
where w : IRq+(q+1)n → IR is defined by w(ζ)

△
= max{0,maxj∈q ζ

j
−1}. Since

∑
j∈q0

µj = 1 for all

µ ∈ Σ0
q , it follows that g(ζ) = −w(ζ)− ϕ(ζ), where ϕ : IRq+(q+1)n → IR is defined by

ϕ(ζ)
△
= min

µ∈Σ0
q

{
−

∑
j∈q

µjζj−1 +
1
2

∥∥∥ ∑
j∈q0

µjζj

∥∥∥2}.
Let

q̂w(ζ)
△
= {j ∈ q | max

k∈q
ζk−1 = ζj−1},

and

q̂+
w(ζ)

△
=


q̂w(ζ) ∪ {0} if w(ζ) = 0

q̂w(ζ) if w(ζ) > 0
{0} otherwise.

Moreover, let

Σ̂ϕ(ζ)
△
=

{
µ ∈ Σ0

q

∣∣∣ ϕ(ζ) = −
∑
j∈q

µjζj−1 +
1
2

∥∥∥ ∑
j∈q0

µjζj

∥∥∥2}.
It follows from Danskin Theorem; see, for example, Theorem 7.21 in [57], that w(·) and ϕ(·)

are locally Lipschitz continuous and directional differentiable with directional derivatives at ζ ∈
IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by

dw(ζ; ξ) = max
j∈q̂+

w(ζ)
ξj−1,

with ξ0−1
△
= 0, and

dϕ(ζ; ξ) = min
µ∈Σ̂ϕ(ζ)

{
−

∑
j∈q

µjξj−1 +
∑
j∈q0

µj
⟨ ∑
k∈q0

µkζk, ξj

⟩}
.

Consequently, g(·) is locally Lipschitz continuous and directional differentiable with directional

derivatives at ζ ∈ IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by

dg(ζ; ξ) = − max
j∈q̂+

w(ζ)
ξj−1 − min

µ∈Σ̂ϕ(ζ)

{
−
∑
j∈q

µjξj−1 +
∑
j∈q0

µj
⟨ ∑
k∈q0

µkζk, ξj

⟩}
.

Hence, it follows from Proposition 7.57 in [57] that g(·) is Hadamard directional differentiable.

In view of Proposition 4, Delta Theorem 7.59 in [57] gives that

N1/2(g((fN (x),∇fN (x)′)′)− g((f(x),∇f(x)′)′)) ⇒ dg((f(x),∇f(x)′)′;Y (x)).
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The result now follows from the facts that g((fN (x),∇fN (x)′)′) = θN (x), g((f(x),∇f(x)′)′) = θ(x),

q̂+
w((f(x),∇f(x)′)′) = q̂+(x), and Σ̂ϕ((f(x),∇f(x)′)′) = Σ̂0

q(x) and from rearranging terms.

Proof of Lemma 2: We first consider (49). For any j ∈ q0 and N ∈ K,

|f̃ jNϵN (x
∗
N ;N

∗j
N , ρ

∗j
N )− f j(x̂)| ≤ |f̃ jNϵN (x

∗
N ;N

∗j
N , ρ

∗j
N )− f jNϵN (x

∗
N )|+ |f jNϵN (x

∗
N )− f j(x̂)|.

By Proposition 8 and continuity of f j(·), |f jNϵN (x
∗
N ) − f j(x̂)| →K 0, as N → ∞, almost surely.

Hence, we focus on the first term on the right-hand side. From (42), (36), and Assumption 6, we

see that for any j ∈ q0 and N ∈ K,

f̃ jNϵN (x
∗j
N ;N∗j

N , ρ
∗
N )− f jNϵN (x

∗
N )

=
1

N

 ∑
l∈N∗j

N

ϵN log

1 +
∑
k∈ρ∗jlN

exp[g̃jk(x∗N , ωl)/ϵN ]

−
N∑
l=1

ϵN log

1 +
∑
k∈r̃j

exp[g̃jk(x∗N , ωl)/ϵN ]




=
1

N

 ∑
l∈N∗j

N

ϵN log

1 +
∑
k∈ρ∗jlN

exp[g̃jk(x∗N , ωl)/ϵN ]

− ϵN log

1 +
∑
k∈r̃j

exp[g̃jk(x∗N , ωl)/ϵN ]




−
∑

l∈{1,...,N}−N∗j
N

ϵN log

1 +
∑
k∈r̃j

exp[g̃jk(x∗N , ωl)/ϵN ]


 . (58)

For any l ∈ N∗j
N , we deduce from (35) that

0 ≤ ϵN log

1 +
∑
k∈ρ∗jlN

exp[g̃jk(x∗N , ωl)/ϵN ]

−max{max
k∈ρ∗jlN

g̃jk(x∗N , ωl), 0} ≤ ϵN log rj

and similarly with ρ∗jlN replaced by r̃j . By construction of ρ∗jlN ,

max{max
k∈ρ∗jlN

g̃jk(x∗N , ωl), 0} = max{max
k∈r̃j

g̃jk(x∗N , ωl), 0}.

Hence, for any l ∈ N∗j
N ,

0 ≤ ϵN log

1 +
∑
k∈ρ∗jlN

exp[g̃jk(x∗N , ωl)/ϵN ]

− ϵN log

1 +
∑
k∈r̃j

exp[g̃jk(x∗N , ωl)/ϵN ]

 ≤ ϵN log rj .

Next, we consider l ∈ {1, 2, ..., N} −N∗j
N . By construction of N∗j

N , g̃jk(x∗N , ωl) < −γ1 for all k ∈ r̃j

and l ∈ {1, 2, ..., N} −N∗j
N . Hence, for l ∈ {1, 2, ..., N} −N∗j

N ,

0 ≤ ϵN log

1 +
∑
k∈r̃j

exp[g̃jk(x∗N , ωl)/ϵN ]

 ≤ ϵN log(1 + exp[−γ1/ϵN ]).
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It now follows from (58) that for any j ∈ q0 and N ∈ K,

|f̃ jNϵN (x
∗
N ;N

∗
N , ρ

∗
N )− f jNϵN (x

∗
N )| ≤ ϵN log(rj + exp[−γ1/ϵN ]).

Since ϵN → 0, as N → ∞, we conclude that (49) holds.

We second consider (50). For any j ∈ q0 and N ∈ K,

∥∇f̃ jNϵN (x
∗
N ;N

∗
N , ρ

∗
N )−∇f j(x̂)∥

≤ ∥∇f̃ jNϵN (x
∗
N ;N

∗
N , ρ

∗
N )−∇f jNϵN (x

∗
N )∥+ ∥∇f jNϵN (x

∗
N )−∇f j(x̂)∥.

By Proposition 8 and continuity of ∇f j(·), ∥∇f jNϵN (x
∗
N )−∇f j(x̂)∥ →K 0, as N → ∞. Hence, we

focus on the first term on the right-hand side. Since

∇f̃ jNϵ(x;N
j , ρj) = ∇ϕj(x) + 1

N

∑
l∈Nj

∇xF̃
j
ϵ (x, ωl; ρ

jl),

where

∇F̃ jϵ (x, ωl; ρjl) =
∑
k∈ρjl

µ̃kϵ (x, ωl; ρ
jl)∇xg̃

jk(x, ωl), (59)

with for any k ∈ ρjl,

µ̃kϵ (x, ωl; ρ
jl)

△
=

exp[g̃jk(x, ωl)/ϵ]

1 +
∑

k′∈ρjl exp[g̃
jk′(x, ωl)/ϵ]

, (60)

we find that, for any j ∈ q0 and N ∈ K,

∇f̃ jNϵN (x
∗
N ;N

∗
N , ρ

∗
N )−∇f jNϵN (x

∗
N ) (61)

=
1

N

∑
l∈N∗j

N

(
∇xF̃ϵN (x

∗
N , ωl; ρ

∗jl
N )−∇xFϵN (x

∗
N , ωl)

)
− 1

N

∑
l∈{1,...,N}−N∗j

N

∇xFϵN (x
∗
N , ωl).

We deal with the two terms on the right-hand side of (61) in turn. Using (59) and (33), we obtain

that

1

N

∑
l∈N∗j

N

(
∇xF̃ϵN (x

∗
N , ωl; ρ

∗jl
N )−∇xFϵN (x

∗
N , ωl)

)

=
1

N

∑
l∈N∗j

N

 ∑
k∈ρ∗jlN

µ̃kϵN (x
∗
N , ωl; ρ

∗jl
N )∇xg̃

jk(x∗N , ωl)−
∑
k∈r̃j

µkϵN (x
∗
N , ωl)∇xg̃

jk(x∗N , ωl)

 ,

where µkϵN (x
∗
N , ωl) specializes under Assumption 6 (see (34)) to

µkϵN (x
∗
N , ωl) =

exp[g̃jk(x∗N , ωl)/ϵN ]

1 +
∑

k′∈r̃j exp[g̃
jk′(x∗N , ωl)/ϵN ]

. (62)
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Collecting terms, we obtain that∥∥∥∥∥∥∥
1

N

∑
l∈N∗j

N

(
∇xF̃ϵN (x

∗
N , ωl; ρ

∗jl
N )−∇xFϵN (x

∗
N , ωl)

)∥∥∥∥∥∥∥
≤ 1

N

∑
l∈N∗j

N

∑
k∈ρ∗jlN

|µ̃kϵN (x
∗
N , ωl; ρ

∗jl
N )− µkϵN (x

∗
N , ωl)|∥∇xg̃

jk(x∗N , ωl)∥ (63)

+
1

N

∑
l∈N∗j

N

∑
k∈r̃j−ρ∗jlN

µkϵN (x
∗
N , ωl)∥∇xg̃

jk(x∗N , ωl)∥.

For all l ∈ N∗j
N and k ∈ r̃j − ρ∗jlN , we have by construction that 0 ≤ exp[g̃jk(x∗N , ωl)/ϵN ] ≤

exp[−γ2/ϵN ]. Hence, since ρ∗jlN ⊂ r̃j ,

0 ≤
∑
k′∈r̃j

exp[g̃jk
′
(x∗N , ωl)/ϵN ]−

∑
k′∈ρ∗jlN

exp[g̃jk
′
(x∗N , ωl)/ϵN ]

=
∑

k′∈r̃j−ρ∗jlN

exp[g̃jk
′
(x∗N , ωl)/ϵN ] ≤

∑
k′∈r̃j−ρ∗jlN

exp[−γ2/ϵN ] ≤ rj exp[−γ2/ϵN ].

Consequently, in view of (62) and (60) there exists a sequence {ζN}∞N=1, such that ζN → 0, as

N → ∞, and

|µ̃kϵN (x
∗
N , ωl; ρ

∗jl
N )− µkϵN (x

∗
N , ωl)| ≤ ζN

for all N ∈ IIN, l ∈ N∗j
N , and k ∈ ρ∗jlN . Since ρ∗jlN ⊂ r̃j and N∗j

N ⊂ {1, 2, ..., N},

1

N

∑
l∈N∗j

N

∑
k∈ρ∗jlN

|µ̃kϵN (x
∗
N , ωl; ρ

∗jl
N )− µkϵN (x

∗
N , ωl)|∥∇xg̃

jk(x∗N , ωl)∥

≤ ζN
∑
k∈r̃j

1

N

N∑
l=1

∥∇xg̃
jk(x∗N , ωl)∥

for all N ∈ K. In view of Assumption 3(ii) and the uniform strong law of large number (see for

example Theorem 7.52 in [57]), there exists a C <∞ such that for all k ∈ r̃j ,

1

N

N∑
l=1

∥∇xg̃
jk(x∗N , ωl)∥ →K E[∥∇xg̃

jk(x̂, ω)∥] ≤ C, (64)

as N → ∞, almost surely. Since ζN → 0, as N → ∞, it follows that the first term on the right-hand

side of (63) vanishes as N → ∞ almost surely.

We next consider the second term on the right-hand side of (63). Since 0 ≤ exp[g̃jk(x∗N , ωl)/ϵN ] ≤
exp[−γ2/ϵN ] for all k ∈ r̃j−ρ∗jlN , l ∈ N∗j

N , andN ∈ IIN, it follows that 0 ≤ µkϵN (x
∗
N , ωl) ≤ exp[−γ2/ϵN ]

for all k ∈ r̃j − ρ∗jlN , l ∈ N∗j
N , and N ∈ IIN. Hence,

1

N

∑
l∈N∗j

N

∑
k∈r̃j−ρ∗jlN

µkϵN (x
∗
N , ωl)∥∇xg̃

jk(x∗N , ωl)∥ ≤ exp[−γ2/ϵN ]
∑
k∈r̃j

1

N

N∑
l=1

∥∇xg̃
jk(x∗N , ωl)∥.
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Using the same arguments as those leading to (64), we find that the second term on the right-hand

side of (63) vanishes, as N → ∞ almost surely. Hence, the left-hand side in (63) vanishes, as

N → ∞ almost surely. Consequently, the first term on the right-hand side in (61) vanishes, as

N → ∞ almost surely.

Finally, we consider the second term on the right-hand side in (61). Since maxk∈r̃j g̃
jl(x∗N , ωl) <

−γ1 for all l ∈ {1, 2, ..., N} −N∗j
N and N ∈ K, we find that 0 ≤ µkϵN (x

∗
N , ωl) ≤ exp[−γ1/ϵN ] for all

l ∈ {1, 2, ..., N} −N∗j
N , k ∈ r̃j , and N ∈ K. Consequently,∥∥∥∥∥∥∥

1

N

∑
l∈{1,...,N}−N∗j

N

∇xFϵN (x
∗
N , ωl)

∥∥∥∥∥∥∥ ≤ 1

N

∑
l∈{1,...,N}−N∗j

N

∑
k∈r̃j

µkϵN (x
∗
N , ωl)∥∇xg̃

jk(x∗N , ωl)∥

≤ exp[−γ1/ϵN ]
∑
k∈r̃j

1

N

N∑
l=1

∥∇xg̃
jk(x∗N , ωl)∥.

Again using the same arguments as those leading to (64), we find that the second term on the

right-hand side in (61) vanishes, as N → ∞ almost surely. The conclusion then follows.
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