
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2006

Meeting Nonfunctional Requirements

through Software Architecture: A

Weapon System Example

Demir, Kadir Alpaslan

http://hdl.handle.net/10945/41694

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Meeting Nonfunctional Requirements through Software Architecture: A
Weapon System Example

Kadir Alpaslan Demir
Department of Computer Science

Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943, USA

kdemir@nps.edu

Abstract

Meeting nonfunctional requirements is as important
as meeting functional requirements. A well-designed
software system architecture helps to ensure that the
necessary quality attributes of the system are satisfied.
The goal of this paper is to show how a system’s
software architecture can be designed to achieve its
nonfunctional requirements. The development process
is explained using a weapon system example named
Mine Neutralization System for navy mine hunting
ships. Also, a novel aspect of this paper is the
introduction of a new architectural style. The style is
described via an example.

1. Introduction

All software systems have a software architecture
whether or not it is explicitly spelled out in the design
documentation [1]. Architecture is the backbone of the
software system. Therefore, it encompasses all the
early important design decisions and trade-offs. The
software application is built onto it. The modifications
in the software architecture later on in the development
process cost dearly.

According to Kruchten, software architecture is
used for [2]:

- Understanding what the system does and how
the system works

- Thinking and working in the pieces of the
system

- Extending the system
- Reusing the parts of the system to build other

ones
 Thus, a software system architecture helps us to

answer most important questions related to a product. It
also helps us to achieve high quality software.

In this paper, we present a software system
architecture with its development process. The
development process is explained via a weapon system
example, a mine neutralization system for mine warfare
ships. Weapon systems are complex and safety-critical
embedded systems in general [3]. Analysis and design
of these systems pose many challenges [4]. Most of
those challenges can be addressed with a well-crafted
software architecture. Such challenges and strategies to
resolve them are presented with the associated
architectural solutions throughout the development of
the mine neutralization system example.

A new architectural style, named star-controller, is
introduced, as well. An architectural style describes the
structure of a pattern that can be applied to a family of
systems. Architectural styles also explain the
terminology of the components and connections along
with a set of rules on how they can be combined [5].
How the style is applied to the architecture
development is also provided.

The rest of the paper is organized as follows.
Section 2 presents a brief discussion of how
nonfunctional requirements are met through software
architecture. Section 3 introduces the system and
presents the architectural development process along
with the system architecture and design diagrams.
Section 4 draws the conclusion. Experiences, lessons
learned and future work is explained in section 5.

2. Nonfunctional requirements through
software architecture

Requirements engineering process provides the
main input for the software architecture development.
The software architect takes the requirements and
develops a software architecture that meets both the
functional and nonfunctional requirements. The

decisions he makes at this phase of software
development establish the boundaries of the system
quality attributes such as extensibility, modifiability,
adaptability, reliability, safety, maintainability,
testability etc. The importance of meeting quality
attributes with software architecture is already
recognized. For example, Bachmann and Bass present
an attribute driven design method for designing the
software architecture [6]. Bass and John link the
usability to software architecture patterns [7].

In our weapon system example, adaptability,
modifiability, maintainability, usability, testability,
reliability and safety are the quality attributes that are
specifically addressed. These attributes and how to
achieve them are presented with specific architectural
patterns and solutions. Analysis of the architecture of a
software system reveals whether the architecture of that
system is capable of meeting the system nonfunctional
requirements.

3. Mine Neutralization System (MNS)

Due to developments in electronics and software
systems, navies around the world undergo major
revisions in their combatant ships. Instead of designing
and building ships from the scratch, it is cheaper to
revise its combat systems to increase the ship’s combat
capabilities. The Mine Neutralization System (MNS) is
conceptualized and designed to adapt latest
technologies in mine warfare without undergoing major
changes in a mine hunting ship’s original structure. The
objective of the MNS is to detect and eliminate sea
mines. The system uses a detection sonar to detect an
underwater threat, possibly a sea mine. Classification
of sonar data input helps the sonar operator to classify
the threat type which may be a magnetic or moored
mine. The operator of the system eliminates the mines
via a remotely operated underwater vehicle (ROV).
MNS encapsulates and controls all these main and
auxiliary devices including system consoles to achieve
sea mine hunting mission for navy mine warfare ships.
Figure 1 depicts the use of the system in a mine hunting
ship.

3.1. MNS High-Level and User-Level Goals

Requirements engineering is an important success
factor in software projects [8]. The high-level and user-
level goals of the system were identified through a
series of interviews with navy officers who are the
major stakeholders for this system. Also, the analysis of
business opportunities and technological improvement

projections for mine warfare systems guided the most
important system requirements.

Figure 1. The illustration of the MNS use on a
mine hunting ship

The interviews with navy officers revealed
important shortcomings of existing mine hunting
systems. For example, existing systems require quite a
few personnel. In a mine hunting ship, the number of
personnel is limited and sometimes operators need to
stay on watch for long hours, which poses a threat to
the mission. MNS reduces the number of personnel to
only one operator. This is one of the important
achievements of the system. Another accomplishment
of the system is that the system is highly adaptable to
the new technological advances in mine warfare. This
requirement is derived from the business opportunities.

After a detailed requirement analysis, the high-level
goals of the system are identified. Some of them are
listed as follows:
- MNS provides a complete solution to satisfy the
prospective technological advances in mine hunting
warfare.
- MNS is a reliable and safe system that can eliminate
the shortcomings of current systems in navies.
- The system is maintainable that is a benefit to both
the developer and the customer.
- The system operates in 15-600 ft. depth range which
is highly sufficient for the mine hunting operations.
- With the support of the umbilical cable attached to
the mine neutralization vehicle (MNV), the length of
the mission will not be limited to short periods.
- The system is highly adaptable for future upgrades.
- Emergency mode operation provides flexibility
during mission.
- The system can operate with many existing sonar
suites currently used in mine warfare operations.
- A large variety of alarms help the system operator to
monitor the safety of the system.

The user-level goals are as follows:
- MNS requires only one operator.
- The system needs less training than existing systems.

- MNS has a simple graphical user interface which
helps the operator and the commander of the ship to
visualize the controls and the state of the system.
- The camera on the MNV provides high reliability for
the operation.
- The easy control of the MNV provides an increase in
the flexibility of the operation.
- Multilanguage support makes the product usable by
many different countries without further training in
language.
- Logging features of MNS helps the ship’s crew
prepare after-operation review reports.
- Logging features helps the personnel for maintenance
of the system.
- Training mode is the same with the operation mode,
which provides an excellent training environment for
the ship’s crew.

The requirements analysis phase of the system
development lead to the following outstanding features
of the proposed product:
- One-man operated system
- Highly adaptable to new sonar systems and remotely
operated underwater vehicle systems
- A complete solution
- A simple and well-designed interface
- Easy training
- Long-operation support
- Emergency operation mode
- A safe and reliable system
- Multilanguage user interface
- A large variety of alarms and monitoring features
- Enhanced logging of conditions and operation
milestones

All these goals and resulting features provide the
most important input for the system software
architecture development.

3.2. MNS Components

Analysis of similar mine warfare systems, reveals
the necessary main components for the MNS. The
system is composed of five main components:

- Detection and Classification Sonar Suite: The
sonar suite is responsible for the detection and
classification of mines. Two different sonars exist in
this suite. The detection sonar is a long-range wide-
spectrum sonar that is used to detect the presence of an
underwater object. The classification sonar is used for
further analysis of underwater objects suspected to be a
mine threat. This sonar creates a contact for the system.
Bat thermograph and echo sounder are the auxiliary
devices attached to the suite to provide necessary sea
condition data.

- Navigation Unit: This unit provides the precise
location information of the ship. The navigation unit
consists of a global positioning system (GPS) device
and a gyro unit. Both of these devices provide the
location data and one of the devices is sufficient for the
operation. Therefore, the failure of one of the devices
doesn’t compromise the mission.

- Mine Neutralization System Console: This unit is
the interface between the operator and the system.

- Mine Neutralization Vehicle (MNV): This unit
handles the elimination of the sea mines. It is a
remotely operated underwater vehicle and attached to
the mother ship with an umbilical cable that carries the
communication and power cables. The vehicle carries
many devices to achieve the mission. Depth unit, TV
camera, light, emergency pinger, umbilical cable, gyro
unit and mine neutralization vehicle control unit are
only some of them.

- Mine Neutralization System Controller: This unit
is the heart of the system. It provides communication
between components. It also synchronizes the events
within the mine hunting operation. The mine system
controller encapsulates the necessary interfaces in case
the decision of using existing components in various
types of mine hunting ships.

Figure 2 shows the connections between the
components and the framework for the system software
architecture.

Figure 2. The MNS framework

3.3. MNS Software Architecture

Weapon system software development is an
expensive and effort-intensive process and these types
of systems tend to have long life-cycles. The systems
evolve during the years. Older versions are replaced
with newer versions in order to keep up with advancing
technology. A well-designed software system
architecture prolongs the system life-cycle and ease the
maintenance effort.

Hofmeister et. al. describes the four views of the
software architecture[1]. These four views are
conceptual, module, code and execution view. The
conceptual view deals with the issues relating to the
application domain. One of the most important
questions answered with the conceptual view is how
the system fulfills its requirements. How the
functionality partitioned to the conceptual components
is also explained with the conceptual view. The module
view explains how the conceptual components are
mapped to subsystems and modules. In this view, the
conceptual solution is realized with today’s software
platforms and technologies. The execution view
describes the runtime interactions of the software
application. It also deals with how subsystems and
modules are mapped to the hardware platforms. The
code view deals with how runtime entities are mapped
to the deployment components such as executables,
libraries etc. Each view acts an input for another view
and helps the software architect to analyze trade-offs.

Developing the views of the system software
architecture starts with a global analysis.

3.3.1. Global Analysis. The global analysis is the
process of identification of factors that influences
architectural design. The goal of the process is to
develop strategies for each identified factor. The
factors related to the development of MNS are listed as
follows:

1. The quality of the product is more important
than the schedule.

2. The system must be easily modifiable.
3. Because MNS is a weapon system, safety and

reliability is extremely important.
4. The system must have a friendly user interface

that minimizes operator errors.
5. MNS must be an adaptable system and

incorporating COTS products must be easy.
6. The system is intended for many countries.

Therefore, the user interface should easily be
adaptable for different languages.

7. The system must be a maintainable system.
8. A one-man operated system is a must.
9. MNS should meet performance criteria.
10. The system design should support a 20-25

year life cycle.
During MNS development, strategies are laid out to
provide solutions for each identified factor. It is
important to cover each of the factors with at least one
strategy. Table 1 shows factors and corresponding
strategies. For example, factor 2 enforces the system to
be easily modifiable. Encapsulating the features into
separate components is selected as a strategy to ensure

a solution for the specific factor. In the MNS
framework, the navigation unit handles all the
navigation tasks and the unit is only connected to the
system controller. If an upgrade becomes necessary in
the navigation features, the navigation unit can easily
be replaced with a newer version. Such modification
doesn’t affect other components of the system. This is
also how one of the corresponding high-level user
goals is achieved.

The next step in the process is the development of
the conceptual view of the system. The framework of
the system presented in figure 2 is used as an input for
the development of the conceptual view.

Factors Corresponding
Strategy

1,2,4,7,9,10 Use of well-known
patterns

1,3,5,7,9,10 Build instead of buy
and/or build products
similar to the ones in the
market

2,4,5,6,7,10 Make it easy to add and
remove features

2,3,5,7,8,9,10 Use a central controller
component

1,2,3,4,5,6,7,10 Use standards
2,4,5,6,7,8,9 Separate components

and modules along
dimensions of concerns

4,6,8 Decouple the user
interaction module

2,7,9,10 Encapsulate features
into separate
components

Table 1. Factors and corresponding strategies

3.3.2. Conceptual view. In the global analysis, we
decided to use the well-known patterns as a strategy to
address some of the identified factors. For our
product’s conceptual view, we determined to use the
Model-View-Controller pattern. The suggested context
for this architectural pattern is interactive applications
with a flexible human-computer interface [9]. The
model-view-controller architectural pattern divides an
interactive application into three components. The
model contains the core functionality and data. Views
display the information to the user. The views and
controller together compromise the user interface. A
change-propagation mechanism through controller
ensures consistency between the user and the model.
Figure 3 shows the conceptual view and how the

architectural pattern is applied to the MNS framework.
The rationales for selecting the pattern are as follows:
- The product market is intended for the Navies around
the world. This requires complying with the existing
user interfaces from all over the world forcing the user
interface of the application to be flexible. Like multiple
language support, different look and views.
- Even if the model changes, the users will require the
same information from the system. So the pattern
enables us to decouple the model from the view. For
example, an upgrade in the navigation unit will not
affect the interface. The navigation unit is one of the
components of the model and the mine neutralization
system console, which is the interface to the user, is the
view in the pattern.
- The product is a weapon system and therefore, it is a
real-time interactive application.
- Abstracting the controller enables us to focus on the
synchronization of the events in the system in a real-
time environment.
- The system is an adaptable system which requires
modification when necessary in each component of the
pattern.
- Easy addition of views and controllers will benefit the
maintenance of the product.
- The architecture of the product will base a framework
for future versions and similar products. It is important
to remember the necessity of the long life-cycle of the
product.

Figure 3. Conceptual view

Selection of the model-view-controller pattern
helped us to conceptualize an adaptable and
maintainable system. This is how important
nonfunctional requirements can be achieved in the
conceptual view.

3.3.3. Module view. The main purpose of the
module view is to simplify the system’s implementation

in software. It helps us to overcome the complexity of
the system. In the module view, all the application
functionality, control functionality, and meditation are
mapped to subsystems, modules and connections.

For the module view, we developed an architectural
style named star-controller architecture. The style
resembles to a star network topology in structure. The
style benefits from the well-known design
decomposition principle. The system is carefully
partitioned to subsystems which are strictly loosely
coupled with each other. In this architectural style, the
system is divided into two types of components:
controllers and subcomponents. The controllers handle
the control functionality and the subcomponents handle
the application functionality in the module view. The
architectural style follows two basic rules:

1. A controller can be connected to controllers
and subcomponents.

2. Subcomponents can only be connected to
controllers.

Figure 4 shows the star-controller architectural style.

Figure 4. The star-controller architectural
style

The style helps us to reduce the development effort
for interfaces and similar subcomponents. It also
enables the independent development of
subcomponents or easy addition of existing subsystems
which is enforced to MNS with one of the high-level
goals. This architecture ensures to achieve an adaptable
and maintainable system.

In this architectural style, faults can easily be
identified and localized to some specific portion of the
system. Subsystems are tested separately and
integration testing is achieved as new subsystems are
added to the system. The style follows design for
testing principle in this perspective.

The star-controller architecture has a simple
structure. Synchronization and the control flow of

information are handled by controllers. The
information is produced by subcomponents. The
controllers’ solemn task is to ensure reliable
communication and synchronization which are
important considerations for real-time systems. In this
architecture, high cohesion is achieved via attributing a
part of functionality per controller.

The nonfunctional requirements of MNS require the
system to be safe and reliable. Ease of testing and a
simple design is essential for achieving safety and
reliability.

The major drawback of the style is that the failure
of one controller disables all the subcomponents
attached to it. In the MNS example, the solution is
provided with the redundancy in hardware. The MNS
has a system self-checking mechanism built in its
design. Every controller constantly monitors the
attached subcomponents and another controller.
Whenever a failure is detected in a subcomponent or in
a controller, the system immediately switches to the
redundant hardware. Only some of the key elements
have this redundancy. Another solution to this problem
may be redundancy through software. A software
module having the same functionality may be designed
differently and installed to the redundant hardware.
However, only hardware redundancy exists in the
MNS. Figure 5 shows how star-controller architecture
is applied to the mine neutralization vehicle subsystem.
Note the self-checking mechanism is accomplished via
status attributes in classes.

Figure 5. The mine neutralization vehicle
subsystem

Rationales on choosing the star-controller
architectural style are listed as follows:
- Easy elimination of synchronization problems will
increase the system’s reliability and safety.
- Functions and controls are separated. Therefore,
modifications in functionality will not affect the control
aspects.
- Easy addition/removal of modules and functionality,
thus support for adaptation and modification.
- Easy localization of errors will reduce the testing
effort.
- Elimination of errors and fault propagation increases
the system safety and reliability.

A system may have orthogonal software
architectures that address different concerns. Because
high reliability and safety are important concerns for
MNS, we used an additional software architecture
addressing communication and synchronization issues.
A layered architectural pattern is selected. Layered
architectures help us to structure applications that can
be decomposed into groups of subtasks. These subtasks
are at a particular abstraction. In the MNS example, the
system is divided into two layers. The first layer,
networking layer, handles the communication between
modules as well as establishing the protocols and
checking messages for errors. The networking layer
corresponds to the physical and data link layer in open
system interconnection model (OSI). The second layer
is named system layer and it is responsible for all other
application-related communications in the system.
Figure 6 shows the layered architecture of the MNS.

Figure 6. The layered architecture of the MNS
The next phase in the process is the process is the

development of code and execution views of the
system. However, these are detailed design views and
are will not be addressed in here.

Figure 7. The domain model of the MNS

3.4. MNS High-Level Software Design

The inputs from different views of MNS
architecture are used in the high-level design of the
system. It is imperative that the design follows the
architectural design decisions. A smooth transition
from one activity to another activity is achieved in the
MNS example using the architectural decisions and
rationales. Figure 7 shows the derived domain model of
the MNS. Note the structural similarity of the domain
model and the star-controller architectural style
introduced earlier. Figure 8 and 9 show the respective
high-level design examples from the system.

4. Conclusions

In this paper, we presented the development of a
real-world weapon system software architecture
example. Weapon systems development is a long and
expensive process. These types of systems are
generally complex safety-critical embedded systems.

Because of these properties, high quality is
imperative to accomplish in weapon systems. Only, a
well-designed architecture can achieve all the necessary
nonfunctional requirements.

First, we identified the high-level and user-level
goals through interviews with navy officers and
analysis of similar existing systems. Also, analysis of

similar systems revealed the necessary components for
the mine neutralization system. Then, the global
analysis helped us to identify factors that influence our
architectural design decisions. The strategies to resolve
the factors are determined. The global analysis guided
the development of the conceptual and module views
of the system software architecture. The commonly-
known patterns applicable to the product are used and a
new architectural style is developed to meet the
specific properties imposed by the previously identified
factors. Finally, we showed how the architecture
formed as an input for the high-level system design.

We introduced the star-controller architectural style
within the system architecture development. This style
has the advantage of

- Being simple and easily testable
- Achieving low-coupling and high-cohesion
- Having increased control over synchronization

and communication needed in real-time
systems.

The major drawback of the style is that the failure
of a controller also disables the subsystems attached to
it. However, in our context this drawback is not an
issue. In weapon systems we require a fully functioning
system. Impaired system functionality is not
acceptable. Hardware redundancies are used overcome
this drawback.

In the example, we used model-view-controller
architecture pattern and star-controller architecture to
achieve usability, extensibility, adaptability,
modifiability, testability, maintainability, safety and
reliability. The layered architecture is used to increase
maintainability, safety and reliability.

5. Experiences, Lessons Learned and
Future Work

During the system architecture development, we
understood that we won’t able to satisfy all the
nonfunctional requirements with one particular
architecture pattern. The requirements we had forced us
to use multiple software architectures for different
nonfunctional requirement sets. This was a major
finding and experience we had during development.
Some of the lessons learned can be listed as follows:
- Developing software architecture is an organized and
planned activity which takes the nonfunctional
requirements into consideration as well as the
functional ones.
- Paying special attention to the requirements gathering
phase is a good promise of a successful software
architecture development. The views of the navy

officers about the system proved to be very critical at
this phase.
- Partitioning the task into different architectural views,
each addressing separate concerns, proves to be very
useful in meeting both functional and nonfunctional
requirements and reducing the cost of software
development process.
- A well documented conceptual view ensures that the
problem at hand is understood by all the stakeholders.
Communication among developers is improved this
way and misunderstandings between customers and
engineers are reduced if not eliminated completely.
- Conceptual components ease the way we create
module view which identifies static structures and
layers of the system being developed. Conceptual view
also establishes a starting point for the identification of
a simple execution view.

Future work may include:
- One of the challenges we had was the necessity of
incorporating redundancy. We eluded software
redundancy by using hardware redundancy. However,
we would like to see how software redundancy
interacts with software architectures.
- Researching architecture description languages
(ADLs) have been the focus of software architecture
community in the recent years [10]. It is possible to
analyze software architectures with ADLs. We would
like to analyze the star-controller architectural style
with ADLs and get an in depth understanding of the
style.
- We would also like to see how the proposed style
would be beneficial in other systems.

6. References

[1] Hofmeister, C., Nord, R., and Soni, D., Applied Software
Architecture, Addison-Wesley Object Technology Series,
New Jersey, 2000.

[2] Kruchten, P., The Rational Unified Process: An
Introduction, Addison-Wesley, Reading, MA, 1999

[3] Demir, K.A., Analysis of TLCharts for Weapons Systems
Software Development, Master’s Thesis, Naval Postgraduate
School, Monterey, CA, USA, December 2005

[4] Drusinsky, D., Shing M., Demir, K. ”Test-Time, Run-
Time, Simulation-Time Temporal Assertions in RSP,
Proceedings of 16th International Workshop on Rapid System
Prototyping, (RSP’05), Montreal, Canada, June 2005, pp.
105-110

[5] Garlan, D., and Shaw, M., “An Introduction to Software
Architecture”, Advances in Software Engineering and

Knowledge Engineering, World Scientific Publishing
Componay, December 1993, pp. 1-39

[6] Bachmann, F., and Bass, L., “Designing Software
Architecture for Quality: the ADD Method”¸ OOPSLA¸
Tampa Bay, Florida, USA, October 2001

[7] Bass, L., and John, B. E., “Linking usability to software
architecture patterns through general scenarios”, The Journal
of Systems and Software, Vol. 66, 2003, pp. 187-197

[8] H.F. Hofmann, and F. Lehner, “Requirements
Engineering as a Success Factor in Software Projects”, IEEE
Software, July/August 2001, pp. 58-66.

[9] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., and Stal, M., A System of Patterns, John Wiley & Sons
,West Sussex, England, 1996.

[10] Medvidovic, N., and Taylor, R. N., “A Classification
and Comparison Framework for Software Architecture
Description Languages.” In IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp.70--93, 2000.

Acknowledgements and Disclaimers

The views and conclusions contained herein are
those of the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of any
affiliated organization or government.

Figure 8. The detection and classification sonar suite high-level design

Figure 9. The mine neutralization system controller high-level design

