
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1989

Graphical Support for Reducing

Information Overload in Rapid Prototyping

Luqi, Barnes, Patrick D.

þÿ�L�u�q�i�,� �B�a�r�n�e�s�,� �P�a�t�r�i�c�k� �D�.� �a�n�d� �Z�y�d�a�,� �M�i�c�h�a�e�l� �J�.� ��G�r�a�p�h�i�c�a�l� �S�u�p�p�o�r�t� �f�o�r� �R�e�d�u�c�i�n�g� �I�n�f�o�r�m�a�t�i�o�n

þÿ�O�v�e�r�l�o�a�d� �i�n� �R�a�p�i�d� �P�r�o�t�o�t�y�p�i�n�g�, �� �P�r�o�c�e�e�d�i�n�g�s� �o�f� �t�h�e� �2�3�r�d� �H�a�w�a�i�i� �I�n�t�e�r�n�a�t�i�o�n�a�l� �C�o�n�f�e�r�e�n�c�e� �o�n

Systems Sciences, December 1989.

http://hdl.handle.net/10945/41571

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Graphical Support for Reducing Information Overload in Rapid Prototyping

Luqi

Patrick D. Barnes,
M.Zyda

Department of Computer Science
Naval Postgraduate School, Monterey, CA 93943

Abstract
The basic problem in rapid prototyping of software is
information overload. Graphic interfaces can help by
providing multiple views, where each view is limited to
providing information relevant to a particular. task or
problem. The graphics editor under development for the
Computer Aided Prototyping System (CAPS) proposes a data
flow diagram based model with multiple views and
automatic program generation to manage the quantity of
information necessary to prototyp(! large, real-time systems.

Keywords
Software Engineering, Rapid Prototyping, Computer Aided
Design, Computer Graphics.

1. Introduction
The need to improve software operational reliability and

development productivity has resulted in research aimed at
tools for rapidly prototyping large real-time software sys­
tems. The Computer Aided Prototyping System (CAPS) un­
der development at the Department of Computer Science,
Naval Postgraduate School, replaces the traditional soft­
ware life cycle with a two phase cycle consisting of rapid
prototyping and automatic program generation [4]. The rapid
prototyping technique provides the designer with a means of
writing specifications and using matching reusable software
components to build a prototype of the intended system.
The prototype can then be used to evaluate both user's
needs and system feasibility [2,5].

Although prototyping generally involves dealing with
problems at a high level of abstraction, crucial decisions de­
signers must make are still too many to be evaluated at a
single level. As the designer delves beneath the surface in­
to increasing detail, the amount of information which must be
retained to make good design decisions becomes unmanage­
able. The designer quickly becomes inundated with an over­
load of information--thus the term information overload.
Prototyping large real-time systems requires tools for man­
aging this information such that unnecessary detail may be
hidden, and essentials may be easily assimilated at a
glance. This paper discusses the importance of using graphi-

0073-1129/90/0000/0514$01.00 © 1990 IEEE 514

cal representations to reduce information overload and de­
scribes a graphical editor in development for CAPS.

2. Reducing Information Overload
An essential function of CAPS is to help the prototype

designer focus on subsets of the decisions in a design need­
ed to evaluate alternatives and further refine or modify the
system [6]. CAPS initially provided for entering component
specifications via a syntax directed editor accessed through
its user interface. It could then try to match the specifica­
tions to reusable modules in the database. For complex sys­
tems, however, if the search was unsuccessful, the compo­
nent had to be manually decomposed into increasingly de­
tailed statements which resulted in the information manage­
ment problem previously described. What was needed was
a means of entering specifications graphically, such that de­
composition would be cleaner and information hiding could
be managed via a multi-layered representation.

Graphics alone cannot provide a magic solution to the
problem of software complexity. In fact, they can sometimes
complicate matters even further. Thus the application of
graphical techniques must be coupled with a strategy for ex­
tracting a meaningful subset of available information to be ef­
fective. Development of a graphics editor, then, requires ad­
dressing the following issues. First, the graphic representa­
tion must be automatically programmable. In the case of
CAPS, it must map directly to equivalent Prototype System
Description Language (PSDL) representations with which
CAPS can construct a prototype [2,5]. Second, the interface
must provide multiple system views-reducing the amount
and detail of information which must be assimilated at any
one time. Finally, a provision has to be made for maintain­
ing consistency between the PSDL and graphic representa­
tions, as well as syntactic and semantic correctness of the
design.

2.1 Automatic Programming
One promising means of improving programmer produc­

tivity is automatic programming [13]. That is, the automatic
generation of code from software specifications rather than
manual generation through several layers of language trans-

lation. The PSDL prototyping language [3] used by CAPS
applies this concept. PSDL specifications may be directly
used to produce an executable Ada program . from reusable
components. PSDL provides for specification of both control
and data flow and is based on the following mathematical
model:

G = (V, E, T(V), C(V))

where V is the set of vertices

E is the set of edges

T(V) is the maximum execution time (MEI') as­
sociated with vertex V

C(V) is the set of control constraints associated
with vertex V.

In PSDL, vertices represent operators and edges repre­
sent data streams. Operators represent system components
and can map to either functions or state machines. Such
components communicate with one another via data streams
carrying values of a fixed abstract data type or the special
PSDL type EXCEPTION. Operators are either data driven
or periodic. That is, they execute either in response to the
arrival of a datum, or at a predetermined interval. Operators
can also be characterized as being either composite or atom­
ic. If an operator cannot be further decomposed into data
and control flow networks, it is atomic. Edges or data
streams can represent either the traditional flows, in which
data is guaranteed to reach its destination, or sampled
streams. Sampled streams represent continuous streams of
information which may be updated and sampled at different
rates.

Control constraints are used to limit an operator's be­
havior by specifying conditions regarding its firing
(execution) or i/o processing. While control constraints
specify when an operator executes, timing constraints deter­
mine its execution time, response time, and period.

The PSDL model can be mapped directly to the augment­
ed data flow diagram [3]. In addition to data flows and
transformations {operators), the PSDL model requires rep­
resentation of execution time and constraints associated
with each operator. Figure 2.1 shows how these objects are
incorporated into the data flow diagram and decomposed.
Note that consistency requires not only that inputs and out­
puts must match between levels, but timing constraints of a
decomposition must not allow a path which has a total exe­
cution time in excess of the parent operator's MET.

2.2 Multiple Views
The CAPS database is able to maintain graphical repre­

sentations such that they may be retrieved in a manner simi­
lar to hypertext[4]. That is, each operator exists as a node
of a multi-way tree with its associated attributes and links
to its parent and child nodes. Additional links are possible
representing other types of relationships between nodes.
This capability provides for the following proposed set of

515

a -

75ms

~
~

20ms 10ms

Figure 2.1 Operator Decomposition [7]

graphical system representations: summary views, naviga­
tion structures, andfocused slices.

A summary view serves as an introduction to some as­
pect of the system under development. This lets someone
unfamiliar with the system or component to get "the big pic­
ture" such as is necessary in a prototype demonstration or
design review. A summary view therefore serves to estab­
lish a context for further explanation or detailed examination.

An example useful summary view for a PSDL composite
operator is the data flow diagram of Figure 2.2 showing only
the operator's components and their interconnections. Such
a view is valuable precisely because of the details it leaves

speed

Figure 2.2 Summary View

throttle
setting

out (such as data types and timing and control constraints).
Without such additional detail, the relationship between ma­
jor components of the operator can be readily understood by
the observer.

From the summary view, more detail regarding a partic­
ular aspect of the system can be determined via navigation
structures. These include both exploding views and annota­
tion views. In general, an explosion view of a component

x~
-~-

Figure 2.3 Exploding View of Operator A

shows the structure of its immediate sub-components. In
the context of a CAPS data flow diagram (see Figure 2.3),
an explosion view shows the next level decomposition of an
operator. A graphical interface supporting exploding views
makes it very easy for a designer to repeatedly pick and dis­
play subcomponents of an operator until a part relative to
the problem at hand is located. This procedure is similar to
an outline processor which allow's selection of subheadings
and creates views with the selected subheading as the main
heading of the new, more detailed view.

The second type of navigation structure, an annotation
view, gives symbolic or textual information regarding the se­
lected component. The example in Figure 2.4 is an annota­
tion view of a PSDL data stream showing the data type, la­
tency, and units associated with the selected stream. An­
notation views are useful for presenting on demand details
that are not always needed. Annotations need not be repre-

5

FINISH WITHIN: 20
CRITICAL PATH: HIGHLIGHTED
LENGTH OF CP: 17

TOTAL CPU TIME: 21
DEADLINE: 20
POSSIBLE SOLUTIONS:

A

B

c
D

NAME:Y
TYPE: INTEGER
UNITS: MPH
LATENCY: 0

Figure 2.4 Annotation View for Stream Y

sented by text only. A numerical value, for example, could
be presented digitally, as an analog gauge, or as a bar
graph. A necessary annotation view for a PSDL operator
would be one which depicts control and timing constraints.

Besides the three types of views described above, fo­
cused slices can be formed which are subsets of one or more
views formed to highlight specific information or relation­
ships. Examples include slices which show timing, excep­
tions, critical paths, and rooted sources and sinks. A timing
slice, for instance, would focus only on the timing relation­
ships between operators, eliminating other unnecessary in­
formation such as data stream names. The timing slice of
Figure 2.5 indicates the variety of means which might be
used to present such information. Similar views for maxi­
mum response time or minimum calling periods are also use­
ful for summarizing the timing properties of a system.

Subsets showing just the time-critical operators, period­
ic operators, or sporadic operators are useful for analyzing

0 10 15

time
20

1. SPEED UP OPERATOR A, B, ORD BY 1
2. ADD 1 CPU

Figure 2.5 Focused Slices Showing Timing and Critical Path

516

timmg problems. The two graphics in Figure 2.5 show a
highlighted critical path slice and a schedule congestion
graph. The latter illustrates the intervals between the earli­
est and latest time an operator can start executing. Such a
display can be useful for the interactive design of a static
schedule for a critical component with particularly tight con­
straints. It can also help identify critical nodes which might
benefit most from efficiency improvements. Clearly automat­
ing the representation of such information frees the designer
to make difficult design decisions rather than become im­
mersed in detail.

Another type of focused slice shows only exception
streams and the exception handling operators. Exception
slices depict responses components must make to unexpect­
ed situations or ill-formed inputs.

2.3 Maintaining Consistency and
Correctness

Maintaining consistency in a multi-level, multi-view
system provides a considerable challenge. The Coral [10)
developers dealt with this problem by associating con­
straints with objects. Thus manipulating an object takes in­
to account its constraints and coptext in relation to other ob­
jects.

Two types of consistency must be maintained: hierarchi­
cal consistency and view consistency. Hierarchical inconsis­
tencies arise since adding objects requires continued top
down modification to lower level views. Deleting operators
not only requires deletion of an entire decomposition, but al­
so requires modifying each object adjacent to the deleted ob­
ject.

In the augmented DFD used in CAPS, hierarchical con­
sistency of both input/output and timing must be main­
tained. As shown in Figure 2.1, the external inputs and out­
puts of the child must match those of the parent. In addition,
no path through the child graph may exceed the MET of the
parent.

The graphical editor must also take into account view
consistency. Any modifications to the graphic representa­
tion will require re-generation of the PSDL link statements
along with other associated slice information to maintain the
integrity of all views.

Constraints on graphic · objects reveal the relationships
necessary to affect appropriate changes to the attributes of
related objects when the graphic representation is modified.
Constraints involve~ both the application specified values
such as timing, as well as the syntactic attributes built into
the CAPS. These "built in" constraints not only help to en­
sure consistency, but also improve correctness.

Constraints on graphic objects can be applied in design
of the editor to preclude drawing diagrams with syntactically
incorrect internal representations. This prevents the design­
er from having to check to be sure the correct PSDL state­
ments are being generated. Ideally, the prototype designer

should not even need to understand the underlying PSDL
syntax.

3. Design of the Graphical Editor
The design and development of a prototype graphical edi­

tor for the CAPS project was undertaken by a thesis student
at the Naval Postgraduate School and the results of that ef­
fort are described in this section [11]. First, the general re­
quirements are stated. Next considerations are presented
regarding the user interface and input/output. Finally, imple­
mentation of the main processing algorithm is described.

3.1 Requirements for the Graphical
Editor

The graphical editor must meet the following general re­
quirements [11]:

517

Run in a windowed environment--control movement
between levels, selection of editing modes, display of
help.

Ensure syntactic correctness--only accept symbols
in the graphic language.

Support semantic checking--a symbol's
must reflect intended meaning.

Provide view consistency---changes
specification and graphical editor must
comparable updates in the other view.
Provide hierarchical consistency--<:hanges
level of decomposition must be reflected
higher and lower levels as applicable.

context

to the
result in

in one
in both

The graphical editor must provide the following functions:

Display operator context--the operator's name,
inputs, outputs, states, and maximum execution time
taken from the PSDL specification.

Draw object&-<:onsisting of operators (bubbles),
data streams, inputs, outputs , and self loops
(arrows).

Retrieve and edit---01odify existing graphic
decompositions.

Generate PSDL link statements--automatically from
the augmented DFD, of the form: data_stream
.source[:met] --> destination.

3.2 Interface Design
A screen image of the graphic editor user interface is

shown in figure 3 .1. Four factors influenced the design of the
user interface [11]:

I. the choice of machines on which to implement CAPS,

2. the choice of interface software support,

3. human factors issues,

4. user interface design guidelines.

3.2.1 Sun™ Workstation

The Sun Workstation has many features which make it
t?e machine of choice for the development and implementa­
non of CAPS. The availability of a dedicated CPU in a multi­
~~g environment greatly enhances the design team's
abihty to code, test and debug their software. The Sun
w_orksta~on also provides a powerful integrated program­
mmg envtronment based on the UNIX operating system.

3.2.2 Sun View

The Sun View user environment supports interactive
graphics-based applications with multiple overlapping win­
dows. Each window can run a task independent of the other
windows. The system also provides a general toolkit for
building window-based applications.

3.2.3 Human Factors

Human factors may be the most significant determinant
of a successful user interface design. Of the many human
factors ~ormance issues in the literature, the following
were specifically addressed in designing the graphical inter­
face:

1. Functional Principle. Controls which are grouped
according to their functionality are easier to learn and result
in fewer errors [8]. The graphical editor's controls fall into
three functional groups:

session control group

drawing mode group

text input group

2. Sequence of Use Principle. Controls which are
organized in the same sequence that they are used eliminate
the need to jump around and therefore minimize the amount
of information the user must remember [8]. The controls of
the graphical editor are organized to be used in a series of
top to bottom sequences. The top panel is used to control
the basic system functions of loading and storing
decompositions and quitting the tool. As such, it is used at
the beginning and end of an editing session. The next panel
down is the drawing mode panel. It is used to switch from
drawing one type of object to another. After the drawing
mode is changed, the user must enter a name and in the
case of an operator, a time constraint. The input panels for
these are therefore located immediately below the drawing
mode panel. The drawing canvas is a large work area panel

(left mouse selects) (Print Des1anl ILaad Ex1st1nal lstorel rn!!!J

Ed1ting Mode: WWiiii!W Draw Data Flow Draw Self Loop Draw Input Drw Output

Idant1f1er II••:

Ti•• Constr-atnt: •

Amount

2s

)------'Nunbers
1------Sorted _ Nunbers

A_N1.111ber

Figure 3.1 User Interface Screen Image

518

located immediately below the input panels. This ordering of
controls always allows, but does not force, the user to
operate in a top to bottom circular fashion as follows:

select mode (optional)

enter and read name

enter and read time constraint (if in operator mode)

draw object

repeat until done

3. Human Memory Capacity Principle. Studies have
shown that humans have the capacity to remember 7+/-2
things at once [8]. Since most curent investigators revise
this figure downward, the graphic editor was decomposed
into five basic parts and its longest menu has only five
choices.

3.2.4 User Interface Design Guldellnes

In addition to the previously mentioned human factors, a
number of heuristics or guidelines for designing a user inter­
face were considered in the graphic editor design. They in­
clude the following examples [l]:

be intuitive (things should work as you would
expect)

accommodate experts and novices (provide
confirmation override mechanisms)

allow customization

provide extensibility

use lots of feedback (show status; make error
messages clear)

be predictable (use a consistent, easy to remember
set of basic actions in obvious ways)

be deterministic (consider type ahead and mouse
ahead effects)

avoid modes (if states that persist are necessary,
make the feedback and exit path obvious)

do not preempt the user (don't force them to
respond)

3.3 Input/Output Considerations

3.3.1 Inputs

The graphical editor accepts inputs from both the mouse
and the keyboard. No restrictions are placed on the order
that any of these inputs must occur except that each type of
object should be drawn with a given name.

An operating mode select event occurs when one of the
operating mode buttons is selected via the mouse. Select­
able operating modes include (1) load an existing diagram,
(2) store the current diagram or (3) quit. The default mode
is forthe editor to be ready to create a new diagram.

A drawing mode select event is also a mouse input.
This input establishes the context in which canvas events
will be interpreted.

519

To draw an object, the mouse is used in a typical rub­
ber-banding point and click style with the release of the
mouse button completing the drawing.

To delete an object, also use the point and click method.

Textual inputs are typed in via the keyboard. First the
mouse pointer must be positioned in a text panel and after
typing the text, the corresponding read button is selected to
initiate text processing.

When the graphical editor is used to edit an existing dia­
gram, the system retrieves the necessary reconstruction in­
formation from the design database. The graphical editor
then reads this information and reconstructs the diagram.

3.3.2 Outputs

The graphical editor has two kinds of outputs: visual and
textual. If the user draws an object, it is displayed on the
canvas so that he can see it. If a user generated error oc­
curs, an error message will immediately be displayed at the
top of the canvas. Once the error condition has been correct­
ed, the error message disappears.

When the mouse is in a particular subwindow of the dis­
play, visual feedback in the form of a bold sub-window bor­
der, is provided.

After a decomposition has been completed and the user
has selected store, the editor will generate two kinds of tex­
tual output. The PSDL link statements along with additional
information needed to reconstruct the display will be written
to a file. The CAPS user interface will store this information
in the design database [7].

3.4 Algorithm Description
At the highest level, the algorithm for the graphical edi­

tor is simply:

create the window

poll for events

Sun View has built-in routines which allow the interface
designer to construct an interactive window application.
One need only provide the routines for handling the details
of the application. The following is a description of the main
routines of the graphical editor [11].

3.4.1 Create the User Interface

The user interface for the graphical editor is a window
comprised of five sub-windows, each of which is one of the
Sun View application building blocks. The window is creat­
ed as follows:

1. Create a frame. This is done with the Sun Window
routine window create. Parameters for this routine allow
the specificati01'i" of various attributes for the frame object.
These attributes include its name, icon, size, location,
window type, location on the screen and numerous others.

2. Create each of the sub-windows. Again using the
routine window create, the graphical editor frame is tiled
with four panel sub-windows and a drawing canvas sub­
window.

3.4.2 Poll for Events

This function is greatly simplified by the Sun View notifi­
cation-based system. Rather than maintain a main event
polling loop within the application program, Sun View has
the polling loop in a notifier. The notifier reads events and
then notifies the appropriate application procedure that input
has occurred. This scheme requires that each procedure
must be registered with the notifier so that it knows who to
call for a particular event. Procedures which are to be called
as a result of a button being pushed are registered with the
notifier by the panel create item routine L9). The events
which are accepted by the gtaphical editor are described as
follows:

3.4.2.1 System Control Events

The load existing, store, and quit event buttons are lo­
cated in the top subwindow of the graphical editor frame.
When the graphical editor is started it comes up in a mode
which allows the user to create a new decomposition dia­
gram. The three selectable events are described as follows:

1. Load Existing.

The routine load _yroc reads the reconstruction
data from a file and checks its type. This data
must have been previously retrieved from the
design database by the CAPS user interface [7j.

If the object is an operator, an operator storage
element is created, filled in with its information,
and is attached to the list of operators.

If the object is of type EXTERNAL, an operator
element is also created and is linked to the
operator list. EXTERNALs are NULL operator
nodes which serve as the source operator for
input lines. The only fields of an EXTERNAL
which get useful values are those pointing at the
line list.

Any object encountered during the load process
which is not an operator or external is some type
of line. Therefore, a line storage element is
created, its values are filled in and it is linked to
the line list of the last operator which was read
in.

After all of the objects in the file being loaded
have been read in, stored and linked, the diagram
is ready to be drawn. Load _yroc's final action is
to call the routine redraw_ diagram which
traverses the entire linked storage struL1ure and
draws each object.

2. Store.

Information for diagram reconstruction is stored
by the routine store_ diagram. TI1is routine does a
traversal of the storage structure, writing out the
contents of each operator node immediately
followed by the contents of each of its associated
line nodes.

520

Creating the PSDL link statements is a similar
process. The create _PSDL routine traverses the
entire storage structure, generating a PSDL link
statement for each line node it fmds. The link
statement is a string of characters which result
from the concatenation of the following six sub­
strings:

the line name (stored in the line node)

the character "."

the source operator's name (the name of the
operator whose lines are being processed)

an optional ":" and MET (if the source
operator has an MET)

the character string"-->"

the destination operator's name (stored in
one of the line nodes fields)

These link statements will be attached to the
implementation part of the PSDL specification file
by the sequence control function [7).

After the diagram has been stored, the
store_ diagram routine tells the system that it is
safe to exit.

3. Quit.

The routine quit _yroc will first checlC to see if the
diagram has been stored. If so, it will destroy the
window.

If the diagram has not been saved, an error
message will appear on the drawing canvas
telling the user to store the diagram.

The user can terminate the session without
saving by quitting via the nonnal Sun View
windowing menu. Selecting "Quit" from this
menu will circumvent the storage check and kill
the editor.

3.4.2.2 Mode Select Events

The graphical editor always starts in the draw_operator
mode. This is because operators must be drawn before data
streams. This requirement has the advantage of making it
easy to check the syntax of the diagran1. The editor ensures
that lines intersect operators in a way appropriate to their
type (i.e. input, output, etc.).

To switch operating modes, the user clicks on the de­
sired mode. The selector will reverse its color indicating
that it has been selected. The selection causes the notifier
to call the mode _select routine which sets the global ed­
it_ mode variable to the appropriate value. This establishes
the context in which canvas events for the left mouse button
will be interpreted.

3.4.2.3 Text Panel Events

The graphical editor has two control panels which pro­
vide a means of entering textual information.

1. Name Panel.

The name panel allows the user to enter a name
for an operator or a line.

Selecting he read_ name button causes the notifier
to inform the routine input_ name to read the
panel and the routine is_ valid_ ada _id to check
the syntax of the name.

If the name is not a valid Ada identifier (PSDL
identifier syntax matches Ada), an error message
is displayed and the name must be edited before
drawing events on the canvas.

2. METPanel.

The MET panel works essentially the same as
the name panel. The difference is that the routine
is valid MEI' is used to check that the value is
00:-integ~r and has the appropriate units.

Invalid values result in an error message and a
lockout of operator events from the canvas since
only operators have a MET.

3.4.2.4 Canvas Events.

Below the control panels is a large work area called the
canvas. The following mouse' events are handled by the edi­
tor when the mouse is in the canvas:

1. Left Mouse Down.

Capture the x and y coordinates of the position
where the event occurred. These values are
stored and become the starting position of the
object being drawn. Which object is drawn
depends upon the current drawing mode.

2. Left Mouse Drag.

Rubber-band the object. As the mouse pointer is
moved across the screen process_canvas_events
repeatedly captures the position of the pointer.
For each new position, the routine rubber-band is
called to blank out the previous version of the
object and then redraw it using the most recent
starting and stopping coordinates. The result is
that the line is erased and redrawn as fast as the
user moves the pointer across the screen.

3. Left Mouse Up.

Call rubber-band to delete the last rubber­
banded version, then capture the final stopping
coordinate. The routine process_object performs
syntactic and semantic checks on the object.

If the editing mode is draw _operator, the routine
process_object will verify that a name and a MET
are available and that the coordinates of the new
operator do not overlap another operator.

When all of these conditions are satisfactory it
calls the routine process_operator. This routine
will cause the following seven steps to take
place:

521

the object will be drawn

the MET will be retrieved

the name will be retrieved

the name will be displayed, centered in the
operator

the MET will be displayed, centered over the
operator

the operator will be allocated storage and
stored

the stored operator will be appended to the
list of operators

If the drawing mode is draw_ data _stream,
draw _input, draw _output, or draw _self_loop,
routine process _object will verify availability of a
legal Ada identifier and will ensure the line
intersects an operator in the appropriate fashion.

If the checks tum out satisfactory, the routine
process _line is called. This routine will cause the
following actions:

draw the appropriate line

draw the arrowhead on the end of the line

if the line is an input line, create a NULL
operator to act as its source and link the
NULL operator to the operator list

retrieve the line's name

display the name on the line

create the storage for the line and fills in the
values

append the line to the source operator's list of
lines

4. Right Mouse Down.

When a right mouse down event occurs, the routine pro­
cess canvas events checks to see if the mouse's coordi­
nates are within the pick criteria of either a line or an opera­
tor. If so, the object is deleted from the storage structure by
routine delete line or delete op as appropriate. After the
deletion is co~plete, routine -redraw_ diagram draws the re­
maining objects.

4. Conclusions and
Recommendations

This paper discussed the capability of graphical repre­
sentations to ease the prototyping process and reduce the
problem of information overload. The application of informa­
tion hiding and multiple views, coupled with ensuring consis­
tency and automatic programming promise a significant im­
provement in user productivity. Development of a graphical
editor for performing hierarchical decomposition of composite
PSDL operators for CAPS was also discussed. Research

on the graphical editor, as it relates to PSDL, indicates that
a prototype design can be developed with much greater ea­
seusing the graphical editor than with only the syntax-di­
rected editor. Graphical editor capabilities will also greatly
enhance prototype modification, presentation, and documen­
tation for further development.

Work is still needed in integrating the graphical editor,
syntax-directed editor, and database with the user inter­
face. Only the most basic DFD view has been implemented
in the graphical editor and a more sophisticated means of au­
tomatically performing consistency updates should be pur­
sued. An expert mode is desperately needed to increase pro­
ductivity, and a number of enhancements could be made to
improve user-friendliness in the graphical interface. The us­
er interface graphical capabilities implemented so far are still
fairly primitive. Use of a more flexible interface building en­
vironment, such as lnterViews -[12) running under X Win­
dows, could greatly ease the user's graphics drawing and
manipulation tasks.

Much worlc needs to be done. Application of graphical
representation of information needed by software engineers
for making qualitative design decisions is years behind the
application of similar technology in business and industry.
It's time decision support came home to the software com­
munity in recognition that software development is requiring
an ever greater portion of the available corporate budget.
Better use of graphical representations early in the require­
ments and design phases of software development is one
way of improving the process.

5. References
I. F .. Hopgood and others, Methodology of Window

Management, Springer-Verlag, 1986.

2. Luqi,V. Berzins and R. Yeh, "A Prototyping Language
for Real-Time software," IEEE Transactions on
software Engineering, 1409-1423, (October 1988).

522

3. Luqi and V. Berzins, "Rapid Prototyping Real-Time
Systems," IEEE Software, 25-36, (September 1988).

4. Luqi and M. Ketabchi, "A Computer Aided Prototyping
System," IEEE Software, 6-72, (March 1988).

5. Luqi, "Software Evolution via Rapid Prototyping,"
IEEE Computer, 13-25, (May 1989).

6. Luqi and Y. Lee, Interactive Control of Prototyping
Process, Technical Report NPS 52-89-014, Computer
Science Department, Naval Postgraduate School.
Monterey, CA, 1989.

7. H. Raum, Design and Implementation of an Expert
User Interface for the Computer Aided Prototyping
System, M. S. Thesis, Computer Science Department,
Naval Postgraduate School, Monterey, CA, December
1988.

8. M. Sanders and E. McCormick, Human Factors in
Engineering and Design, 6th edition, McGraw-Hill,
1987.

9. Sunview Programmer's Guide Revision: A, Sun
Microsystems Inc., October 1986.

10. P. Szekely and B. Meyers, "A User Interface Toolkit
Based on Graphical Objects and Constraints,'' in
Proceedings of ACM OOPSLA Conference, 1988.

11. R. Thorstenson, A Graphical Editor for the Computer
Aided Prototyping System, M. S. Thesis, Computer
Science Department, Naval Postgraduate School,
Monterey, CA, December 1988.

12. M. Linton, J. Vlissides, and P. Calder, "Composing
User Interfaces with InterViews," IEEE Computer, 8-
22 (February 1989).

13. Pressman, Roger S. Software Engineering: A
Practitioner's Approach (Second Edition). McGraw­
Hill Book Company, 1987.

