
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1998

Bamboo - Supporting Dynamic

Protocols For Virtual Environments

Watsen, K.

þÿ�W�a�t�s�e�n�,� �K�.� �a�n�d� �Z�y�d�a�,� �M�.� ��B�a�m�b�o�o� �-� �S�u�p�p�o�r�t�i�n�g� �D�y�n�a�m�i�c� �P�r�o�t�o�c�o�l�s� �F�o�r� �V�i�r�t�u�a�l� �E�n�v�i�r�o�n�m�e�n�t�s�, �

in the Proceedings of the IMAGE 98 Conference, Scottsdale, Arizona, 2-7 August 1998, KA-1-9.

http://hdl.handle.net/10945/41568

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Watsen, KA-1

BAMBOO -
SUPPORTING DYNAMIC PROTOCOLS FOR VIRTUAL ENVIRONMENTS

Kent Watsen & Mike Zyda
NPSNET Research Group
Naval Postgraduate School

Monterey, CA.

Abstract

Distributed virtual environments enable interaction
between participants using networking protocols.
Historically, for lack of better methods, a single, all
encompassing, highly enumerated protocol would be
used. However, all entity expressions would be limited
to just those having enumerations. Some more recent
protocols enable dynamically enumerated objects using
remote method invocation. Unfortunately, remote
method invocation increases network traffic while
delaying latency-critical interactions. This paper
introduces another approach whereby the system
dynamically downloads and installs client-specific
networking protocols at runtime. This approach incurs
longer object initialization while providing optimal
runtime performance as the protocol can be specialized
for the specific needs of that object. The reason that
this approach has not yet been realized, until now, is
due to the lack of a VE toolkit, like Bamboo, capable
of supporting dynamic extensibility. This paper details
how Bamboo enables per-object network protocols for
distributed virtual environments.

Introduction

The development of distributed systems has been of
active academic and commercial interest since the
advent of networking technology. These systems
traditionally implemented cost-effective solutions that
maximized the utilization of valuable resources. More
recently, these systems have been used to distribute
computationally intensive calculations across machines
hosted on a network. Another class of distributed
systems enable the interaction between geographically
remote participants within a shared, three-dimensional
space. This last class implements what is commonly
referred to as a distributed virtual environment (VE).

The development of distributed VE applications has
been a primary focus of many research institutions.
Recognizing this trend, some groups have developed
toolkits that help implement specific applications by
providing features common to those types of

 Presented at the 1998 IMAGE Conference
 Scottsdale, Arizona, 2-7 August 1998.

applications. However, these toolkits tend to be
monolithic architectures, limited in capability, difficult
to extend, and/or available on only a few platforms, if
not just one. The most significant of such toolkits
include Alice (Deline, 1993), AVIARY (Snowdon,
1994), BrickNet (Singh, 1994), DIVE (Carlsson, 1993),
dVS (Division, 1998), EasyScene (Coryphaeus, 1998),
MASSIVE (Greenhalgh, 1995), MR Toolkit (Shaw,
1993), NPSNET (Macedonia, 1994), Vega (Paradigm,
1998), VEOS (Bricken, 1994), and World Toolkit
(Sense8, 1998).

Another general failing of distributed VEs is that
the networking solutions tend to lack flexibility.
Historically, for lack of better methods, a single, all
encompassing, highly enumerated, networking
protocol, such as DIS (IEEE, 1993), would be utilized.
However, the protocol’s capabilities would be quickly
exceeded as the individual participants desire to more
fully express themselves (Singhal). Naturally, the
missing features would be appended to the next version
of the protocol, yet there would inevitably be the need
for additional features. This test-and-patch approach is
visible by the sequence of DIS protocols released over
its six years of development. More recently has there
been the development of protocols, such as CORBA
(Ben-Natan, 1995), that enable dynamically
enumerated objects using remote method invocation.
Unfortunately, this approach tends to increase the
amount of network traffic while delaying latency-
critical interactions.

Another approach is for the system to dynamically
download and install client-specific networking
protocols at runtime. Although this approach is
mentioned in the VRTP white paper (Brutzman, 1997),
it has not yet been previously implemented, at least not
in the virtual environment community. One of the
more interesting aspects of this approach is the ability
to have more than one protocol active at a time. In
particular, rather then have one protocol for N entities,
there could be N protocols, one for each entity. This
suggests a fundamentally different solution for data
distribution as it is no longer the case that a single,
monolithic protocol must handle all the networking.
Not only does this afford greater flexibility for the
programmer, but it also implements optimal delivery
mechanisms for specific data sets.

Watsen, KA-2

Bamboo (Watsen, 1998) is the result of years of
trying to develop an adequate toolkit for the research
and development of distributed VEs. It achieves this
goal by understanding key issues and providing direct
support for them, applying lessons learned from
previous efforts towards an efficient implementation.
These solutions are provided in the form of practical
mechanisms implemented using object oriented and
generic programming techniques. In particular,
Bamboo is a virtual environment toolkit focused on the
ability for the system to dynamically configure itself
without explicit user interaction, enabling the system to
take on new functionality after execution.

Enabling Dynamic Extensibility

All programming efforts, including distributed VEs,
benefit from good software engineering design and
development practices. These techniques attempt to
facilitate low coupling, high cohesion, and code reuse.
The ability to delay programming decisions until late in
the engineering design cycle also provides greater
flexibility. This benefit is especially noticeable when
such decisions can be made after execution. Systems
that do enable such decisions to be made after
execution are said to be dynamically configurable.
These systems facilitate orthogonal decomposition,
save memory, reduce swapping, save disk space, while
simplify modifications (Ho, 1991).

As successful as dynamically configurability is, it
has not previously been applied to distributed VEs. A
likely explanation for this is that its most effective
utilization requires consideration early in the design
cycle, thus requiring a greater amount of foresight.
However, dynamic extensibility has been Bamboo’s
single most influential design decision. So much so
that all of Bamboo itself is comprised of many
modules, to the extent that the original executable, the
core (see Figure 1), has only just enough logic to page
modules and provide the initial framework for the
plug-ins to hook into. In this way, no assumptions are
made regarding what capabilities are needed by the
kernel, but are determined at runtime by the application
being loaded. For instance, if the particular application
does not need a device-specific driver, the system
would not load that module and thus save the memory
and processing time that would ordinarily be consumed
by such a mechanism.

Fig. 1 Abstract plug-in view.

However, having each application specify every
module it depends on could be a complex and error-
prone process. Fortunately, each module, when being
loaded, only needs to verify that its immediate
dependencies are already in memory, loading them if
not. For example, using Figure 2 as a reference,
assume that module M4 is to be loaded into the system.
The system must first verify that M3 has already been
loaded into memory. Assuming that M3 has not yet
been loaded, the system must then verify that both M1
and M2 have been loaded into memory. Assuming that
neither M1 nor M2 have yet been loaded into memory,
the system may go ahead and do so as they do not have
any dependencies. Once M1 and M2 are loaded, M3
can load, and finally can M4. This sequence illustrates
how a module (M4) need only specify its immediate
dependants (M3). Now assume that M5 is to be
loaded. Since M3 is now already in memory, the
system may load M5 immediately. This example
shows how shared dependencies do not require
multiple loads. Naturally, the unloading of modules
proceeds in the reverse order while reference counts
identify shared dependencies.

Fig. 2 Module dependency view.

Watsen, KA-3

Because it is desirable to have a module loaded off
the network, if not found locally, its integrity may be
suspect. This concern will be mitigated by Bamboo’s
insistence that a trusted partner sign all modules being
loaded off the network. If the module does not have a
trusted signature, the system prompts to have the
signature added, to just load the module, or to ignore
the module altogether. Modules may be multiply
signed, thus enabling a hierarchy of trusted partners.
For instance, the author may sign the module and the
author’s company may sign the module. Few may trust
the author directly, but many may trust the author’s
company. At the top of this hierarchy is Bamboo itself;
a module signed by Bamboo is implicitly trusted by all.
It is recognized that this scheme can not be trusted to
secure global-wide simulations, but does provide
reasonable trust for academic and commercial research
institutions.

Enabling dynamic extensibility requires more than
simply bringing new code into the same address space
as the current executable. In order for the module to
perform work, as most modules do, it must either
attach itself to an existing thread or create its own.
Therefore, Bamboo provides a framework that the new
code can explicitly attach itself to. Although this
framework supports the management of lightweight
threads, it is still possible for the newly loaded module
to create its own. Therefore, this framework also has
built-in synchronization primitives for thread safe
access of global methods and/or variables. Following is
a brief introduction to the framework itself.

Fig. 3 A simple callback.

The callback class implements one of the most
fundamental mechanisms in all of Bamboo. In its
simplest form, depicted in Figure 3, a callback
abstracts the execution of a single function having a
specific declaration. In particular, the callback
abstraction passes one reference to the invoking object
and another to some user-specified callback data. As
trivial as it may seem, the callback will be seen to be
the backbone of Bamboo’s architecture.

Fig. 4 The callback handler.

The callback handler class, depicted in Figure 4,
collaborates with the callback class. It provides an
interface that callbacks can add or remove themselves
from. Callback handlers have the property of
sequentially executing each of its callbacks in order
when it itself is executed. The callback handler may
be executed explicitly every time its subroutine is
executed, or in response to an event, such as a timer
interrupt.

Fig. 5 All callbacks are recursive.

Of course, the callback handler itself would be a
limiting solution if left in this form. Ensuring that the
system can support robust behavior, each callback is
actually recursive in that it embeds two callback
handlers (see Figure 5), one just before and one just
after the callback function is executed. This approach
facilitates the grouping of like functionality. In this
way, the executable can be thought of as a tree of
callbacks (see Figure 6). Any sub-tree of this
execution tree may be selectively pruned or simply
paused, automatically doing the same to its children.

Fig 6 Single threaded execution tree view.

Watsen, KA-4

Enabling Dynamic Protocols

Now that a method for dynamically loading new
code into a networked application has been established,
it is interesting to consider how these modules might be
used in a distributed VE. The initial use for modules,
as suggested by the original Bamboo paper (Watsen,
1998), is to enable various groups to share their results
within eachother’s environments. These results
typically represent the geometry, texture, sound, and/or
behavior for some object in the VE. However, if the
module could actually define a communication
protocol, a fundamental shift to how networked VEs
are defined might ensue. Naturally, all users could
agree to use a common protocol, like DIS, but that
would not add much to existing scenarios. Instead,
moving towards the other extreme, imagine every user
defining their own protocol. That is, the only way to
represent a user in your environment is if your system
first downloads that user’s client module, which may
not only include the above characteristics but also
initiates and decodes network traffic with that user.
This approach would not only enable new (never
before seen) users to enter already existing simulations,
but would also enable the packets sent from the host to
its clients to be optimized for its particular needs.

Given this goal, the outstanding question remaining
is how or when the module is supposed to get itself
installed. That is, what event will initiate a system to
download another user’s client module. There are two
basic solutions to this problem: proactive and reactive.
The proactive approach is to have the system somehow
actively identify that it is missing the module. The
reactive approach is to have the module inform the
system that it is missing. Both of these approaches are
considered next.

Proactive Approach to Module Installation

A practical scenario illustrating the proactive
approach is discovering the client module’s URL in a
VRML (Carey, 1997) file loaded off the network (see
Figure 7). This scenario depicts a server-supported
client module. That is, the dynamically loaded module
must listen for packets being sent to it in order to
maintain its state. It is interesting to note that some
modules may not require server support, as they are
able to maintain their own state internally (e.g. an
autonomous agent), while other modules that do
require server support might represent non-interactive
objects not requiring knowledge of your existence in
the VE (e.g. an environment server). But assuming
that the client module actually represents another
interactive user in the VE, it is not clear how the other
user’s system discovers your presence. It might be
possible for the other system to infer your existence
based on your downloading of its module or perhaps

the module itself sends a message back to the other
system while being initialized.

Fig. 7 Proactive module installation.

While it is possible for two interactive users to
discover each other’s existence using the proactive
approach, the above scenario is best suited for non-
interactive virtual objects limited to the space defined
by the VRML file. However, participants in a shared
space are likely to require greater mobility. It is
therefore necessary to establish a more robust
convention by which users can introduce and remove
themselves from each other’s systems.

Reactive Approach to Module Installation

The reactive approach requires users to actively
inform each other of their existence. Since the users do
not know whom the others are until after runtime, each
system must actively open and listen to a port on which
it expects to receive client requests. A simple solution,
implemented by DIS, is to have every object
periodically broadcast a heartbeat message identifying
its existence to the rest of the world. Not receiving a
heartbeat from a user within a predefined timeout
threshold indicates that the user is no longer being
represented and can be safely removed from the
system. However, network packet analysis of a DIS
exercise identified that nearly 96% of all network
traffic was due to these entity state packets (Pullen,
1995).

An alternative approach is to use reliable packet
transmission to guarantee that individual “creation”
and “destruction” notifications will be received without
having to periodically send out heartbeat packets.
Officially, reliable packet transmission is currently
only available for unicast addressed packets.
Unfortunately, addressing a unicast packet requires
knowing the recipient’s address beforehand, which is
exactly the issue being solved. ISTP (Waters, 1997)
avoids this issue by using a central server from which
new users can receive information about all other users
in the VE, and visa versa. This solution appears
promising as the protocol’s designers have been careful
not to limit the system’s scalability, as servers are often
the bottleneck in distributed systems.

Watsen, KA-5

Another reliable packet transmission approach can
be achieved by using one of the experimental reliable
multicast protocols, including RMP (GlobalCast
Communications, 1997), SRTP (Pullen, 1996), RMTP
(Paul, 1997), and RAMP (Koifman, 1996). These
protocols achieve an optimal solution as they provide
reliable peer-to-peer communications to an unknown
number of subscribers. Both the PARADISE Project
(Holbrook, 1995), and the TASC (Smith, 1996) system
implement distributed VEs using reliable multicast. As
depicted in Figure 8, new users send creation
notifications out on a predetermined configuration
multicast channel (8.1). As some participants will
introduce themselves after others, all participants agree
to send a reply back to the new user’s system when
first discovered (8.2). Both message contain the URL
from which the user’s client module can be retrieved
(8.3 & 8.4). No special precautions need to be taken
into account for deletion. That is, the notification, a
reliable multicast message, does not require a response.

Fig. 8 Reactive module installation.

Implementing the Reactive Approach

The above scenario illustrates the basic approach
but glosses over many important details. In particular,
it has not been determined how the new user’s system
knows what multicast channel to send out its
introduction on. Stated another way, imagine surfing
the net and finding a description of an environment that
you decide to check out. The way of the web is to
follow links to their destinations, so will it be for
joining the VE. Without going into all the details, the
end result of this link should be your likeness (e.g. an
avatar) immersed in the specified environment and
interacting with the other users there.

The initial approach will be have Bamboo define an
unique MIME type “.bar” (Bamboo Archive). Thus,
the web browser will know to launch Bamboo and pass
the file as a command line parameter. Bamboo, in turn,
will test for a valid signature, unarchive it, and load it
into memory. This module may have any number of
dependencies, but it itself must define the application
specifics of the environment that the user is joining.
Rather then have this module define the whole
environment, there are advantages to delaying the
decision until later. In this way, the module is like a
boot loader (e.g. LoadLin, Lilo, etc.) that helps load the
rest of an operating system. The advantages gained by
this delay pertain to the environment’s relation to an
AOIM (area of interest manager). An AOIM is used to
reduce the complexity of a simulation to the subset that
is only of interest to the client. Immediately loading
the whole environment defeats the purpose of the
AOIM, if one is being used it all.

The exact nature of the system’s next step is
completely determined by the loaded module. Many
viable sequences exist, three of which we have tested
in our lab. These sequences roughly correspond to
DIS, HLA, and CN (completely new) and are described
below but are first introduced by some theory that
explains how they are all related.

Three Tiers to Network Management

Experience with implementing these dynamic
protocols has led to the observation that there may exist
(at least) three tiers to network management. These
tiers, Global, Per-Environment, and Per-Object,
describe the abstract network layer that traffic exists on
to perform certain operations. For now, assume that
each is implemented by a unique multicast address.

Global. This layer is shared world-wide and
consists of very low level traffic used to synchronize
environments. In particular, the sole purpose of this
layer is to enable the discovery of environments.

Per-Environment. This layer is shared per-
environment and consists of low level traffic used to
synchronize objects. The primary purpose of this layer
is to enable the discovery of objects. A secondary use
may be the management of the environment itself.

Per-Object. This layer is used on a per-object basis
and consists of traffic used to synchronize that object.
The purpose of this layer is to enable the object’s state
to be transmitted to remote clients. There may exist
multiple sub-layers, each corresponding to increasing
or different fidelities.

Watsen, KA-6

Fig. 9 Three tier network view.

Figure 9 illustrates the three tiers to network
management. Note that there exists a single Global
object that each Environment communicates with.
Each environment also communicates with the objects
using it. Finally, each object communicates with its
clients located on the other systems sharing the same
environment. Both the Global-Env. and Env.-Obj.
traffic flows are transmitted using reliable multicast,
while each object’s peer-to-peer traffic is, most likely,
unreliable.

Three Dynamic Protocols with Bamboo

As mentioned above, the next step to loading the
environment depends on the module being loaded. The
module must connect to the environment’s network
traffic. This process must consider how the networking
is implemented. Following are the three attempts
implemented in our lab.

DIS-Based Approach

The DIS-based test inserts a new and previously
unenumerated entity into an already running DIS
exercise. In terms of the three tiers to network
management, DIS does not implement a concept
similar to the Global layer. DIS does, however,
implement the Per-Environment layer in terms of a
hard-coded “exercise number” that is sent in the header
of every PDU broadcasted to hosts on the local subnet.
Furthermore, DIS also implements the Per-Object layer
using an Entity ID that is also sent in the header of
every PDU broadcasted. Because DIS uses broadcast,
as opposed to multicast, the traffic from each of the
three layers exists on the same virtual channel and thus
becomes the host’s responsibility to filter based on the
information in the PDUs themselves.

All of the simulators participating in this exercise
were running Bamboo with a DIS-lite module. This
module only implemented a single Entity State PDU,
having just position and rotation, and a special
Dynamic Protocol PDU. Each simulator represented
one entity in the VE via the sending out of these PDUs
every frame (i.e. no dead-reckoning). Furthermore,
each simulator maintained a view into the world such
that the other entities could be seen from its first-
person perspective. All but one of the simulators, each
already having the logic to decode and visualize the
default entity, would be initialized at the same time and
allowed to reach a steady state (i.e. all the simulators
knew of the others). At this point the remaining
simulator would attempt to join the exercise by
inserting a new entity type into the simulation via the
Dynamic Protocol PDU. This protocol is similar to the
standard Entity State PDU, in that it broadcasts
position and rotation information every frame, except
that its header includes a special field containing the
URL of its client module. The first time the previously
running simulators encountered this PDU, they would
download and install the entity’s client module, which
would include the new entity type’s geometry and
runtime behavior. At this point the original simulators
were able to visualize the new entity. If the new entity
ceased to send its packets, it would timeout and be
removed from the other simulators.

HLA-Based Approach

The HLA test’s goal was similar to the DIS-based
test – to dynamically incorporate a new object into an
already running HLA simulation. In terms of the three
tiers to network management, HLA also does not
implement a concept similar to the Global layer.
HLA’s Per-Environment layer is defined by the
“federation object model” (FOM) and implemented by
the “runtime infrastructure” (RTI). Furthermore, its
Per-Object abstraction is referred to as a “federate.”
HLA uses a multicast channel with a unique port per
federation.

All simulators participating in the federation were
running Bamboo with an HLA administration module.
This module implemented a FOM that defined a single
object that, like the DIS-based approach, contained
only position and rotation values that were transmitted
every frame. Each federate object was implemented by
yet another module, that subclassed the known HLA
Admin module. As the federates discovered each
other, the name of the module to be dynamically
loaded was determined by the “user supplied tag.”
When this module loaded, it would insert itself into the
HLA administration structure and thus become part of
the federation. Similarly, when the object ceased to
exist, it would be removed from the federation.

Watsen, KA-7

CN-Based Approach

The CN-based approach tests the ability to insert a
completely new object into an already running CN
virtual environment. In terms of the three tiers to
network management, the CN-based approach utilizes
unique multicast addresses for the Global, Per-
Environment, and Per-Object layers. As unique
addresses are an important design specification, the
MBone session management tool, SDP (Handley,
1998) is used to reserve the addresses in a network
friendly way. Participating systems that are “CN-
compliant” must implement the protocol defined for
each of these layers.

In order to guide the development of the next
section; please recall the scenario from the
“implementing the reactive approach” above. In this
example, assume that the downloaded module defines
its environment by name. This name will become the
key that opens the door through which the rest of the
environment is loaded.

The Global layer is supposed to enable the
discovery of individual environments. For this
example, it simply maps the environment’s name to a
multicast address. If this multicast address is to be
dynamically allocated, then a server listening to that
address must allocate it the first time the environment’s
address is requested and released as soon as the
environment is no longer in use. Fortunately, it is not
necessary to implement a special server as this is
exactly what SDP does. That is, the CN’s Global layer
can be completely implemented using existing
multicast tools on the network.

Continuing with the example and using Figure 8 for
reference, now that a unique multicast address is
known, the system announces its existence to the
environment via reliable multicast. This announcement
not only identifies the URL where its client module
may be downloaded, but also the configuration data
that is passed into the module itself while its being
initialized. Each participating system responds to the
announcement with a reliable unicast message that also
identifies its URL and configuration data. The
configuration data specifies yet another unique
multicast address on which the Per-Object traffic
(unreliable multicast) will exist. The reason this data is
not coded into the module itself is because it is possible
that more then one system will choose to represent
itself using the same server/client module combination.

At this point, all systems in the environment are
synchronized. When an object leaves the environment,
its host system transmits notification via reliable
multicast on its Per-Object channel. Each of its client
modules then removes itself from its host system.
Each system also unsubscribes from the Per-
Environment and Per-Object addresses so that SDP can
reclaim those resources.

Availability

Bamboo is scheduled for a mid-1998 release,
although beta versions are currently being made
available. The standard distribution is a collection of
header files, dynamically linkable libraries, Java class
files, and an extensible runtime environment. A
developer’s distribution providing the source code is
also freely available. There will be no licensing fee or
shareware charge. Bamboo has been designed to be
portable to many platforms by only using standard
APIs (C++, Java, STL, JGL, OpenGL, etc.) and other
multi-platform toolkits Fahrenheit (Silicon Graphics,
1997) and ACE (Schmidt, 1993). Although portability
is not necessarily secured by this approach, the
system’s concurrent development on several platforms
has not been hindered thus far. Furthermore, a mailing
list has been established so that interested developers
can freely exchange comments. Plans are being made
to provide ongoing support and maintenance;
developments will be announced on the mailing list as
they become known. Additional papers and
information may be found at http://watsen.net/Bamboo.

Conclusions

Bamboo overcomes many common VE system
architecture pitfalls by enabling dynamic extensibility.
Not only has this approach been shown to facilitate
modular decomposition of functionality, but it also
provides the ability to dynamically install networking
protocols at runtime. This capability alters the
fundamental approach to implementing large-scale
virtual environments. It is hoped that this research will
be applied towards the development of a shared,
global, persistent VE, which would require dynamic
extensibility given that it itself never goes down.

Although this paper has emphasized the
applicability of this approach to virtual environments,
there is actually nothing in Bamboo’s kernel that is
VE-specific. In particular, it is the modules that plug
into the system that give an application its
functionality. Therefore, this system might provide an
appropriate infrastructure for routers, switches, and/or
servers.

Watsen, KA-8

Acknowledgement

Bamboo has evolved over time as the result of the
efforts of the main author and colleagues Joel Brand
and Andrzej Kapolka. Research for this paper was
enhanced by technical discussions with colleagues
Howard Abrams, Don McGregor, and Don Brutzman.
Special recognition is given to Stewart Liles for the
HLA integration. Furthermore, the patience of Dr.
Mike Zyda and the NPSNET Research Group has been
appreciated. Finally, this effort could not have been
without the generous support of our sponsors: DARPA,
ONR, DMSO, and ANS.

References

Ben-Natan, R. (1995). CORBA : A Guide to the
Common Object Request Broker Architecture,
McGraw Hill Text.

Bricken, W. and G. Coco (1994). “The VEOS Project.”
Presence 3(2): 111-129.

Brutzman, D., M. Zyda, et al. (1997). virtual reality
transfer protocol (vrtp) Design Rationale. Workshops
on Enabling Technology: Infrastructure for
Collaborative Enterprises (WET ICE), MIT,
Cambridge Massachusetts,
http://www.stl.nps.navy.mil/~brutzman/vrtp_design.ps.

Carey, R. and G. Bell (1997). The Annotated Vrml 2.0
Reference Manual, Addison-Wesley.

Carlsson, C. and O. Hagsand (1993). “DIVE - A
Platform For Multi-User Virtual Environments.”
Computer and Graphics 17(6): 663-669.

Coryphaeus (1997). EasyScene,
http://www.coryphaeus.com/products_dir/es.html.

Deline, R. (1993). Alice: A rapid prototyping system
for three-dimensional interactive graphical
environments. Computer Science Department.
Charlottesville, University of Virginia.

Division (1997). dVS,
http://www.division.com/5.tec/a_papers/uvp.htm.

GlobalCast Communications (1997). The Reliable
Mutlicast Protocols,
http://www.gcast.com/reliablemulticast.html.

Greenhalgh, C. and S. Benford (1995). MASSIVE: a
Distributed Virtual Reality System Incorporating
Spatial Trading. Distributed Computing Systems
(DCS'95), Vancouver, Canada, IEEE Computer
Society.

Handley, M. and V. Jackobson (1998). SDP: Session
Description Protocol. RFC 2327, ftp://ftp.isi.edu/in-
notes/rfc2327.txt: 42.

Ho, W. W. and R. Olsson (1991). An Approach to
Genuine Dynamic Linking.

Holbrook, H., S. Singhal, et al. (1995). Log-Based
Receiver-Reliable Multicast for Distributed Interactive
Simulation. ACM SIGCOMM,
ftp://ftp.dsg.stanford.edu/pub/papers/lbrm.ps.gz.

IEEE (1993). Standard for Information Technology,
Protocols for Distributed Interactive Simulation (DIS
ANSI/IEEE standard 1278-1993), American National
Standards Institute, 1993.

Koifman, A. and S. Zabele (1996). RAMP: A Reliable
Adaptive Multicast Protocol. Fifteenth Annual Joint
Conference of the IEEE Computer and Communication
Societies, San Francisco, CA.,
http://www.tasc.com/arpa/tbone/ramp.html,
http://www.tasc.com/simweb/papers/RAMP/ramp.htm.

Macedonia, M. R., M. J. Zyda, et al. (1994).
“NPSNET: A Network Software Architecture for
Large Scale Virual Enivornments.” Presence 3(4): 265-
287.

Paradigm (1997). Vega,
http://www.paradigmsim.com/vega.html.

Paul, S., K. K. Sabnani, et al. (1997). “Reliable
Multicast Transport Protocol (RMTP),” IEEE Journal
on Selected Areas in Communications.

Pullen, M. and V. Laviano (1996). Selectively Reliable
Transmission Protocol (SRTP) ,
http://www.nac.gmu.edu/~vlaviano/.

Pullen, M. J. and D. C. Wood (1995). Networking
Technology and DIS. IEEE.

Schmidt, D. (1993). The ADAPTIVE Communication
Environment: Object-Oriented Network Programming
Components for Developing Client/Server
Applications. 11th and 12th Sun Users Group,
http://www.cs.wustl.edu/~schmidt/SUG-94.ps.gz.

Sense8 (1997). WorldToolkit,
http://www.sense8.com/products/worldtoolkit.html.

Shaw, C. and M. Green (1993). The MR Toolkit Peers
Package and Experiment, IEEE.

Silicon Graphics (1997). Fahrenheit,
http://www.sgi.com/cosmo/cosmo3d.

Watsen, KA-9

Singh, G., L. Serra, et al. (1994). “BrickNet: A
Software Toolkit for Network-Based Virtual Worlds.”
Presence 3(1): 19-34.

Singhal, S. and M. Zyda (in preparation). Networked
Virtual Environments, ACM Press.

Smith, W. G. and A. Koifman (1996). A Distributed
Interactive Simulation Intranet Using RAMP, a
Reliable Adaptive Multicast Protocol. Fourteenth
Workshop on Standards for the Interoperability of
Distributed Simulations, Orlando, FL.,
http://www.tasc.com/simweb/papers/disramp/index.ht
ml.

Snowdon, D. N. (1994). “AVIARY: Design Issues for
Future Large-Scale Virtual Environments.”
PRESENCE 3(4): 288-308.

Waters, R. C., D. B. Anderson, et al. (1997). The
Interactive Sharing Transfer Protocol (ISTP) Version
1.0, MERL.

Watsen, K. and M. Zyda (1998). Bamboo - A Portable
System for Dynamically Extensible, Real-time,
Networked, Virtual Environments. 1998 IEEE Virtual
Reality Annual International Symposium (VRAIS'98),
Atlanta, Georgia.

Author’s Biographies

Kent Watsen is pursuing a Ph.D. under Professor
Mike Zyda while acting as project manager of the
NPSNET Research Group in the Computer Science
department at the Naval Postgraduate School in
Monterey. He is the lead architect and developer of
Bamboo, a virtual environment toolkit supporting,
among other things, the next generation of NPSNET.
His relevant experience includes the design and
development of the character animation and 3D ocean
modules for EasyScene, another virtual environment
toolkit that he co-developed while working with
Coryphaeus Software. He also developed Visual
World, the rendering engine for a DIS simulator, while
with DCS Corporation. Finally, He is responsible for a

raytracing-for-animation package developed as his
undergraduate thesis. He holds Computer Science and
Applied Mathematics engineering degrees from the
University of Virginia. He is currently a co-chair of
the VRML symposium and is actively publishing and
presenting papers at both IEEE and ACM sponsored
conferences. He can be emailed at kent@watsen.net.

Michael Zyda is a Professor in Department of
Computer at the Naval Postgraduate School, Monterey,
California. Professor Zyda is also the Academic
Associate and Chair of the NPS Modeling, Virtual
Environments and Simulation curriculum. He has been
at NPS since February of 1984. Professor Zyda's main
focus in research is in the area of computer graphics,
specifically the development of large-scale, networked
3D virtual environments. Professor Zyda was a
member of the National Research Council's
Committee on Virtual Reality Research and
Development. Professor Zyda was the chair of the
National Research Council's Computer Science and
Telecommunications Board Committee on Modeling
and Simulation: Linking Entertainment & Defense.
Professor Zyda is also the Senior Editor for Virtual
Environments for the MIT Press quarterly PRESENCE,
the journal of teleoperation and virtual environments.
He is a member of the Editorial Advisory Board of the
journal Computers & Graphics. Professor Zyda is also
a member of the Technical Advisory Board of the
Fraunhofer Center for Research in Computer Graphics,
Providence, Rhode Island. Professor Zyda has been
active with the Symposium on Interactive 3D Graphics
and was the chair of the 1990 conference, held at
Snowbird, Utah and the chair of the 1995 Symposium,
held in Monterey, California. Professor Zyda began
his career in Computer Graphics in 1973 as part of an
undergraduate research group, the Senses Bureau,
at the University of California, San Diego. Professor
Zyda received a BA in Bioengineering from the
University of California, San Diego in La Jolla in 1976,
an MS in Computer Science/Neurocybernetics from the
University of Massachusetts, Amherst in 1978 and a
DSc in Computer Science from Washington
University, St. Louis, Missouri in 1984. He can be
emailed at zyda@siggraph.org.

