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ABSTRACT 

Passive multistatic radar (PMR) makes use of transmission from opportunistic radars to 

detect targets. In this thesis, a maritime scenario is created with multiple merchant vessels 

transmitting at S-band (3 GHz), serving as opportunistic radars and a frigate-size warship 

acting as the PMR receiver and to detect a low-radar cross-section (RCS) target. The 

simulations are carried out with actual technical parameters from open sources to best 

approximate practical performance. To further improve realism, the bistatic RCS 

simulation of the stealthy Republic of Singapore Navy Formidable-class frigate was 

included to validate the results.  

The simulation results show that the multistatic geometry of four opportunistic 

transmitters at the same range from the passive receiver with 90-degree separation offers 

the best coverage. Passive detection of a target of up to a radial range of 30 km with 

detection coverage of 85% or better is possible. This range coverage is similar to that of 

the monostatic radar but lacks in the area of detection coverage. The simulations also 

demonstrated that the detection accuracy is also the highest using this same geometry. 

The worst-case uncertainty ellipse around the low-RCS target is less than 150 m.     
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EXECUTIVE SUMMARY 

Using opportunistic transmitters in the form of civil marine radar (S-band and X-band) to 

detect maritime targets passively is both viable and comparable in performance to 

monostatic radars. However, in the case of detecting low-RCS (radar cross section) 

targets, passive multistatic radar (PMR) outperforms monostatic radars. The highly 

regulated requirements of the International Marine Organization (IMO) ensure that most 

maritime vessels out-at-sea have the necessary information to support both passive 

bistatic radar (PBR) and PMR. With the world’s trade routed via the sea, there is no 

shortage of suitable vessels possessing at least one civil marine radar (CMR) and one 

marine automatic identification system (MAIS) on the main shipping routes. Among all 

the suitable vessels, larger ships like oil tankers, container ships, etc., have their CMR 

installed at the highest point, which extends the radar horizon and detection range. The 

narrow beamwidth and high transmit power of the CMR conveniently lend themselves to 

exploitation by a PBR system in terms of both detection accuracy and detection range. 

The unique geometry formed between the opportunistic transmitter, passive 

receiver and unsuspecting target provides exceptional military applications not offered by 

the current military technologies. It offers true passive detection (with zero transmission 

from the receiving warship) while at the same time supports detection coverage 

comparable to a monostatic radar. Passive detection means there is no minimum range 

detection limitation that is unavoidable in a monostatic radar. In the same vein, there is 

no need for ‘blanking’ of your electronic support measures (ESM) receiver every time the 

onboard radar transmits. Passive detection allows for permanent monitoring of the 

electromagnetic spectrum for intelligence and threat. On the vulnerability front, this 

removes the risk posed by anti-radiation missiles and, at the same time, enhances mission 

survivability, allowing the warship to continue tracking targets without a working radar 

or with a damaged radar. 

This same unique geometry also improves the warship’s probability of detecting a 

low-RCS ship that has been treated by shaping and radar absorbent material (RAM) as 

compared to a monostatic radar. The use of low frequency S-band CMR poses serious 
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limitations to the use of RAM treatment on a low-RCS ship. It, therefore, restricts the 

effectiveness of low-RCS ships in the use of shaping. However, it is shown in the bistatic 

RCS measurement of the model based on the RSS Formidable-class stealthy frigate that 

shaping alone is capable of reducing the median RCS to values not higher than 200 m
2
. 

With all else being equal, with the effect of RCS on detection, the PBR system has an 

added advantage. The bistatic RCS simulation using FEKO, a commercial RCS 

modelling software, shows more incidence angles exist that demonstrate a spike in RCS 

returns. Simply put, there are more degrees-of-freedom created by the transmitter-target-

receiver geometry that has a higher probability of directing spikes in the RCS returns 

toward the receiver. In the case of a monostatic radar, there are limited ways to maximize 

RCS returns because the shaping of a low-RCS is designed to reduce returns in the 

direction of the incidence angle. 

The simplicity of PMR also lies in the fact that there are no expensive systems to 

build. Instead, all the information that the PMR system needs is already available on most 

warships. This information can be extracted and used to carry out tracking.  

The passive detection range and coverage is related to many parameters on the 

transmitter, target and receiver. On the opportunistic transmitter end, the transmit power 

and antenna gain are the two parameters that determine the maximum detection range. 

However, it is the relative position of the transmitter in the PBR geometry that 

determines the detection coverage or detection gaps. On the receiver end, the deciding 

parameters are the sensitivity and bandwidth of the ESM receiver. These two parameters 

affect the signal-to-noise ratio and, thereby, change the maximum detection range. 

Similar to the opportunistic transmitter, it is the geometry of the PBR that affects the 

detection gaps. Collectively, the factor that is used here to quantify the geometry is the 

bistatic angle β formed between the transmitter and receiver (see Figure 1). Incidentally, 

the bistatic angle decides the bistatic RCS, which is presented to the receiver depending 

on the incidence angle of the transmitter’s radar emission.  
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Figure 1.  Bistatic Angle - β. 

From the simulation plots presented in the thesis, it is shown that when more 

transmitters are spaced farther apart, they provide better overall coverage with small 

detection gaps. The minimum number of transmitters is four, placed 90 degrees apart, 

with one in each quadrant. To achieve maximum coverage with this particular 

combination of system parameters and transmitter constellation, the baseline distance of 

18,000 m is recommended. By rotating the quadrant placement of transmitters, one could 

direct the detection gaps away from a specific bearing of choice to improve detection.  

Using more than four transmitters in the suggested constellation does not 

significantly extend detection range. However, it is shown in the eight-transmitter 

simulation that it does improve detection coverage from 80% to 95% through the 

reduction of detection gaps. This translates to the ability of the PMR to track a target 

continuously, provided the target offers a strong bistatic return to all eight transmitters. In 

all likelihood, a low-RCS target would have presented at least two to four strong RCS 

returns to either the quadrant-based constellation using four transmitters or the two-

layered quadrant-based constellation using eight transmitters. If the availability of such a 

constellation is not possible out-at-sea, one should position oneself to create such a 

constellation without jeopardizing a passive posture.    

  

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=GA5yBAuoyFOo8M&tbnid=fy8oxfWf0-xwmM:&ved=0CAYQjRw&url=http://en.wikipedia.org/wiki/Radar_MASINT&ei=9AAeU5f0KsfjoASVp4LQAQ&bvm=bv.62788935,d.cGU&psig=AFQjCNFobmhBn1G8n7N8KwH5tBDwT_xmjQ&ust=1394561634527567


 xx 

There are two dominant factors that affect detection accuracy, namely, the 

beamwidth of the transmitter and the direction-finding (DF) accuracy of the receiver. It is 

shown that the worst-case measurement error is approximately  120 m for a low-RCS 

114 m frigate at a range of 20 km. In most cases, a lower measurement can be achieved 

using multiple transmitters by overlapping their individual uncertainty ellipses. It is found 

that the four-transmitter and eight-transmitter constellations recommended for maximum 

detection coverage are also optimized to reduce the target’s uncertainty ellipse. It is 

shown that with an eight-transmitter constellation, the overlapped area by all the 

uncertainty ellipses has given rise to a measurement error of 20 m for the same low-RCS 

target at a range of 6400 m.     

In summary, the use of opportunistic transmitters in the form of civil marine radar 

(S-band and X-band) to detect maritime targets passively is both viable and comparable 

in performance to monostatic radars. The PMR with four or more transmitters offers a 

detection range of up to 30 km with detection coverage of 85% or better. The associated 

worst-case detection error is approximated to be  120 m for a low-RCS 114 m frigate at 

a range of 20 km. On top of that, the PMR offers added capability to defeat low-RCS 

targets without the need to build extra combat systems. All information required for the 

PMR to work is available in most modern warships.  
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I. INTRODUCTION 

A. OVERVIEW 

The ability to detect targets passively has been greatly sought after since the 

development of modern radar. The term ‘passive’ detection of targets should be 

interpreted as the ability to detect targets without deliberate or active transmission by the 

sensor on the target of interest. In this deadly game of cat-and-mouse, the one that gets to 

‘see’ first strikes first. In modern day warships, new technologies and techniques like low 

probability-of-intercept (LPI) radars, low-radar cross-section (RCS) design, radar 

absorbent material (RAM) coating and ultra-sensitive electronic warfare (EW) receivers 

have changed the nature of the game. On the one hand, the risk of being detected by 

ultra-sensitive EW receivers has forced military ships to go on a strict radar transmission 

policy and leverage other means of sensing, such as ship-borne unmanned aerial vehicles 

(UAV) or passive infrared sensor and track (IRST), for target detection. On the other 

hand, ships equipped with capable LPI radars still have to contend with weak returns 

from low-RCS designed ships. For both cases, the effective detection range in most 

maritime missions is generally reduced to slightly beyond the visual range with the 

exception of over-the-horizon (OTH) radar.  

A proposed solution to resolve this deadlock, which is investigated in this thesis, 

is the use of multiple pairs of passive bistatic radar (PBR) to detect targets using common 

radar transmission by opportunistic transmitters. This approach offers many advantages. 

Firstly, there is no radar transmission by a source eliminating the risk of being intercepted 

by the target’s EW receiver, or worse, by anti-radiation missiles (ARMs). Detection 

occurs passively, thus advancing one’s observe-orient-decide-act (OODA) loop while 

denying the target’s own OODA loop. Secondly, the unique geometry formed by 

separating transmitter and receiver reduces the effectiveness of low-RCS design, which to 

date has only been optimized to reduce monostatic returns. Simulations have shown that 

the RCS of stealth ships changes with different bistatic angles β, and some of these angles 

have considerably larger RCS returns. This unique effect may support detection of targets 

that are not in the line-of-sight (LOS) of one’s radar. In the maritime environment, the 
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opportunistic transmitters are civil marine radars (CMR) operating in S-band (2.9 GHz – 

3.1 GHz) and X-band (9.2 GHz – 9.5 GHz) installed on all seagoing vessels regulated by 

the International Maritime Organization (IMO) under Regulation 19 in safety of life at 

sea (SOLAS), Chapter V. The use of S-band transmission as a source also improves the 

chance of detection as most RAM treatment is frequency specific and wavelength 

dependent. As the wavelength increases, the thickness of the corresponding RAM 

material increases; however, the RAM treatment is not effective at lower frequencies. In 

addition, the abundance of opportunistic transmitters out-at-sea allows one to choose 

from different combinations of bistatic pairs to optimize detection coverage, probability 

of detection and range accuracy. Next, all hardware required for the PBR to work is 

currently available on most warships. There is no requirement for additional equipment. 

Lastly, it enhances the mission capability of warships by allowing target detection with a 

defective or damaged radar.  

In Figure 1, a typical bistatic radar geometry is presented with the transmitter (Tx) 

and receiver (Rx) separated by the baseline distance, also known as the direct path or 

line-of-sight (LOS) of transmission, denoted by L. The distance from the transmitter to 

the target is denoted as TR , while the distance from the target (Tgt) to the receiver is 

denoted as RR . The angle formed between TR and RR  is known as the bistatic angle β. 

 

Figure 1.  Bistatic geometry showing the Tx, Tgt and Rx. From [1]. 

x 

y 
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1. History 

The concept of bistatic radar is not new. In fact, the oldest form of radar is of the 

bistatic kind, which operated in the forward scattering configuration for aircraft detection 

in the 1930s [1]. The operation of this forward scatter radar (β = 180°) is based on 

Babinet’s principle that states that a target’s RCS is greatly enhanced when observed by 

the receiver in a bistatic configuration with the transmitter, target and receiver on the 

same baseline, arranged in the order stated earlier [2]. Although the forward scatter radar 

supports extended detection, it is restricted in practical applications, serving more like a 

‘trip-wire’. Initially, little was known about the benefits that bistatic radar brings. 

Concurrently, the monostatic radar technology was gaining momentum with the 

invention of the magnetron during World War II. This technology gradually matured and 

ushered in the birth of pulsed radar, moving target indicator (MTI) radar, phased array 

radar and synthetic aperture radar (SAR) [3]. 

Thirty years later, in the 1960s, a bistatic radar exploiting a transmitter of 

opportunity, fitting the definition of a PBR, was mentioned in a paper by Rittenbach and 

Fishbein [4] and demonstrated a more advanced application of the bistatic radar. The 

most famous bistatic system built in the 1960s was the Sugar Tree system, a high 

frequency (HF) OTH bistatic receiver that exploited the Soviets’ international broadcast 

transmitter to detect missile launches [4]. By then, the mainstream use of radar was 

dominated by monostatic radar, closely followed by counter-detection techniques known 

as EW. Concepts like LPI radars, low-RCS designs, and RAM were explored and 

pursued, leaving bistatic radar concepts relatively untouched. 

In the 1990s, a renewed interest in bistatic radar occurred as a possible solution to 

defeat anti-radiation missiles and low-RCS designed platforms. With better technologies 

and computing capabilities, many possible applications of bistatic radars were re-

examined. The most notable systems developed during the period are summarized in 

Table 1. 
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2. Bistatic Radar Research Areas 

The current research interest in bistatic radar and multistatic radars can be broadly 

classified into three areas: (1) target detection and parameter extraction, (2) multistatic 

radar systems and configuration, and (3) target tracking and accuracy. 

Under category (1), the forward scattering configuration of bistatic radar is 

combined with inverse SAR (ISAR) techniques. The bistatic radar, particularly in the 

forward scatter region, is used to detect crossing maritime targets cutting through the 

baseline formed by the transmitter and receiver. Target detection is accomplished through 

differentiating the target’s Doppler frequency from the sea clutter. Using the rate of 

change of the Doppler frequency, we can approximate the target’s speed and length with 

an error of 20% and an associated probability of detection of 80% based on the 70 

maritime targets tracked [5]. This system allows for autonomous extraction of target 

parameters in support of target identification and classification. A separate paper went 

further to investigate the differences between ISAR returns from forward scatter and 

backscatter [6]. In that experiment, an additional transmitter, operating at a slightly 

different frequency, is collocated near the receiver to allow simultaneous capturing of 

both the forward scatter and backscatter when the ship crosses the baseline. The results 

confirmed that the Doppler frequency returns collected from the forward scatter and 

backscatter have distinctly different profiles in the Doppler versus time plot. 

The forward scatter returns have a better reproduction of the ship’s silhouette, 

most likely due to the diffraction of electromagnetic (EM) waves around the ship’s 

superstructure. As for the case of the backscatter returns, the Doppler frequency is almost 

uniformly spread out across the ship structure. In summary, there is great potential in 

combining these two returns to enhance the capability to detect, classify and identify 

targets.  

 

 

 



 5 

Table 1.   Parameters of significant passive bistatic radar programs 

designed and tested for air surveillance. From [4].    

System Silent 

Sentry
TM 

TV-Based 

Bistatic 

Radar (I) 

TV-Based 

Bistatic 

Radar (I) 

FM Radio-

based 

Bistatic 

Radar 

Multistatic 

HDTV-

based Radar 

Developer IBM, now 

Lockheed 

Martin 

University 

College 

London 

DERA 

United 

Kingdom 

NATO SAIC, U.S. 

Army 

Decade 1980 - 2000 1980 1980 2000 2000 

Configuration Multistatic  

Rx -1, Tx – 

Up to 6 

Bistatic Bistatic, 

Near forward 

scatter 

Bistatic Multistatic 

Rx -4, Tx – 1 

Transmitter 

Operation 

FM – realtime 

TV – Non-

realtime 

TV – Non-

realtime 

(543 MHz) 

TV – Near 

realtime  

(543 MHz) 

FM – 

realtime 

HDTV - 

realtime 

Baseline 
100 km 

typical 

12 km 150 km 50 km 10 km typical 

Target 
Aircraft, 

Missile 

Launch 

Aircraft Aircraft Aircraft Aircraft 

below 5000ft 

Target Data 
Range, 

Doppler 

bearing 

Range, 

Bearing 

Doppler, 

Bearing 

Range, 

Doppler, 

Bearing 

Range, 

Doppler 

Measured 

Performance 

RM = 100km – 

150km 

2D track on 

Aircraft 

3D track on 

missile launch 

RM ∼ 25km 

Occasional 

A/C 

detections, 

but mostly 

negative 

RM ∼ 160 

km 

Detections 

on high and 

medium 

altitude A/C 

but only 1/3 

tracked 

RM ∼ 175 

km. 

Achieved 

with 

innovative 

direct path 

excision 

RM ∼ 30 km 

Target 

location via 

range multi-

lateration 

Ghost 

excision via 

doppler  

 

A PBR system is an attractive and low-cost choice when it comes to detection of 

low-flying aircraft traversing a terrestrial region. Many terrestrial transmitters such as 

frequency modulated (FM) radio antennas, cellphone base-stations and digital radio 

antennas provide the transmission source for PBR to detect these aircraft. The paper by 

Griffiths and Baker [7] evaluates each of the opportunistic transmitters and their detection 

ranges. The result shows the FM radio station at Wrotham in England has a detection 

range of up to 27 km with a minimum signal-to-noise ratio (SNR) of 15 dB using a 

coherent integration period of 0.1 s. In the case of a low-power digital radio transmitter, 

the detection range is reduced to 9 km with the same parameters. The cellphone base 
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station reduced the detection range to 1.2 km, the shortest of the three. However, the 

extensive network of cellphone base-stations makes up for the short detection range with 

good detection coverage. Delving into how the transmission waveforms affect detection, 

the paper found that wideband signals like FM and digital radio introduced added 

complexity in the bistatic and multistatic ambiguity function and concluded that the 

narrowband signal is more suitable for PBR system. In effect, the varying bandwidth and 

dynamic amplitude range of the broadcast music makes detection and tracking accuracy 

extremely difficult to quantify.  

Data fusion is the combination of information on the same target from different 

sources (multiple radars) to improve probability of detection and tracking accuracy. Even 

in network-centric warfare concepts, it is applied almost exclusively to monostatic radar 

sources where system parameters such as range bin, tracking errors, and SNR are known 

and linear. In bistatic and multistatic radar systems, these parameters change in a non-

linear fashion with respect to the geometry of the transmitter, receiver and target. In an 

attempt to better understand whether data fusion yields a similar advantage in a 

multistatic netted radar system, two sets of commercial-off-the-shelf (COTS) transmitter 

and receiver pairs operating at 2.4 GHz were set up to form a bistatic angle of 20° with 

the target [8]. The results showed that SNR improved by 3 dB with data fusion of both 

monostatic and bistatic returns as compared to only monostatic returns. The experiment 

also showed that the fusion of non-coherent returns does not improve the SNR.  

The greatest advantage offered by the PBR configuration lies in its ability to 

leverage the EM emission of opportunistic transmitters to detect targets. This allows the 

receiver to detect and track targets without the target being aware of the radar’s presence. 

One of the key challenges of this approach is to ensure consistent detection coverage and 

good tracking accuracy. One of the solutions proposed is to derive a method to identify 

the suitable transmitter-receiver geometry pair to achieve good coverage. By applying the 

Cramer-Rao lower-bound (CRLB) to the bistatic ambiguity function, we find that the 

results show that regardless of the transmitter-receiver pair chosen, the range and velocity 

error is lowest when the target is close to and within the vicinity of the transmitter and 

receiver [9]. The error increases in a radially outwards manner as the target moves 
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farther. In summary, to achieve good detection coverage and accuracy, there should be a 

transmitter or receiver in each sector-of-interest centered at the receiver. In one particular 

configuration, an array of transmitters can be chosen to form range rings around the 

receiver. 

The ambiguity function of the radar waveform determines the accuracy of target 

tracking performance in both range and velocity. In the case of the bistatic radar 

(multistatic included), the ambiguity function incorporates many non-linear variables 

created by the spatial separation of the transmitter and receiver. Based on simulation, it 

was found that range resolution worsens with the increase of the bistatic angle. In the 

Doppler frequency domain, larger detection gaps and tracking errors are also created due 

to the geometry of transmitter-target-receiver [10]. In a later paper [11], the authors 

extend the investigation of the ambiguity function to cover coherent and non-coherent 

multistatic radars. The results agreed with the earlier findings and went further to 

emphasize the importance of time synchronization and positional accuracy of the 

transmitter and receiver to achieve good range accuracy. It also states that coherence 

between the transmitter and receiver improves the range resolution and accuracy.  

From [12], improvement in detection and tracking accuracy can be achieved by 

fusion of data from multiple domains, e.g., time-of-arrival (TOA), phase-on-arrival 

(POA) and angle-of-arrival (AOA). This approach reduces the tracking error by 

overlapping the area of uncertainty of the target and taking the overlap area (smallest) of 

the three as the final range resolution. It also adds frequency diversity by transmitting a 

range of frequencies with multiple transmitters to further enhance performance against 

targets of different dimensions that are moving at different speeds. The results also show 

that further improvement in tracking accuracy can be achieved with a larger separation 

between transmitters. 

In summary, there is a strong interest in a PBR system working with opportunistic 

transmitters. Experimental systems of this type are almost always used exclusively to 

detect aircraft in a terrestrial environment. The choice of transmitter waveform is almost 

always broadband, continuous transmission with or without FM chirp. In the maritime 

domain, the use of bistatic systems is almost always in the forward scatter mode with a 



 8 

configurable transmitter. The focus lies in target parameter extraction and classification 

using ISAR techniques. Multistatic systems with good detection range and accuracy 

almost always maintain coherency between transmitter and receiver. It was also found 

that a narrowband transmitter waveform performs better in PBR. Good spatial placement 

of the transmitters by sector with sufficient distance improves detection coverage. In the 

case of tracking accuracy, the importance of having good transmitter and receiver 

position information and good time synchronization cannot be understated. One could 

improve range accuracy by choosing transmitters near to intended targets and keeping the 

bistatic angle between transmitter-receiver to between 30° and 160°. 

B. THESIS OBJECTIVES 

The goals of this thesis are to 1) evaluate the suitability of using passive 

multistatic radar to detect low-RCS marine targets using civil marine radar, 2) propose 

the optimal multistatic radar system configuration for best detection coverage, and 3) 

quantify the detection accuracy of the optimal configuration using MATLAB simulation. 

The simulation results are obtained using actual system parameters extracted from civil 

marine radar equipment manuals or open sources materials.   

The proposed multistatic radar system configuration is a single receiver (warship) 

and multiple transmitters (merchant ships) configurations. The scenario assumes a single 

warship is tasked to carry out comprehensive surveillance of a sector out-at-sea to 

enhance maritime domain awareness. Presumably, the warship is positioned somewhere 

in the South China Sea to monitor ships going into and out of the Singapore Straits. The 

targets are assumed to have low-RCS design, operating with either LPI radars or search 

radars with infrequent and irregular scans. The own-force warship is equipped with a 

broadband EW receiver with direction-finding (DF) capability. The merchant ships and 

the warship are equipped with class-A maritime automatic identification system (MAIS) 

regulated under SOLAS, which functions like identification friend or foe (IFF) on 

aircraft, sending out information such as identity, global positioning system (GPS) 

position, course and speed at short intervals on a very high (VHF) frequency. The 

pictorial representation of the scenario is illustrated in Figure 2.  
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Figure 2.  Pictorial representation of the PBR setup. 

Typically, the process of target detection begins with the warship receiving all 

merchant ships’ MAIS transmissions on its own transponder. The warship forms a 

tactical picture of all known targets on its combat management system (CMS) console 

screen. Using the onboard EW and DF receiver, each of the CMR’s transmissions in both 

S-band and X-band can be correlated with the individual merchant ships. With these two 

sets of information, the EW DF receiver is now able to discern the same civic marine 

radar’s transmission parameter coming from two different bearings due to the direct path 

and reflection off an unknown target. The difference in the time-of-arrival of the direct 

and indirect signals is used to compute the range of the unknown target from the warship. 

This set of range and bearing information has inherent errors due to DF error, data age 

and uncertainty in the positional information of the opportunistic transmitter. The error 

can be minimized by averaging and combining multiple range computations of the same 

target using another bistatic pair.  
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50 nm 
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The first step is to determine the maximum possible detection range based the 

radar horizon and the maximum detection range using the bistatic radar equation. The 

latter takes into consideration system and physical parameters like antenna gains, 

transmission losses, frequency, bistatic RCS, antenna beamwidth, bistatic geometry of 

transmitter-target-receiver, receiver sensitivity for detection, etc. 

Next, evaluation of the combined detection range for different bistatic geometries, 

based on the SNR at the receiver, is presented. Based on the coverage characteristics of 

individual bistatic geometry, combinations of multiple bistatic pairs at different angles 

and ranges are simulated to determine the optimal detection coverage. The simulations 

are run by varying frequency between S-band and X-band while combining them with 

different bistatic pairs. 

Finally, the range accuracy is determined for each of the previously mentioned 

simulation runs. The objective is to evaluate the worst-case position uncertainty of the 

target and assess how choices of different bistatic pairs are affecting the results. The 

combination of these two results provides the basis by which the receiver can choose 

different combinations of bistatic pairs for optimal detection coverage and detection 

accuracy.   

C. THESIS OUTLINE 

The remaining parts of the thesis are organized as follows. The background 

theoretical concepts needed to understand and carry out the analysis are covered in 

Chapter II. Starting with Chapter III, we present simulation results in a progressive order 

with the detection coverage of a single bistatic pair. Different combinations of multistatic 

geometry are presented in Chapter IV with analysis on the optimal detection coverage. 

The expected detection accuracy of different multistatic geometries and possible 

improvements are presented in Chapter V. Finally, the conclusions drawn based on the 

results obtained and suggestions for future work are found in Chapter VI. 
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II. BACKGROUND 

A. CIVIC MARINE RADAR AND MAIS 

Probability of target detection by radar is determined by the SNR. A higher SNR 

increases the probability of detection. This is also true in the case of a PBR; the only 

difference is that the CMR’s signal comes in many forms and may not be designed to 

optimize detection. Therefore, the first step is to determine the availability of the said 

opportunistic transmitters, their performance specifications and operational 

characteristics.  

The purpose of CMR, as defined by the IMO, is to “assist in safe navigation and 

in avoiding collision by providing an indication, in relation to one’s ship, of the position 

of other surface craft.” The technology of the CMR is heavily influenced by the 

regulations issued by the UN-based IMO. CMR is restricted to operate in the 3 GHz 

range (for good range performance) and the 9 GHz range (for enhanced detection 

performance in rain and fog). Since 2004, IMO has encouraged the use of coherent radars 

in place of the simple pulsed-radar CMR for improved detection performance against 

heavy sea clutter conditions [13]. The New Technology Radars, as they are known, do 

not have restrictions on the type of waveforms that can be used. Some companies have 

developed LPI CMR that is marketed for its low power requirement and improved 

reliability [14]. 

According to IMO regulations, any vessel exceeding 300 gross metric tonnage is 

to be fitted with a CMR. This translates to more than 50,000 ships sailing in international 

waters, and many of them are fitted with two radars operating in different frequency 

bands to enhance navigation safety. This same regulation also applies in the carriage of 

MAIS but with the coverage expanded to include ships exceeding 500 gross metric 

tonnage not on international voyage and all passenger ships irrespective of size [15]. A 

good estimate of the number of ships installed with CMR and MAIS, passing through the 

Singapore and Malacca Straits is shown in the Figures 3 and 4. Notice that in both scenes, 
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there are over 500 vessels that are within the reception range of the shore-based MAIS 

system as captured by a free online resource, www.marinetraffic.com.  

 

Figure 3.  Snapshot of MAIS targets along Malacca Straits dated Feb. 20, 2014. 

 

Figure 4.  Snapshot of MAIS targets along Singapore Straits dated Feb. 20, 2014. 

According to a report by the U.S. Energy Information Administration, over 

60,000 seagoing vessels transit through the Malacca Straits (passing through the 

Singapore Straits) every year [16]. Assuming even distribution, one expects a daily 

http://www.marinetraffic.com/
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average of approximately 150 vessels transiting though the Singapore Straits on the 

Indian Ocean-South China Sea shipping route. To further narrow this down, the 

assumption made in the simulation is the use of frigate-class warship as own ship and the 

largest merchant vessels that conform to the MALACCAMAX to determine the radar 

horizon. MALACCAMAX is the term used in Naval Architecture to denote the largest 

seagoing vessel with a maximum draft of 25 m that can fit through the Malacca Straits. 

According to [17], the numbers of conventional cargo ship, tanker, container ships and 

roll-on roll-off (RORO) ships passing through the Malacca Straits in 1994 was 11620, 

9688, 5244 and 1130, respectively. That translates to an average of 76 vessels on any 

given day. 

To compute the radar horizon, two parameters are needed according to the radar 

horizon formula (standard atmosphere) [14]: 

 max 2.21 2.21tx txR h h   (1)  

  

where maxR is the range in nautical miles, txh is the height of the transmitter antenna in 

meters and rxh  is the height of the receiver antenna in meters.  

For seagoing vessels, their dimensions are defined in length, breadth, draught and 

tonnage. The height above sea level or air draught, as defined in Naval Architecture 

terms, is seldom specified. To approximate the height of the CMR above sea level, the 

new PANAMAX standard states that all ships passing through the Suez Canal must not 

have an air draught of more than 68 m, with the restriction set by the Suez Canal bridge. 

It is reasonable to assume the likes of oil tankers and containers ship on international 

voyage are designed to conform to this requirement. For a commercial vessel, the CMR is 

normally installed at the highest point. On the other end, the height of the EW receiver on 

the frigate is approximated to be at 20 m above sea level. Therefore, maxR is calculated 

from (1) to be 52 km. 
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There are many international companies like the UK-based Kelvin Hughes and 

Japanese-based Furuno that supply the world’s shipping industry with integrated bridge 

control systems along with CMR and MAIS. CMR such as Kelvin Hughes’s 

MantaDigital Radar (See Appendix A for data sheet) and Furuno’s FAR28x7 series (See 

Appendix B for data sheet) are the most commonly installed onboard larger class vessels. 

Out of all the technical specifications, a few parameters are needed for the computation 

of the SNR for detection. The specifications and comparison between the two CMRs are 

presented in Table 2. 

Table 2.   Comparison of two of most commonly installed CMR. 

Technical 

Specifications 

MantaDigital FAR28x7 series 

S-Band X-band S-band X-band 

Pulse Width 55 ns (Short), 

250 ns (Med), 

950 ns (Long) 

70 ns (Short), 

250 ns (Med), 

900 ns (Long) 

0.5 µs (Short), 

0.7 µs (Med), 

1.2 µs (Long) 

0.5 µs (Short), 

0.7 µs (Med), 

1.2 µs (Long) 

Beamwidth 

(Vertical) 

26° - 25° 20° 

Beamwidth 

(Horizontal) 

1.9° 1.25° 1.8° 1.23° 

Pulse 

Repetitive 

Frequency 

3000 Hz (Short), 

750 Hz (Med), 

750 Hz (Long) 

3000 Hz (Short), 

1500 Hz (Med), 

750 Hz (Long) 

1000 Hz 

(Short), 

600 Hz (Med), 

600 Hz (Long) 

1000 Hz (Short), 

600 Hz (Med), 

600 Hz (Long) 

Receiver 

Noise Figure 

< 6 dB < 6 dB - - 

Antenna 

Gain 

28 dB 30 dB - - 

Transmitter 

Power 

30 kW 25 kW 30 kW 30 kW 

Frequency 3050 MHz +/- 10 

MHz 

9410 MHz +/- 30 

MHz 

3050 MHz +/- 

30 MHz 

9410 MHz +/- 30 

MHz 

Scan Rate 24 rpm/ 45 rpm 24 rpm/ 45 rpm 24 rpm/ 42 rpm 21 rpm/ 26 rpm/ 

45 rpm 

 

In reference to the technical specifications shown in Table 2, both CMRs share 

similar parameters, but not all parameters of the FAR-28x7 series are available in its 

product catalog. For the purpose of this thesis, the technical specifications of the 
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MantaDigital Radar are used to compute the SNR and maximum detection range of the 

PBR.     

After selecting the technical specifications of the opportunistic radar, the next step 

is to obtain an accurate position of all available opportunistic radars so as to calculate the 

baseline distance between the transmitter and EW receiver on the warship. Furthermore, 

the receiver needs to be able to uniquely classify each CMR transmission and associate it 

with the source vessel on the CMS. From  the operating specifications requirement stated 

by the IMO, the MAIS’s function is to support automated tracking and identification 

among vessels and port authorities. It operates autonomously and continuously to 

exchange ship identity and GPS locations using the VHF transceiver. There are two types 

of MAIS: Class A installed onboard a majority of seagoing commercial vessel, and the 

more economical Class B used typically by leisure and smaller crafts. The MAIS 

communication network uses self-organizing time division multiple access (SOTDMA) 

to allow for at least 4500 communication timeslots for vessels to exchange up to 27 

different National Marine Electronics Association (NMEA) – 0183 messages, sorted into 

different level of priorities. The highest priority message is the GPS positional 

information accompanied by a unique nine-digit identification number assigned to each 

vessel known as the maritime mobile service identity (MMSI). This information allows 

the warship to discern targets of interest from neutrals on its CMS display. Extracted 

from the U.S. Coast Guard website, the key difference in specifications between Class A 

and Class B MAIS are summarized in Table 3. 
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Table 3.   Comparison of specifications between Class A and Class B 

MAIS. 

Shipboard AIS Class A Class B/Self-

Organizing 

Class B/Carrier 

Sense 

Transmit Power 

(Watts) 

12.5 W / 2 W 5 W / 2 W 2 W 

Primary Access 

Scheme 

SOTDMA SOTDMA Carrier-

sense 

TDMA 

non-competing with 

SOTDMA units 

Position Reporting 

Rate 
 

Either every 2, 3 ½, 6 

or 10 s based on 

speed and course 

change. Every 3 min 

when < 3 kts 

Either every 5, 15 or 

30 s 

based on speed Every 

3 min when < 2 kts 

Every 30 s 

Every 3 min. when < 

2 kts. 

Static Data 

Reporting Rate 

Every 6 min Every 6 min Every 6 min 

 

Transmit Data All No Rate of Turn, 

Navigation Status, 

Destination, ETA,  

No Rate of Turn, 

Navigation Status, 

Destination, ETA,  

 

From the U.S. Coast Guard website, the worst-case GPS positional accuracy of 

the MAIS is 0.001 minute in both latitude and longitude with an update rate of no longer 

than 10 s for a Class A MAIS. That translates to a positional error of not more than 2 m 

all round. With reference to the MantaDigital Radar chosen earlier, the same class of 

vessel is equipped with a Class A MAIS. For the purpose of this thesis, the information 

provided by Class A MAIS is used to calculate the baseline distance and the detection 

accuracy of the target. 

B. EW AND DF RECEIVERS 

Onboard a warship, the EW receiver is responsible for the extraction of key 

parameters from the intercepted transmission for follow-on classification and 

identification typically through digital radio frequency memory (DRFM). The EW 

receiver is capable of measuring the intercepted transmission’s center frequency, pulse 

width, pulse repetitive frequency (PRF), antenna scan rate, type of radar, transmission 

mode, etc. Integrated with the DF receiver, the angle-of-arrival can be determined and 

used to point to the source of transmission with the aid of a bearing line. Parameters like 

these are saved in the DRFM to help with future identifications. 
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The important parameters to quantify on the EW and DF receiver are the lowest 

received power that can be detected, known as sensitivity, bandwidth of the receiver, 

detection bandwidth and DF accuracy. Due to the classified nature of these parameters, 

they are seldom available in open source literature. As such, the parameters are based on 

systems with published specifications that best matched our scenario and as practical as 

reasonable.   

The EW receiver specifications are based on UK-based Teledyne Defense Ltd.’s 

high performance receiver model QR026 (See Appendix C for data sheet). This wideband 

receiver operates from 0.2 GHz to 18 GHz and is expandable to frequencies up to 40 

GHz. It has a sensitivity of approximately 70 dBm, a typical noise figure of 13.5 dB, 

and a receiver gain of 20 dB if operating with a scanning bandwidth of 500 MHz. Most 

EW receivers support tuning of bandwidth to enhance detection of specific frequency 

band and the use of a notch or Yttrium iron garnet (YIG) filter to carry out narrowband 

detection and classification. For our case, the bandwidth of the receiver can tuned to 

coincide with the frequency band of interest, thus reducing additive white gaussian noise 

(AWGN), thereby, improving the sensitivity and SNR. 

The DF receiver specifications are based on South Africa’s Poynting Defense’s 

land-based DF Antenna model DF-A0062 (See Appendix D for data sheet), which has an 

effective DF range from 20 MHz to 6 GHz and U.S.-based DRS Defense Solutions 

shipboard DF Antenna array model ZA-4501. Both DF antenna systems work on a five-

element phase interferometer concept with an azimuth DF accuracy of between 1° to 2°. 

For the purpose of this thesis, the average DF accuracy of 1.5° is used. 

C. BISTATIC RCS 

Bistatic RCS of a target is dependent on the angle formed between the direction of 

incidence and the direction of reception, known as the bistatic angle β. Unlike the 

monostatic RCS, which is a measure of the amount of EM energy re-radiated back in the 

direction of incidence, the bistatic RCS is the measure of the amount of EM energy 

returned in the direction of the receiver that is not co-located with the transmitter. Putting 

everything in perspective, there is only one set of 360 values in monostatic RCS 
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corresponding to 360 degrees in azimuth for each target. However, in the case of the 

bistatic RCS, each direction of incidence has its own set of RCS values for 360 degrees. 

So to completely map out the bistatic RCS of a target, there are 360 sets of values per 

target.  

The definition of RCS can be stated [2] as 
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For simple geometrical shapes, the RCS can be easily calculated using  
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where 2

eaA  is the equivalent area in m
2 

and λ is the wavelength in meters. In the case of a 

complex-shaped low-RCS warship, the approximation of the RCS has to take into 

consideration the ‘electrical size’ of the target, which is defined by the largest relative 

dimension of the target in terms of the incident wavelength. There are three frequency 

regions in which the RCS of a target can vary significantly, namely the Rayleigh region 

(low frequency), Mie region (resonance) and Optical region (high frequency). The three 

regions are classified based on the magnitude of the ‘electrical size.’ The graph (Figure 5) 

presents the effect on the monostatic RCS by varying the wavelength on the same sphere. 
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Figure 5.  Effects on monostatic RCS of a sphere with changes to the wavelength.  

From [1]. 

Due to the profound effect of the ratio of the target length versus the input 

transmission wavelength, different methods of RCS prediction are used in response to the 

dominant scattering mechanism that is present. The RCS prediction methods most 

commonly used are physical optics, microwave optics, method of moments, the finite 

element method and the finite difference method. For our case, the low-RCS warship is 

chosen to be the Republic of Singapore Navy’s (RSN) Formidable-class frigates. A three-

dimensional model (Figure 6 and 7) of the Formidable-class frigate is created in CST 

Studio and ported over to FEKO, a commercial RCS modeling software, to calculate the 

free space monostatic and bistatic RCS at S-band and X-band using physical optics. The 

physical optics method is suited for use to predict the RCS for targets that are in the 

optical frequency region. 
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Figure 6.  Actual photo of RSN’s Formidable-class stealth frigate (top, from [18]) versus 

its model (side profile). 

A quick comparison between the monostatic RCS and bistatic RCS shows that the 

RCS differences can fluctuate up to a factor of 30 dB over an aspect change of a few 

degrees as illustrated in Figure 8. A sample set of bistatic RCS plots are attached as 

Appendix E, and the values are added to the MATLAB simulation in the area of detection 

coverage. 

x 

y 

z 
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Figure 7.  Actual photo of RSN’s Formidable-class stealth frigate (top, from [19]) versus 

its model (front profile). 

 

Figure 8.  Comparison of monsotatic RCS (dBsm) of the model measured at 3 GHz (left) 

and bistatic RCS with incidence angle at 3 degrees (right). 
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z 
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D. BISTATIC RADAR RANGE EQUATION 

In reference [1], the bistatic radar range equation is derived. The single range in 

the monostatic case is now split into two range variables TR and RR , and the monostatic 

RCS is replaced with the bistatic RCS denoted by B  as 

 

2
2 2 2

max 3

min

( )
(4 ) ( )

T T R B T R
T R

s n T R

P G G F F
R R

kT B S N L L

 




 
  
 

 (4) 

 

where 

  

 TR = transmitter-to-target range, 

 RR = target-to-receiver range, 

 TP = transmitter power output, 

 TG = transmitter antenna power gain, 

 RG = receiving antenna power gain, 

  = wavelength, 

 B = bistatic RCS, 

 
TF = pattern propagation factor for transmitter-to-target path, 

 
RF = pattern propagation factor for target-to-receiver path, 

 k = Boltzmann’s constant, 

 sT = receiving system noise temperature, 

nB = noise bandwidth of receiver’s pre-detection filter, sufficient to pass all 

spectral components of the transmitted signal, 

 min( )S N = signal-to-noise power ratio required for detection, 

 TL = transmitting system losses (> 1) not included in other parameters, 

 RL = receiving system losses (> 1) not included in other parameters, and 

  = bistatic maximum range product. 

 

By grouping some of the terms listed, Eq. (4) can be presented in a more compact 

and generalized form for any SNR value. Defining 

 
2 2 2

3
,

(4 )

T T R B T R

s n T R

P G G F F

kT B L L

 


   (5) 

we can write, in general, 
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2 2

T R

S N
R R


 . (6) 

 

The SNR value is only sensitive to parameters associated with the CMR and EW 

receiver. It is not grounded in any coordinate system or locations of the transmitter, 

receiver and target.  

From geometry (refer to Figure 1),  

 
2 2( )

2( sin )

T R
R

T R R

R R L
R

R R L 

 


 
 (7) 

where L  is the baseline distance between the transmitter and receiver, and R  is the angle 

between North (y-axis) and the target. 

In the real world, target detection begins with the measurement of ( )T RR R using 

one of two methods, namely the direct method which requires a line-of-sight between the 

transmitter and receiver or the indirect method which requires synchronization of stable 

clocks between the transmitter and receiver. Given the use of opportunistic transmitters, 

the direct timing method is used here and  

 

 ( )T R nR R c T L     (8) 

where 

  c = speed of light, and 

nT = time interval between the reception of the transmitted pulse and 

reception of the target echo.  

 

In this case, the EW receiver is the one providing this information. The EW 

receiver must first characterize the transmission of each CMR for quick recognition. 

Upon receiving the direct transmission from the CMR as verified by the DF receiver, the 

timer starts counting until it receives the same CMR transmission from a different 

bearing. This time difference is nT . The measured difference in bearing is then used to 

determine R . With that, the detection coverage based on SNR can be plotted. The plot is 
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then normalized using the minSNR to display the detection coverage supportable by the 

EW receiver. The minSNR (in dB) is calculated from 

 min 10log( ) 174n recSensitivity SNR B NF     (9) 

 

As shown in Eqs. (6) through (8), the SNR value corresponding to a specific 

combination of Tx-Tgt-Rx can be calculated given all the parameter values. Putting all 

these individual SNR contours together on a Cartesian coordinate plot, we find the 

detection coverage for a particular combination of PBR. Given the high availability of 

opportunistic transmitters out-at-sea, multiple combinations of PBR can be used for 

optimum coverage in real-time to allow for the highest probability of detection.  

E. MEASUREMENT AND LOCATION ERROR 

From [1], there are three geometry-dependent measurement and location errors in 

a PBR system, namely the receiver-to-target error due to measurement of ( )T RR R , 

baseline measurement error of L  and receiver look angle error due to DF error by the DF 

receiver. The receiver-to-target error is the result of transmitter beamwidth spread at the 

target at TR where the edge of azimuth beamwidth is strong enough to create returns back 

to the receiver. The baseline measurement error is dependent on the means by which the 

measurement of the baseline is obtained. In our case, the baseline L is computed as the 

difference between the differential GPS locations of the transmitter and receiver. As such, 

the measurement error is a function of the accuracy of the GPS position fix. The root-

sum-squared (rss) of the three errors in [1] is expressed as 

 

1/2
22 2

( ) .
( )

R R R
R T R R

T R R

R R R
dR d R R dL d

R R L




       
               

 (10) 

 

Depending on the geometry of Tx-Tgt-Rx, the three errors are still additive but 

with components on different planes, as shown in Figures 9 through 11. With changing 

geometry, the combined error forms an ellipse with a different major and minor axis. 
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Figure 9.  Illustration of measurement error due to variation of L.  

 

Figure 10.  Illustration of measurement error due to transmitter’s AZ .  

 

Figure 11.  Illustration of measurement errors due to receiver’s DF error.  

The three components of error contributing to the rss in Eq. (10) are 
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and 
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 (13)  

where  e  = eccentricity given by / ( )T RL R R .  

To begin using this PBR system in a real-world scenario, one has to first 

determine what CMRs (opportunistic radars) are within range and what combination of 

them offers the best overall detection coverage and, if not, at a minimum, optimize 

coverage within their operating areas.  

With the warship’s MAIS in the receive-only mode, all merchant ships that are 

within the VHF reception range are displayed on the CMS screen. Based on the returns 

from the MAIS, the merchant ships that operate with Class-A MAIS are selected, and 

their S-band and/or X-band CMRs’ parameters are collected and analyzed using the EW 

receiver. The parameters are then saved into the DRFM and associated with the bearing 

relative to the warship (receiver) given by the DF receiver. The Class-A MAIS of all 

selected merchant ships are constantly updating their GPS positions at an update rate of 

no greater than 10 s. With the unique identifier provided by the MAIS, the specifications 

of the CMR can be determined. Putting all this information together, the crews onboard 

the warship have all the necessary information for Eqs. (5) and (8) to plot the detection 

coverage for a single PBR system. All the involved parameters tagged to their individual 

sources are summarized in Table 4. A further extension of this is to establish the 

relationship between different Tx-Rx PBR pairs and their associated detection coverage. 

The warship can choose multiple PBR pairs and combine their individual detection 

coverage plots to form a more comprehensive coverage in the area of interest. Different 

constellations of Tx-Rx pairs offer different advantages and disadvantages. Knowing this 
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in advance, along with practice, allows the warship operators to pick the best 

constellations from the prevailing availability of opportunistic transmitters in a minimum 

time. 

Table 4.   Parameters summary for Eqs. (5) and (8). 

Systems MantaDigital 

(CMR) 

Class-A 

(MAIS) 

QR026 

(EW 

Receiver) 

DF-A0062 

(DF 

Receiver) 

FEKO 

RCS 

Modeling 

Software 

Remarks 

PT 30 kW         

(S-band) 

25 kW             

(X-band) 

- - - - - 

GT 28 dB 

(S-band) 

31 dB 

X-band) 

- - - - - 

GR - - 2 dB - - - 

λ 

- - 

0.0984 m 

(S-band) 

0.0319 m  

(X-band) 

- - - 

B  - - - - See 

Appendix 

E 

- 

FT 

- 

 

- 

 

- 

 

- 

 

- 

 

1 

See 

reference 

[4]  
FR 

Ts 

- - 

3915 K 

(based on 

noise figure 

of 13.5 dB) 

- - - 

Bn - - 500 MHz - - - 

LT 

- - - - - 

2 

See 

reference 

[4] 
LR 

L 

- 

Based on 

GPS 

location of 

Tx and Rx 

- - - - 

ΔTn 

- - 

Based on 

GPS location 

of Tx and Rx 

- - - 

θR 
- - 

- Bearing 

Line 
- - 
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To plot an operationally usable detection plot, the minimum SNR with reference 

to the sensitivity of the EW receiver has to be determined using Eq. (9). This defines the 

value of SNR beyond which reception of the returns from the target is possible. Based on 

a sensitivity value of 70 dBm, the SNRmin required in our scenario is more than 3.5 dB 

for single pulse. To allow for unaccounted losses or unforeseen variations, an additional 

buffer is added to increase the SNRmin to 10 dB in our simulation.  

In situations where signal strength of the returned signal is weak, non-coherent 

pulse integration across multiple pulses can improve the chance of detection by 

approximately N dB, where N is the number of pulses used in the integration [19]. This 

approximation is heavily dependent on the type of receiver architecture used and is more 

applicable for envelope detector receiver types. The number of pulses transmitted 

downrange can be calculated using  

 ( )
360( )

AZN PRF
scanrate


   (14) 

 

where 

  AZ = Azimuth beamwidth of the CMR in degrees, 

  scanrate= CMR Antenna scan rate in revolution per second (rps), 

  PRF = CMR’s antenna PRF in Hz. 

 

In the case of the S-band KH MantaDigital radar, the number of pulses that are 

available for integration per second is five pulses with AZ of 1.9°, scanrate of 45 rpm and 

PRF of 750 Hz. This translates to a gain of 2.2 dB. Thus, by allowing for more 

integration time, it is possible to increase detection range. The low SNR of each pulse 

and the long integration time also bring with them increased measurement errors, 

specifically, in the TDOA measurements of the leading edge of the returned pulse. The 

increase in error is discussed in [20] for a monostatic radar, but the application to PBR 

adopting the discussed form of TDOA is not well-defined. 

 



 29 

F. DETECTION ACCURACY 

As the PBR system detects targets passively and displays them on the CMS 

screen, a problem of detection accuracy arises. As shown in Eqs. (13) through (15), there 

are measurement and location errors that form an uncertainty ellipse around the target. 

On top of these baseline errors, there are three sources of errors that add to the growing 

uncertainty ellipse. They are: (1) azimuth beam spread of the CMR with target range, (2) 

accuracy of the DF receiver and (3) positional errors due to data age and moving targets. 

These sources of errors are added in their respective planes and determine the uncertainty 

ellipse for each Tx-Rx pair. By knowing the passively-detected target range and azimuth 

with respect to the warship, one can compute the worst-case location errors in Cartesian 

coordinates. The location errors can be reduced by using more Tx-Rx pairs to narrow 

down the overlapped area. 

In the next chapter, the simulation of PBR and PMR are presented. Different 

opportunistic transmitter placements are simulated to understand their effects on 

detection coverage and detection accuracy. 

  



 30 

THIS PAGE INTENTIONALLY LEFT BLANK  



 31 

III. SIMULATION RESULTS FOR DETECTION COVERAGE 

In this chapter, the detection coverage of the PBR is investigated with different 

combinations of Tx-Rx constellations. The chapter begins with a single transmitter and 

receiver pair and demonstrates how a PBR system has a higher probability of detecting a 

low-RCS target. The simulation results also show the limited detection coverage of a 

single PBR system. The investigation goes on to explore a multiple PBR system and 

evaluates the detection performance of the combined system using different Tx-Rx 

constellations. All simulation results are generated using MATLAB with the source codes 

included in Appendix F.  

A. SINGLE TX-RX PAIR  

To appreciate the benefits brought about by combining multiple PBRs into a 

multistatic radar system, one first needs to understand the capabilities and limitations of a 

PBR system operating with S-band and X-band CMR. 

1. Monostatic RCS with S-Band CMR 

According Skolnik [14], at low grazing angle, the median RCS of a ship can be 

estimated using the empirical formula 

 
3/252 f D 

  (15) 

with the f in MHz and ship’s displacement D in kilotons. Substituting f as 3050 MHz and 

D as 3.2 kilotons, the displacement of RSS Formidable-class frigate, we find the RCS of 

a non-RCS treated frigate to be 5137 m
2
. A separate simulation using FEKO on the 

model based on RSN’s Formidable-class frigate yields a more representative monostatic 

RCS plot (Figure 12). The monostatic RCS fluctuates from 0 dBsm to 72 dBsm 

dependent on the incidence angle. Using the results shown in Figure 12, we estimated the 

simulated median RCS as 18 dBsm (63 m
2
) for S-band.   
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Figure 12.  Monostatic RCS of RSN’s Formidable-class frigate simulated at 3050 MHz 

using FEKO. 

Putting both median monostatic RCS values into simulations, we found the 

resulting detection coverage of a PBR with a S-band CMR at (5000,0) as shown in 

Figures 13 and 14. These plots are generated using Matlab scatter plot function. Each 

data point is shown as a colored dot. The density of the data changes from plot to plot. 

Note that gaps between the individual dots on the low density plots are not areas of low 

SNR, which has been set at 10 dB. 

 

Figure 13.  SNR detection plot (dB) using empirical median RCS at S-band CMR with Rx 

at the origin and single Tx at (5000,0).  



 33 

 

Figure 14.  SNR detection plot (dB) using simulated median RCS at S-band CMR with 

Rx at the origin and single Tx at (5000,0). 

With the minimum SNR set at 10 dB and the EW receiver bandwidth of 500 MHz 

over an integration time of 1 s, the radial detection coverage under such conditions 

extends to approximately 7500 m from the receiver with near 100% coverage. From 

Figure 14, the detection coverage with the use of simulated median RCS shows a drop in 

detection coverage range to that of 1500 m from the receiver. The observable gaps in the 

plot of Figure 14 are the result of plotting resolution and not actually detection gaps. The 

detection void between the transmitter and receiver is due to the limitation offered by the 

PBR geometry. As the target approaches the baseline formed by the transmitter and 

receiver for the TDOA calculation expressed in Eq. (8), the difference between the direct 

path L and the reflected path ( T RR R ) converges to zero. All equations expressed in this 

thesis break down both in theory and in practice since the target is now directly between 

the transmitter and receiver line-of-sight. In such cases, the PBR functions as a forward 

scatter radar instead of a PBR. 
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2. Monostatic RCS with X-Band CMR 

Using the Eq. (15), we can show the monostatic RCS of a typical frigate at X-

band (9410 MHz) to be 28,875 m
2
. A separate simulation using FEKO on the model 

based on RSN’s Formidable-class frigate yields a more representative monostatic RCS 

plot (see Figure 15). The monostatic RCS fluctuates from 10 dBsm to 80 dBsm 

dependent on the incidence angle. Using the results shown in Figure 15, we find the 

estimated simulated median RCS to be 15 dBsm (32 m
2
) for X-band.  

 

Figure 15.  Monostatic RCS of RSN’s Formidable-class frigate’s model simulated at 9410 

MHz using FEKO. 

For the purpose of comparison, we put both median monostatic RCS values 

(median from formula and median from FEKO) into the simulation. The resulting 

detection coverage of a PBR with an X-band CMR at (5000,0) is shown in Figures 16 

and 17. The magnitude of the SNR behaves in the same way for all PBR systems with 

high SNR around the vicinity of the transmitter and receiver and reduces in a linearly 

radial manner. This simulation is consistent with findings by [10]. 
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Figure 16.  SNR detection plot (dB) using empirical median monstatic RCS from Eq. (15) 

at X-band CMR with Rx at the origin and single Tx at (5000,0). 

 

Figure 17.  SNR detection plot (dB) using simulated median monostatic RCS from FEKO 

at X-band with Rx at the origin and single Tx at (5000,0). 

The low FEKO simulated monostatic RCS has significantly reduced the detection 

coverage to be restricted to regions around the transmitter and receiver. This indicates 

that without using a PBR, the ability to detect a low-RCS target monostatically is 

severely limited.  
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3. Bistatic RCS with S-Band CMR 

With the inclusion of bistatic RCS in the simulation, the detection coverage varies 

with the change in target aspect with respect to the transmitter and receiver. The effect of 

the bistatic RCS is most evident with changes made to bistatic angle β by changing the 

course and heading of the target. Many possible combinations of β with different bistatic 

geometry of Tx-Tgt-Rx exist. The most representative are those with the target’s general 

direction headed towards the receiver and the other with the target’s broadside directed 

towards the receiver on a crossing course. The former presents one of the smallest bistatic 

RCS returns, while the latter presents a larger bistatic RCS return. With the ship forward 

and aft line along the 0° and 180°, it can be seen from Figure 18 that the bistatic returns 

are mostly small with a narrow peak occurring at the negative of the incidence angle but 

always higher than the direct monostatic returns.  

The RCS data was generated in 1° increments. When used in the PBR 

simulations, the incidence and observation angles were rounded to the nearest degree in 

order to obtain the RCS. 

 

Figure 18.  Bistatic RCS of RSN’s Formidable-class frigate’s model simulated at 3050 

MHz using FEKO. 

Incidence 
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A comparison of Figures 17 and 19 shows clearly the difference in detection 

coverage when a different aspect of the low-RCS target is presented to the transmitter and 

receiver. The detection range increases from 3000 m to that of beyond 20,000 m with a 

change of target aspect. It is, therefore, important to understand a single PBR system is 

also limited in its ability to ensure consistent detection coverage and low detection gaps. 

The resultant detection coverage is dependent on the Tx-Tgt-Rx geometry and the aspect 

of the target. 

 

Figure 19.  SNR detection plot (dB) using bistatic RCS at S-band having reflections off 

the forward aspect of the target ship by Tx1 (5000,0). 
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Figure 20.  SNR detection plot (dB) using bistatic RCS at S-band having reflections off 

the broadside of the target ship by Tx1 (5000,0). 

Due to the large comparative difference in the ship’s dimensions with respect to 

the wavelength of the transmission, a higher resolution plot of the target RCS reveals 

more RCS fluctuations between the current sampling intervals of one degree.     

4. Bistatic RCS with X-Band CMR 

Similar conclusions can be drawn from the detection coverage plot, as shown in 

Figures 21 and 22, with an X-band CMR. In general, the X-band CMR as an 

opportunistic transmitter has a smaller detection coverage as compared to the S-band 

CMR. The detection gaps are also more pronounced. In a real-world scenario, the use of 

RAM becomes more practicable at small wavelengths. It follows that a low-RCS target is 

likely to have even lower RCS returns at higher frequencies, reducing the usefulness of 

X-band CMR as an opportunistic transmitter. 

Ship 

Orientation 
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Figure 21.  SNR detection plot (dB) using bistatic RCS at X-band having reflections off 

the forward aspect of the target ship by Tx1 (5000,0). 

 

Figure 22.  SNR detection plot (dB) using bistatic RCS at X-band having reflections off 

the broadside of the target ship by Tx1 (5000,0). 
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B. TWO TX-RX PAIR 

Equipped with the knowledge of how a single PBR system is limited in its ability 

to provide consistent detection coverage, it is important to explore passive multistatic 

radar (PMR) and how a different transmitter constellation affects the detection coverage. 

The three parameters for transmitter constellation selection are the quantity of 

transmitters and their position relative to the receiver.  

1. Bistatic RCS with Two S-Band CMRs  

In this two-transmitter PMR system setup, the two transmitters (Tx1 and Tx2) are 

90° degrees apart and share the same baseline distance of 5000 m. Although the 

subsequent detection plots bear semblance to the detection plots of a single Tx (Figure 

23), it is important to note that detection gaps have been reduced in all cases (Figure 24), 

and the two-transmitter PMR system is now more tolerant of target RCS changes due to 

aspect. From Figures 25 and 26, the detection plots show the detection coverage of the 

Tx-Tgt-Rx geometry has at least one broadside reflection return from the low-RCS target.  

 

Figure 23.  SNR detection plot (dB) with 2Tx at S-band (90° apart) having reflections off 

the forward aspect of the target ship. 
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Figure 24.  SNR detection plot (dB) with 2Tx at S-band having reflections off the 

broadside of the target ship. 

 

Figure 25.  SNR detection plot (dB) at S-band with Tx1 with reflections off the forward 

aspect of the target ship and Tx2 off the broadside of the target ship. 
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Figure 26.  SNR detection plot (dB) at S-band with Tx1 with reflections off the broadside 

of the target ship and Tx2 off the forward aspect of the target ship. 

2. Bistatic RCS with X-Band CMR 

Extending the simulation using X-band CMR, we show the detection plots in 

Figures 27 through 30. They are consistent with that using S-band CMR as the 

opportunistic transmitter.  

 

Figure 27.  SNR detection plot (dB) with 2Tx at X-band (90° apart) with reflections off 

the forward aspect of the target ship. 
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From Figures 29 and 30, it can be observed that there two distinct shades of blue 

denoting the detection area about 5000 m further away from the receiver. The dark 

shades denote regions where the SNR is above the detection threshold of 10 dB but less 

than 40 dB. This dark shade of blue exists only between ranges above 5000 m and 12,000 

m, while there are repeated patterns of coverage and non-coverage when the target range 

increases. 

To explain this phenomenon, recall the variables in Eqs. (5) and (6) that affect the 

SNR. The obvious factor is the combined value of 2 2

T RR R  that is non-linear in nature 

acting as the denominator in Eq. (6). With β constant, the change in 2 2

T RR R  affects the 

SNR. The more asymmetric the 
TR and 

RR are, the larger the SNR. This explains why the 

SNR increases at the ends of the constant β-contours; however, if the bistatic RCS returns 

corresponding to a β are small, there are detection gaps for that value of β. In summary, 

there are two variables involved in determining the SNR, namely, the bistatic RCS 

returns which are sensitive to β and 2 2

T RR R , where the latter loses its dominance as the 

target moves further away from the receiver. 

 

Figure 28.  SNR detection plot (dB) with 2Tx at X-band with reflections off the broadside 

of the target ship. 
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Figure 29.  SNR detection plot (dB) at X-band with Tx1 with reflections off the forward 

aspect of the target ship and Tx2 off the broadside of the target ship. 

 

Figure 30.  SNR detection plot (dB) at X-band with Tx1 with reflections off the broadside 

of the target ship and Tx2 off the forward aspect of the target ship. 
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3. Combination and Constellation 

The approach taken to evaluate a transmitter constellation is to compare the 

detection coverage with a monostatic radar. That requirement is to achieve all-round 

coverage with a minimum number of detection gaps. A series of different constellations 

are explored to establish a decision matrix to choose the optimal number of opportunistic 

transmitters to maximize coverage and minimize gaps. To simplify the simulation 

without sacrificing validity, all subsequent detection plots are shown with strong RCS 

returns using S-band CMR. This is fair as the low-RCS target presents a different aspect 

to each transmitter, and at least one of these combinations invokes a strong RCS return 

back to the receiver. 

As shown in Figures 31 through 36, both detection coverage and range can be 

improved by choosing an opportunistic transmitter that has a larger baseline distance 

from the receiver. The upper limit of the choice of baseline distance lies in the 

transmitter’s power and the receiver’s sensitivity. Complemented by another transmitter 

90° or 180° apart, the detection gap is significantly reduced. It is also shown that 

detection gaps in a particular bearing can be reduced by a transmitter that lies 

orthogonally to it.  

  

Figure 31.  SNR detection plot with Tx1 at (5000,0) and Tx2 at (5000,0).  
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Comparing Figures 31 and 32, we see that detection gaps to the right of the 

receiver are reduced with Tx2 at 90° as compared to 180°. The converse is also true for 

detection gaps that are reduced forward of the receiver if both Tx1 and Tx2 lie on the 

same baseline as the receiver. 

 

Figure 32.  SNR detection plot with Tx1 at (5000,0) and Tx2 at (0,8000).  

It is noteworthy that the detection gaps can be classified into two types, interval 

gaps and through gaps. The interval gaps represent detection gaps that appear in a lateral 

manner and create loss in tracking as the target moves towards or away from the receiver. 

The through gaps are detection gaps that allow the target to evade detection and reach the 

receiver. Refer to Figure 32 for a depiction of how the interval gaps are detection gaps 

that form concentric ovals connecting the transmitter and receiver. The through gaps are 

detection gaps connecting with the transmitter (Tx1) on the left or the receiver on the 

right.   
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Figure 33.  SNR detection plot with Tx1 at (5000,0) and Tx2 at (0,10000).  

 

Figure 34.  SNR detection plot with Tx1 at (8000,0) and Tx2 at (0,10000).  
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Figure 35.  SNR detection plot with Tx1 at (10000,0) and Tx2 at (0,10000).  

 

Figure 36.  SNR detection plot with Tx1 at (10000,0) and Tx2 at (10000,0).  
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To minimize detection gaps as a result of the bistatic angle formed between the 

Tx-Tgt-Rx, the optimal transmitter constellation should have transmitters at every 

quadrant and of varying baseline distance. This is consistent with the findings by [10]. 

C. TRANSMITTER CONSTELLATIONS 

How different constellations formed using 4Tx-Rx and 8Tx-Rx affects detection 

coverage is explored in this section.  

1. Four Tx-Rx Pair 

In this simulation, four transmitters are placed 10000 m away from the receiver, 

each occupying a quadrant at 90º apart (Figure 37). It is worth noting that 100% detection 

coverage is achieved within a 20 km radius of the receiver. The second detection tier 

between 20 km to 28 km has about 60% detection coverage. An increase in the baseline 

distance from 10 km to 15 km (Figure 38) also saw an improvement in detection range in 

the second detection tier with the reduction of through gaps. The improvement in 

detection coverage in the second tier increased from 60% to approximately 80%. 

 

Figure 37.  SNR detection coverage plot with 4Tx (0º, 90º, 180º and 270º) at 10000 m 

from the receiver. 
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Figure 38.  SNR detection coverage plot with 4Tx (0º, 90º, 180º and 270º) at 15000 m 

from the receiver. 

 

Figure 39.  SNR detection coverage plot with 4Tx (45º, 135º, 225º and 315º) at 15000 m 

from the receiver. 
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As shown in Figure 39, the 4Tx constellation placement with transmitters at 45º, 

135º, 225º and 315º, respectively, has modified the second tier detection coverage 

between 20 km and 28 km. By rotating the transmitter constellation by 45º, the location 

of through detection gaps in the second tier has also rotated. Essentially, the use of a 

different constellation of the four transmitters allows the receiver to direct optimal 

detection coverage in its quadrant of choice.   

2. Eight Tx-Rx Pair 

The use of eight transmitters offers the best all-round detection coverage with 

near 95% coverage up to a range of 30 km. From Figures 40 and 41, one can see the 

detection coverage by eight transmitters placed at 15000 m and 18000 m away from the 

receiver, respectively. 

 

Figure 40.  SNR detection coverage plot with 8Tx (0º, 45º, 90º, 135º, 180º, 225º, 270º and 

315º) at 15000 m from the receiver. 
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Figure 41.  SNR detection coverage plot with 8Tx (0º, 45º, 90º, 135º, 180º, 225º, 270º and 

315º) at 18000 m from the receiver. 

In this chapter it was shown how the placement of the opportunistic transmitters 

affects detection range and detection coverage. In the next chapter the behavior of the 

measurement errors and how to minimize errors through the use of opportunistic 

transmitter placement is investigated. 
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IV. SIMULATION RESULTS FOR MEASUREMENT ERRORS 

Although an eight-transmitter constellation offers detection coverage nearly 

identical to that of a monostatic radar, there are measurement errors that have to factor 

into consideration. A target detection with an unacceptably large error is not useful. 

Depending on the geometry of the PBR, we found that the worst-case measurement error 

varies across range and bistatic angle. As shown in Eqs. (11) through (13), the RCS of the 

target does not have a role to play in measurement error; measurement error calculations 

come after target detection with a SNR of more than 10 dB. Despite the varying nature of 

the measurement errors, it is possible to use a careful choice of transmitter constellation 

to minimize the errors. 

A. UNCERTAINTY ELLIPSE 

As explained earlier with the aid of Figure 9, every target position with a Tx-Rx 

geometry pair has its own measurement error. The measurement errors typically span 

three different axes and form an uncertainty ellipse around the target position. It should 

be interpreted as the target’s actual location is anywhere within the ellipse. If the target is 

also tracked by another Tx-Rx pair, the resultant uncertainty ellipse is likely to have the 

dominant measurement error on a different axis. In such cases, the uncertainty of the 

target’s position is further reduced to the overlapped area. This improvement extends to 

multiple pairs of Tx-Rx on the same target.  

To be commensurate with the detection plots shown in Chapter III, the 

uncertainty ellipse of a different target location is plotted using the same transmitter 

constellations. The MATLAB source code for the following plots is included as 

Appendix G. 

1. Two Tx-Rx Pairs 

In this case, the target is 20.6 km away from the receiver with two transmitters 90º 

apart, as shown in Figure 42. The inputs to this simulation plot assume transmitter 

positioning update by the MAIS at 5 s and a net displacement of the target at 10 knots. 
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The uncertainty ellipse around the target (5000, 20000) is the overlap area between the 

two uncertainty ellipses formed. At this extended distance, the target’s measurement error 

area is approximately 120 m all round. Comparing with the target length of 114 m, we 

assess the error as reasonable. 

 

Figure 42.  Uncertainty ellipse of Target (5000,20000) with 2Tx at 90º apart.  

 

Figure 43.  Uncertainty ellipse of Target (5000,20000) with 2Tx at 90º apart.  

A change of target position to the right of the Tx-Tx constellation shows a slightly 

larger uncertainty ellipse due to geometry (Figure 43). As the target approaches the Tx-

Rx geometry, one can see the uncertainty ellipse reduces with an all-round error of 40 m 

* Tgt 

* Target 

* Target 
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as shown in Figure 42. In certain geometries (Figure 45), the uncertainty ellipse is the 

same from two different transmitter locations.  

 

Figure 44.  Uncertainty ellipse of Target (5000,5000) with 2Tx at 90º apart.  

 

Figure 45.  Uncertainty ellipse of Target (2000,10000) with 2Tx at 180º apart.  

2. Four Tx-Rx Pairs 

In a four-transmitter constellation, the effect on the uncertainty ellipse is similar 

(Figure 46). The major factors affecting the size of the uncertainty ellipse are the 

beamwidth of the transmitter and DF accuracy of the receiver. As the target approaches 

the transmitter or the receiver, the dominant factor changes. The important observation 

here is that the movement of the transmitter, receiver and target has very little influence 

* Target 

* Target 
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in determining the uncertainty ellipse. With the target at (4500,4500) and using the S-

band CMR with a beamwidth of 1.8°, one can see from Figure 47 that the shape of the 

uncertainty ellipse has changed. Extending this further, we see the uncertainty ellipse of 

the same constellation with the transmitter changed to X-band CMR with a beamwidth of 

0.95° as illustrated in Figure 48. For Figure 49, the transmitter, receiver and target speeds 

have been reduced to zero from 10 knots. It can be seen that the data age and target speed 

have negligible effects on the measurement error in this setup. 

 

Figure 46.  Uncertainty ellipse of Target (8000,13000) with 4Tx at 90º apart from each 

other.  

 

Figure 47.  Uncertainty ellipse of Target (4500,4500) with 4Tx at 90º apart from each 

other using S-band CMR.  

* Target 

* Target 
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Figure 48.  Uncertainty ellipse of Target (4500,4500) with 4Tx at 90º apart from each 

other using X-band CMR.  

 

Figure 49.  Uncertainty ellipse of Target (4500,4500) with 4Tx at 90º apart from each 

other using X-band CMR and zero net speed for transmitter, receiver and target.  

3. Eight Tx-Rx Pairs 

One can expect similar results from an eight-transmitter constellation when 

compared to the four-transmitter constellation; however, it is worthwhile to note that the 

higher the number of transmitters and the more they are spatially diversified, the higher 

the number of target positions that the PMR can achieve and the smaller the uncertainty 

ellipse that results. Therefore, a higher accuracy of detection can be obtained. In Figure 

* Target 

* Target 
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50, an eight-transmitter constellation is set up similar to that shown in Chapter III. Letting 

the target position be (4500,4500), it can be seen that a very small measurement error of 

approximately 20 m is achievable with only four transmitters out of the eight transmitters 

used. This should be interpreted as the PMR system now has eight data sets to compare 

and choose from, so the best sets can be used to represent the uncertainty ellipse. To 

achieve the same low measurement error, one needs to actively seek transmitter spatial 

diversity if one wishes to focus on obtaining high accuracy on one target.  

 

Figure 50.  Uncertainty ellipse of Target (4500,4500) with 8Tx at 45º apart from each 

other using S-band CMR while the target is moving at the speed of 10 knots. 

  

* Target 
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V. CONCLUSION 

A. SUMMARY OF THESIS FINDINGS 

Using opportunistic transmitters in the form of civil marine radar (S-band and X-

band) to detect maritime targets passively is both viable and has comparable performance 

to monostatic radars. However, in the case of detecting low-RCS targets, the PMR 

outperforms the former. The highly regulated requirements instilled by the IMO have 

ensured that most of maritime vessels out-at-sea have the necessary information to 

support a PBR and PMR. With the world’s trade routed via the sea, there is no shortage 

of suitable vessels possessing at least one CMR and one MAIS on the main shipping 

routes. Among all the suitable vessels, larger ships like oil tankers, container ships, etc., 

have their CMR installed at the highest point, which extends the radar horizon and 

detection range. The narrow beamwidth and high transmit power of the CMR 

conveniently lend themselves to exploitation by a PBR system in terms of both detection 

accuracy and detection range. 

The unique geometry formed among the opportunistic transmitter, passive 

receiver and unsuspecting target provides exceptional military applications not achieved 

by current military technologies. It offers true passive detection (with zero transmission 

from the receiving warship) while at the same time supports detection coverage 

comparable to a monostatic radar. Passive detection means there is no minimum range 

detection that is unavoidable in a monostatic radar. In the same vein, there is no need for 

‘blanking’ of the ESM receiver every time the onboard radar transmits. It allows for 

continuous monitoring of the EW spectrum for intelligence and threat. On the 

vulnerability front, this has removed the risk posed by ARM and, at the same time, has 

enhanced mission survivability, allowing the warship to continue with tracking 

information without a working radar or with a damaged radar. 

This same unique geometry also improves the warship’s probability of detecting a 

low-RCS ship treated both in shaping and RAM as compared to a monostatic radar. The 

use of low frequency S-band CMR poses serious limitations to the use of RAM treatment 
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on a low-RCS ship. It, therefore, restricts the effectiveness of low-RCS ships in the use of 

shaping. It was shown in the bistatic RCS measurement of the model based on the RSN 

Formidable-class stealthy frigate that shaping alone is capable of reducing the median 

RCS to values not higher than 200 m
2
. With all else being equal with the effect of RCS 

on detection, the PBR system has an added advantage. The bistatic RCS simulation using 

FEKO shows that more incidence angles exist that demonstrate a spike in RCS returns. 

Simply put, there are more degrees-of-freedom created by the transmitter-target-receiver 

geometry that has a higher probability of directing spikes in the RCS returns toward the 

receiver. In the case of a monostatic radar, there are limited ways to maximize RCS 

returns because the shaping of a low-RCS is designed to reduce returns in the direction of 

the incidence angle. 

The simplicity of PMR also lies in the fact that there are no expensive systems to 

build. Instead, all the information that the PMR system needs is already available on most 

warships. This information can be extracted and then used to carry out tracking.  

1. Conclusion for Passive Detection Coverage 

The passive detection range and coverage are related to many parameters on the 

transmitter, target and receiver. On the opportunistic transmitter end, the transmit power 

and antenna gain are the two parameters that determine the maximum detection range. 

However, it is the relative position of the transmitter in the PBR geometry that 

determines the detection coverage or detection gaps. On the receiver end, the deciding 

parameters are the sensitivity and bandwidth of the ESM receiver. These two parameters 

affect the SNR and, thereby, change maximum detection range. Similar to the 

opportunistic transmitter, it is the geometry of the PBR that affects the detection gaps. 

Collectively, the factor that is used here to quantify the geometry is the bistatic angle β, 

defined earlier in this thesis. Incidentally, the bistatic angle determines the bistatic RCS 

of what is presented to the receiver depending on the incidence angle of the transmitter’s 

radar emission.  

From the simulation plots presented in Chapter III, it was shown that when more 

transmitters are spaced further apart, they provide better overall coverage with small 
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detection gaps. The minimum number of transmitters is four, placed 90 degrees apart, 

with one in each quadrant. To achieve maximum coverage with this particular 

combination of system parameters and transmitter constellation, a baseline distance of 

18000 m is recommended. By rotating the quadrant placement of transmitters, one can 

direct the detection gaps away from a specific bearing of choice to improve detection.  

Using more than four transmitters in the suggested constellation does not 

significantly extend the detection range. As shown in the eight-transmitter simulation, it 

does improve detection coverage from approximately 80% to 95% through the reduction 

of detection gaps. This translates to the ability of the PMR to track a target continuously 

provided the target offers a strong bistatic return to all eight transmitters. In all likelihood, 

a low-RCS target would have presented at least two to four strong RCS returns to either 

the quadrant-based constellation using four transmitters or the two-layered quadrant-

based constellation using eight transmitters. If the availability of such a constellation is 

not possible out at sea, one should position oneself to create such a constellation without 

jeopardizing a passive posture.    

2. Conclusion for Detection Accuracy 

There are two dominant factors that affect detection accuracy, namely the 

beamwidth of the transmitter and the DF accuracy of the receiver. It was shown in 

multiple figures that the worst-case measurement error comes up to approximately  120 

m for a low-RCS 114 m frigate at a range of 20 km. In most cases, a lower measurement 

can be achieved using multiple transmitters by overlapping their individual uncertainty 

ellipses. It was found that the four-transmitter and eight-transmitter constellations 

recommended for maximum detection coverage are also optimized to reduce the target’s 

uncertainty ellipse. It was shown that with an eight-transmitter constellation, the area 

overlapped by all the uncertainty ellipses have given rise to a measurement error of 20 m 

for the same low-RCS target at a range of 6400 m.     
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B. FUTURE WORK 

Improvements are needed in the simulation model. Higher resolution RCS data 

should be provided. This is possible by calling FEKO directly from the Matlab simulation 

with the exact incidence and observation angles. Also, the effect of multipath from the 

sea surface should be included. 

A natural extension of this research is to look into tracking algorithms for such a 

PMR given that there is only range and no Doppler information. There are a couple of 

proposed tracking methods that might be suitable for the PMR system. There are 

possibilities for extracting target Doppler information from opportunistic targets using the 

coherent-on-receive method [21]. Such receivers support a pseudo-coherent reception of 

radar signals to extract Doppler information. With both range and Doppler information in 

a pseudo-coherent form, the improved PMR system can generate ambiguity function for 

better detection accuracy and also adopt typical tracking methods used in monostatic 

radars. 

With detection and tracking assured, it is possible to take a step further into 

classification and identification of targets. From [6], forward scatter and backscatter 

based ISAR are currently being investigated for their ability to detect target outline. It 

might be interesting to consider adding another dimension to this by using bistatic ISAR. 

In combination, the three ISAR plots might offer added information about the target to 

help in classification and identification.  
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APPENDIX A. SPECIFICATION SHEET OF MANTADIGITAL 

RADAR BY KELVIN HUGHES 
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APPENDIX B.  SPECIFICATION SHEET OF FAR28X7 SERIES BY 

FURUNO 
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APPENDIX C. SPECIFICATION SHEET OF QR026 EW RECEIVER 

BY TELEYDNE DEFENSE 
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APPENDIX D. SPECIFICATION SHEET FOR DF-A0062 DF 

RECEIVER BY POYNTING DEFENSE 
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APPENDIX E. SAMPLE OF BISTATIC RCS RESULTS OF MODEL 

OF RSN’S FORMIDABLE-CLASS FRIGATE 

The following table has a sample of the bistatic RCS values in dBsm for the 

frequency of 3050 MHz and the model shown in Figures 6 and 7 as generated by FEKO. 

Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

1 31.53 31.53 21.74 21.74 14.80 14.80 15.80 15.80 14.62 14.62 

2 28.31 28.31 23.84 23.84 14.42 14.42 12.99 12.99 16.08 16.08 

3 21.23 21.23 18.88 18.88 13.18 13.18 15.45 15.45 5.49 5.49 

4 14.15 14.15 14.28 14.28 18.14 18.14 8.34 8.34 12.75 12.75 

5 19.32 19.32 13.93 13.93 13.90 13.90 17.18 17.18 15.36 15.36 

6 12.99 12.99 13.15 13.15 8.37 8.37 12.13 12.13 13.46 13.46 

7 13.99 13.99 14.61 14.61 16.79 16.79 9.87 9.87 14.51 14.51 

8 1.22 1.22 16.13 16.13 12.77 12.77 13.42 13.42 15.77 15.77 

9 11.07 11.07 16.83 16.83 13.94 13.94 14.12 14.12 17.87 17.87 

10 15.99 15.99 12.30 12.30 16.34 16.34 13.45 13.45 15.53 15.53 

11 17.23 17.23 7.59 7.59 13.60 13.60 15.86 15.86 14.21 14.21 

12 12.32 12.32 17.34 17.34 16.82 16.82 16.59 16.59 16.57 16.57 

13 10.85 10.85 16.89 16.89 18.07 18.07 13.87 13.87 16.67 16.67 

14 16.77 16.77 16.29 16.29 13.15 13.15 17.67 17.67 14.66 14.66 

15 11.04 11.04 15.80 15.80 15.05 15.05 13.57 13.57 17.75 17.75 

16 14.73 14.73 17.79 17.79 17.10 17.10 13.81 13.81 17.36 17.36 

17 15.81 15.81 13.67 13.67 13.97 13.97 19.43 19.43 15.44 15.44 

18 16.89 16.89 14.36 14.36 11.99 11.99 17.78 17.78 14.46 14.46 

19 15.63 15.63 12.89 12.89 16.94 16.94 15.27 15.27 14.25 14.25 

20 14.52 14.52 17.17 17.17 16.02 16.02 14.63 14.63 13.51 13.51 

21 15.27 15.27 18.76 18.76 13.62 13.62 15.95 15.95 15.05 15.05 

22 16.27 16.27 18.62 18.62 16.30 16.30 15.81 15.81 16.12 16.12 

23 18.98 18.98 15.81 15.81 16.94 16.94 14.33 14.33 16.22 16.22 

24 18.12 18.12 14.14 14.14 15.03 15.03 16.72 16.72 16.61 16.61 

25 11.94 11.94 16.35 16.35 16.15 16.15 16.83 16.83 17.41 17.41 

26 13.82 13.82 13.11 13.11 15.65 15.65 16.98 16.98 14.61 14.61 

27 12.48 12.48 17.23 17.23 16.91 16.91 15.62 15.62 15.69 15.69 

28 14.67 14.67 17.02 17.02 17.39 17.39 15.53 15.53 16.67 16.67 

29 15.20 15.20 14.33 14.33 15.00 15.00 16.40 16.40 14.78 14.78 

30 14.46 14.46 13.59 13.59 14.24 14.24 16.29 16.29 13.05 13.05 

31 14.06 14.06 14.35 14.35 14.48 14.48 15.07 15.07 12.30 12.30 

32 14.78 14.78 15.32 15.32 12.75 12.75 14.47 14.47 12.93 12.93 

33 15.81 15.81 13.42 13.42 12.58 12.58 15.02 15.02 13.34 13.34 

34 14.25 14.25 13.67 13.67 15.18 15.18 14.85 14.85 14.72 14.72 

35 11.97 11.97 16.41 16.41 15.84 15.84 13.54 13.54 15.30 15.30 

36 12.99 12.99 14.34 14.34 12.07 12.07 12.87 12.87 13.00 13.00 

37 15.63 15.63 13.65 13.65 13.51 13.51 15.26 15.26 14.73 14.73 

38 10.62 10.62 13.39 13.39 14.44 14.44 11.10 11.10 13.19 13.19 

39 14.63 14.63 13.80 13.80 11.52 11.52 14.83 14.83 13.27 13.27 

40 31.53 31.53 13.27 13.27 12.87 12.87 12.94 12.94 12.26 12.26 
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Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

41 12.48 12.48 13.67 13.67 14.13 14.13 12.54 12.54 13.98 13.98 

42 13.82 13.82 11.47 11.47 12.01 12.01 12.92 12.92 11.17 11.17 

43 12.42 12.42 11.36 11.36 11.82 11.82 10.54 10.54 9.76 9.76 

44 12.05 12.05 11.97 11.97 10.94 10.94 9.80 9.80 12.15 12.15 

45 10.62 10.62 10.74 10.74 10.97 10.97 9.83 9.83 12.38 12.38 

46 8.32 8.32 10.23 10.23 9.42 9.42 8.00 8.00 12.18 12.18 

47 8.83 8.83 9.27 9.27 10.35 10.35 9.87 9.87 13.12 13.12 

48 6.56 6.56 9.50 9.50 9.87 9.87 9.81 9.81 12.45 12.45 

49 9.03 9.03 8.98 8.98 10.05 10.05 9.70 9.70 12.84 12.84 

50 5.50 5.50 7.42 7.42 10.01 10.01 10.28 10.28 8.79 8.79 

51 11.05 11.05 8.01 8.01 6.30 6.30 12.03 12.03 10.82 10.82 

52 11.11 11.11 7.88 7.88 10.53 10.53 12.83 12.83 11.14 11.14 

53 9.15 9.15 10.77 10.77 11.34 11.34 9.10 9.10 8.88 8.88 

54 10.08 10.08 4.64 4.64 9.60 9.60 9.29 9.29 6.05 6.05 

55 11.36 11.36 8.85 8.85 11.01 11.01 7.35 7.35 8.42 8.42 

56 8.92 8.92 9.03 9.03 8.91 8.91 5.63 5.63 2.61 2.61 

57 12.28 12.28 8.08 8.08 5.95 5.95 9.55 9.55 -0.73 -0.73 

58 7.43 7.43 6.07 6.07 5.29 5.29 1.92 1.92 0.25 0.25 

59 9.18 9.18 2.70 2.70 8.86 8.86 3.55 3.55 4.72 4.72 

60 9.73 9.73 6.47 6.47 3.76 3.76 3.31 3.31 4.69 4.69 

61 7.93 7.93 4.70 4.70 4.22 4.22 1.20 1.20 6.80 6.80 

62 10.79 10.79 -2.42 -2.42 0.33 0.33 5.65 5.65 8.59 8.59 

63 -4.50 -4.50 1.43 1.43 3.83 3.83 4.60 4.60 8.44 8.44 

64 5.53 5.53 -0.31 -0.31 1.01 1.01 6.21 6.21 10.88 10.88 

65 8.79 8.79 -5.83 -5.83 -1.06 -1.06 9.59 9.59 11.51 11.51 

66 -2.80 -2.80 -9.00 -9.00 3.12 3.12 9.93 9.93 9.51 9.51 

67 -2.95 -2.95 1.10 1.10 4.20 4.20 3.95 3.95 2.61 2.61 

68 4.57 4.57 4.19 4.19 5.63 5.63 -2.17 -2.17 7.21 7.21 

69 3.70 3.70 -0.07 -0.07 3.57 3.57 -1.55 -1.55 9.12 9.12 

70 5.05 5.05 2.70 2.70 1.94 1.94 7.00 7.00 7.37 7.37 

71 2.02 2.02 4.56 4.56 3.37 3.37 7.15 7.15 7.13 7.13 

72 6.98 6.98 8.71 8.71 7.03 7.03 4.61 4.61 5.78 5.78 

73 7.77 7.77 11.86 11.86 11.88 11.88 -1.92 -1.92 6.40 6.40 

74 9.04 9.04 13.71 13.71 13.84 13.84 11.81 11.81 13.24 13.24 

75 6.22 6.22 13.94 13.94 10.40 10.40 14.65 14.65 7.29 7.29 

76 10.65 10.65 13.19 13.19 11.79 11.79 8.42 8.42 17.98 17.98 

77 14.29 14.29 9.69 9.69 16.86 16.86 17.66 17.66 25.03 25.03 

78 12.52 12.52 16.92 16.92 11.15 11.15 15.77 15.77 25.23 25.23 

79 11.89 11.89 14.69 14.69 18.01 18.01 23.58 23.58 26.26 26.26 

80 13.07 13.07 15.53 15.53 15.69 15.69 26.55 26.55 27.71 27.71 

81 14.91 14.91 12.82 12.82 23.97 23.97 27.51 27.51 27.83 27.83 

82 12.79 12.79 21.71 21.71 26.64 26.64 27.94 27.94 26.41 26.41 

83 13.91 13.91 23.55 23.55 25.76 25.76 27.35 27.35 27.19 27.19 

84 13.82 13.82 23.12 23.12 27.96 27.96 25.91 25.91 23.07 23.07 

85 14.90 14.90 27.52 27.52 26.76 26.76 27.81 27.81 22.61 22.61 

86 17.52 17.52 23.78 23.78 30.06 30.06 23.22 23.22 9.02 9.02 

87 8.39 8.39 30.03 30.03 24.66 24.66 25.11 25.11 15.40 15.40 

88 15.74 15.74 24.02 24.02 24.29 24.29 8.33 8.33 11.54 11.54 

89 14.62 14.62 27.59 27.59 21.46 21.46 17.36 17.36 9.80 9.80 

90 19.12 19.12 19.23 19.23 22.59 22.59 15.77 15.77 14.32 14.32 
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Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

91 16.62 16.62 25.39 25.39 13.42 13.42 10.42 10.42 8.56 8.56 

92 18.30 18.30 9.82 9.82 17.38 17.38 15.04 15.04 15.41 15.41 

93 15.41 15.41 20.56 20.56 15.46 15.46 11.52 11.52 11.15 11.15 

94 11.73 11.73 16.71 16.71 9.27 9.27 15.02 15.02 10.33 10.33 

95 16.52 16.52 13.76 13.76 17.46 17.46 9.30 9.30 10.94 10.94 

96 14.32 14.32 14.59 14.59 5.16 5.16 5.55 5.55 5.32 5.32 

97 15.66 15.66 7.23 7.23 14.88 14.88 12.43 12.43 9.45 9.45 

98 13.95 13.95 14.52 14.52 7.30 7.30 3.56 3.56 5.88 5.88 

99 12.01 12.01 11.58 11.58 10.66 10.66 11.37 11.37 8.88 8.88 

100 10.62 10.62 13.40 13.40 12.05 12.05 5.37 5.37 8.61 8.61 

101 14.92 14.92 13.40 13.40 6.51 6.51 11.84 11.84 6.93 6.93 

102 14.96 14.96 14.10 14.10 15.28 15.28 11.12 11.12 11.23 11.23 

103 12.17 12.17 12.73 12.73 12.21 12.21 8.70 8.70 7.53 7.53 

104 12.97 12.97 13.29 13.29 12.69 12.69 9.81 9.81 10.52 10.52 

105 13.42 13.42 16.79 16.79 15.06 15.06 11.21 11.21 12.71 12.71 

106 13.95 13.95 17.22 17.22 14.69 14.69 10.98 10.98 12.60 12.60 

107 15.82 15.82 16.20 16.20 15.79 15.79 12.48 12.48 1.45 1.45 

108 15.09 15.09 15.21 15.21 13.74 13.74 13.41 13.41 1.69 1.69 

109 14.15 14.15 12.99 12.99 17.34 17.34 15.05 15.05 6.45 6.45 

110 15.33 15.33 15.45 15.45 16.72 16.72 13.82 13.82 3.92 3.92 

111 13.86 13.86 11.15 11.15 16.90 16.90 17.18 17.18 9.99 9.99 

112 15.05 15.05 9.16 9.16 15.70 15.70 17.03 17.03 10.42 10.42 

113 10.32 10.32 15.59 15.59 15.63 15.63 19.51 19.51 12.11 12.11 

114 14.42 14.42 11.99 11.99 13.17 13.17 17.19 17.19 12.73 12.73 

115 6.27 6.27 8.41 8.41 18.87 18.87 12.32 12.32 14.04 14.04 

116 9.23 9.23 16.92 16.92 22.61 22.61 18.42 18.42 15.87 15.87 

117 8.77 8.77 14.12 14.12 17.76 17.76 19.40 19.40 14.24 14.24 

118 2.77 2.77 18.31 18.31 16.56 16.56 12.94 12.94 12.21 12.21 

119 12.65 12.65 21.25 21.25 16.73 16.73 17.56 17.56 12.78 12.78 

120 11.05 11.05 14.23 14.23 13.43 13.43 4.92 4.92 18.77 18.77 

121 16.08 16.08 12.15 12.15 7.02 7.02 13.07 13.07 15.50 15.50 

122 6.78 6.78 11.65 11.65 16.07 16.07 14.29 14.29 9.83 9.83 

123 12.52 12.52 11.31 11.31 18.08 18.08 8.83 8.83 13.96 13.96 

124 6.04 6.04 5.84 5.84 14.04 14.04 11.82 11.82 14.17 14.17 

125 12.44 12.44 12.77 12.77 -0.15 -0.15 10.66 10.66 18.89 18.89 

126 10.14 10.14 12.44 12.44 6.81 6.81 18.86 18.86 15.68 15.68 

127 12.01 12.01 8.19 8.19 15.67 15.67 18.58 18.58 6.97 6.97 

128 11.83 11.83 4.41 4.41 18.31 18.31 10.31 10.31 2.33 2.33 

129 12.46 12.46 14.00 14.00 20.59 20.59 2.99 2.99 9.92 9.92 

130 7.08 7.08 15.85 15.85 14.25 14.25 8.25 8.25 8.40 8.40 

131 18.90 18.90 21.26 21.26 3.25 3.25 5.48 5.48 4.78 4.78 

132 12.28 12.28 9.29 9.29 -6.25 -6.25 9.75 9.75 9.14 9.14 

133 20.86 20.86 15.74 15.74 8.93 8.93 9.08 9.08 24.62 24.62 

134 20.86 20.86 10.76 10.76 13.29 13.29 3.87 3.87 10.17 10.17 

135 16.61 16.61 11.66 11.66 14.95 14.95 23.81 23.81 20.53 20.53 

136 15.03 15.03 13.87 13.87 1.56 1.56 18.97 18.97 18.77 18.77 

137 15.72 15.72 20.99 20.99 19.68 19.68 17.07 17.07 15.61 15.61 

138 17.95 17.95 16.87 16.87 14.76 14.76 15.03 15.03 16.33 16.33 

139 18.31 18.31 25.54 25.54 18.51 18.51 17.20 17.20 11.68 11.68 

140 17.37 17.37 20.89 20.89 15.90 15.90 16.10 16.10 4.16 4.16 
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Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

141 25.17 25.17 19.12 19.12 13.23 13.23 14.39 14.39 13.48 13.48 

142 19.37 19.37 15.16 15.16 18.71 18.71 17.20 17.20 15.28 15.28 

143 19.92 19.92 20.13 20.13 16.87 16.87 15.18 15.18 8.47 8.47 

144 9.21 9.21 19.72 19.72 0.53 0.53 17.46 17.46 15.95 15.95 

145 16.35 16.35 17.15 17.15 15.94 15.94 10.64 10.64 16.38 16.38 

146 14.20 14.20 10.74 10.74 12.02 12.02 17.08 17.08 2.94 2.94 

147 16.75 16.75 4.29 4.29 16.85 16.85 13.11 13.11 20.67 20.67 

148 15.82 15.82 14.01 14.01 13.23 13.23 11.49 11.49 15.14 15.14 

149 18.16 18.16 14.15 14.15 12.81 12.81 7.26 7.26 9.03 9.03 

150 11.65 11.65 17.56 17.56 12.06 12.06 13.12 13.12 13.29 13.29 

151 18.53 18.53 20.68 20.68 12.32 12.32 13.00 13.00 15.54 15.54 

152 18.15 18.15 15.65 15.65 16.95 16.95 14.03 14.03 7.85 7.85 

153 18.71 18.71 9.39 9.39 13.31 13.31 16.05 16.05 16.40 16.40 

154 15.74 15.74 12.92 12.92 16.24 16.24 13.13 13.13 12.76 12.76 

155 19.69 19.69 9.29 9.29 15.34 15.34 17.32 17.32 15.99 15.99 

156 5.95 5.95 18.21 18.21 20.14 20.14 13.00 13.00 13.18 13.18 

157 16.99 16.99 16.96 16.96 21.29 21.29 10.72 10.72 18.52 18.52 

158 15.73 15.73 16.43 16.43 18.04 18.04 20.36 20.36 22.92 22.92 

159 18.17 18.17 18.27 18.27 15.87 15.87 23.21 23.21 19.38 19.38 

160 14.31 14.31 22.57 22.57 21.28 21.28 22.04 22.04 25.05 25.05 

161 9.92 9.92 16.67 16.67 16.61 16.61 23.11 23.11 15.39 15.39 

162 20.86 20.86 17.48 17.48 17.35 17.35 16.15 16.15 28.07 28.07 

163 18.82 18.82 22.26 22.26 10.20 10.20 16.73 16.73 29.82 29.82 

164 16.47 16.47 21.29 21.29 20.95 20.95 11.73 11.73 25.46 25.46 

165 9.39 9.39 7.17 7.17 23.36 23.36 10.15 10.15 28.05 28.05 

166 22.88 22.88 23.93 23.93 22.85 22.85 18.72 18.72 31.73 31.73 

167 22.27 22.27 14.01 14.01 20.75 20.75 25.96 25.96 31.84 31.84 

168 16.65 16.65 23.70 23.70 16.55 16.55 11.50 11.50 35.03 35.03 

169 29.95 29.95 20.54 20.54 14.62 14.62 26.24 26.24 37.27 37.27 

170 30.67 30.67 22.16 22.16 22.02 22.02 26.95 26.95 34.22 34.22 

171 24.17 24.17 23.35 23.35 19.97 19.97 27.68 27.68 36.87 36.87 

172 26.07 26.07 24.93 24.93 29.18 29.18 34.31 34.31 49.15 49.15 

173 32.45 32.45 27.50 27.50 35.31 35.31 34.74 34.74 39.48 39.48 

174 34.28 34.28 26.45 26.45 35.58 35.58 48.46 48.46 36.34 36.34 

175 28.64 28.64 27.86 27.86 39.40 39.40 36.93 36.93 39.02 39.02 

176 38.80 38.80 37.34 37.34 44.49 44.49 33.15 33.15 30.89 30.89 

177 37.77 37.77 39.45 39.45 43.99 43.99 24.56 24.56 29.71 29.71 

178 45.24 45.24 47.41 47.41 41.08 41.08 33.65 33.65 33.35 33.35 

179 61.50 61.50 50.60 50.60 43.77 43.77 31.57 31.57 34.65 34.65 

180 78.86 78.86 49.50 49.50 43.67 43.67 37.55 37.55 27.72 27.72 

181 61.64 61.64 61.46 61.46 47.32 47.32 41.96 41.96 36.18 36.18 

182 46.01 46.01 79.67 79.67 48.33 48.33 41.59 41.59 31.70 31.70 

183 37.48 37.48 57.93 57.93 54.60 54.60 32.26 32.26 39.70 39.70 

184 37.65 37.65 48.32 48.32 81.19 81.19 50.41 50.41 44.34 44.34 

185 34.87 34.87 40.98 40.98 49.67 49.67 49.87 49.87 44.81 44.81 

186 33.43 33.43 42.10 42.10 50.11 50.11 82.18 82.18 36.68 36.68 

187 29.38 29.38 34.66 34.66 43.76 43.76 49.93 49.93 51.23 51.23 

188 27.37 27.37 26.55 26.55 41.99 41.99 41.30 41.30 83.06 83.06 

189 14.33 14.33 24.06 24.06 37.93 37.93 42.41 42.41 49.20 49.20 

190 18.22 18.22 32.23 32.23 33.01 33.01 34.82 34.82 49.12 49.12 
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Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

191 24.67 24.67 23.26 23.26 23.02 23.02 36.05 36.05 42.32 42.32 

192 17.57 17.57 26.96 26.96 19.98 19.98 33.80 33.80 43.83 43.83 

193 19.73 19.73 18.55 18.55 26.95 26.95 27.81 27.81 39.86 39.86 

194 15.90 15.90 24.28 24.28 24.10 24.10 30.81 30.81 25.96 25.96 

195 22.61 22.61 22.61 22.61 16.25 16.25 29.32 29.32 26.83 26.83 

196 11.71 11.71 20.60 20.60 21.07 21.07 30.66 30.66 34.41 34.41 

197 16.66 16.66 2.21 2.21 22.57 22.57 31.86 31.86 31.80 31.80 

198 19.92 19.92 17.74 17.74 18.11 18.11 29.69 29.69 22.77 22.77 

199 7.48 7.48 14.07 14.07 16.59 16.59 23.17 23.17 29.77 29.77 

200 8.04 8.04 20.62 20.62 12.40 12.40 11.70 11.70 26.32 26.32 

201 16.45 16.45 9.21 9.21 8.05 8.05 16.75 16.75 16.01 16.01 

202 17.43 17.43 10.46 10.46 17.62 17.62 22.39 22.39 21.75 21.75 

203 14.45 14.45 16.91 16.91 16.50 16.50 20.13 20.13 22.61 22.61 

204 3.37 3.37 18.38 18.38 22.88 22.88 19.21 19.21 14.36 14.36 

205 17.14 17.14 22.68 22.68 24.40 24.40 15.20 15.20 8.64 8.64 

206 18.44 18.44 21.96 21.96 18.99 18.99 19.07 19.07 17.71 17.71 

207 17.47 17.47 11.83 11.83 10.29 10.29 22.84 22.84 18.80 18.80 

208 19.00 19.00 21.17 21.17 17.39 17.39 14.10 14.10 23.08 23.08 

209 15.51 15.51 8.20 8.20 10.79 10.79 18.46 18.46 18.48 18.48 

210 13.66 13.66 20.60 20.60 22.07 22.07 23.80 23.80 27.02 27.02 

211 19.13 19.13 8.35 8.35 16.75 16.75 20.60 20.60 18.58 18.58 

212 16.43 16.43 12.76 12.76 15.63 15.63 27.42 27.42 24.24 24.24 

213 16.80 16.80 16.04 16.04 15.93 15.93 22.22 22.22 17.35 17.35 

214 13.54 13.54 18.88 18.88 18.29 18.29 14.52 14.52 14.30 14.30 

215 15.00 15.00 17.92 17.92 24.64 24.64 2.38 2.38 13.60 13.60 

216 12.31 12.31 22.16 22.16 15.44 15.44 8.73 8.73 13.77 13.77 

217 17.63 17.63 19.36 19.36 13.22 13.22 4.40 4.40 13.54 13.54 

218 17.13 17.13 16.26 16.26 2.58 2.58 7.52 7.52 10.42 10.42 

219 25.13 25.13 12.47 12.47 -2.71 -2.71 14.27 14.27 18.56 18.56 

220 11.46 11.46 12.77 12.77 -0.74 -0.74 17.41 17.41 18.56 18.56 

221 13.62 13.62 4.67 4.67 11.39 11.39 18.06 18.06 18.52 18.52 

222 14.73 14.73 5.61 5.61 14.56 14.56 19.44 19.44 13.22 13.22 

223 14.01 14.01 13.29 13.29 19.75 19.75 19.19 19.19 13.59 13.59 

224 12.99 12.99 19.66 19.66 20.67 20.67 17.67 17.67 14.49 14.49 

225 12.31 12.31 20.20 20.20 17.90 17.90 10.82 10.82 6.52 6.52 

226 18.75 18.75 19.30 19.30 14.68 14.68 5.17 5.17 14.82 14.82 

227 20.83 20.83 3.06 3.06 15.17 15.17 2.18 2.18 12.77 12.77 

228 15.47 15.47 11.32 11.32 17.92 17.92 1.76 1.76 14.52 14.52 

229 17.75 17.75 14.50 14.50 16.50 16.50 11.15 11.15 11.96 11.96 

230 2.76 2.76 12.22 12.22 10.17 10.17 11.95 11.95 12.22 12.22 

231 12.11 12.11 8.65 8.65 -1.00 -1.00 7.61 7.61 15.03 15.03 

232 10.97 10.97 13.05 13.05 7.87 7.87 1.35 1.35 15.80 15.80 

233 14.41 14.41 1.19 1.19 8.89 8.89 11.83 11.83 13.59 13.59 

234 2.83 2.83 4.93 4.93 1.01 1.01 12.37 12.37 10.72 10.72 

235 8.00 8.00 4.25 4.25 4.50 4.50 5.05 5.05 14.45 14.45 

236 3.85 3.85 8.27 8.27 6.18 6.18 7.26 7.26 10.84 10.84 

237 3.61 3.61 -3.69 -3.69 -2.64 -2.64 -2.80 -2.80 8.14 8.14 

238 1.33 1.33 4.27 4.27 8.60 8.60 3.87 3.87 8.86 8.86 

239 -9.57 -9.57 -0.57 -0.57 -0.70 -0.70 8.61 8.61 5.38 5.38 

240 0.19 0.19 9.39 9.39 6.38 6.38 7.85 7.85 4.06 4.06 
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Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

241 2.96 2.96 4.61 4.61 -5.00 -5.00 6.40 6.40 -4.28 -4.28 

242 -8.96 -8.96 8.27 8.27 5.12 5.12 11.02 11.02 -1.57 -1.57 

243 3.56 3.56 6.51 6.51 6.81 6.81 8.94 8.94 6.10 6.10 

244 7.16 7.16 4.97 4.97 7.35 7.35 10.16 10.16 2.75 2.75 

245 3.54 3.54 9.32 9.32 8.24 8.24 11.69 11.69 8.49 8.49 

246 8.96 8.96 8.77 8.77 9.89 9.89 9.92 9.92 7.71 7.71 

247 12.29 12.29 3.82 3.82 12.23 12.23 8.38 8.38 13.11 13.11 

248 12.29 12.29 6.66 6.66 13.03 13.03 3.44 3.44 3.69 3.69 

249 11.86 11.86 9.73 9.73 11.40 11.40 11.95 11.95 13.05 13.05 

250 11.44 11.44 10.68 10.68 13.84 13.84 10.24 10.24 13.55 13.55 

251 9.53 9.53 13.26 13.26 11.94 11.94 0.63 0.63 13.23 13.23 

252 10.77 10.77 9.76 9.76 5.61 5.61 4.81 4.81 13.52 13.52 

253 12.57 12.57 3.04 3.04 0.01 0.01 12.44 12.44 11.17 11.17 

254 12.24 12.24 7.27 7.27 0.01 0.01 14.19 14.19 8.13 8.13 

255 11.28 11.28 11.12 11.12 6.35 6.35 10.74 10.74 11.85 11.85 

256 9.95 9.95 10.86 10.86 11.12 11.12 11.17 11.17 9.41 9.41 

257 8.75 8.75 9.12 9.12 13.11 13.11 -1.54 -1.54 13.79 13.79 

258 11.58 11.58 12.08 12.08 11.88 11.88 9.50 9.50 11.91 11.91 

259 11.37 11.37 8.47 8.47 10.04 10.04 9.99 9.99 19.07 19.07 

260 5.68 5.68 11.20 11.20 6.83 6.83 10.66 10.66 18.75 18.75 

261 10.29 10.29 12.08 12.08 5.38 5.38 12.67 12.67 13.82 13.82 

262 14.52 14.52 10.31 10.31 7.33 7.33 14.87 14.87 8.35 8.35 

263 9.93 9.93 12.57 12.57 8.39 8.39 15.47 15.47 20.23 20.23 

264 13.86 13.86 8.91 8.91 14.77 14.77 15.69 15.69 17.03 17.03 

265 15.81 15.81 15.20 15.20 16.57 16.57 19.34 19.34 16.31 16.31 

266 9.23 9.23 16.34 16.34 14.99 14.99 15.98 15.98 15.59 15.59 

267 16.71 16.71 10.81 10.81 16.32 16.32 12.48 12.48 13.48 13.48 

268 18.03 18.03 6.84 6.84 14.29 14.29 9.46 9.46 12.34 12.34 

269 21.80 21.80 9.97 9.97 13.20 13.20 7.81 7.81 12.78 12.78 

270 19.58 19.58 13.79 13.79 11.30 11.30 11.61 11.61 14.50 14.50 

271 16.63 16.63 12.93 12.93 7.47 7.47 7.77 7.77 15.45 15.45 

272 16.64 16.64 9.37 9.37 9.23 9.23 14.63 14.63 12.82 12.82 

273 9.34 9.34 10.89 10.89 7.38 7.38 13.91 13.91 11.58 11.58 

274 19.72 19.72 2.42 2.42 15.11 15.11 11.94 11.94 10.95 10.95 

275 14.22 14.22 8.66 8.66 13.63 13.63 10.44 10.44 10.95 10.95 

276 14.68 14.68 13.08 13.08 10.97 10.97 12.84 12.84 12.36 12.36 

277 12.37 12.37 14.22 14.22 9.57 9.57 12.26 12.26 10.68 10.68 

278 13.01 13.01 10.64 10.64 7.30 7.30 13.37 13.37 8.52 8.52 

279 13.78 13.78 10.23 10.23 11.62 11.62 6.83 6.83 12.23 12.23 

280 14.87 14.87 6.94 6.94 11.51 11.51 5.48 5.48 9.36 9.36 

281 12.52 12.52 13.53 13.53 13.09 13.09 7.14 7.14 10.95 10.95 

282 15.11 15.11 11.54 11.54 8.54 8.54 9.93 9.93 5.50 5.50 

283 15.01 15.01 12.27 12.27 7.25 7.25 4.99 4.99 11.24 11.24 

284 12.69 12.69 11.46 11.46 9.88 9.88 7.29 7.29 10.45 10.45 

285 12.04 12.04 9.92 9.92 6.50 6.50 9.64 9.64 10.68 10.68 

286 12.95 12.95 8.86 8.86 8.28 8.28 7.82 7.82 12.98 12.98 

287 11.67 11.67 8.52 8.52 8.52 8.52 11.03 11.03 10.50 10.50 

288 10.55 10.55 8.28 8.28 8.40 8.40 10.74 10.74 12.14 12.14 

289 8.64 8.64 9.51 9.51 7.42 7.42 11.05 11.05 6.96 6.96 

290 9.96 9.96 8.87 8.87 9.22 9.22 9.10 9.10 6.27 6.27 
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291 8.08 8.08 10.18 10.18 11.69 11.69 8.81 8.81 6.23 6.23 

292 9.47 9.47 10.47 10.47 10.41 10.41 11.00 11.00 8.35 8.35 

293 8.51 8.51 11.43 11.43 9.25 9.25 8.42 8.42 8.85 8.85 

294 9.18 9.18 8.90 8.90 10.61 10.61 4.49 4.49 5.06 5.06 

295 12.32 12.32 8.85 8.85 8.55 8.55 6.65 6.65 0.56 0.56 

296 8.52 8.52 11.78 11.78 5.17 5.17 5.64 5.64 1.62 1.62 

297 5.55 5.55 10.23 10.23 8.19 8.19 3.00 3.00 5.50 5.50 

298 11.90 11.90 7.46 7.46 4.35 4.35 4.08 4.08 -8.89 -8.89 

299 7.79 7.79 10.47 10.47 6.92 6.92 6.78 6.78 8.63 8.63 

300 8.57 8.57 4.41 4.41 3.42 3.42 4.05 4.05 -0.04 -0.04 

301 7.91 7.91 8.78 8.78 7.63 7.63 7.66 7.66 10.54 10.54 

302 2.38 2.38 5.85 5.85 7.28 7.28 9.81 9.81 7.09 7.09 

303 7.77 7.77 2.38 2.38 6.90 6.90 11.37 11.37 9.10 9.10 

304 2.71 2.71 5.41 5.41 7.97 7.97 6.92 6.92 7.06 7.06 

305 4.58 4.58 6.62 6.62 9.33 9.33 11.00 11.00 11.62 11.62 

306 3.84 3.84 7.78 7.78 11.16 11.16 6.97 6.97 11.13 11.13 

307 3.41 3.41 7.08 7.08 8.27 8.27 12.84 12.84 12.98 12.98 

308 6.57 6.57 10.16 10.16 11.24 11.24 12.66 12.66 11.77 11.77 

309 8.73 8.73 8.99 8.99 11.13 11.13 14.50 14.50 13.75 13.75 

310 1.50 1.50 11.96 11.96 14.41 14.41 12.70 12.70 15.07 15.07 

311 9.35 9.35 10.15 10.15 11.87 11.87 14.82 14.82 14.94 14.94 

312 4.39 4.39 11.87 11.87 14.20 14.20 15.19 15.19 18.15 18.15 

313 9.07 9.07 13.44 13.44 12.91 12.91 15.97 15.97 12.02 12.02 

314 6.52 6.52 15.09 15.09 15.07 15.07 11.27 11.27 16.30 16.30 

315 10.51 10.51 13.50 13.50 8.85 8.85 17.31 17.31 12.86 12.86 

316 12.71 12.71 12.99 12.99 16.83 16.83 14.16 14.16 14.09 14.09 

317 13.43 13.43 15.21 15.21 17.61 17.61 12.15 12.15 14.97 14.97 

318 13.79 13.79 14.59 14.59 14.50 14.50 15.23 15.23 16.49 16.49 

319 13.06 13.06 14.55 14.55 15.40 15.40 14.73 14.73 16.36 16.36 

320 11.07 11.07 10.16 10.16 12.97 12.97 13.65 13.65 14.61 14.61 

321 11.06 11.06 13.40 13.40 14.52 14.52 16.75 16.75 15.26 15.26 

322 9.14 9.14 14.25 14.25 15.83 15.83 15.09 15.09 14.85 14.85 

323 15.06 15.06 13.41 13.41 14.76 14.76 12.63 12.63 15.99 15.99 

324 11.54 11.54 12.98 12.98 14.67 14.67 14.95 14.95 15.41 15.41 

325 12.49 12.49 13.09 13.09 12.37 12.37 14.62 14.62 14.81 14.81 

326 13.56 13.56 16.38 16.38 15.29 15.29 11.18 11.18 17.04 17.04 

327 14.74 14.74 15.45 15.45 15.58 15.58 16.13 16.13 15.64 15.64 

328 14.17 14.17 11.87 11.87 14.51 14.51 14.00 14.00 17.37 17.37 

329 11.48 11.48 13.29 13.29 13.16 13.16 18.12 18.12 16.84 16.84 

330 11.77 11.77 14.88 14.88 16.60 16.60 13.19 13.19 15.59 15.59 

331 13.22 13.22 16.18 16.18 16.45 16.45 15.34 15.34 17.36 17.36 

332 15.03 15.03 11.67 11.67 14.88 14.88 14.30 14.30 19.35 19.35 

333 10.79 10.79 12.57 12.57 9.40 9.40 18.89 18.89 11.99 11.99 

334 10.66 10.66 18.71 18.71 17.38 17.38 17.11 17.11 14.10 14.10 

335 17.69 17.69 21.58 21.58 16.66 16.66 17.24 17.24 13.33 13.33 

336 20.71 20.71 17.27 17.27 19.21 19.21 10.41 10.41 9.35 9.35 

337 24.64 24.64 17.59 17.59 11.52 11.52 8.86 8.86 17.63 17.63 

338 20.11 20.11 19.68 19.68 14.41 14.41 14.94 14.94 20.71 20.71 

339 18.73 18.73 14.60 14.60 15.13 15.13 15.33 15.33 18.52 18.52 

340 13.35 13.35 12.40 12.40 17.67 17.67 13.11 13.11 19.48 19.48 



 78 

Reflected 

Angle in ° 

Incidence Angle in ° 

1 2 3 4 5 6 7 8 9 10 

341 13.75 13.75 14.04 14.04 16.69 16.69 10.31 10.31 13.62 13.62 

342 16.64 16.64 14.48 14.48 13.24 13.24 13.56 13.56 14.19 14.19 

343 16.88 16.88 18.26 18.26 18.09 18.09 17.68 17.68 24.58 24.58 

344 16.87 16.87 11.88 11.88 20.61 20.61 13.88 13.88 19.38 19.38 

345 8.19 8.19 14.83 14.83 19.87 19.87 25.56 25.56 16.03 16.03 

346 17.94 17.94 24.24 24.24 13.24 13.24 21.75 21.75 16.67 16.67 

347 17.19 17.19 7.26 7.26 24.64 24.64 5.61 5.61 19.10 19.10 

348 24.78 24.78 20.85 20.85 17.46 17.46 14.20 14.20 22.48 22.48 

349 18.67 18.67 25.25 25.25 17.22 17.22 17.89 17.89 24.02 24.02 

350 20.67 20.67 9.57 9.57 16.23 16.23 15.73 15.73 29.56 29.56 

351 24.58 24.58 10.26 10.26 17.52 17.52 24.12 24.12 37.39 37.39 

352 11.74 11.74 9.75 9.75 16.80 16.80 33.99 33.99 64.51 64.51 

353 15.73 15.73 21.41 21.41 25.53 25.53 36.90 36.90 38.93 38.93 

354 15.63 15.63 18.43 18.43 36.39 36.39 64.58 64.58 31.57 31.57 

355 18.67 18.67 26.36 26.36 38.28 38.28 31.76 31.76 22.49 22.49 

356 14.94 14.94 33.68 33.68 64.43 64.43 28.69 28.69 11.89 11.89 

357 26.43 26.43 37.85 37.85 35.23 35.23 22.89 22.89 19.38 19.38 

358 28.28 28.28 64.52 64.52 31.68 31.68 15.21 15.21 6.34 6.34 

359 37.85 37.85 35.69 35.69 23.48 23.48 14.92 14.92 11.42 11.42 

360 64.43 64.43 28.41 28.41 13.76 13.76 12.60 12.60 4.39 4.39 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

1 17.59 17.59 8.33 8.33 16.04 16.04 14.31 14.31 15.99 15.99 

2 11.82 11.82 17.41 17.41 16.51 16.51 17.35 17.35 15.04 15.04 

3 15.12 15.12 15.12 15.12 18.11 18.11 14.44 14.44 17.95 17.95 

4 16.28 16.28 17.05 17.05 13.37 13.37 16.77 16.77 12.33 12.33 

5 14.11 14.11 14.97 14.97 14.80 14.80 13.27 13.27 18.12 18.12 

6 13.52 13.52 16.50 16.50 17.74 17.74 13.87 13.87 18.00 18.00 

7 14.74 14.74 17.82 17.82 16.02 16.02 19.83 19.83 14.92 14.92 

8 15.55 15.55 16.59 16.59 14.73 14.73 17.64 17.64 14.95 14.95 

9 13.56 13.56 15.96 15.96 18.93 18.93 16.79 16.79 14.96 14.96 

10 11.98 11.98 16.00 16.00 15.42 15.42 16.47 16.47 15.38 15.38 

11 15.01 15.01 19.29 19.29 16.55 16.55 15.72 15.72 16.61 16.61 

12 15.96 15.96 14.08 14.08 13.21 13.21 15.19 15.19 15.61 15.61 

13 17.36 17.36 16.82 16.82 15.48 15.48 16.83 16.83 13.94 13.94 

14 15.36 15.36 13.22 13.22 16.37 16.37 13.99 13.99 16.42 16.42 

15 15.97 15.97 17.20 17.20 17.13 17.13 17.01 17.01 16.08 16.08 

16 15.82 15.82 14.84 14.84 14.15 14.15 15.54 15.54 13.94 13.94 

17 16.97 16.97 15.64 15.64 16.46 16.46 15.10 15.10 16.35 16.35 

18 15.01 15.01 15.83 15.83 16.87 16.87 13.95 13.95 15.80 15.80 

19 15.61 15.61 16.93 16.93 16.48 16.48 14.85 14.85 15.30 15.30 

20 16.24 16.24 17.10 17.10 16.41 16.41 14.97 14.97 15.73 15.73 

21 17.37 17.37 16.26 16.26 15.61 15.61 14.10 14.10 16.24 16.24 

22 18.11 18.11 15.86 15.86 13.99 13.99 15.28 15.28 15.51 15.51 

23 16.54 16.54 16.87 16.87 13.83 13.83 16.41 16.41 13.33 13.33 

24 15.18 15.18 14.79 14.79 14.77 14.77 13.76 13.76 13.92 13.92 

25 15.65 15.65 14.14 14.14 15.09 15.09 14.93 14.93 14.14 14.14 

26 15.22 15.22 15.31 15.31 14.45 14.45 12.94 12.94 15.46 15.46 

27 13.97 13.97 15.60 15.60 15.00 15.00 15.45 15.45 14.57 14.57 

28 15.89 15.89 13.44 13.44 12.30 12.30 14.88 14.88 12.06 12.06 

29 15.77 15.77 13.48 13.48 14.58 14.58 13.86 13.86 14.32 14.32 

30 14.37 14.37 14.82 14.82 15.82 15.82 13.85 13.85 15.93 15.93 

31 14.74 14.74 15.39 15.39 14.84 14.84 14.31 14.31 15.58 15.58 

32 15.02 15.02 14.54 14.54 15.21 15.21 14.67 14.67 15.29 15.29 

33 15.40 15.40 14.29 14.29 14.64 14.64 14.12 14.12 15.19 15.19 

34 14.76 14.76 14.08 14.08 12.64 12.64 13.99 13.99 12.59 12.59 

35 13.10 13.10 13.65 13.65 13.26 13.26 13.81 13.81 10.40 10.40 

36 14.14 14.14 14.93 14.93 13.89 13.89 14.16 14.16 12.97 12.97 

37 14.15 14.15 11.84 11.84 11.93 11.93 10.17 10.17 9.57 9.57 

38 13.00 13.00 13.84 13.84 12.51 12.51 13.58 13.58 9.09 9.09 

39 13.10 13.10 11.50 11.50 13.57 13.57 8.38 8.38 9.99 9.99 

40 10.40 10.40 11.79 11.79 12.22 12.22 9.67 9.67 8.79 8.79 

41 12.89 12.89 10.54 10.54 10.86 10.86 9.60 9.60 6.82 6.82 

42 11.09 11.09 12.60 12.60 12.70 12.70 8.19 8.19 9.10 9.10 

43 10.44 10.44 13.29 13.29 12.55 12.55 9.77 9.77 7.81 7.81 

44 10.17 10.17 12.23 12.23 12.05 12.05 9.13 9.13 6.05 6.05 

45 11.39 11.39 12.88 12.88 11.55 11.55 9.63 9.63 9.80 9.80 

46 13.87 13.87 12.32 12.32 9.57 9.57 11.15 11.15 8.22 8.22 

47 11.96 11.96 10.67 10.67 5.61 5.61 4.05 4.05 2.83 2.83 

48 12.61 12.61 12.07 12.07 6.90 6.90 11.01 11.01 6.76 6.76 

49 9.37 9.37 8.64 8.64 2.11 2.11 3.61 3.61 7.38 7.38 

50 10.28 10.28 9.12 9.12 7.28 7.28 4.42 4.42 5.30 5.30 



 80 

Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

51 8.81 8.81 -0.67 -0.67 2.82 2.82 4.40 4.40 4.83 4.83 

52 5.03 5.03 2.79 2.79 2.24 2.24 8.24 8.24 5.27 5.27 

53 5.82 5.82 -3.64 -3.64 4.26 4.26 2.06 2.06 8.64 8.64 

54 0.31 0.31 0.77 0.77 4.68 4.68 4.35 4.35 7.13 7.13 

55 -0.42 -0.42 1.28 1.28 5.07 5.07 8.13 8.13 11.17 11.17 

56 0.78 0.78 1.59 1.59 10.21 10.21 7.65 7.65 13.48 13.48 

57 5.18 5.18 4.87 4.87 9.62 9.62 12.55 12.55 12.75 12.75 

58 3.92 3.92 11.13 11.13 12.28 12.28 14.32 14.32 14.44 14.44 

59 7.24 7.24 9.87 9.87 12.88 12.88 14.69 14.69 15.56 15.56 

60 7.43 7.43 12.89 12.89 15.62 15.62 15.48 15.48 17.71 17.71 

61 9.83 9.83 13.96 13.96 13.84 13.84 16.77 16.77 16.75 16.75 

62 11.79 11.79 12.50 12.50 14.31 14.31 17.36 17.36 17.83 17.83 

63 11.00 11.00 14.68 14.68 16.53 16.53 15.29 15.29 18.11 18.11 

64 11.25 11.25 15.24 15.24 15.64 15.64 18.12 18.12 16.54 16.54 

65 9.80 9.80 15.86 15.86 15.96 15.96 17.84 17.84 14.34 14.34 

66 12.59 12.59 11.63 11.63 18.09 18.09 16.31 16.31 15.39 15.39 

67 9.35 9.35 12.30 12.30 17.85 17.85 14.72 14.72 19.30 19.30 

68 8.74 8.74 12.33 12.33 14.26 14.26 17.71 17.71 23.06 23.06 

69 12.56 12.56 11.20 11.20 7.09 7.09 19.49 19.49 25.86 25.86 

70 13.83 13.83 12.59 12.59 16.21 16.21 22.44 22.44 26.23 26.23 

71 10.27 10.27 16.50 16.50 23.71 23.71 26.23 26.23 29.53 29.53 

72 7.76 7.76 16.88 16.88 27.90 27.90 30.05 30.05 30.17 30.17 

73 15.41 15.41 18.38 18.38 28.33 28.33 31.16 31.16 29.14 29.14 

74 15.39 15.39 26.00 26.00 25.83 25.83 28.80 28.80 19.09 19.09 

75 18.98 18.98 29.17 29.17 28.08 28.08 22.18 22.18 16.63 16.63 

76 26.82 26.82 26.84 26.84 29.72 29.72 25.42 25.42 20.33 20.33 

77 27.36 27.36 26.50 26.50 25.49 25.49 24.10 24.10 14.15 14.15 

78 26.57 26.57 29.60 29.60 20.42 20.42 8.67 8.67 16.44 16.44 

79 29.61 29.61 25.07 25.07 24.00 24.00 16.74 16.74 12.74 12.74 

80 28.11 28.11 22.41 22.41 18.01 18.01 10.34 10.34 11.95 11.95 

81 26.16 26.16 23.21 23.21 13.21 13.21 15.57 15.57 9.81 9.81 

82 24.69 24.69 12.97 12.97 8.77 8.77 11.95 11.95 6.43 6.43 

83 19.12 19.12 13.01 13.01 15.79 15.79 8.88 8.88 8.37 8.37 

84 16.34 16.34 2.29 2.29 11.86 11.86 10.66 10.66 4.80 4.80 

85 10.77 10.77 14.62 14.62 11.53 11.53 13.58 13.58 10.74 10.74 

86 10.64 10.64 8.20 8.20 8.35 8.35 8.85 8.85 2.29 2.29 

87 5.73 5.73 15.99 15.99 12.98 12.98 13.58 13.58 10.30 10.30 

88 15.33 15.33 11.34 11.34 12.06 12.06 10.48 10.48 11.93 11.93 

89 8.87 8.87 12.20 12.20 14.74 14.74 10.46 10.46 9.67 9.67 

90 15.98 15.98 12.75 12.75 10.10 10.10 11.48 11.48 6.59 6.59 

91 13.26 13.26 10.41 10.41 7.80 7.80 8.73 8.73 0.91 0.91 

92 9.80 9.80 14.98 14.98 10.63 10.63 6.41 6.41 4.38 4.38 

93 11.87 11.87 8.53 8.53 10.93 10.93 10.57 10.57 10.18 10.18 

94 11.37 11.37 2.33 2.33 8.64 8.64 8.81 8.81 4.86 4.86 

95 8.96 8.96 5.60 5.60 6.25 6.25 7.27 7.27 12.71 12.71 

96 5.03 5.03 4.74 4.74 6.89 6.89 10.01 10.01 7.65 7.65 

97 8.06 8.06 9.02 9.02 7.69 7.69 15.85 15.85 8.54 8.54 

98 2.30 2.30 7.93 7.93 11.04 11.04 14.10 14.10 11.99 11.99 

99 9.46 9.46 8.97 8.97 4.29 4.29 15.07 15.07 10.01 10.01 

100 8.12 8.12 11.81 11.81 14.60 14.60 13.22 13.22 10.06 10.06 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

101 10.68 10.68 4.44 4.44 9.91 9.91 14.41 14.41 10.51 10.51 

102 7.26 7.26 13.24 13.24 13.05 13.05 12.18 12.18 12.41 12.41 

103 13.60 13.60 10.05 10.05 11.40 11.40 11.65 11.65 11.46 11.46 

104 14.30 14.30 11.65 11.65 12.71 12.71 14.10 14.10 9.89 9.89 

105 8.95 8.95 11.43 11.43 12.47 12.47 10.70 10.70 8.26 8.26 

106 4.47 4.47 10.15 10.15 13.28 13.28 9.30 9.30 10.99 10.99 

107 6.38 6.38 12.15 12.15 11.81 11.81 12.14 12.14 9.87 9.87 

108 7.64 7.64 10.50 10.50 12.22 12.22 12.93 12.93 15.91 15.91 

109 -2.55 -2.55 10.25 10.25 12.97 12.97 10.96 10.96 14.80 14.80 

110 -1.28 -1.28 8.55 8.55 12.03 12.03 14.63 14.63 3.91 3.91 

111 4.63 4.63 5.51 5.51 10.56 10.56 15.03 15.03 8.76 8.76 

112 1.06 1.06 5.99 5.99 11.24 11.24 7.39 7.39 9.28 9.28 

113 2.90 2.90 3.35 3.35 13.32 13.32 8.88 8.88 10.99 10.99 

114 7.26 7.26 11.48 11.48 13.18 13.18 12.55 12.55 21.19 21.19 

115 10.30 10.30 12.28 12.28 7.29 7.29 -1.36 -1.36 21.23 21.23 

116 6.53 6.53 9.76 9.76 8.97 8.97 15.38 15.38 13.13 13.13 

117 16.10 16.10 -1.59 -1.59 -6.16 -6.16 16.31 16.31 4.87 4.87 

118 13.78 13.78 8.08 8.08 17.84 17.84 11.11 11.11 8.48 8.48 

119 10.90 10.90 2.39 2.39 18.99 18.99 12.25 12.25 8.68 8.68 

120 15.62 15.62 19.00 19.00 3.99 3.99 9.62 9.62 8.51 8.51 

121 14.13 14.13 18.04 18.04 -3.29 -3.29 7.63 7.63 9.46 9.46 

122 17.68 17.68 10.38 10.38 5.94 5.94 10.90 10.90 11.62 11.62 

123 21.62 21.62 12.74 12.74 2.75 2.75 10.60 10.60 24.58 24.58 

124 10.10 10.10 3.16 3.16 11.19 11.19 10.52 10.52 12.99 12.99 

125 14.20 14.20 11.31 11.31 6.89 6.89 24.70 24.70 11.18 11.18 

126 10.80 10.80 11.91 11.91 8.59 8.59 6.02 6.02 16.74 16.74 

127 7.36 7.36 9.80 9.80 25.48 25.48 13.89 13.89 9.60 9.60 

128 7.68 7.68 8.76 8.76 11.18 11.18 17.92 17.92 18.73 18.73 

129 6.78 6.78 22.86 22.86 13.99 13.99 18.28 18.28 8.53 8.53 

130 9.00 9.00 6.44 6.44 8.74 8.74 15.49 15.49 11.10 11.10 

131 23.50 23.50 10.69 10.69 10.95 10.95 10.00 10.00 16.72 16.72 

132 15.13 15.13 12.46 12.46 12.76 12.76 12.76 12.76 16.54 16.54 

133 17.40 17.40 13.77 13.77 9.26 9.26 14.86 14.86 19.61 19.61 

134 18.21 18.21 16.74 16.74 5.08 5.08 13.61 13.61 15.50 15.50 

135 1.45 1.45 14.24 14.24 11.09 11.09 9.14 9.14 13.37 13.37 

136 18.06 18.06 11.50 11.50 7.42 7.42 18.17 18.17 9.98 9.98 

137 8.48 8.48 1.70 1.70 9.42 9.42 9.47 9.47 14.11 14.11 

138 3.52 3.52 13.33 13.33 16.23 16.23 11.10 11.10 16.03 16.03 

139 7.95 7.95 8.36 8.36 12.11 12.11 10.50 10.50 16.52 16.52 

140 15.69 15.69 22.12 22.12 9.07 9.07 11.21 11.21 9.73 9.73 

141 15.90 15.90 16.04 16.04 4.56 4.56 8.77 8.77 14.84 14.84 

142 20.79 20.79 16.65 16.65 12.86 12.86 12.12 12.12 14.92 14.92 

143 7.87 7.87 6.29 6.29 12.45 12.45 11.67 11.67 11.66 11.66 

144 9.72 9.72 13.41 13.41 9.43 9.43 18.09 18.09 16.16 16.16 

145 15.70 15.70 11.12 11.12 17.31 17.31 12.11 12.11 12.86 12.86 

146 10.03 10.03 16.41 16.41 7.30 7.30 12.32 12.32 15.34 15.34 

147 9.46 9.46 11.70 11.70 18.18 18.18 16.90 16.90 21.60 21.60 

148 8.73 8.73 12.57 12.57 18.92 18.92 18.78 18.78 20.02 20.02 

149 11.96 11.96 14.32 14.32 18.05 18.05 15.39 15.39 15.90 15.90 

150 7.73 7.73 15.66 15.66 20.87 20.87 16.15 16.15 21.16 21.16 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

151 9.66 9.66 14.74 14.74 16.43 16.43 17.13 17.13 15.55 15.55 

152 10.69 10.69 11.68 11.68 16.60 16.60 15.64 15.64 13.44 13.44 

153 18.65 18.65 18.04 18.04 18.21 18.21 17.20 17.20 21.33 21.33 

154 18.47 18.47 11.43 11.43 17.83 17.83 11.98 11.98 23.36 23.36 

155 20.81 20.81 8.87 8.87 8.40 8.40 14.01 14.01 27.01 27.01 

156 16.17 16.17 14.74 14.74 19.41 19.41 29.56 29.56 26.58 26.58 

157 14.37 14.37 11.35 11.35 24.99 24.99 32.88 32.88 32.84 32.84 

158 21.56 21.56 19.58 19.58 26.64 26.64 32.65 32.65 36.11 36.11 

159 24.22 24.22 22.44 22.44 30.23 30.23 29.60 29.60 39.23 39.23 

160 18.62 18.62 26.54 26.54 31.02 31.02 29.36 29.36 38.50 38.50 

161 19.23 19.23 24.40 24.40 33.88 33.88 34.25 34.25 41.75 41.75 

162 27.19 27.19 21.68 21.68 31.56 31.56 35.21 35.21 54.47 54.47 

163 30.19 30.19 28.26 28.26 34.43 34.43 40.25 40.25 43.28 43.28 

164 28.93 28.93 33.02 33.02 30.40 30.40 52.28 52.28 36.20 36.20 

165 33.03 33.03 34.80 34.80 36.93 36.93 40.23 40.23 28.58 28.58 

166 28.18 28.18 37.36 37.36 46.81 46.81 36.30 36.30 30.53 30.53 

167 34.73 34.73 37.38 37.38 39.51 39.51 32.44 32.44 34.91 34.91 

168 40.28 40.28 47.95 47.95 41.66 41.66 21.85 21.85 35.35 35.35 

169 39.35 39.35 40.01 40.01 36.37 36.37 32.66 32.66 25.63 25.63 

170 50.69 50.69 40.69 40.69 28.49 28.49 31.44 31.44 31.03 31.03 

171 37.33 37.33 37.37 37.37 35.07 35.07 32.70 32.70 26.56 26.56 

172 37.94 37.94 35.89 35.89 32.91 32.91 27.00 27.00 32.41 32.41 

173 37.27 37.27 36.60 36.60 34.32 34.32 31.23 31.23 31.82 31.82 

174 34.86 34.86 28.22 28.22 30.51 30.51 32.62 32.62 17.80 17.80 

175 32.68 32.68 32.99 32.99 33.10 33.10 34.89 34.89 32.87 32.87 

176 31.38 31.38 29.22 29.22 23.01 23.01 31.49 31.49 22.49 22.49 

177 33.01 33.01 26.73 26.73 35.09 35.09 32.50 32.50 32.50 32.50 

178 22.70 22.70 33.06 33.06 35.15 35.15 11.79 11.79 32.61 32.61 

179 31.53 31.53 37.49 37.49 32.11 32.11 30.74 30.74 23.67 23.67 

180 29.61 29.61 35.13 35.13 30.06 30.06 34.77 34.77 27.86 27.86 

181 32.42 32.42 31.90 31.90 27.43 27.43 37.66 37.66 26.77 26.77 

182 33.26 33.26 31.96 31.96 32.34 32.34 39.75 39.75 28.89 28.89 

183 28.02 28.02 38.76 38.76 38.59 38.59 38.83 38.83 29.97 29.97 

184 42.72 42.72 41.91 41.91 41.66 41.66 26.19 26.19 35.39 35.39 

185 45.36 45.36 35.09 35.09 37.95 37.95 38.96 38.96 37.70 37.70 

186 39.30 39.30 40.98 40.98 38.72 38.72 41.36 41.36 30.89 30.89 

187 40.59 40.59 39.56 39.56 41.12 41.12 38.74 38.74 38.75 38.75 

188 50.11 50.11 46.48 46.48 38.01 38.01 41.69 41.69 27.07 27.07 

189 50.90 50.90 37.73 37.73 42.80 42.80 43.06 43.06 42.86 42.86 

190 83.95 83.95 37.84 37.84 36.81 36.81 41.47 41.47 41.85 41.85 

191 55.81 55.81 58.30 58.30 45.54 45.54 39.89 39.89 41.62 41.62 

192 40.31 40.31 84.69 84.69 52.59 52.59 45.87 45.87 43.66 43.66 

193 44.33 44.33 60.30 60.30 60.51 60.51 43.02 43.02 44.69 44.69 

194 32.20 32.20 51.64 51.64 85.36 85.36 44.65 44.65 42.19 42.19 

195 33.14 33.14 41.08 41.08 55.51 55.51 50.19 50.19 39.39 39.39 

196 39.00 39.00 44.49 44.49 46.14 46.14 85.92 85.92 51.24 51.24 

197 35.15 35.15 43.09 43.09 35.30 35.30 57.27 57.27 60.06 60.06 

198 33.91 33.91 41.61 41.61 37.11 37.11 49.93 49.93 86.58 86.58 

199 28.76 28.76 37.96 37.96 41.21 41.21 43.63 43.63 60.17 60.17 

200 24.61 24.61 18.10 18.10 28.91 28.91 46.88 46.88 40.60 40.60 



 83 

Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

201 26.93 26.93 28.86 28.86 33.44 33.44 37.48 37.48 46.33 46.33 

202 19.69 19.69 23.90 23.90 28.74 28.74 34.07 34.07 37.44 37.44 

203 21.25 21.25 19.67 19.67 32.42 32.42 27.21 27.21 29.36 29.36 

204 18.66 18.66 19.73 19.73 22.56 22.56 30.18 30.18 33.55 33.55 

205 10.44 10.44 22.40 22.40 24.29 24.29 23.99 23.99 33.37 33.37 

206 24.83 24.83 30.02 30.02 23.95 23.95 10.09 10.09 30.32 30.32 

207 22.80 22.80 25.21 25.21 16.82 16.82 18.88 18.88 31.67 31.67 

208 25.08 25.08 25.10 25.10 20.90 20.90 22.73 22.73 17.32 17.32 

209 25.88 25.88 18.85 18.85 16.69 16.69 17.23 17.23 27.69 27.69 

210 4.64 4.64 5.57 5.57 5.99 5.99 27.32 27.32 19.74 19.74 

211 23.53 23.53 16.59 16.59 15.15 15.15 14.88 14.88 19.19 19.19 

212 19.98 19.98 18.79 18.79 12.65 12.65 14.87 14.87 23.79 23.79 

213 20.63 20.63 21.88 21.88 22.70 22.70 21.13 21.13 14.20 14.20 

214 19.24 19.24 23.21 23.21 18.60 18.60 22.92 22.92 12.72 12.72 

215 22.14 22.14 25.15 25.15 22.06 22.06 21.86 21.86 9.77 9.77 

216 22.93 22.93 20.15 20.15 24.08 24.08 13.52 13.52 18.52 18.52 

217 23.33 23.33 22.29 22.29 24.36 24.36 20.28 20.28 23.44 23.44 

218 22.53 22.53 21.73 21.73 18.82 18.82 19.74 19.74 17.58 17.58 

219 17.18 17.18 20.49 20.49 20.58 20.58 20.87 20.87 21.98 21.98 

220 15.55 15.55 18.00 18.00 19.70 19.70 18.15 18.15 21.78 21.78 

221 15.22 15.22 12.67 12.67 14.45 14.45 13.46 13.46 10.40 10.40 

222 10.03 10.03 16.70 16.70 7.56 7.56 16.08 16.08 16.38 16.38 

223 17.08 17.08 9.66 9.66 8.92 8.92 12.97 12.97 15.80 15.80 

224 13.40 13.40 5.77 5.77 9.89 9.89 15.47 15.47 16.04 16.04 

225 -2.65 -2.65 8.37 8.37 13.50 13.50 15.52 15.52 14.49 14.49 

226 10.79 10.79 8.98 8.98 7.73 7.73 9.05 9.05 6.64 6.64 

227 13.99 13.99 -2.79 -2.79 5.46 5.46 15.66 15.66 15.59 15.59 

228 15.07 15.07 8.83 8.83 8.97 8.97 8.75 8.75 6.41 6.41 

229 13.74 13.74 12.52 12.52 12.31 12.31 -1.11 -1.11 -0.51 -0.51 

230 13.68 13.68 10.72 10.72 13.56 13.56 -1.10 -1.10 4.49 4.49 

231 11.18 11.18 11.23 11.23 16.52 16.52 8.99 8.99 -9.12 -9.12 

232 13.41 13.41 15.49 15.49 14.13 14.13 14.54 14.54 4.20 4.20 

233 15.07 15.07 15.89 15.89 8.99 8.99 10.30 10.30 -6.03 -6.03 

234 12.57 12.57 15.55 15.55 15.78 15.78 11.79 11.79 10.53 10.53 

235 10.26 10.26 14.60 14.60 15.43 15.43 14.90 14.90 9.30 9.30 

236 14.67 14.67 15.61 15.61 15.45 15.45 13.36 13.36 17.97 17.97 

237 11.07 11.07 13.10 13.10 12.80 12.80 12.45 12.45 13.73 13.73 

238 9.84 9.84 12.74 12.74 13.75 13.75 14.33 14.33 9.68 9.68 

239 8.08 8.08 13.99 13.99 15.70 15.70 18.14 18.14 17.22 17.22 

240 11.31 11.31 10.63 10.63 15.28 15.28 14.58 14.58 16.39 16.39 

241 8.86 8.86 11.34 11.34 11.11 11.11 14.97 14.97 13.57 13.57 

242 6.55 6.55 12.75 12.75 5.86 5.86 14.02 14.02 12.58 12.58 

243 6.43 6.43 3.37 3.37 9.60 9.60 10.88 10.88 15.98 15.98 

244 -4.93 -4.93 10.53 10.53 8.47 8.47 14.51 14.51 14.03 14.03 

245 -3.66 -3.66 3.64 3.64 5.07 5.07 14.81 14.81 13.13 13.13 

246 14.16 14.16 1.68 1.68 2.73 2.73 11.55 11.55 14.45 14.45 

247 10.29 10.29 12.28 12.28 3.31 3.31 8.65 8.65 9.94 9.94 

248 14.57 14.57 1.15 1.15 -1.60 -1.60 9.87 9.87 -1.54 -1.54 

249 12.25 12.25 7.31 7.31 2.54 2.54 9.24 9.24 6.46 6.46 

250 11.37 11.37 9.89 9.89 8.39 8.39 5.66 5.66 12.62 12.62 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

251 10.31 10.31 9.78 9.78 7.74 7.74 13.26 13.26 16.25 16.25 

252 12.99 12.99 12.40 12.40 13.07 13.07 13.30 13.30 12.78 12.78 

253 15.30 15.30 14.23 14.23 17.40 17.40 9.52 9.52 5.17 5.17 

254 13.25 13.25 17.39 17.39 16.33 16.33 11.89 11.89 11.95 11.95 

255 14.33 14.33 18.77 18.77 0.44 0.44 15.89 15.89 6.25 6.25 

256 16.44 16.44 18.34 18.34 15.91 15.91 15.92 15.92 3.09 3.09 

257 14.52 14.52 12.42 12.42 14.04 14.04 14.59 14.59 6.11 6.11 

258 13.31 13.31 17.21 17.21 16.87 16.87 4.95 4.95 8.93 8.93 

259 17.82 17.82 14.52 14.52 8.33 8.33 8.42 8.42 11.43 11.43 

260 4.80 4.80 22.90 22.90 13.68 13.68 11.47 11.47 13.76 13.76 

261 12.45 12.45 12.99 12.99 5.33 5.33 12.02 12.02 13.92 13.92 

262 20.96 20.96 10.61 10.61 4.07 4.07 14.77 14.77 10.42 10.42 

263 16.69 16.69 15.10 15.10 12.84 12.84 15.70 15.70 11.08 11.08 

264 14.92 14.92 10.23 10.23 14.19 14.19 10.38 10.38 14.61 14.61 

265 12.07 12.07 8.86 8.86 12.99 12.99 11.49 11.49 14.72 14.72 

266 15.69 15.69 11.87 11.87 10.99 10.99 8.46 8.46 15.20 15.20 

267 10.63 10.63 9.18 9.18 0.19 0.19 11.83 11.83 15.57 15.57 

268 15.12 15.12 11.73 11.73 11.47 11.47 11.60 11.60 11.15 11.15 

269 11.96 11.96 7.24 7.24 6.87 6.87 13.39 13.39 10.46 10.46 

270 13.29 13.29 11.01 11.01 15.50 15.50 11.33 11.33 12.30 12.30 

271 8.78 8.78 3.39 3.39 7.87 7.87 8.12 8.12 13.84 13.84 

272 9.09 9.09 12.56 12.56 10.11 10.11 10.54 10.54 7.37 7.37 

273 9.57 9.57 11.24 11.24 12.77 12.77 11.49 11.49 7.51 7.51 

274 12.56 12.56 10.99 10.99 14.92 14.92 11.53 11.53 11.00 11.00 

275 8.32 8.32 10.60 10.60 13.09 13.09 10.69 10.69 6.70 6.70 

276 9.35 9.35 15.38 15.38 15.00 15.00 13.69 13.69 8.87 8.87 

277 10.55 10.55 12.08 12.08 12.31 12.31 10.09 10.09 8.15 8.15 

278 10.08 10.08 14.64 14.64 12.48 12.48 13.17 13.17 -0.71 -0.71 

279 12.23 12.23 11.88 11.88 14.98 14.98 9.96 9.96 2.47 2.47 

280 11.63 11.63 13.50 13.50 13.82 13.82 10.73 10.73 -1.04 -1.04 

281 13.21 13.21 12.22 12.22 14.38 14.38 6.90 6.90 6.84 6.84 

282 13.29 13.29 15.44 15.44 13.09 13.09 11.52 11.52 6.10 6.10 

283 14.36 14.36 14.15 14.15 9.71 9.71 8.31 8.31 9.90 9.90 

284 12.15 12.15 11.79 11.79 12.76 12.76 8.26 8.26 10.02 10.02 

285 11.12 11.12 13.90 13.90 10.54 10.54 11.37 11.37 7.42 7.42 

286 10.75 10.75 8.38 8.38 8.82 8.82 11.70 11.70 11.18 11.18 

287 12.72 12.72 8.62 8.62 10.85 10.85 10.44 10.44 11.48 11.48 

288 7.37 7.37 8.92 8.92 11.45 11.45 10.17 10.17 12.44 12.44 

289 8.52 8.52 9.80 9.80 11.49 11.49 10.36 10.36 12.48 12.48 

290 8.79 8.79 9.09 9.09 11.72 11.72 12.72 12.72 12.69 12.69 

291 8.96 8.96 9.09 9.09 12.86 12.86 12.54 12.54 11.54 11.54 

292 1.99 1.99 10.58 10.58 11.79 11.79 11.22 11.22 12.62 12.62 

293 6.17 6.17 8.94 8.94 10.42 10.42 9.44 9.44 13.15 13.15 

294 8.14 8.14 4.72 4.72 10.41 10.41 7.51 7.51 10.39 10.39 

295 6.14 6.14 6.44 6.44 7.96 7.96 11.16 11.16 10.47 10.47 

296 -7.47 -7.47 9.03 9.03 8.80 8.80 9.67 9.67 7.59 7.59 

297 6.43 6.43 -7.54 -7.54 6.69 6.69 6.85 6.85 10.68 10.68 

298 2.71 2.71 7.44 7.44 0.81 0.81 9.90 9.90 9.32 9.32 

299 4.45 4.45 -2.89 -2.89 5.70 5.70 9.92 9.92 12.73 12.73 

300 4.58 4.58 6.40 6.40 3.18 3.18 10.46 10.46 9.52 9.52 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

301 5.28 5.28 3.16 3.16 3.72 3.72 6.93 6.93 13.80 13.80 

302 11.06 11.06 2.06 2.06 6.87 6.87 6.29 6.29 14.89 14.89 

303 4.20 4.20 11.00 11.00 7.69 7.69 5.36 5.36 7.11 7.11 

304 9.83 9.83 8.22 8.22 8.10 8.10 10.56 10.56 5.37 5.37 

305 5.66 5.66 12.15 12.15 5.38 5.38 5.85 5.85 6.80 6.80 

306 12.01 12.01 11.42 11.42 14.62 14.62 12.52 12.52 6.65 6.65 

307 8.73 8.73 15.30 15.30 14.25 14.25 11.42 11.42 4.77 4.77 

308 12.64 12.64 12.85 12.85 8.95 8.95 14.04 14.04 7.49 7.49 

309 11.39 11.39 12.33 12.33 14.35 14.35 14.33 14.33 11.74 11.74 

310 15.84 15.84 12.96 12.96 13.52 13.52 10.67 10.67 11.35 11.35 

311 16.01 16.01 14.72 14.72 14.64 14.64 14.54 14.54 9.99 9.99 

312 15.71 15.71 13.32 13.32 15.24 15.24 11.39 11.39 12.73 12.73 

313 14.79 14.79 15.11 15.11 14.77 14.77 15.30 15.30 9.21 9.21 

314 15.76 15.76 12.58 12.58 14.48 14.48 9.43 9.43 12.43 12.43 

315 15.47 15.47 15.98 15.98 16.22 16.22 13.57 13.57 13.69 13.69 

316 15.38 15.38 16.44 16.44 16.12 16.12 11.68 11.68 12.00 12.00 

317 16.39 16.39 16.18 16.18 14.41 14.41 15.28 15.28 8.91 8.91 

318 15.74 15.74 17.17 17.17 12.88 12.88 15.91 15.91 14.66 14.66 

319 14.80 14.80 16.57 16.57 13.37 13.37 18.22 18.22 14.56 14.56 

320 14.49 14.49 14.68 14.68 18.03 18.03 16.68 16.68 11.48 11.48 

321 12.15 12.15 14.73 14.73 17.25 17.25 15.19 15.19 20.47 20.47 

322 16.53 16.53 11.70 11.70 16.04 16.04 15.50 15.50 18.82 18.82 

323 11.53 11.53 16.60 16.60 15.89 15.89 17.53 17.53 10.17 10.17 

324 16.03 16.03 15.62 15.62 15.76 15.76 10.68 10.68 17.50 17.50 

325 15.49 15.49 19.04 19.04 17.31 17.31 17.10 17.10 17.22 17.22 

326 17.44 17.44 16.16 16.16 15.51 15.51 17.72 17.72 6.89 6.89 

327 14.21 14.21 16.31 16.31 12.60 12.60 13.94 13.94 12.10 12.10 

328 16.88 16.88 13.12 13.12 13.63 13.63 11.55 11.55 14.74 14.74 

329 15.42 15.42 14.45 14.45 14.39 14.39 13.38 13.38 18.99 18.99 

330 20.60 20.60 11.23 11.23 10.33 10.33 14.09 14.09 20.14 20.14 

331 16.77 16.77 9.38 9.38 9.49 9.49 11.32 11.32 15.75 15.75 

332 11.26 11.26 14.12 14.12 15.32 15.32 13.34 13.34 12.46 12.46 

333 15.53 15.53 14.92 14.92 20.78 20.78 12.35 12.35 27.08 27.08 

334 15.18 15.18 16.15 16.15 19.10 19.10 17.38 17.38 17.29 17.29 

335 13.71 13.71 13.88 13.88 19.25 19.25 25.12 25.12 19.70 19.70 

336 14.23 14.23 17.99 17.99 19.77 19.77 19.80 19.80 14.22 14.22 

337 18.78 18.78 18.19 18.19 21.37 21.37 20.67 20.67 18.90 18.90 

338 21.58 21.58 14.56 14.56 11.90 11.90 3.30 3.30 22.46 22.46 

339 18.42 18.42 22.81 22.81 16.50 16.50 11.40 11.40 24.86 24.86 

340 23.22 23.22 21.33 21.33 14.43 14.43 14.33 14.33 33.24 33.24 

341 26.51 26.51 21.11 21.11 14.27 14.27 24.97 24.97 40.15 40.15 

342 17.94 17.94 21.27 21.27 22.16 22.16 37.32 37.32 63.55 63.55 

343 18.66 18.66 19.63 19.63 24.57 24.57 43.28 43.28 41.32 41.32 

344 9.58 9.58 21.59 21.59 36.95 36.95 64.09 64.09 30.42 30.42 

345 18.34 18.34 22.16 22.16 41.54 41.54 36.20 36.20 19.29 19.29 

346 17.46 17.46 33.81 33.81 63.71 63.71 27.93 27.93 12.51 12.51 

347 25.26 25.26 34.04 34.04 35.23 35.23 19.79 19.79 17.51 17.51 

348 31.43 31.43 63.96 63.96 31.46 31.46 10.00 10.00 18.67 18.67 

349 41.01 41.01 35.31 35.31 23.28 23.28 19.26 19.26 16.58 16.58 

350 64.33 64.33 28.28 28.28 16.32 16.32 13.57 13.57 10.78 10.78 
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Reflected 

Angle in ° 

Incidence Angle in ° 

11 12 13 14 15 16 17 18 19 20 

351 30.45 30.45 19.82 19.82 18.92 18.92 13.74 13.74 0.97 0.97 

352 28.76 28.76 22.20 22.20 15.98 15.98 15.62 15.62 14.58 14.58 

353 20.71 20.71 20.03 20.03 9.53 9.53 7.99 7.99 9.54 9.54 

354 17.81 17.81 15.04 15.04 19.14 19.14 14.55 14.55 16.48 16.48 

355 19.76 19.76 13.00 13.00 9.55 9.55 16.33 16.33 10.34 10.34 

356 13.23 13.23 14.32 14.32 12.71 12.71 4.00 4.00 14.58 14.58 

357 13.80 13.80 17.12 17.12 17.32 17.32 13.32 13.32 18.57 18.57 

358 3.69 3.69 14.62 14.62 15.89 15.89 12.94 12.94 15.69 15.69 

359 12.05 12.05 17.37 17.37 13.46 13.46 16.63 16.63 16.40 16.40 

360 16.56 16.56 12.73 12.73 17.76 17.76 15.90 15.90 18.21 18.21 
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APPENDIX F. MATLAB SOURCE CODE FOR DETECTION 

COVERAGE PLOT 

  
% Chong Sze Sing (March 2014) 

% Bistatic RCS Look-up Table 
load('3GHz_full.mat') 
biRCS3 = num; 
load('9GHz_full.mat') 
biRCS9 = num; 

  
sen=10; % sensitivity 

 
% For Tx 1 
Xcoord1 = []; 
Ycoord1 = []; 
SNR1 = []; 
SNRdBm1 = []; 
Err_thetaR1 = []; 
Err_time1 = []; 
Err_L1 = []; 
Tx1=45; 
L1=18000; 
%For Tx2 
Xcoord2 = []; 
Ycoord2 = []; 
SNR2 = []; 
SNRdBm2 = []; 
Err_thetaR2 = []; 
Err_time2 = []; 
Err_L2 = []; 
Tx2=135; 
L2=18000; 
%For Tx3 
Xcoord3 = []; 
Ycoord3 = []; 
SNR3 = []; 
SNRdBm3 = []; 
Err_thetaR3 = []; 
Err_time3 = []; 
Err_L3 = []; 
Tx3=225; 
L3=18000; 
%For Tx4 
Xcoord4 = []; 
Ycoord4 = []; 
SNR4 = []; 
SNRdBm4 = []; 
Err_thetaR4 = []; 
Err_time4 = []; 
Err_L4 = []; 
Tx4=315; 
L4=18000; 
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%For Tx5 
Xcoord5 = []; 
Ycoord5 = []; 
SNR5 = []; 
SNRdBm5 = []; 
Err_thetaR5 = []; 
Err_time5 = []; 
Err_L5 = []; 
Tx5=0; 
L5=18000; 
%For Tx6 
Xcoord6 = []; 
Ycoord6 = []; 
SNR6 = []; 
SNRdBm6 = []; 
Err_thetaR6 = []; 
Err_time6 = []; 
Err_L6 = []; 
Tx6=90; 
L6=18000; 
%For Tx7 
Xcoord7 = []; 
Ycoord7 = []; 
SNR7 = []; 
SNRdBm7 = []; 
Err_thetaR7 = []; 
Err_time7 = []; 
Err_L7 = []; 
Tx7=180; 
L7=18000; 
%For Tx8 
Xcoord8 = []; 
Ycoord8 = []; 
SNR8 = []; 
SNRdBm8 = []; 
Err_thetaR8 = []; 
Err_time8 = []; 
Err_L8 = []; 
Tx8=270; 
L8=18000; 

  
% Bi-static Radar Equation 
% Constants 
k = 1.38e-23;   % Boltzmann  
c = 3e8;        % Speed of light 

  
% Variables 
% Parameters are based Furuno Marine Radar FAR-28x7 series in both X-band 

and S-band 

  
% Bi-static Radar Equation 
% Constants 
k = 1.38e-23;   % Boltzmann  
c = 3e8;        % Speed of light 
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Select = 1; %chose which radar to use 
% Variables 
% Parameters are based Furuno Marine Radar FAR-28x7 series in both X-band 
% and S-band 

  
%S-band Radar (1) 
BeamAz_S = 1.8;   % in degrees 
BeamEL_S = 25;    % in degrees 
Scanrate_S = 45;  % in rpm for range of 24 nmi or higher 
Pt_S = 30e3;         % Tx peak power output 
Gt_S = 10^(28/10);  % Tx Antenna Gain given as 28dB         
Gr_S = 2;         % Rx Antenna Gain 
f_S = 3050e6;     % frequency 
lambda_S = c/f_S;     % wavelength 
Ft_S = 1;         % Prop Factor for Tx-Tgt path. See Advances in Bistatic 

Radar - Chp 6.5.5.6 
Fr_S = 1;         % Prop Factor for Rx-Tgt path 
Ts_S = 290+290*(13.5-1);      % System Noise Temp of Rx of NF=6dB using 

formula Te=(NF-1)290 and Ts=Te+290K 
Bn_S = 500e6;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
Lt_S = 2;         % Ref to See Advances in Bistatic Radar - Chp 6.5.5.6 
Lr_S = 2; 
% this is calculation of pulse integration sqrt(N) 
PRF_S = 2000; 
TOT_S = BeamAz_S/(Scanrate_S*360); 
N_S = TOT_S*PRF_S;  

  
%X-band Radar (2) 
BeamAz_X = 0.95;   % in degrees 
BeamEL_X = 25;    % in degrees 
Scanrate_X = 45;  % in rpm for range of 24 nmi or higher 
Pt_X = 25e3;         % Tx peak power output 
Gt_X = 10^(31/10);   % Tx Antenna Gain is given as 31 dB 
Gr_X = 2;         % Rx Antenna Gain 
f_X = 9410e6;     % frequency 
lambda_X = c/f_X;     % wavelength 
Ft_X = 1;         % Prop Factor for Tx-Tgt path. See Advances in Bistatic 

Radar - Chp 6.5.5.6 
Fr_X = 1;         % Prop Factor for Rx-Tgt path 
Ts_X = 290+290*(6-1);      % System Noise Temp of Rx of NF=6dB using 

formula Te=(NF-1)290 and Ts=Te+290K 
Bn_X = 500e6;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
Lt_X = 2;         % Ref to See Advances in Bistatic Radar - Chp 6.5.5.6 
Lr_X = 2; 
% this is calculation of pulse integration sqrt(N) 
PRF_X = 1500; 
TOT_X = BeamAz_X/(Scanrate_X*360); 
N_X = TOT_X*PRF_X;  
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if Select ==1 
    BeamEL = BeamEL_S;   % in degrees 
    BeamAz = BeamAz_S;    % in degrees 
    Scanrate = Scanrate_S;  % in rpm for range of 24 nmi or higher 
    Pt = Pt_S;         % Tx peak power output 
    Gt = Gt_S;   % Tx Antenna Gain is given as 31 dB 
    Gr = Gr_S;         % Rx Antenna Gain 
    f = f_S;     % frequency 
    lambda = lambda_S;     % wavelength 
    Ft = Ft_S;         % Prop Factor for Tx-Tgt path. See Advances in 

Bistatic Radar - Chp 6.5.5.6 
    Fr = Fr_S;         % Prop Factor for Rx-Tgt path 
    Ts = Ts_S;      % System Noise Temp of Rx of NF=6dB using formula 

Te=(NF-1)290 and Ts=Te+290K 
    Bn = Bn_S;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
    Lt = Lt_S;         % Ref to See Advances in Bistatic Radar - Chp 

6.5.5.6 
    Lr = Lr_S; 
% this is calculation of pulse integration sqrt(N) 
    PRF = PRF_S; 
    TOT = TOT_S; 
    N = N_S;  
else 
    BeamEL = BeamEL_X;   % in degrees 
    BeamAz = BeamAz_X;    % in degrees 
    Scanrate = Scanrate_X;  % in rpm for range of 24 nmi or higher 
    Pt = Pt_X;         % Tx peak power output 
    Gt = Gt_X;   % Tx Antenna Gain is given as 31 dB 
    Gr = Gr_X;         % Rx Antenna Gain 
    f = f_X;     % frequency 
    lambda = lambda_X;     % wavelength 
    Ft = Ft_X;         % Prop Factor for Tx-Tgt path. See Advances in 

Bistatic Radar - Chp 6.5.5.6 
    Fr = Fr_X;         % Prop Factor for Rx-Tgt path 
    Ts = Ts_X;      % System Noise Temp of Rx of NF=6dB using formula 

Te=(NF-1)290 and Ts=Te+290K 
    Bn = Bn_X;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
    Lt = Lt_X;         % Ref to See Advances in Bistatic Radar - Chp 

6.5.5.6 
    Lr = Lr_X; 
% this is calculation of pulse integration sqrt(N) 
    PRF = PRF_X; 
    TOT = TOT_X; 
    N = N_X;  
end 

 



 91 

   
%%%%%%%%%%%%%%%%%%%%% INPUT %%%%%%%%%%%%%%%%%%%% 
% We only take in three measurments from the ESM - L, Rt+Rr and thetaR 

  
%%%%%%%%%%%%%%%%%%%%% Tx 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%   
    for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L1^2)/(2*(CombinR+L1*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L1^2-2*RrAct*L1*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L1^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  

            
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1+1,90+Beta1)/10);                                
            %RCS=10^(biRCS3(Beta1+1,Beta1+1)/10);    

                         
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L1/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2);   %  
            SNRdBm = 10*log(SNR)+ sqrt(N); 

  
            Xcoord = RrAct*sin((thetaR+Tx1)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx1)*pi/180);  

             
                        % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamAz/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 

             
            if SNRdBm >= sen 
            Xcoord1 = [Xcoord1,Xcoord]; 
            Ycoord1 = [Ycoord1,Ycoord]; 
            SNR1 = [SNR1,SNR]; 
            SNRdBm1 = [SNRdBm1,SNRdBm]; 
            Err_time1 = [Err_time1,Err_time]; 
            Err_L1 = [Err_L1,Err_L]; 
            Err_thetaR1 = [Err_thetaR1,Err_thetaR]; 
            else 
            end 
        end 
    end 

     
    Err_Total1=zeros(size(Err_time1)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time1)    
    Err_Total1(aa) = 

max(abs(Err_time1(aa)),abs(Err_L1(aa))+abs(Err_thetaR1(aa)));   
 end 
 for aa=1:1:length(Err_time1)    
    Err_Total1(aa) = max(abs(Err_Total1(aa)),abs(Err_thetaR1(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 2 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
      for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L2^2)/(2*(CombinR+L2*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L2^2-2*RrAct*L2*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L2^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  

             
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1+1,90+Beta1)/10);                                
            %RCS=10^(biRCS3(Beta1+1,Beta1+1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L2/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+ sqrt(N); 

  
            Xcoord = RrAct*sin((thetaR+Tx2)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx2)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamAz/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 de 
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  %Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 
            if SNRdBm >= sen 
            Xcoord2 = [Xcoord2,Xcoord]; 
            Ycoord2 = [Ycoord2,Ycoord]; 
            SNR2 = [SNR2,SNR]; 
            SNRdBm2 = [SNRdBm2,SNRdBm]; 
            Err_time2 = [Err_time2,Err_time]; 
            Err_L2 = [Err_L2,Err_L]; 
            Err_thetaR2 = [Err_thetaR2,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total2=zeros(size(Err_time2)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time2)    
    Err_Total2(aa) = max(abs(Err_time2(aa)),abs(Err_L2(aa)));   
 end 
 for aa=1:1:length(Err_time2)    
    Err_Total2(aa) = max(abs(Err_Total2(aa)),abs(Err_thetaR2(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 3 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
      for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L3^2)/(2*(CombinR+L3*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L3^2-2*RrAct*L3*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L3^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  

             
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1+1,90+Beta1)/10);                                
            %RCS=10^(biRCS3(Beta1+1,Beta1+1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L3/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+ sqrt(N); 

  
            Xcoord = RrAct*sin((thetaR+Tx3)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx3)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamAz/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 

             
            if SNRdBm >= sen 
            Xcoord3 = [Xcoord3,Xcoord]; 
            Ycoord3 = [Ycoord3,Ycoord]; 
            SNR3 = [SNR3,SNR]; 
            SNRdBm3 = [SNRdBm3,SNRdBm]; 
            Err_time3 = [Err_time3,Err_time]; 
            Err_L3 = [Err_L3,Err_L]; 
            Err_thetaR3 = [Err_thetaR3,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total3=zeros(size(Err_time3)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time3)    
    Err_Total3(aa) = max(abs(Err_time3(aa)),abs(Err_L3(aa)));   
 end 
 for aa=1:1:length(Err_time3)    
    Err_Total3(aa) = max(abs(Err_Total3(aa)),abs(Err_thetaR3(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 4 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
      for CombinR=18500:200:45000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L4^2)/(2*(CombinR+L4*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L4^2-2*RrAct*L4*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L4^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  

             
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1+1,90+Beta1)/10);                                
            %RCS=10^(biRCS3(Beta1+1,Beta1+1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L4/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+ sqrt(N); 

  
            Xcoord = RrAct*sin((thetaR+Tx4)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx4)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamAz/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 

             
            if SNRdBm >= sen 
            Xcoord4 = [Xcoord4,Xcoord]; 
            Ycoord4 = [Ycoord4,Ycoord]; 
            SNR4 = [SNR4,SNR]; 
            SNRdBm4 = [SNRdBm4,SNRdBm]; 
            Err_time4 = [Err_time4,Err_time]; 
            Err_L4 = [Err_L4,Err_L]; 
            Err_thetaR4 = [Err_thetaR4,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total4=zeros(size(Err_time4)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time4)    
    Err_Total4(aa) = max(abs(Err_time4(aa)),abs(Err_L4(aa)));   
 end 
 for aa=1:1:length(Err_time4)    
    Err_Total4(aa) = max(abs(Err_Total4(aa)),abs(Err_thetaR4(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 5 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
  for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L5^2)/(2*(CombinR+L5*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L5^2-2*RrAct*L5*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L5^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1,90+Beta1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L5/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+30; 

  
            Xcoord = RrAct*sin((thetaR+Tx5)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx5)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamEL/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 

 



 100 

  
 
%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 
            if SNRdBm >= sen 
            Xcoord5 = [Xcoord5,Xcoord]; 
            Ycoord5 = [Ycoord5,Ycoord]; 
            SNR5 = [SNR5,SNR]; 
            SNRdBm5 = [SNRdBm5,SNRdBm]; 
            Err_time5 = [Err_time5,Err_time]; 
            Err_L5 = [Err_L5,Err_L]; 
            Err_thetaR5 = [Err_thetaR5,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total5=zeros(size(Err_time5)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time5)    
    Err_Total5(aa) = max(abs(Err_time5(aa)),abs(Err_L5(aa)));   
 end 
 for aa=1:1:length(Err_time5)    
    Err_Total5(aa) = max(abs(Err_Total5(aa)),abs(Err_thetaR5(aa)));   
 end 

  

 



 101 

   
%%%%%%%%%%%%%%%%%%%%% Tx 6 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
  for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L6^2)/(2*(CombinR+L6*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L6^2-2*RrAct*L6*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L6^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1,90+Beta1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L6/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+30; 

  
            Xcoord = RrAct*sin((thetaR+Tx6)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx6)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamEL/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 

             
            if SNRdBm >= sen 
            Xcoord6 = [Xcoord6,Xcoord]; 
            Ycoord6 = [Ycoord6,Ycoord]; 
            SNR6 = [SNR6,SNR]; 
            SNRdBm6 = [SNRdBm6,SNRdBm]; 
            Err_time6 = [Err_time6,Err_time]; 
            Err_L6 = [Err_L6,Err_L]; 
            Err_thetaR6 = [Err_thetaR6,Err_thetaR]; 
            else 
            end 
             end 
      end 

       
    Err_Total6=zeros(size(Err_time6)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time6)    
    Err_Total6(aa) = max(abs(Err_time6(aa)),abs(Err_L6(aa)));   
 end 
 for aa=1:1:length(Err_time6)    
    Err_Total6(aa) = max(abs(Err_Total6(aa)),abs(Err_thetaR6(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 7 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
  for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L7^2)/(2*(CombinR+L7*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L7^2-2*RrAct*L7*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L7^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1,90+Beta1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L7/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+30; 

  
            Xcoord = RrAct*sin((thetaR+Tx7)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx7)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamEL/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 
            if SNRdBm >= sen 
            Xcoord7 = [Xcoord7,Xcoord]; 
            Ycoord7 = [Ycoord7,Ycoord]; 
            SNR7 = [SNR7,SNR]; 
            SNRdBm7 = [SNRdBm7,SNRdBm]; 
            Err_time7 = [Err_time7,Err_time]; 
            Err_L7 = [Err_L7,Err_L]; 
            Err_thetaR7 = [Err_thetaR7,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total7=zeros(size(Err_time7)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time7)    
    Err_Total7(aa) = max(abs(Err_time7(aa)),abs(Err_L7(aa)));   
 end 
 for aa=1:1:length(Err_time7)    
    Err_Total7(aa) = max(abs(Err_Total7(aa)),abs(Err_thetaR7(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%%% Tx 8 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
  for CombinR=18500:200:50000 

                 
        for thetaR=0:0.5:360 

                              
            RrAct=((CombinR)^2 - 

L8^2)/(2*(CombinR+L8*sin(thetaR*pi/180)));  
            RtAct=sqrt(RrAct^2+L8^2-2*RrAct*L8*cos(pi/2+thetaR*pi/180)); 

             
            Beta=round((180/pi)*acos((RrAct^2+RtAct^2-

L8^2)/(2*RrAct*RtAct))); 
            % Assuming the low RCS ship is heading south towards the Rx 
            % position. Then, Beta/2 is incident angle on one side and 
            % scattered angle on the other side. 
            Beta1=round(Beta/2);  
            % Organise the RCS values by 
            RCS=10^(biRCS3(90-Beta1,90+Beta1)/10);                    

             
            K1 = Pt*Gt*Gr*(lambda^2)*RCS*(Ft^2)*(Fr^2); 
            K2 = ((4*pi)^3)*k*Ts*Bn*Lt*Lr;   
            K = K1/K2;      % Bi-static Radar Constant 

             
            e=L8/(RrAct+RtAct); % eccentricity 

             
            SNR = K/(RrAct^2*RtAct^2); 
            SNRdBm = 10*log(SNR)+30; 

  
            Xcoord = RrAct*sin((thetaR+Tx8)*pi/180); 
            Ycoord = RrAct*cos((thetaR+Tx8)*pi/180);  

             
            % Error to measurement of Rt + Rr 
            % Antenna scan rate of 45 rpm or 270 deg/s 
            % With horizontal beamwidth of 1.8 deg, assuming that the 

edge of the 
            % beamwidth creates enough SNR to be received by the receiver 

as 
            % reflections from the tgt 
            % From eqn 3.18 
            % rms error 

  
            Err_factor_time = 

(1+e^2+2*e*sin(thetaR*pi/180))/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_time=Err_factor_time*(BeamEL/2*pi/180)*RtAct; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 
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%Err_time3 = (0.55/Bn)*1/sqrt(Bn*SNR1)*c; % Ref to Alogrithms for 

Ambiguity Function Processing (Eqn - 11b) 
            %Err_time1 = Err_time3 + Err_time1;  
            % Error to measurement of L 
            % For a Class A Marine AIS, positional acciracy is up to 

0.0001 mins where 
            % 1 deg equals to 60nmi 
            % Update rate is between 2 to 10 seconds 
            % Assumming a opening speed of Tx at 12 knots and Rx at 12 

knots 

  
            Err_factor_L = (-

(e^2+1)*sin(thetaR*pi/180)+2*e)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_L = Err_factor_L*((0.0001*1824)+(10*1824*5/3600)); % Net 

opening speed of 10 knots + 5s update rate 

  
            % Error to measurement of thetaR 
            % Error due to thetaR 
            % the error will be coming from the DF error from the ESM 

system 
            % which is up to +/-1.5 deg 
            % I modified this equation as I have factor in the L in my 

error so I 
            % normalised it with L so as not to double count 

  
            Err_factor_theta = (1-

e^2)*cos(thetaR*pi/180)/(2*(1+e*sin(thetaR*pi/180))^2); 
            Err_thetaR = Err_factor_theta*(RtAct*1.5*pi/180); 

             
            if SNRdBm >= sen 
            Xcoord8 = [Xcoord8,Xcoord]; 
            Ycoord8 = [Ycoord8,Ycoord]; 
            SNR8 = [SNR8,SNR]; 
            SNRdBm8 = [SNRdBm8,SNRdBm]; 
            Err_time8 = [Err_time8,Err_time]; 
            Err_L8 = [Err_L8,Err_L]; 
            Err_thetaR8 = [Err_thetaR8,Err_thetaR]; 
            else 
            end 
        end 
      end 

       
    Err_Total8=zeros(size(Err_time8)); 
 % Find th emax of the three source of error and use that for that 
 % coordinate position 
 for aa=1:1:length(Err_time8)    
    Err_Total8(aa) = max(abs(Err_time8(aa)),abs(Err_L8(aa)));   
 end 
 for aa=1:1:length(Err_time8)    
    Err_Total68(aa) = max(abs(Err_Total8(aa)),abs(Err_thetaR8(aa)));   
 end 
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%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%% 
X=horzcat(Xcoord1,Xcoord2,Xcoord3,Xcoord4,Xcoord5,Xcoord6,Xcoord7,Xcoord8

); 
Y=horzcat(Ycoord1,Ycoord2,Ycoord3,Ycoord4,Ycoord5,Ycoord6,Ycoord7,Ycoord8

); 
Z=horzcat(SNRdBm1,SNRdBm2,SNRdBm3,SNRdBm4,SNRdBm5,SNRdBm6,SNRdBm7,SNRdBm8

); 
XX=horzcat(Err_thetaR1,Err_thetaR2,Err_thetaR3,Err_thetaR4,Err_thetaR5,Er

r_thetaR6,Err_thetaR7,Err_thetaR8); 
YY=horzcat(Err_time1,Err_time2,Err_time3,Err_time4,Err_time5,Err_time6,Er

r_time7,Err_time8); 
ZZ=horzcat(Err_L1,Err_L2,Err_L3,Err_L4,Err_L5,Err_L6,Err_L7,Err_L8); 
AA=horzcat(Err_Total1,Err_Total2,Err_Total3,Err_Total4,Err_Total5,Err_Tot

al6,Err_Total7,Err_Total8); 

      
    figure(1) 
    load seamount 
    scatter(X,Y,4,Z,'fill','o')  
    colorbar('EastOutside') 
    %title('Detection Coverage in Polar Plot(4 Tx)') 
    xlabel('Distance in m','fontsize',14) 
    ylabel('Distance in m','fontsize',14) 
    hold on 
    plot(0,0,'k*') 
    text(40,0,'Rx','FontSize',15) 
    plot(-12730,12730,'k*') 
    text(-12730,12930,'Tx1','FontSize',15) 
    plot(12730,12730,'k*') 
    text(12730,12930,'Tx2','FontSize',15) 
    plot(12730,-12730,'k*') 
    text(12730,-12930,'Tx3','FontSize',15) 
    plot(-12730,-12730,'k*') 
    text(-12730,-12930,'Tx4','FontSize',15) 
    plot(0,-18000,'k*') 
    text(200,-18000,'Tx5','FontSize',15) 
    plot(0,18000,'k*') 
    text(200,18000,'Tx6','FontSize',15) 
    plot(18000,0,'k*') 
    text(18000,200,'Tx7','FontSize',15) 
    plot(-18000,0,'k*') 
    text(-18000,200,'Tx8','FontSize',15) 
    hold off 
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APPENDIX G.  MATLAB SOURCE CODE FOR UNCERTAINTY 

ELLIPSE 

  

% Chong Sze Sing (March 2014) 

% 8 Tx Uncertainty Ellipse 

  
TargetX=4500; 
TargetY=4500; 

  
% Initializattion  
%For Tx 1 
Tx1=45; 
L1=18000; 
%For Tx2 
Tx2=135; 
L2=18000; 
%For Tx3 
Tx3=225; 
L3=18000; 
%For Tx4 
Tx4=315; 
L4=18000; 
%For Tx5 
Tx5=0; 
L5=18000; 
%For Tx6 
Tx6=90; 
L6=18000; 
%For Tx7 
Tx7=179; 
L7=18000; 
%For Tx8 
Tx8=270; 
L8=18000; 

  
% Variables 
% Parameters are based Furuno Marine Radar FAR-21x7 series in both X-

band 
% and S-band 
% Bi-static Radar Equation 
% Constants 
k = 1.38e-23;   % Boltzmann  
c = 3e8;        % Speed of light 
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Select = 1; %chose which radar to use 

  
%S-band Radar (1) 
BeamAz_S = 1.8;   % in degrees 
BeamEL_S = 25;    % in degrees 
Scanrate_S = 45;  % in rpm for range of 24 nmi or higher 
Pt_S = 25e3;         % Tx peak power output 
Gt_S = 10^(28/10);  % Tx Antenna Gain given as 28dB         
Gr_S = 2;         % Rx Antenna Gain 
f_S = 3050e6;     % frequency 
lambda_S = c/f_S;     % wavelength 
Ft_S = 1;         % Prop Factor for Tx-Tgt path. See Advances in Bistatic 

Radar - Chp 6.5.5.6 
Fr_S = 1;         % Prop Factor for Rx-Tgt path 
Ts_S = 290+290*(6-1);      % System Noise Temp of Rx of NF=6dB using 

formula Te=(NF-1)290 and Ts=Te+290K 
Bn_S = 100e6;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
Lt_S = 2;         % Ref to See Advances in Bistatic Radar - Chp 6.5.5.6 
Lr_S = 2; 
% this is calculation of pulse integration sqrt(N) 
PRF_S = 2000; 
TOT_S = BeamEL_S/(Scanrate_S*60); 
N_S = TOT_S*PRF_S;  

  

  
%X-band Radar (2) 
BeamAz_X = 0.95;   % in degrees 
BeamEL_X = 25;    % in degrees 
Scanrate_X = 45;  % in rpm for range of 24 nmi or higher 
Pt_X = 25e3;         % Tx peak power output 
Gt_X = 10^(31/10);   % Tx Antenna Gain is given as 31 dB 
Gr_X = 2;         % Rx Antenna Gain 
f_X = 9410e6;     % frequency 
lambda_X = c/f_X;     % wavelength 
Ft_X = 1;         % Prop Factor for Tx-Tgt path. See Advances in Bistatic 

Radar - Chp 6.5.5.6 
Fr_X = 1;         % Prop Factor for Rx-Tgt path 
Ts_X = 290+290*(6-1);      % System Noise Temp of Rx of NF=6dB using 

formula Te=(NF-1)290 and Ts=Te+290K 
Bn_X = 500e6;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
Lt_X = 2;         % Ref to See Advances in Bistatic Radar - Chp 6.5.5.6 
Lr_X = 2; 
% this is calculation of pulse integration sqrt(N) 
PRF_X = 1500; 
TOT_X = BeamEL_X/(Scanrate_X*360); 
N_X = TOT_X*PRF_X;  
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if Select ==1 
    BeamEL = BeamEL_S;   % in degrees 
    BeamAz = BeamAz_S;    % in degrees 
    Scanrate = Scanrate_S;  % in rpm for range of 24 nmi or higher 
    Pt = Pt_S;         % Tx peak power output 
    Gt = Gt_S;   % Tx Antenna Gain is given as 31 dB 
    Gr = Gr_S;         % Rx Antenna Gain 
    f = f_S;     % frequency 
    lambda = lambda_S;     % wavelength 
    Ft = Ft_S;         % Prop Factor for Tx-Tgt path. See Advances in 

Bistatic Radar - Chp 6.5.5.6 
    Fr = Fr_S;         % Prop Factor for Rx-Tgt path 
    Ts = Ts_S;      % System Noise Temp of Rx of NF=6dB using formula 

Te=(NF-1)290 and Ts=Te+290K 
    Bn = Bn_S;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
    Lt = Lt_S;         % Ref to See Advances in Bistatic Radar - Chp 

6.5.5.6 
    Lr = Lr_S; 
% this is calculation of pulse integration sqrt(N) 
    PRF = PRF_S; 
    TOT = TOT_S; 
    N = N_S;  
else 
    BeamEL = BeamEL_X;   % in degrees 
    BeamAz = BeamAz_X;    % in degrees 
    Scanrate = Scanrate_X;  % in rpm for range of 24 nmi or higher 
    Pt = Pt_X;         % Tx peak power output 
    Gt = Gt_X;   % Tx Antenna Gain is given as 31 dB 
    Gr = Gr_X;         % Rx Antenna Gain 
    f = f_X;     % frequency 
    lambda = lambda_X;     % wavelength 
    Ft = Ft_X;         % Prop Factor for Tx-Tgt path. See Advances in 

Bistatic Radar - Chp 6.5.5.6 
    Fr = Fr_X;         % Prop Factor for Rx-Tgt path 
    Ts = Ts_X;      % System Noise Temp of Rx of NF=6dB using formula 

Te=(NF-1)290 and Ts=Te+290K 
    Bn = Bn_X;     % Noise Bandwidth of ESM Rx Wideband Channalised (500 

MHz) 
    Lt = Lt_X;         % Ref to See Advances in Bistatic Radar - Chp 

6.5.5.6 
    Lr = Lr_X; 
% this is calculation of pulse integration sqrt(N) 
    PRF = PRF_X; 
    TOT = TOT_X; 
    N = N_X;  
end 
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Rr=sqrt(TargetX^2+TargetY^2); 
theta=atan(TargetX/TargetY); % Angle made with True North into 

clockwise direction 

  
%%%%%%%%%%%%% Tx1 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L1^2+2*Rr*L1*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L1/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L1^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time1=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta corresponding 

to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L1 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR1 = Err_factor_theta*(Rt*1.5*pi/180); 

  
% Decide which one is the major and minor axis 
if  Err_time1 > Err_thetaR1 
    Err_Max1=Err_time1; 
    Err_Min1=Err_thetaR1; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle1=(-theta-pi/4); 

        
    elseif theta>pi/4 && theta<=pi/2 
        angle1=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle1=(-theta+pi/4); 

         
    else 
        angle1=pi/2+(-theta+pi/4); 

         
    end 
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else  
    Err_Max1=Err_thetaR1; 
    Err_Min1=Err_time1; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle1=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle1=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle1=-theta; 

         
    else 
        angle1=pi/2-theta; 

         
    end 
end 

  
% Decide what angle to put for each Tx contribuion 

  
%%%%%%%%%%%%% Tx2 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L2^2+2*Rr*L2*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L2/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L2^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time2=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta corresponding 

to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L2 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR2 = Err_factor_theta*(Rt*1.5*pi/180); 
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% Decide which one is the major and minor axis 
if  Err_time2 > Err_thetaR2 
    Err_Max2=Err_time2; 
    Err_Min2=Err_thetaR2; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle2=(-theta-pi/4); 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle2=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle2=(-theta+pi/4); 

         
    else 
        angle2=pi/2+(-theta+pi/4); 

         
    end 

  

     
else  
    Err_Max2=Err_thetaR2; 
    Err_Min2=Err_time2; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle2=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle2=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle2=-theta; 

         
    else 
        angle2=pi/2-theta; 

         
    end 
end 
% this function will always draw the majoraxis on the horizontal plane 

and 
% minoraxis in vertical plane 
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%%%%%%%%%%%%% Tx3 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L3^2+2*Rr*L3*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L3/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L3^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time3=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta corresponding 

to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L3 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR3 = Err_factor_theta*(Rt*1.5*pi/180); 

  
% Decide which one is the major and minor axis 
if  Err_time3 > Err_thetaR3 
    Err_Max3=Err_time3; 
    Err_Min3=Err_thetaR3; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle3=(-theta-pi/4); 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle3=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle3=(-theta+pi/4); 

         
    else 
        angle3=pi/2+(-theta+pi/4); 

         
    end 
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else  
    Err_Max3=Err_thetaR3; 
    Err_Min3=Err_time3; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle3=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle3=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle3=-theta; 

         
    else 
        angle3=pi/2-theta; 

         
    end 
end 

  
%%%%%%%%%%%%% Tx4 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L4^2+2*Rr*L4*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L4/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L4^2)/(2*Rr*Rt)); % I am using beta to add 

to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time4=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta corresponding 

to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L4 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR4 = Err_factor_theta*(Rt*1.5*pi/180); 
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% Decide which one is the major and minor axis 
if  Err_time4 > Err_thetaR4 
    Err_Max4=Err_time4; 
    Err_Min4=Err_thetaR4; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle4=(-theta-pi/4); 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle4=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle4=(-theta+pi/4); 

         
    else 
        angle4=pi/2+(-theta+pi/4); 

         
    end 

  

     
else  
    Err_Max4=Err_thetaR4; 
    Err_Min4=Err_time4; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle4=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle4=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle4=-theta; 

         
    else 
        angle4=pi/2-theta; 

         
    end 
end 

  
%%%%%%%%%%%%% Tx5 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L5^2+2*Rr*L5*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 
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e=L5/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L5^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of   
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time5=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 

   
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L5 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

   
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR5 = Err_factor_theta*(Rt*1.5*pi/180); 

  
% Decide which one is the major and minor axis 
if  Err_time5 > Err_thetaR5 
    Err_Max5=Err_time5; 
    Err_Min5=Err_thetaR5; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle5=(-theta-pi/4); 

        
    elseif theta>pi/4 && theta<=pi/2 
        angle5=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle5=(-theta+pi/4); 

         
    else 
        angle5=pi/2+(-theta+pi/4);    
    end 
else  
    Err_Max5=Err_thetaR5; 
    Err_Min5=Err_time5; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle5=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle5=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle5=-theta;       
    else 
        angle5=pi/2-theta; 

         
    end 
end 
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%%%%%%%%%%%%% Tx6 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L6^2+2*Rr*L6*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L6/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L6^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time6=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L6 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR6 = Err_factor_theta*(Rt*1.5*pi/180); 

  
% Decide which one is the major and minor axis 
if  Err_time6 > Err_thetaR6 
    Err_Max6=Err_time6; 
    Err_Min6=Err_thetaR6; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle6=(-theta-pi/4); 

        
    elseif theta>pi/4 && theta<=pi/2 
        angle6=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle6=(-theta+pi/4); 

         
    else 
        angle6=pi/2+(-theta+pi/4); 

         
    end 
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else  
    Err_Max6=Err_thetaR6; 
    Err_Min6=Err_time6; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle6=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle6=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle6=-theta; 

         
    else 
        angle6=pi/2-theta; 

         
    end 
end 

  
%%%%%%%%%%%%% Tx7 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L7^2+2*Rr*L7*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 

  
e=L7/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L7^2)/(2*Rr*Rt)); % I am using beta to 

add to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time7=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta 

corresponding to half of the beamwidth of 1.8 deg 

  

  
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L7 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

  

  
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR7 = Err_factor_theta*(Rt*1.5*pi/180); 
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% Decide which one is the major and minor axis 
if  Err_time7 > Err_thetaR7 
    Err_Max7=Err_time7; 
    Err_Min7=Err_thetaR7; 
    % this handles the four different quadrant and if err_time 

dominates 
    if theta>=0 && theta<=pi/4 
        angle7=(-theta-pi/4); 

        
    elseif theta>pi/4 && theta<=pi/2 
        angle7=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle7=(-theta+pi/4); 

         
    else 
        angle7=pi/2+(-theta+pi/4); 

         
    end 

  

     
else  
    Err_Max7=Err_thetaR7; 
    Err_Min7=Err_time7; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle7=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle7=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle7=-theta; 

         
    else 
        angle7=pi/2-theta; 

         
    end 
end 

  
%%%%%%%%%%%%% Tx8 Source %%%%%%%%%%%%%%% 
% Eqn 5.1 
syms a  
syms A positive 
A=solve(a^2-2*Rr*a-L8^2+2*Rr*L8*sin(theta)); 
RrRt=double(A); 
Rt=abs(RrRt(1))-Rr; 
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e=L8/(Rr+Rt); % eccentricity 
beta=(180/pi)*acos((Rr^2+Rt^2-L8^2)/(2*Rr*Rt)); % I am using beta to add 

to the angle of  

  
Err_factor_time = (1+e^2+2*e*sin(theta))/(2*(1+e*sin(theta)^2)); 
Err_time8=Err_factor_time*(BeamAz/2*pi/180)*Rt; % r*theta corresponding 

to half of the beamwidth of 1.8 deg 

   
Err_factor_L = abs((-(e^2+1)*sin(theta)+2*e)/(2*(1+e*sin(theta))^2)); 
Err_L8 = Err_factor_L*((0.0001*1824)+(10*1824*5/3600));% Net opening 

speed of 10 knots + 5s update rate 

   
Err_factor_theta = (1-e^2)*cos(theta)/(2*(1+e*sin(theta))^2); 
Err_thetaR8 = Err_factor_theta*(Rt*1.5*pi/180); 

  
% Decide which one is the major and minor axis 
if  Err_time8 > Err_thetaR8 
    Err_Max8=Err_time8; 
    Err_Min8=Err_thetaR8; 
    % this handles the four different quadrant and if err_time dominates 
    if theta>=0 && theta<=pi/4 
        angle8=(-theta-pi/4);        
    elseif theta>pi/4 && theta<=pi/2 
        angle8=pi/2+(-theta-pi/4); 

         
    elseif theta<0 && theta>=-pi/4 
        angle8=(-theta+pi/4);         
    else 
        angle8=pi/2+(-theta+pi/4);         
    end     
else  
    Err_Max8=Err_thetaR8; 
    Err_Min8=Err_time8; 
     % this handles the four different quadrant and if err_theta 

dominates 
    if theta>=0 && theta<=pi/4 
        angle8=-theta; 

         
    elseif theta>pi/4 && theta<=pi/2 
        angle8=pi/2-theta; 

         
    elseif theta<0 && theta>=-pi/4 
        angle8=-theta; 

         
    else 
        angle8=pi/2-theta; 

         
    end 
end 
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%%%%%%%%  Plotting  %%%%%%%%%%%%%%%%%%% 

  
pdeellip(TargetX,TargetY,Err_Max1,Err_Min1,angle1-(Tx1*pi/180),'Tx1'); 
pdeellip(TargetX,TargetY,Err_Max2,Err_Min2,angle2-(Tx2*pi/180),'Tx2'); 
pdeellip(TargetX,TargetY,Err_Max3,Err_Min3,angle3-(Tx3*pi/180),'Tx3'); 
pdeellip(TargetX,TargetY,Err_Max4,Err_Min4,angle4-(Tx4*pi/180),'Tx4'); 
pdeellip(TargetX,TargetY,Err_Max5,Err_Min5,angle5-(Tx5*pi/180),'Tx5'); 
pdeellip(TargetX,TargetY,Err_Max6,Err_Min6,angle6-(Tx6*pi/180),'Tx6'); 
pdeellip(TargetX,TargetY,Err_Max7,Err_Min7,angle7-(Tx7*pi/180),'Tx7'); 
pdeellip(TargetX,TargetY,Err_Max8,Err_Min8,angle8-(Tx8*pi/180),'Tx8'); 

  
hold on 
axis square 
grid on 
plot(0,0,'k*') 
text(40,0,'Rx','FontSize',14) 
plot(-12730,12730,'k*') 
text(-12730,12930,'Tx1','FontSize',15) 
plot(12730,12730,'k*') 
text(12730,12930,'Tx2','FontSize',15) 
plot(12730,-12730,'k*') 
text(12730,-12930,'Tx3','FontSize',15) 
plot(-12730,-12730,'k*') 
text(-12730,-12930,'Tx4','FontSize',15) 
plot(0,-18000,'k*') 
text(200,-18000,'Tx5','FontSize',15) 
plot(0,18000,'k*') 
text(200,18000,'Tx6','FontSize',15) 
plot(18000,0,'k*') 
text(18000,200,'Tx7','FontSize',15) 
plot(-18000,0,'k*') 
text(-18000,200,'Tx8','FontSize',15) 
plot(4500,4500,'k*') 
text(4600,4500,'Target','FontSize',15) 
hold off 
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