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Abstract 

A graph G with no isolated vertices is vertex critjcal with respect 
to total restrained domination if, for any vertex v of G that is not 
adjacent to a vertex of degree one, the total restrained domination 
number of G - v is less than the total restrained domination number 

*Research supported by the Research Initiation Program Grant at the Naval Post
graduate School. 

Bulletin of the ICA. Volume 57 (2009). 107-117 



.. 

of G. We call these graphs /tr-Vertex critical. Similarly, a graph with 
no isolated vertices is edge critical with respect to total restrained 
domination if for any non-edge e of G, the total restrained domina
tion number of G + e is less than the total restrained domination 
number of G. We call these graphs /tr-edge critical. In this paper, 
we characterize the 'Ytr-Vertex critical trees, as well as those /tr(G)
vertex critical graphs G for which /tr(G) - /'tr(G - v) = n - 2 for 
some v E V(G). Moreover, we also characterize the /'tr-edge crit
ical trees, as well as those 'Ytr ( G)-edge critical graphs G for which 
/'tr(G) - ')'tr(G + e) = n - 2 for some er/:. E(G). 

Keywords: Total restrained domination, vertex critical, edge critical. 
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1 Introduction 

A vertex in a graph G dominates itself and its neighbors. A set of vertices 
S in a graph G is a dominating set if each vertex not in S is dominated 
by some vertex of S. The domination number of G, denoted 1(G), is the 
minimum cardinality of a dominating set of G. A dominating set S is 
called a total dominating set if each vertex is dominated by some vertex of 
S, and the total domination number of G, denoted lt(G), is the minimum 
cardinality of a total dominating set of G. A leaf in a graph G is a vertex 
of degree one, and a remote vertex is a vertex which is adjacent to a leaf. 
Let S(G) denote the set of remote vertices of G. 

Note that the removal of a vertex in a graph may decrease the domination 
number. A graph G is called domination vertex critical if 1(G - v) < 1(G) 
for every vertex v in G. For references on domination vertex critical graphs 
see [1, 4, 8]. 

Goddard et al. [5] studied the concept of vertex criticality for total dom
ination. They defined a connected graph G of order at least two to be 
total domination vertex critical or just It-vertex critical if, for every vertex 
v E V(G) - S(G), we have lt(G - v) < lt(G). Note that if G is It-Vertex 
critical and v E V(G) - S(G), then lt(G - v) = lt(G) - 1. 

Chen et al. (2] and Zelinka (10] introduced the study of total restrained 
domination, which was further studied by Hattingh et al. (6] and Cyman 
et al. (3] . A set S ~ V(G) is a total restrained dominating set, denoted 
TRDS, if every vertex is adjacent to a vertex in S and every vertex in 
V(G) - S is also adjacent to a vertex in V(G) - S. The total restrained 
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domination number of G, denoted 'Ytr(G), is the minimum cardinality of a 
total restrained dominating set of G. A total TRDS of cardinality 'Ytr(G) 
is called a 'Ytr( G)-set. 

Let G be a connected graph of order at least three. We say that G is total 
restrained domination vertex critical or just 'Ytr-vertex critical if, for any 
vertex v of V(G) - S(G), we have 'Ytr(G - v) < 'Ytr(G). Similarly, we say 
G is total restrained domination edge critical or just 'Ytr-edge critical if for 
any e </. E(G), we have 'Yer(G + e) < 'Yer(G). 

In Section 2, we characterize the 'Ytr-vertex critical trees, as well as those 
'Ytr(G)-vertex critical graphs G for which 'Ytr(G)-'Ytr(G-v) = n-2 for some 
v E V(G). In Section 3, we characterize the 'Ytr-edge critical trees, as well 
as those 'Ytr(G)-edge critical graphs G for which 'Ytr(G) - 'Ytr( G + e) = n- 2 
for some e rt, E(G). 

2 /'tr-vertex critical graphs 

In contrast to total domination, the removal of a vertex may decrease the 
total restrained domination number by more than one. In fact, if G is a 
'Ytr-vertex critical graph, then 'Yer( G) - /tr ( G - v) ::; n - 2 for all v E V ( G). 
In this section, we characterize 'Ytr ( G)-vertex critical graphs G for which 
/tr(G) - /tr(G - v) = n - 2 for some v E V(G). Goddard et. al. [5] have 
shown that there are no 'Ye-vertex critical trees. vVe will also determine 
which trees are 'Ytr-vertex critical. 

Let A be the family of connected graphs G such that G belongs to A if and 
only if every edge is incident with a remote vertex or a leaf or G is a cycle 
on three vertices. 

The following result is due to Cyman and Raczek, [3]. 

Theorem 1 Let G be a connected graph of order n;:::: 2. Then 'Yer(G) = n 
if and only if G belongs to A. 

Let P4 be a path with consecutive vertices v1 , v2 , v3 , v4 . Let m ;:::: 0 be 
an integer and let G(m) be the graph obtained from P4 by adding m new 
vertices u 1 , ... , Um and joining u;, i = 1, ... , m, to each of the vertices v2 

and V3. 

Proposition 1 Suppose G is a connected graph of order n ;:::: 3. Then G is 
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a 'Ytr-vertex critical graph for which 'Ytr(G) - 'Ytr(G - v) = n - 2 for some 
v E V(G) if and only if GE {C3, K1,2, G(n - 4)}. 

Proof. Let G = G(n - 4). By Theorem 1, l'tr(G) = n, and so G is a 
/'tr-vertex critical graph. Let v = v1 . Then { v3 , v4 } is a TRDS of G - v1 , 

and so l'tr(G-v1) = 2. It follows similarly for G = C3 or G = K 1,2 that G 
is a /'tr-vertex critical graph such that /'tr(G) = 3. Moreover, for C3 , any 
vertex may be chosen for v, while for I<1 ,3 a leaf may be chosen for v. 

For the converse, suppose G is a /'tr-vertex critical graph for which 'Ytr(G)
l'tr(G-v) = n-2 for some v E V(G). Then 'Ytr(G) = n, while /tr(G-v) = 
2. 

Suppose n = 3. By Theorem 1, either G is C3 or each vertex is incident 
with a remote vertex. In the latter case, G = K 1,2 . \Ve henceforth assume 
n;::: 4. By Theorem 1, we may assume that each edge of G is incident with 
a remote vertex of G. 

If each remote vertex u of G is adjacent to at least two leaves or deg(u) = 
2, then, for every v E V ( G), each edge of G - v is still incident with a 
remote vertex, and so, by Theorem 1, /'tr(G - v) = n - 1 ;::: 3, which is a 
contradiction. 

Thus, there exists a remote vertex u of G such that deg(u) ;::: 3 and u is 
adjacent to exactly one leaf e of G. Let Sv be a /'tr-set of G - v. 

Case 1. v f:. e. 
As e is also a leaf of G - v, we have Sv = { u, e}, and so each vertex 
of R = V ( G) - { u, e, v} is adjacent to u. Moreover, each vertex of R is 
adjacent to another vertex of R. Thus, no vertex in R is a remote vertex of 
G - v. However, in G, each edge in < R > must be incident with a remote 
vertex of G. Thus, some vertex w in R is remote, which implies that v 
is the leaf adjacent to w in G. Note that v is not adjacent to any of the 
vertices of R - { w}, and so each vertex of R - { w} is adjacent to only w in 
< R >. Thus, G = G(n - 4). 

Case 2. v = e. 

If u E Sv, then Sv U { f} is a TRDS of G, and so /'tr ( G) ::; 3, which 
is a contradiction. We assume u (/. Sv. Let Sv = { x, y} and suppose, 
without loss of generality, that u is adjacent to x. Note that each vertex 
of R = V(G) - {x, y, e} is adjacent to another vertex of R, and so R does 
not contain any leaves. Since the edge xy is incident with a remote vertex 
of G, either x or y is a remote vertex. But y cannot be a remote vertex, 
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and so x is remote, while y is a leaf of G. Since y is also a leaf of G - v, 
each vertex of R is adjacent to x. However, in G, each edge in< R > must 
be incident with a remote vertex of G. The only remote vertex in R is the 
vertex u, and so each vertex of R - { u} is adjacent to only u in < R >. 
Thus, G = G(n - 4), as required. D 

We next characterize /'tr-vertex critical trees, and then determine which 
paths are /'tr-vertex critical. 

Let P be a diametrical path of T, and suppose r and r' are the leaves 
of T which form the two endpoints of P. Root T at r', and consider a 
nonleaf vertex u on a path from r' to a leaf of T . A path u = u0 , u1 , ... , Ut 
from u to a leaf Ut is called a maximal ref ere nee path if every path u = 
uo, u1 , u~, ... , u~ has the property s ::::; t. Let Rt,u be the set of all maximal 
reference paths of length t originating from u which do not contain the 
parent of u. An element of Rt,u will be called a u-Rt-path (or just an 
Rt-path if the context is clear), and denoted by u = ub, . .. , ui for some 
i E {1, · · ·, IRt,ul}. 

The set Swill denote a 'Ytr-set of T, while S' will denote a 'Ytr-set of T', 
where T' will be defined later. 

Theorem 2 Let T be a tree of order n ;:::: 2. T is /'tr-vertex critical if and 
only if 'Ytr(T) = n. 

Proof. Suppose first that 'Ytr(T) = n . Then 'Ytr(T - v) :::; n - 1 for every 
v r/. S(T), and so Tis /'tr-vertex critical. Suppose now that Tis 'Ytr-vertex 
critical. We will employ induction on the n(T), the order of T , to show that 
'Ytr(T) = n. If 1 :::; diam(T) :::; 3, then 'Ytr(T) = n. Thus, the result is true 
for all trees of order n E {2, 3, 4}. Suppose Tis a tree of order n;:::: 5, and 
suppose that for any 'Ytr-vertex -critical tree T' of order 2 :::; n(T') = n' < n 
we have that 'Ytr(T') = n' . By the above, we may assume that diam(T) ;:::: 4 . 

Claim 1. Lett E {2,3}, and consider the Rt-path u = u0 ,u1 , . . . ,ut. If 
u E S(T), then 'Ytr(T) = n. 

Proof. Suppose u E S(T), and let T' = T - Ut· Since Ut-l is either a leaf 
or a support vertex of T', we have that Ut-l E S' . Thus, S' U { Ut} is a 
TRDS of T, and so 'Ytr(T) $ 'Ytr(T') + 1. 

We first show that 'Ytr(T') = 'Ytr(T) - 1: (*) 

Since u is a remote vertex ofT, we have that u ES. Also, {u1_ 1,ut} ~ S. 
Moreover, if t = 3, every vertex in N(u 1) - {u} is either a leaf or a remote 
vertex, and so N(ui) ~ S, which implies that u1 ES. Thus, S - {ut} is a 
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TRDS of T', and so "Ytr(T') S ISi - 1 = "Ytr(T) - 1. 

We next establish the following fact. 

Fact 1. T' is "'/tr-vertex critical. 

Proof. Suppose, to the contrary, that there exists v f/. S(T') such that 
"Ytr(T') S "Ytr(T' - v). L~t w be the leaf adjacent to u. We first show that 
v =f. w. For suppose, to the contrary, that v = w. Note that Nr' [ut-d -
{ut-2} ~ S', while {w,u} ~ S'. ivloreover, if t = 3, every vertex in 
N ( u 1) - { u} is either a leaf or a remote vertex, and so N ( u1) ~ S', which 
implies that u1 ES. Thus, S' -{ w} is a TRDS ofT' -v, and so "Ytr(T' -v) S 
IS'I - 1 = /tr(T') - 1 S "Ytr(T' - v) - 1, which is a contradiction. 

Thus, v =f. wand either v f/. S(T) or the only leaf adjacent to vis Ut. 

\Ve eliminate the possibility that the only leaf adjacent to v is 1lt. For 
suppose, to the contrary, that the only leaf adjacent to v is Ut. Note that 
Nr1[ut-d ~ S', while {w, u} ~ S'. Thus, S' - {v} is a TRDS of T' - v, 
and so /tr(T' - v) S IS'I - 1 = "'/tr(T') - 1 :S /tr(T' - v) - 1, which is a 
contradiction. 

Thus, v =/:-wand v f/. S(T). As v f/. S(T), /tr(T - v) :S "Ytr(T) - 1. If we 
can show that "Ytr(T' - v) S "Ytr(T - v) - 1, then, referring to (*), we have 
/tr(T) - 1 = "Ytr(T') S "Ytr(T' - v) S "'/tr(T - v) - 1 S "Ytr(T) - 2, which 
will produce a contradiction, and establish our fact. 

LetUbea/tr(T-v)-set. Notethatvf/.{ut-1,ut}· Also, {ut-1,Ut}~U. 

Suppose deg(ut-d 2: 3. Suppose v E Nr(ut-1) - {ut-2,ut}· Since u is a 
remote vertex ofT-v, we have that u EU. Moreover, ift = 3, every vertex 
in Nr-v ( u1) - { u} is either a leafor a remote vertex, and so Nr-v ( ui) ~ U, 
which implies that u 1 E U. Thus, U - { ut} is a TRDS of T - v - Ut, and 
so "Ytr(T' - v) S IUI - 1 = "Ytr(T - v) - 1. 

Ift = 3 and v = u1, then, since v f/. S(T'), every vertex in Nr-v(v)-{u} is a 
remote vertex, but not a leaf, in T, and so Nr-v(v) ~ U, which implies that 
U -{ ut} is a TRDS of T-V-Ut, and so "'/tr(T' -v) S IUl-1 = /tr(T-v)-1. 

Thus, v f/. Nr(ut-1) U {ut-2}, and so Nr-v[ut-d ~ U. Thus, U - {ut} is 
a TRDS of T - v - Ut, and so "Ytr(T' - v) S IUI - 1 = "Ytr(T - v) - 1. 

We henceforth assume that deg(ut-d = 2. Note that if t = 3, then, since 
v f/. S(T'), v =f. u 1. Moreover, every vertex in Nr-v(u1)-{u} is either a leaf 
or a remote vertex, and so N(u1 ) ~ U, which implies that u 1 E U. Thus, 
U-{ Ut} is a TRDS of T-v-ut, and so "Ytr(T' -v) S IUl-1 = /tr(T-v)-1. 
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<> 

By the induction assumption and Fact 1, 'Ytr(T') = n - 1, and, since 
/tr(T') = "ftr(T) - 1, we have "ftr(T) = n. <> 

Since diam(T) 2 4, let r' = vk, ... ,v1,u = ua,u1,u2,u3 = r be a dia
metrical path. By our Claim, u is not a remote vertex. Consider the tree 
T' = T - u. Hence, by the criticality of T, it follows that IS'I S ISi - 1. For 
i = 1, ... , m, let u, ui, u~, u~ be the R3-paths originating from u. By our 
Claim, u{ is not a remote vertex for i = 1, ... , m. Thus, all the vertices of 
the subtree of T' induced by ui and its descendants must be contained in 
S'. Hence, N(u) - {vi} ~ S'. If v1 E S', then S" = S' - U~i{ui} is a 
TRDS of T, and so /tr(T) S IS"I = IS'I - m S ISi - m - 1 S 'Ytr(T) - 2, 
which is a contradiction. Thus, v1 fl. S', and S' is a TRDS of T of size at 
most /tr(T) - 1, which is a contradiction. D 

As an immediate consequence (cf. Theorem 1), we obtain: 

Corollary 1 Let T be a tree of order n 2 2. Then T is "!tr-vertex critical 
if and only if T belongs to A - { C3}. 

Corollary 2 The path Pn of order n 2 3 is /tr-vertex critical if and only 
ifn E {3,4,5}. 

Proof. The only paths in which every edge is incident with a remote vertex 
or a leaf, are ?3, ?4 and ?5. Thus, (A- {C3}) n {Pnln 2 l} = {P3, ?4, P5}, 
and so ?3, ?4 and P5 are the only "/tr-vertex critical paths. D 

A caterpillar is a tree with the property that the removal of its leaves 
results in a path v1, ..• , Vs as the spine of the caterpillar. A caterpillar T 
is uniquely determined by the sequence of nonnegative integers (t1 , ... , ts), 
where t, is the number of leaves adjacent to v,, for s 2 2, and t 1 2 1 and 
ts 2 1. For example, the sequence (1, 0, 0, 1) determines the caterpillar 
path Ps. 

Let W be a caterpillar with sequence (a1, a2, ... , an) such that whenever 
ai = 0 for some 2 S i :S n - 1, then a;-1 2 1 and a;+1 2 1. Then 
diam(W) = n + 1, and, by Corollary 1, W is a "/tr-vertex critical tree. 
Hence, "ftr(W) - diam(W) = ('2:~ 1 a;)+ n - (n t 1) = (2:~ 1 a;) - 1, 
and so there exists a "/tr-vertex critical tree W such that the difference 
/tr(W) - diam(W) can be made arbitrarily large. 
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3 /'tr-edge critical graphs 

Note if G is a {tr-edge critical graph, then 'Ytr ( G) - 'Ytr ( G + e) S n - 2 
for all e rf. E( G). In this section, we characterize those 'Ytr ( G)-edge critical 
graphs G for which 'Ytr(G) - 'Ytr(G + e) = n - 2 for some e rf. E(G). We 
also determine which trees are 'Ytr-edge critical. 

Let the graph G(m) be defined as before. 

Proposition 2 Suppose G is a connected graph of order n 2 3. Then G is 
a {tr-edge critical graph for which {tr(G) = n and {tr(G + e) = 2 for some 
e E E(G) if and only if GE {K1,3, G(n - 4)}. 

Proof. Let G = G(n - 4). By Theorem 1, /tr(G) = n, while 2 ::; {tr(G + 
e) S n - 2 for every e r/. E(G) . Thus, G is a 'Ytr-edge critical. Moreover, 
/tr(G + v1v4) = 2. If G = I<1,3, then /tr(G) = n, while /tr(G + e) = 2 for 
every e rf. E(G), as required. 

For the converse, suppose G is a !tr-edge critical graph for which /tr(G) = n 
and 'Ytr(G + e) = 2 for some e = xy E E(G). Let H = G + xy, and let 
{u,v} be a ltr(G + e)-set. Then every vertex of His adjacent to either u 
or v, while every vertex of R = V( G) - { u, v} is adjacent to another vertex 
of R. We have the following fact that will be used repeatedly in the proof. 

Fact 2. degc(a) ;::: 2, Va ER 

We proceed with the following cases. 

Case 1. {u,v} = {x,y}. 

Without loss of generality, assume u = x and v = y. It follows from Fact 2 
and Theorem 1, that every vertex in R is either a remote vertex or adjacent 
to a remote vertex. Moreover, also by Fact 2 no vertex of R is a leaf of 
G. Let w E R be a remote vertex of G. Then w is adjacent to a leaf, 
which must be either x or y . Without loss of generality assume it is x. Let 
w' E R be a vertex which is adjacent to w. Then w' must be adjacent to 
y, as x is a leaf. Since at least one of the endpoints of yw' is a remote 
vertex of G, and since deg(r) ;::: 2 for every r E R, vertex y is not a remote 
vertex, whence w' must be remote. But then y is also a leaf of G. Hence, 
G = P4 = G(O) = G(n - 4). 

Case 2. x = u and y ER. 

Again, every vertex in R is adjacent to a vertex of R, whence deg( z) ;::: 2 
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for every z E R - {y}. By Theorem 1, at least one of u or vis a remote 
vertex. 

Suppose u is a remote vertex. Then v is a leaf, and every vertex of R - {y} 
is adjacent to u. If y is adjacent to at least two vertices of R - {y}, then no 
vertex in R can be remote. Thus, y is a leaf of G. Let w E R - {y} be the 
vertex adjacent toy. No vertex in R - {y, w} is a remote vertex G, and so, 
by Theorem 1, R - {y, w} is an independent set of G. Thus, every vertex 
in R- {y, w} is adjacent tow. Since { u, v} is a minimum TRDS, it follows 
that uw E E(G), and so G = G(n - 4). 

We may therefore assume that u is a leaf, and every vertex of R - {y} is 
adjacent to v. If y is adjacent to v, then deg(z) :'.:: 2 for every z ER. Since 
y must be also adjacent to a vertex not in a TRDS, no vertex of R can 
be remote, which is a contradiction. Thus, y is not adjacent to v. If y is 
adjacent to at least two vertices of R - {y}, then no vertex in R can be 
remote. Thus, y is a leaf of G. Let w E R - {y} be the vertex adjacent to 
y. No vertex in R - {y, w} is a remote vertex G, and so, by Theorem 1, 
R - {y, w} is an independent set of G. Thus, every vertex in R - {y, w} is 
adjacent tow, and so G = G(n - 4). 

Case 3. {x,y} ~ R. 

Suppose xis adjacent to both u and v. Then, by Theorem 1, either x or v 
is a remote vertex. If x is a remote vertex, then x is adjacent to a leaf in 
R - {y}, which is impossible, since deg(z) 2". 2 for every z E V(G) - {y}. 
Thus, x is not a remote vertex, whence v is a remote vertex of G. Since 
deg(z) ;::: 2 for every z E V(G) - {y}, it follows that y must be a leaf of 
G. Now, considering the edge ux, vertex u must be adjacent to a leaf in 
R - {y} since ux must be incident to a remote vertex. This produces a 
contradiction. 

Thus, x (y, respectively) is adjacent to exactly one of the vertices in the 
set {u, v }. 

Suppose u is adjacent to both x and y. 

Suppose v is adjacent to a vertex in w E R. Then, by the above, w E 

R - { x, y }. As before, either v or w is a remote vertex of G. But v cannot 
be remote, since then a leaf exists in R - { x, y }, which is a contradiction. 
Thus, w must be adjacent to a leaf in R, which is a contradiction. Hence, 
v is a leaf of G. Since no vertex in R is a remote vertex of G, Theorem 1 
implies R = {x,y}. Thus, G = K1,3. 

We may therefore, without loss of generality, assume that u is adjacent to 
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only x in {x,y}, while vis adjacent to only yin {x,y}. Moreover, since no 
vertex in Risa remote vertex of G, we must have that R = {x, y}. Thus, 
G = P4 = G(O) = G(n - 4). D 

Proposition 3 Suppose G is a /tr-edge critical graph. If R is the set of 
remote vertices, then (R) .is complete. 

Proof. Let { u, v} ~ R such that uv E G. Let S be a /tr ( G + uv )-set. Then 
{ u, v} ~ S, and so S is also a TRDS of G, whence /tr(G) ::; /tr(G + uv), 
which is a contradiction. D 

Proposition 4 Suppose G is a /tr-edge critical graph. Let { r 1 , .•. , re} 
be the remote vertices of G, and let Li be the leaves adjacent to Ti for 
i = 1, .. . ,I!.. If e?: 2, then IL;I = 1Jori=1, ... ,e. 

Proof. Suppose I!. ?: 2 and, without loss of generality, that { u, v} ~ L 1 . 

Moreover, let w E L2. Let e = r2v, and let S be a /tr-set of G + e. 
Then { u, r1 , r 2 , w} ~ S, whence v E S, and so S is a TRDS of G, whence 
'Ytr(G)::; /tr(G+uv)::; /tr(G)-1, which is a contradiction. Thus, IL;I = 1 
for i = 1, ... , I!., as required. D 

Proposition 5 The only /tr-edge critical tree T is P4 . 

Proof. Note that diam(T) S 3, since otherwise (cf. Proposition 3) the 
two remote vertices on a diametrical path are adjacent, implying that T 
has a cycle. If diam(T) = 3, then, by Proposition 4, both support vertices 
on a diametrical path has degree two, implying that Tis isomorphic to P4 . 

Lastly, P3 is not /tr-edge critical. D 
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