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Abstract

Linguists often represent the relationships between words in a collection of text as
an undirected graph G = (V,E), were V is the vocabulary and vertices are adjacent
in G if and only if the words they represent co-occur in a relevant pattern in the text.
Ideally, the words with similar meanings give rise to the vertices of a component of the
graph. However, many words have several distinct meanings, preventing components
from characterizing distinct semantic fields. This paper examines how the structural
properties of triangular line graphs motivate the use of clustering coeficient on the
triangular line graph, thereby helping to identify polysemous words. The triangular
line graph of G, denoted by T (G), is the subgraph of the line graph of G where two
vertices are adjacent if the corresponding edges in G belong to a K3.

Keywords: H-line Graphs, Triangular Line Graph, Line Graph, Connectivity;
2000 Mathematical subject classification: 05C12, 05C40

1 Introduction and Motivation

One of the chief concerns of linguists is the pervasive ambiguity of natural language. At
the lexical (or word) level, this manifests in the existence of the multiplicity of senses, or
specific meanings, that a word may have. In the hand-compiled Wordnet [5] ontology, for
example, 17% of the 114, 648 nouns have more than one sense, and the average noun has
1.2 senses. The word ‘lip’, for example, has 5 distinct senses listed in Wordnet, including
one from human anatomy (‘either of two fleshy folds of tissue that surround the mouth and
play a role in speaking’) and one describing an object’s structure (‘the top edge of a vessel
or other container’).
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The multiplicity of word senses considerably complicates computational tasks over lan-
guage – including automatic translation [14], information retrieval [12], and speech synthesis
[13] – and has led to an interest in automatic word sense disambiguation (WSD), which de-
termines the word sense intended in a particular context (see [6] and [9] for a broader
history and overview of WSD). In [10] and [11], the authors independently observe that
certain linguistic patterns, such as coordination patterns ‘w1 and w2’, are highly predictive
if w1 and w2 have senses in the same semantic field. Thus, observing ‘lip and mouth’ and
‘lip and nose’ would allow a system to discover that there are senses of ‘lip’, ‘mouth’, and
‘nose’ which are semantically related. A natural representation for these word relationships
is an undirected graph G = (V,E), where V is the vocabulary (the set of distinct words in
the text) and vertices are adjacent in G if and only if the words they represent co-occur in
a relevant pattern in the text. Ideally, the words in the same semantic field will give rise to
the vertices of a component of the graph. However, given that ‘lip’ has multiple senses, such
a system also runs the risk of placing ‘handle’ and ‘teeth’ in the same component. What is
needed is a method for spotting these spurious links.

In [3], Dorow et al. proposed an algorithm based on triangles in a graph. They argue
that while a word w may co-occur with word w1 under sense S1 and with w2 under sense
S2 (for example, lip with handle and with nose), it is unlikely that all three words co-occur
with each other; that is, w,w1, w2 form a triangle in G. Thus, each component should
be disconnected at any vertex v with neighbors v′, v′′ in separate components of 〈N(v)〉.
To visualize these vertices, Dorow et al. introduced the link graph, which is equivalent
to the anti-Gallai graph of G (see Le [8]) or triangular line graph of G (see Dorrough [4]
and Jarrett [7]), denoted by T (G). In this paper we use the terminology of triangular line
graphs. T (G) is the subgraph of the line graph of G where two adjacent vertices in T (G)
correspond to two edges that belong to a K3 in G. T (G) is itself an instance of the H-line
graph introduced by Chartrand, Gavlas and Schultz in [1] for H ∼= K3.

We evaluated the triangular line graph operator on a graph constructed from the English
Gigaword corpus, which consists of 1 billion words of English text.1 This procedure pro-
duced 460 components with half of the words in one component. Thus, the triangular line
graph procedure must be supplemented when used in a large corpus. This paper explores
the structural properties of the triangular line graph, with the aim of understanding how
best to use such graphs for word sense disambiguation. We will demonstrate that the prop-
erties of the triangular line graph, particularly those of Kn, allow us to effectively bound
the clustering coefficient metric, thereby assisting in disambiguating ambiguous words.

2 Definitions and Observations

In this paper, all graphs G = (V (G), E(G)) are simple graphs (no multiple edges), with
vertex set V (G) and edge set E(G). The order of G is |V (G)| while the size of G is |E(G)|.
For graph theory terminology and notation used in this paper, we refer the reader to [2].
We first recall the definition of triangular line graph as defined by Jarrett in [7].

1In this paper, we use the model of [3], where each noun is represented by a vertex, and an edge is present
between two vertices if the corresponding nouns are separated by either “and”, “or”, or a comma.
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Definition 2.1. The triangular line graph T (G) of a graph G is the graph with vertex set
E(G), where two distinct vertices e and f are adjacent in T (G) if and only if there exists a
subgraph H ∼= K3 of G with e, f ∈ E(H). Any such subgraph is called a triangle of G.

For ` ≥ 1, we use the notation of [4] where Γ`(G) denotes the number of subgraphs of
G isomorphic to K`. The following two observations appeared in [4] and [7] and are useful
for this paper.

Observation 2.2.

(a) If H is a subgraph of G, then T (H) is a subgraph of T (G).

(b) Let G be a graph. If e is an edge of G that does not belong to a copy of K3 in G, then
e is an isolated vertex in T (G).

(c) If G is a graph, then every vertex in T (G) is either an isolated vertex or belongs to a
copy of K3 in T (G).

Observation 2.3. If G is a graph, then

(a) the order of T (G) is equal to the size of G; that is, Γ1(T (G)) = Γ2(G), and

(b) the size of T (G) is triple the number of triangles in G; that is, Γ2(T (G)) = 3 Γ3(G).

We now present general results about the triangular line graph of a given graph.

Observation 2.4. For any graph G, every vertex in T (G) has even degree.

Corollary 2.5. For a graph G, the triangular line graph T (G) is Eulerian if and only if
T (G) is connected.

This brings up the question of which triangular line graphs are connected. Note that
the triangular line graph of a connected graph does not have to be connected. For example,
the triangular line graph of the bow tie graph 2K2 +K1 is 2K3 which is disconnected.

For a positive integer n, we define a triangle trail to be a graph that consist of n copies
of K3, say ∆1,∆2, . . . ,∆n, where ∆i and ∆i+1 share a common edge, say ei,i+1. If no ∆i

(1 ≤ i ≤ n) is repeated, the triangle trail is said to be a triangle path.

To illustrate what a triangle trail is, consider the two graphs of Figure 1. The first graph
does not have a triangle trail joining the triangle 〈drink, apple, computer〉 to the triangle
〈drink, food, water〉 while the second one has a triangle trail between any two triangles.

We say that a connected graph G belongs to class C if (1) every edge of G belongs to a
K3, and (2) for every two copies of K3 in G, there is a triangle trail that connects them.

Theorem 2.6. For any graph G, the triangular line graph T (G) is connected if and only
if G belongs to class C.
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(a) A graph which does not have a triangle trail
going from the triangle 〈drink, apple, computer〉
to the triangle 〈drink, food, water〉.

(b) A graph in which each triangle is connected
to any other triangle via a triangle path.

Figure 1: Two possible collocation graphs for the same nouns

Proof. Suppose first that T (G) is connected. If G has an edge that does not belong to a
K3, then by Observation 2.2, the corresponding vertex in T (G) will be an isolated vertex
which contradicts the fact that T (G) is connected. Hence, every edge in G belongs to a
K3. Now suppose that ∆ and ∆′ are two copies of K3 in G, (n > 1). Let e ∈ E(∆) and
e′ ∈ E(∆′) such that the distance between the vertices of e and e′ is a minimum. Since
T (G) is connected, the corresponding vertices ve and ve′ are connected by a path in T (G),
say ve = ve1 , ve2 , . . . , ven = ve′ . Since, by Observation 2.2, every edge of T (G) belongs to a
triangle, it follows that for each edge veivei+1 there is a triangle in T (G) that contains both
vertices. It follows that the edges ei and ei+1 belong to a common triangle in G, say ∆i,i+1.
Since ∆i−1,i and ∆i,i+1 share the edge ei, we have a triangle path that connects ∆ and ∆′

in G.

For the converse, we assume that G is connected. Let ve and ve′ be two vertices in T (G)
corresponding to the two edges e and e′ in G. Since every edge in T (G) belongs to a K3,
it follows that e ∈ ∆ and e′ ∈ ∆′ where ∆ and ∆′ are triangles in G. Since G is in class
C, there is a triangle trail that connects ∆ and ∆′, say ∆ = ∆1,∆2, . . . ,∆n = ∆′. This
implies that there is an edge trail e− e1,2 − e2,3 − · · · − en−1,n − e′ that connects e and e′,
where ei,i+1 is an edge common to ∆i and ∆i+1. Thus, in T (G) we have the corresponding
vertex trail ve, ve1,2 , ve2,3 , . . . , ven−1,n , ve′ connecting vei and vej . Thus T (G) is connected.

One standard question is to determine which graphs are isomorphic to their triangular
line graphs; that is, to find the fixed points of the operator that sends a graph to its
triangular line graph. It is easily proved that in the case of line graphs, this only happens
for cycles. In [4], it is demonstrated that the fixed point of the triangular line graph operator
for an arbitrary graph G is isomorphic to the disjoint union of r ≥ 0 triangles. From this,
it follows that a graph is isomorphic to itself if and only if it is a disjoint union of triangles.
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3 Recognition of Triangular Line Graphs

In this section, we will consider the following question: Can a given graph H be the trian-
gular line graph of some graph? For example, the path Pn is not the triangular line graph
of any graph since a triangular line graph is either empty or has girth 3. Also, every edge
of a triangular line graph must belong to a K3. Thus, if a graph H has an edge that does
not belong to a K3, then H is not a triangular line graph.

In answering this question, we may restrict our attention to connected graphs, as any
component of a triangular line graph is a triangular line graph as well.

Proposition 3.1. If G is a graph, then T (G) contains a copy of K4− e if and only if G
contains a copy of K4.

Proof. Let G be a graph. Suppose first that T (G) has copy of K4 − e whose vertices are
u, v, w and x, where u and x are not necessarily adjacent. Let eu, ev, ew and ex be the edges
in G that correspond to u, v, w and x, respectively. It follows that each of the following pairs
of edges in G lies in a copy of K3 in G: {eu, ev}, {eu, ew}, {ex, ev}, {ex, ew} and {ev, ew} (and,
{eu, ex} if K4 − e is not induced). Observe that ev and ew must be incident to a common
vertex in G while their non-common vertices must be adjacent. Since each of eu and ex
appears with each of ev and ew in the pairs of edges listed above, at least one of eu and
ex (say eu) must be incident to the vertex that is common to ev and ew. Moreover, the
non-common vertices of eu and ev are adjacent in G as well as the non-common vertices of
eu and ew. This implies that the vertices of eu, ev and ew induce a copy of K4 in G.

Suppose now that G contains a copy of K4. Since T (K4) contains a copy of K4 − e, it
follows that T (G) contains a copy of K4 − e.

Corollary 3.2. If H is a graph that contains a copy of K4 − e and H = T (G) for some
graph G, then H contains a copy of the octahedral graph.

Proof. By Proposition 3.1, it follows that K4 is a subgraph of G. This implies that T (K4)
(which is the octahedral graph) is a subgraph of T (G) = H by Observation 2.2.

Let Wn = K1 + Cn (also know as an n-wheel) where n ≥ 3. The vertex that dominates
the vertices on the n-cycle of Wn is the center of Wn and the edges incident to the center are
spokes. For n ≥ 4, the triangular line graph of Wn is called an n-cog-wheel and is denoted by
CWn. The n-cog-wheel CWn is the graph obtained from an n-cycle C : v0, v1, . . . , vn−1, v0

by introducing n new vertices u0, u1, . . . , un−1, and then joining ui to vi and vi+1 for each
i where addition is done modulo n. Two cog-wheels CWn and CWm are non-overlapping if
V (CWn) ∩ V (CWm) = ∅.

Note that two triangles in a graph may either be edge-adjacent (like K4 − e), vertex-
adjacent (like 2K2 +K1), or disjoint. Let class D be the set of all graphs G such that: (a)
every edge of G belongs to a copy of K3, (b) G does not contain (K4 − e) as a subgraph
and (c) all the cog-wheels in G are non-overlapping.

Proposition 3.3. Every graph in D is a triangular line graph.
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Proof. Let H ∈ D where V (H) = {v1, v2, . . . , vn}. Since every edge in H belongs a
triangle, it follows that every vertex in H belongs to a triangle also. We construct a
preimage G as follows. For each triangle 〈vx, vy, vz〉 in H, construct a triangle Txyz and
label its edges x, y and z. Let T = {∆1,∆2, . . . ,∆Γ3(H)} be the set of all such triangles
Txyz and let C = {CWm1 , . . . , CWmw} be the set of all cog-wheels in H. Note that if there
exist two triangles in H that have a common vertex vx, then there are two distinct triangles
∆i,∆j ∈ T such that each of ∆i and ∆j has an edge labeled x and all the other edges of
∆i and ∆j have different labels. For each CWn in C, construct a copy of Wn by identifying
the edges having the same labels in the corresponding triangles in the appropriate way –
the edges that correspond to the vertices on the n-cycle of CWn will be the spokes of Wn

while the rest of the edges will lie on the n-cycle of Wn. Denote the set of such wheels by
W, and T ′ the set of all triangles that belong to a wheel in W. From the set W ∪ (T −T ′),
construct the graph G by identifying all edges having the same labels.

We now show that T (G) ∼= H. Suppose ∆i,∆j ,∆k ∈ T form a K4 such that ∆i =
Tabc,∆j = Tade and ∆k = Tbdf . Then 〈va, vb, vc〉, 〈va, vd, ve〉 and 〈va, vd, vf 〉 are triangles in
H. However, this implies that K4− e is a subgraph of H which is a contradiction. Hence, if
∆i,∆j and ∆k are distinct triangles in T , then at least one of the pairs {∆i,∆j}, {∆i,∆k}
and {∆j ,∆k} have edges all of which have different labels. From this and by the way G
was constructed, G does not have K4 as a subgraph. Hence, K4 − e is not a subgraph of
T (G). Observe that the only way a triangle can be formed in G that does not correspond
to a triangle in H is to identify the edges labeled x of two triangles 〈e1, e2, x〉 and 〈f1, f2, x〉
for which the vertex incident to both e1 and e2 (call this vertex v) is adjacent to the vertex
incident to both f1 and f2 (call this vertex w). Now the edge vw must then belong to
a triangle ∆, with ∆ sharing only the vertex v with triangle 〈e1, e2, x〉, which is contrary
to our construction of G. Thus, every triangle in G correspond to a triangle in H. Since
no two cog-wheels overlap in H, we also know that when two triangles in T are joined by
identifying edges with the same label in the construction of G, no edge label is lost. Thus,
E(G) = {1, 2, . . . , n} and so |V (H)| = |E(G)| = |V (T (G))|. Let V (T (G)) = {u1, u2, . . . , un}
and consider the mapping φ : V (T (G)) −→ V (H) given by φ(ui) = vi for i = 1, 2, . . . n.
Since φ is bijective, it suffices to show that φ preserves adjacency. Suppose uxuy ∈ E(T (G)).
It follows that the edges x and y belong to a common triangle ∆ in G. Let z be the other
edge of this triangle. This means that there is a triangle Txyz ∈ T that was obtained from
some triangle 〈vx, vy, vz〉 in H. Hence, vxvy ∈ E(H). Using a similar argument, we can show
that if uxuy 6∈ E(T (G)), then vxvy 6∈ E(H). Thus, T (G) ∼= H.

Proposition 3.4. The complete graph Kn (n ≥ 4) is not the triangular line graph of any
graph.

Proof. Assume, to the contrary, that there is a graph G such that T (G) = Kn for some
n ≥ 4. It follows that G has at least four edges say e1, e2, e3 and e4. Moreover, each pair of
edges in G occurs in a triangle. Without loss of generality, we assume that 〈e1, e2, e3〉 is a
triangle. Observe that e4 cannot share endpoints with all of e1, e2 and e3. Hence, e4 cannot
occur in a triangle with each of e1, e2 and e3 and we get a contradiction.

Note that K2 is not the triangular line graph of any graph either. Thus, the only
complete graphs that are triangular graphs of some graph are K1 and K3.
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In summary, if H is the triangular line graph of some graph, then the following must be
true: a) Every vertex in H has even degree; b) The size of H is a multiple of 3; c) Every
edge in H belongs to a triangle; d) If K4− e is a subgraph of H, then the octahedral graph
is a subgraph of H. The converse of this statement is not true. For example, K7 satisfies
properties (a) through (d) but is not a triangular line graph by Proposition 3.4.

4 The Clustering Coefficient and the Triangular Line Graph

In this section, we use the structure of the triangular line graph of the complete graph Kn

to decide how to best use the clustering coefficient to identify polysemous words. Since
T (K2) = K1 and T (K3) = K3, we focus our attention to the the case when n ≥ 4. If
V (Kn) = {1, 2, . . . n} is the vertex set of the complete graph Kn, then the vertex set of the
triangular line graph of Kn is given by V (T (Kn)) = {vij : 1 ≤ i 6= j ≤ n}.

Now let i be a vertex in Kn. Since every pair of edges in Kn belongs to a copy of K3

in Kn, it follows that the set of edges {ij : 1 ≤ j ≤ n, j 6= i} gives rise to a clique of
order n − 1 in T (Kn). As in [7], we denote each of the above mentioned cliques by Gi for
i = 1, 2, . . . n. Note that if 1 ≤ j, k, ` ≤ n and j, k and ` are distinct, then the triangle
in T (Kn) induced by the vertices jk, j` and k` does not belong to any of the cliques Gi

mentioned above. We call these triangles clique-linking triangles and denote them by Tj,k,`.
Since each clique-linking triangle Tj,k,` is determined by the vertices j, k and ` in Kn, it
follows that T (Kn) has

(
n
3

)
clique-linking triangles. Also, from [4] we have that T (Kn) has

a total of
(
n
3

)
+ 4

(
n
4

)
triangles. We incorporate this formally in the following result which

describes the other structural characteristics of the triangular line graph of the complete
graph Kn, (n ≥ 4), based on the results in [4] and [7].

Theorem 4.1. Let n ≥ 4 be an integer.

1. T (Kn) is connected, 2(n− 2)-regular of order order
(
n

2

)
and size

(
n

2

)
(n− 2).

2. T (Kn) has exactly n distinct copies of Kn−1.

3. T (Kn) has
(
n

3

)
+ 4

(
n

4

)
triangles,

(
n

3

)
of which are clique-linking triangles.

4. For every i 6= j with 1 ≤ i, j ≤ n, there is a unique vertex common to Gi and Gj,
namely ij.

5. The subgraph induced by the set of vertices V (Gi) ∪ V (Gj), where i 6= j and 1 ≤
i, j ≤ n, contains n − 2 clique-linking triangles, namely those of the type Ti,j,k where
k /∈ {i, j}, 1 ≤ k ≤ n.

6. For every distinct triple of integers i, j, k with 1 ≤ i, j, k ≤ n, there is a unique clique-
linking triangle that joins all of Gi, Gj and Gk together.

We now return to the problem of decomposing the triangular line graph mentioned at
the outset of the paper. In [3], the authors considered applying the clustering coefficient (or
curvature) of a vertex to identify polysemous words. The curvature of a vertex w, curv(w)
was defined in [3] as
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curv(w) =
number of triangles w participates in

number of triangles w could participate in
.

and is thus a measure of the completeness of a neighborhood. Note that the number of
triangles that a vertex w can participate in is given by |N(w)||N(w) − 1|/2. We propose
that curvature, known in graph theory as clustering coefficient, be used on the triangular
line graph instead of the graph itself. In particular, we identify vertices with low clustering
coefficient in T (G) whose neighborhood contains vertices with high clustering coefficient.
Vertices with high clustering coefficient in T (G) correspond to word pairs whose neighbors
are highly interconnected, and thus are part of a semantically homogenous group of senses.
Vertices with low clustering coefficient in T (G) correspond to word pairs whose neighbors are
loosely connected, and hence appear infrequently. We are interested in removing erroneous
links – those links which we observe in a corpus but which are not semantically meaningful.
Given what was said above, these correspond to vertices with low clustering coefficient in the
neighborhood of vertices with high clustering coefficient – cases where a polysemous word’s
two senses are connected because of a small, semantically meaningless cases of co-occurence
in the corpus.

To see this, first note that the clustering coefficient of a vertex in T (G) is 1 if and only if
the vertex has degree 2 in T (G). The edges represented by these vertices in G can be safely
removed in the attempt of identifying the ambiguous words in the text. Figure 2 shows the
triangular line graph of the graph in Figure 1(b). Notice the vertices with low clustering
coefficient adjacent to vertices of degree 2.

Figure 2: The connected triangular line graph of the graph in 1(b).

If the edges corresponding to vertices with low clustering coefficient in T (G) (like drink-
apple in our case) were removed from G to create G∗, then T (G∗) would separate the
semantic meanings of the words (like the meanings of the word apple, see Figure 3).

Thus, we suggest that vertices with low clustering coefficient are likely indications of
polysemy when adjacent to vertices with high clustering coefficient. From Theorem 4.1, we
have the following intrinsic lower bound on the clustering coefficient of a vertex of T (Kn),
where n ≥ 3.
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(a) The graph in Fig-
ure 1(b) with the edge
drink-apple removed.

(b) The triangular line graph of the graph on the left

Figure 3: Each component presents a different semantic space once the edge with the lowest
clustering coefficient was removed from the graph in 1(b)

Corollary 4.2. If n ≥ 3 is an integer, then the clustering coefficient of v is greater than
1/2 for all v ∈ T (Kn).

This suggests that we consider the clustering coefficient of a vertex v in T (G) to be high
if curv(v) is greater than 1/2. Since some sets of words that belong to the same semantic
field do not give rise to cliques, it is reasonable to consider the clustering coefficient of
vertices v in T (G) to be high if curv(v) is slightly less than 1/2. Our evaluation of this
method with high clustering coefficient defined as above 0.3 and low clustering coefficient
defined as below 0.05 resulted in the removal of 15% of the edges in the original graph
from the Gigaword corpus. Application of the triangular line graph transformation to this
new trimmed graph resulted in 900 components, with the largest containing only 5% of the
words in the data set, a major division of what occurred without this procedure. Recall
that the triangular line graph of the Gigaword corpus graph had one component with over
50% of the words, and thus was not effective in distinguishing the meanings of the words.

5 Conclusion and Remarks

This paper investigated the basic graph-theoretic properties of triangular line graphs, and
their application to automate the discovery of ambiguous words. The more general con-
cept of H-line graph was introduced by Chartrand et al [1] while triangular line graphs
were studied by Jarrett [7] and Dorrough [4] who studied the convergence of sequences of
iterated triangular graphs for the complete graph and for a general graph, respectively. In
addition to discussing connectedness and vertex degrees in triangular line graphs, we also
identified a large family of graphs whose members are triangular line graphs, and presented
characteristics for potential triangular line graphs.

The description of the triangular line graph of the complete graph Kn in [7], allows one to
compute an upper bound on a threshold for an encouraging procedure to split triangular
line graphs using clustering coefficients. The procedure builds on a re-estimation component
common in the machine-learning literature on hill-climbing, suggesting the fruitfulness of
further study on iterative applications of the triangular line graph transformation and how
such transformations help in word sense disambiguation.
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