
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1994

A Large-Grain Parallel Programming

Environment for Non-Programmers

Lewis, Ted

IEEE

http://hdl.handle.net/10945/41304

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A LARGE-GRAIN PARALLEL PROGRAMMING ENVIRONMENT
FOR NON-PROGRAMMERS

Ted Lewis
Computer Science Dept

Naval Postgraduate School
Monterey, CA. 93943-5118

lewis@cs.nps.navy.mil

Abstract — Banger is a parallel programming
environment used by non-professional programmers
to write explicitly parallel large-grain parallel
programs. The goals of Banger are: 1. extreme ease
of use, 2. immediate feedback, and 3. machine-
independence. Banger is based on three principles:
1. separation of parallel programming-in-the-large
from sequential programming-in-the-small, 2.
separation of programming environment from target
machine dependency, and 3. instant feedback to
user wherever possible.

INTRODUCTION

Great progress has been made in the maturity of
parallel processor hardware, but parallel processor
software has remained a challenging problem, i.e.
parallel programming will remain a challenging
research problem for computer scientists over then
next decade. In the meantime, what about non-
computer scientists? There are many disciplines of
science and engineering that require the
performance of parallel machines and the subject
expertise (domain knowledge) of a non-computer
scientist.

Such applications of parallel processors are
typically small, short-lived, simple pieces of
software. It is desirable to design, debug, and run
these "quick-and-dirty" parallel programs within a
few days rather than months or years, by one or two
scientists rather than a large team of programmers.
This mode of development is in sharp contrast to
the large-scale software engineering projects most
familiar to professional programmers.

The problem addressed by Banger is the problem
faced by non-programmers in non-computer science
disciplines: how to write a parallel program that
solves a problem in some branch of science or
engineering without becoming an expert in
computer science or parallel programming.

The first step in using Banger is to draw a
hierarchical dataflow graph of the application,
leaving the coding details for later. Next, we define
a target machine on which Banger automatically
schedules the parallel tasks of the application.
Third, we use a novel programmable pocket
calculator metaphor to specify algorithms as small
sequential tasks. Finally, we generate the code.

Figure 1. Hierarchical Dataflow Graph of PITL
Design for an LU Decomposition of 3-by-3 System:
Ax=b

1 1 - 6 5
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

PROGRAMMING-IN-THE-LARGE

Programming can be divided into two major phases:
programming-in-the-large (PITL), and
programming-in-the-small (PITS). We use the
principle of separating PITL and PITS to distinguish
between parallel parts and sequential parts, in a
parallel application. This is our first principle,
which is expressed succinctly, below:

A large-grained parallel program is a PITL
hierarchical dataflow graph consisting of
nodes and arcs. The nodes define
hierarchical decompositions, or PITS
sequential tasks, and the arcs define
precedence relations between nodes.

This definition is illustrated in Figure 1, where we
show a 2-level hierarchical PITL dataflow graph
representing the major tasks in a 3-by-3 LUD
algorithm for solving a linear system, Ax=b when
n=3. Storage is shown as open rectangles labeled
with the data they contain. Tasks are shown as
oval-shaped nodes labeled with a comment, e.g.
fanl, fl21, etc. Bold-lined nodes are decomposable
into lower-level dataflow graphs shown as
expansions, e.g. lower-level graphs. Arcs establish
precedents created by either control flow or
dataflow dependencies, and are labeled with the
names of the variables containing data which flows
in/out of each node.

In general, any large-grained dataflow calculation,
not involving loops or branches, can be expressed
as a hierarchical dataflow diagram as illustrated by
this small example.

Figure 2. Two Examples of Network Interconnection
Topologies Supported by Banger

SEPARATION OF PROGRAM FROM
MACHINE

Principle two, advocating separation of program
from machine, is achieved as a byproduct of the
PITL hierarchical dataflow design. But, how is
runtime efficiency retained if the target machine is
not considered during design? Banger recovers
much of the potentially reduced efficiency by

optimally scheduling the PITL design onto a
specific parallel processor. This is the second
principle governing the design of Banger:

Machine- independent paral le l
programming can be made efficient by
optimal scheduling heuristics which find
the shortest elapsed execution time
schedule for a specific parallel program,
given a specific target machine.

Matching an arbitrary large-grained program design
to an arbitrary parallel computer architecture is
automatically performed by a scheduling heuristic
that finds the shortest elapsed execution time
schedule for a specific target machine. A program
is tailored to a certain machine by considering the
following characteristics of the target machine:

1. Processor speed
2. Process startup time
3. Message passing startup time
4. Message transmission speed

Figure 3. Some Gantt Chart Schedules and a
Speedup Chart Automatically Generated by Banger.

1 1 - 6 6
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

In addition, the target machine's interconnection
network topology (if it is a distributed-memory
machine) is entered by the user as another graph,
see Figure 2. Banger supports hypercubes, meshes,
trees, stars, and fully-connected topologies.

Banger uses the scheduling heuristics implemented
in PPSE [1]. Figure 3 shows several schedules
obtained from Banger when mapping the PITL
design of Figure 1 onto various sized hypercube
interconnected machines. Also shown is a speedup
prediction graph obtained by mapping the PITL
design onto 2,4, and 8 hypercube processors.

THE CALCULATOR METAPHOR

The third principle of our approach says to use
simplifying metaphors wherever possible. Because
Banger is aimed at scientific non-programmers, we
adopted a calculator metaphor as a friendly user
interface to Banger's PITS language. The calculator
is used when defining a PITS sequential routine for
each primitive node of the hierarchical dataflow
graph. Principle three dictates an appropriate user
interface for Banger:

For scientific programmers, an acceptable
programming metaphor is a simulated
pocket calculator containing simple
programming constructs, scientific and
engineering functions, constants, and
formulas, and some means of obtaining
numerical results, upon demand.

Figure 4. Calculator Panel for defining each
sequential task. The SquareRoot Task uses Newton-
Raphson approximation to compute: x = Va.

In Figure 4. a list of input/output variables for the
node is shown in the upper right-hand window, a list
of local variables is shown in the upper left-hand
window, and a panel of programming buttons is
shown in the upper middle of the calculator. The
lower window holds a textual representation of the
node routine, in a simplified programming
language.

RESULTS

As far as the author knows, Banger is the only
parallel programming environment for non-
programmers. It is an entirely new approach to
parallel programming.

While limited in its current form, Banger
incorporates features that may be useful in more
sophisticated parallel programming environments.
For example, the ability to schedule parallel
program designs onto target machines is useful in
any parallel programming environment. The ability
to perform trial runs of tasks or entire programs is
certainly valuable in any programming
environment.

More significantly, Banger demonstrates four
principles that may be followed by designers of
future parallel programming environments,
regardless of the level of expertise of the user:

1. separation of parallel programming-in-the-
large from sequential programming-in-the-small
demonstrates that it is possible to reduce the
complexity of parallel programming by this
division scheme. This principle is made
practical by the scheduling heuristics of
Banger.

2. separation of programming environment from
target machine dependency demonstrates that
it is possible, within the large-grained
paradigm, to achieve machine-independent
parallel programming. While we have not
shown that this principle applies to a broader
range of parallel programming paradigms, we
are confident that Banger can be extended to
encompass fine-grained parallelism through the
use of machine-independent data-parallel
constructs.

3. use of simplifying metaphors such as the
programmable calculator demonstrates the
power of graphical user interface techniques in
programming environment design and
implementation. Users simply do not need to
learn and recall arcane syntactic expressions,
even when dealing with parallelism.

4. instant feedback to the user wherever
possible, especially through graphical displays
and animations, is invaluable to non-
programmers because it is believed to be a
major contributor to early defect removal.

1 1 - 6 7
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

Banger is implemented as an experimental
prototype on an easy-to-use, pervasive personal
computer, so it is highly available to anyone,
whether a computer scientist or not. Copies may be
obtained directly from the author. However, Banger
does not currently support automatic code
generation. A number of program generators for a
variety of systems are under development. These
code generators will provide a final step in
producing a production-level parallel program for
specific target parallel computer systems.

Acknowledgements. Banger is an extension of
PPSE, which was written by Rob Currey in 1991
[2]. Pongsaya Hongswadhi added the pocket
calculator and interpreter capability in 1993, and
improved the user interface. Scheduling heuristics
were developed over a period of six years by
Boontee Kruatrachue, Hesham El-Rewini, and the
author.

REFERENCES

[2]. Currey, R. W. and T. G. Lewis, "User Manual
for The Parallel Programming Support
Environment," Technical Report (91-60-14).
Department of Computer Science, Oregon State
University, OR, 1991.

[1]. El-Rewini, H., and T. Lewis, "Scheduling
Parallel Program Tasks onto Arbitrary Target
Machines", Journal of Parallel and Distributed
Computing, vol 9, pp. 138-153, (June 1990).

1 1 - 6 8
Proceedings of the International Conference on Parallel Processing (ICPP'94)
0-8493-2493-9/0-6 $20.00 © 1994

