
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1998

Modeling and simulation for the FAU

AUVs: Ocean Explorer

Lin, Huaying

http://hdl.handle.net/10945/41292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modeling and Simulation for the FAU AUVS:
Ocean Explorer

Huaying Lin+, Dave Marco", Edgar An', Krish Ganesan', Sam Smith+, Tony Healey"

Email correspondence: ean@oe. fau. edu

Abstract:

This paper describes the research progress made on modeling and simulation development for the Florida
Atlantic University autonomous underwater vehicles (AUV). Recent addition of simulation components
include kinematic effect of longitudinal waves, inertial and position sensor dynamics so that realistic
scenarios can be better accommodated. In addition, the existing FAU communication protocol used for the
onboard acoustic modem has been ported to the simulation platform, thereby enabling multiple vehicle
operations and communication to be simulated. At this stage acoustic propagation for the modem is assumed
to be ideal although a more realistic model for shallow water propagation will be developed in the near
future. This research endeavor is supported by a 5-year ONR MURI project and is jointly carried out by FAU
and Naval Postgraduate School

I. Introduction

Autonomous underwater vehicles (AUV) are
emerging and proven technology with which synoptic
collection of four-dimensional oceanographic data and
rapid environmental assessment of hostile environments
can be quantified. This added utility value to the
underwater community provides an unprecedented
opportunity to validate existing ocean models for better
now-casting and forecasting capabilities. To ascertain
such added value the performance reliability of these
vehicles and data throughput must be thoroughly
evaluated. AUV is a highly complex system, and its
development, integration and testing require the
functionality of each and every system's components to
be properly evaluated. This process is generally time-
consuming and can be very costly if it is to be
implemented at-sea. A more sensible and cost-effective
approach is to preliminarily evaluate and troubleshoot the
system-level development via modeling and simulation
concept [11.

An important criterion associated with modeling and
simulation facilities is that both the simulation and actual
platforms must be as closely compatible as possible
otherwise additional overhead is thus needed to port the
tested components to the vehicle. Given a well-matched
simulation platform, extensive analysis and visualization
procedures can be carried out, providing valuable insights
into pre-flight mission profiles. The platform can also be

used to train non-AUV personnel to gain insights into
routine at-sea operations and mission planning for
specific applications. Considerable system development,
verification and at-sea operations can also be carried out
in parallel provided that the platform architecture is
modular.

Our main goal in the modeling and simulation work
is to support the development and testing of FAU AUVs.
This paper is organized as follows: a brief overview of the
existing software architecture will be given in Section 11.
It is then followed by a description of the simulation
platform regarding its implementation and capability.
Section IV presents a brief overview of the acoustic
communication implementation that can be used for co-
operative multiple vehicle operations. Section V
summarizes the work that has been achieved and the
remaining work targeted for the MUFU project.

11. High-Level Software Architecture

Our current high-level software architecture is built
upon a global shared memory which allows managers and
daemons to communicate indirectly with each other [3].
Shared memory is commonly considered as the most
efficient way to implement inter-process communication,
provided that suitable semaphores are allocated for
handling mutual exclusion and synchronization. To

+ Department of Ocean Engineering, Florida Atlantic University
++ Department of Mechanical Engineering, Naval Postgraduate School

0-7803-5045-6/98/$10.00 01 998 IEEE 1728

automate the construction of the shared memory and
minimize unnecessary typographical error, a filter
program, which takes in a simple text, has been
developed for the vehicle development and can be used to
automatically generate the required C-header files and
dedicated function calls for accessing the shared memory,
The text file contains information of each of the variables,
such as name, type, initial value, unit and sampling rate.
Each variable can be a single element or a complicated
structure. A “one writer many readers” policy is typically
applied to each of the variables although in some cases
where it might be desirable to obtain a semaphore if a
group of element values within a structure are needed
synchronously. The filter program also automatically
generates a semaphore and a time-stamp for each of the
variables.

Each of the managers shown in Figure 1 is
implemented as a task with a pre-defined scheduling
characteristic to accomplish its dedicated behavior. Most
of the managers are synchronous, and run at fixed rates.
For an example, the Head Manager executes a variety of
controllers via function calls. Different heading objectives
of these controllers include crabbing compensation, line
tracking between way-points, and open-loop rudder
control. An arbiter, a heading arbiter in this case,
associated with each of the managers, is then used to
resolve the final rudder angle based on its chosen
selection criterion. Note that although the arbiter selection
criteria are pre-defined before every mission, it can be
dynamically changed during a mission, and this can
greatly enhance the overall mission capability. Additional
heading controller’s features involve only adding extra
inputs to the heading arbiter and calling appropriate
functions in the Head Manager in sequence. Other
managers can be explained based on the same principle.
Thus the combination of shared memory and the arbiter-
manager configuration allows the system to be scalable
without involving much rewriting of codes. This is a very
important attribute inherited in any complex system
design with a bottom-top approach.

MonSewer, being implemented as a daemon, is a
TCP/IP socket server program. It is used to dynamically
monitor or set the values of the shared memory variables
demanded from the remote client. Meanwhile, a Monitor
program, which is running on the remote computer, has
been developed as a TCP/IP socket client program with
X-Motif GUI to receive and display data from
MonSewer. Figure 2 shows the Monitor layout where the
first column displays the current variable values and the
second column the desired values. The display will get
updated as soon as any shared memory variable changes
its value. This toolbox can be very useful when testing
and debugging errors on a real-time operating system.
The selection of particular shared memory variables is

easily controlled by an ASCII file, which contains a list of
variables to be monitored.

Logger, being implemented as another daemon, can
be used to record the entire record associated with each of
the chosen variables in terms of its value, unit, precision
and name at a given sampling frequency along with its
update time. Similar to Monitor, the selection of shared
memory variables to be logged is controlled by an ASCII
file. Note that the logged file generated is completely
self-contained, and can provide enough information to
reproduce the entire mission during post-processing.

111. Simulation Implementation

The vehicle software is a multitasking program, and
is run on a real time operating system VxWorks that
support POSIX standard. Whereas the simulation is
currently run on an SGI with IRIX version 5.3. Note that
this version doesn’t support POSIX standard, and
IRIX6.3, which supports POSIX, will be used at the next
design iteration. In order to maintain compatibility
between the vehicle and simulation platform, several
issues regarding the OS differences, described in the
following .have been taken into consideration:

Task creation Threads are the first choice to
generate tasks and will be implemented on IRIX 6.3.
Although IRIX 5.3 doesn’t support POSIX thread,
SGI light weight sub-process generating functions
sproc works fine to generate subtasks. As of the
difference between Unix and VxWorks, task
scheduling such as task delay and task suspension has
to be tuned to make simulation work correctly.
Shared memory Early simulation version was a
multi-process programming and the Unix shared
memory mechanism was used. It was found to be
awkward and uneasy to implement. Current sproc or
pthread task creating mechanism solves this problem
because tasks shared the same address space. A C
filter program, which automatically converts from the
VxWorks codes to the Unix codes, has been written.
System symbol table The VxWorks OS has a built-
in system symbol table. This table contains pointers
to all the loaded functions and can be called via the
corresponding function names. The current SGI Unix
does not have that capability and thus an AUV
symbol table was implemented for compatibility
reason. The source code used to create symbol table
is also automatically generated by the UNIX filter
program mentioned before.
Timers Up to 20 real-time timers are required by the
vehicle platform for multi-tasking control. On our
Unix system, a group of timers have been
implemented as a circular buffer. Once a new timer is
created, it is registered into that buffer. When the

1729

Unix timer is waken up, it checks all the expired
timers, executes the related functions and finds the
minimum waiting time to reset the Unix timer. To
make a timer more accurate, timer related functions
must be simple, such as just release a semaphore.
Semaphore Currently IRIX 5.3 only supports a
limited number of UNIX named semaphores. As the
number of variables increases, the number of UNIX
named semaphores will reach the system limitation.
IRIX 6.3, which supports POSIX named and
unnamed semaphore, can solve this problem.
Semaphore related functions have been rewritten to
mimic VxWorks system.
Besides the above-mentioned OS implementation

issues, the simulation platform requires a high-fidelity
vehicle, sensor and environment model before any
realistic mission can be simulated. The vehicle model
being used is a nonlinear 6 degree-of-freedom
hydrodynamics model tailored specifically for the FAU
Ocean Explorer AUV [5]. A short description of the
Ocean Explorer is given in the following whereas its
detailed description can be found in [7]. The OEX body
length is 7.14 feet and maximum diameter 21 inches; its
weight in air is 714.2 lbf and displaced weight is 716.7
Ibf. To simulate the environment, a longitudinal surface
wave model which is based on standard linear wave
theory, has been developed. Motion and position sensor
models with standard bias and variance parameters have
been incorporated. In addition to the above features, the
compass model also includes local magnetic field
interference which was experimentally obtained using the
onboard flux gate compass TCM2 [4]. Global Positioning
System (GPS) sensor model includes noise levels and
time constants for standard and differential signals. To
estimate the vehicle position, an extended Kalman filter,
which fuses the motion and position sensors, has been
developed and tested.

Visualization of 3D-motion simulation is based on
SGI Open Inventor GUI, and the data are sent via a
multicast socket so that multiple vehicles can be
displayed on the same screen simultaneously. Platform
independent GUI, such as JAVA-VRML, will be soon
integrated into the next-generation simulation design.
Numerical visualization is based on the same Monitor
layout with a modified MonServer interface. To run the
simulation program, an X-Motif GUI, which allows
daemons and managers to be individually spawned, has
been written. A mission plan can be specified using an
ASCII file in terms of wayhet points. The mission plan
construct is same as that used on the OEX.

IV. Acoustic modem

To simulate the acoustic communication capability
between AUV and ship or AUV-AW, a separate X-
Motif GUI, which allows commands to be entered or
statuses to be displayed, has been developed. This GUI
can be run on any machine on the same network, and
communicates with the simulation via UDP messaging.
The existing acoustic modem protocol belongs to a peer-
to-peer type that supports functions such as send mission
commands, abort mission, receive AUV position and its
state [6].

There are two kinds of acoustic data structures
defined in shared memory, one for an incoming message,
one for an outgoing message. Each acoustic message
comes with a specified source and destination address, a
binary data block that is currently limited to 5 bytes long,
a message id and fmally an error check bit. When a
message is sent, the sender modem expects to receive an
acknowledgement message. If the acknowledgement
message is not received from the remote host for a pre-
defined period of.time, the sender modem will enter a re-
transmit mode and re-send the same data. If the
transmission keeps failing for several times, a failure
message will be reported. To minimize the message size
to within 5 bytes, a data conversion table and a group of
function maps are designed. The 5 bytes are divided into
six non-overlapping parts, three 4-bit-block and three 8-
bit-block. See Table 1 for a sample of commands and data
block definition.

For example, when a “set way-point” command is
sent together with the 5 bytes data, nibl should be set to 5
which indicates the command “Set WaypointNE”. nib2
and nib3 specify the sign of x and y-direction respectively
(positive values indicate north or east). Because only 8
bits are used each to store the y and x position in bytel
and byte2 respectively, nib4 specifies which element in
the conversion table to be used. Up to 15 different
conversion values are available for the 4-bit block. The
latitude and longitude are thus computed by multiplying
the value in bytel or byte2 with the conversion number
specified by nibl.

V. Remarks

Multi-task instead of multi-process implementation is
an important improvement for the simulation, as this
resulted in minimal code change. The limitation of
number of tasks has been extended by resetting UNIX
system parameter in order to match the need for the
simulation.

Navigator, planner and guidance managers have been
successfully ported to the simulation platform. Thus,
complex commands like tracking way-point control can
be executed as well as simple set-point commands. The

1730

description of these managers is beyond the scope of this
paper.

Besides getting commands from either the mission
plan file or Monitor, the simulation model can also accept
commands from the simulated acoustic modem from ship
or any other. This feature improves the flexibility of
AUV.

For intricate mission profiles, sending high level
control commands whenever possible is more efficient in
terms of writing the mission plan files. Next generation
mission script will incorporate the use of macros and
repeat commands to define the high-level commands.
Currently, a yo-yo controller, which performs either stair-
case or glideslope maneuvering, is being implemented as
part of the guidance manager.

Remaining tasks of the MURI project include the
development of a shallow-water acoustic propagation
model for characterizing acoustic modem communication
and adaptive sampling and search performance. The
existing protocol will be revised for supporting
communication among multi-vehicle.

AUV hovering and docking capabilities will be
implemented,, and sonar, obstacle and bathymetry models
will also be developed.

VI. References

Toolbox Ocean’97, Oceans 97 conference, Halifax, Nova
Scotia, October, 1997.

[2] Fossen T. I. Guidance and Control of Ocean Vehicles,
Prentice Hall, 1997.

[3] Ganesan K., Smith S., White K., Flanigan T. A
Programtic Software Architecuter for UUVs , UUST
Conference, Durham, NH, September, 1995.

[4] Grenon G. TCM2: Compensation of Error on AUV,
FAU internal report, Ocean Engineering Dept, FAU.

[5] Humphreys D. E. Vehicle Hydrodynamic &
Maneuvering Model for the FAU Ocean Explorer Vehicle
(OEX), V.C.T Technical Memorandum 96-05 (available
upon request).

[6] Nee1 A., LeBLanc L.R., Park, J.C., Smith, S. Peer-
to-Peer Communication Protocol, for Deep-, Shallow-
Water Communication, Modem Protocol Enables
Coordination Among Multiple Platforms - Reliably,
Effectively. Sea Technology, 10-15, May, 1998.

[7] Smith S., Heeb K., Frolund N., Pantelakis T. The
Ocean Explorer A W : A Modular Platform for Coastal
Oceanography, UUST 95, pp.67-73.

111 Chen, X., Marco, D., Smith, S., An. E., Ganesan
K., Healey T. 6 DOF nonlinear AUV Simulation

Figure 1 Simulation Architecture

1731

Figure 2 Monitor User Interface

CmdStartMotor

CmdStopMotor

SetFeatwe

TerminateCurrentCmd

10

11

12 feature

13

Table 1 Acoustic Command and Data Definition

1732

