
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1995-08

Where is software headed? A virtual roundtable

Lewis, Ted G.

Published in Computer (Volume: 28 , Issue: 8)

http://hdl.handle.net/10945/41251

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Special Feature

T he following round table of opinion is a sampling of the views oflead
ers in both academia and industry on the question of where soft

ware is headed. It is a snapshot in time of where we have been and
possibly where we are headed.

This was supposed to be an introduction to the detailed comments on
the following pages. After reading these selections, as well as others that
were not chosen, I was struck by the chasm that exists between academia
and industry. I had an epiphany, so to speak, and instead of my usual crit
ical slam-dunking, came up with Table 1 which juxtaposes academic ver
sus industrial world views. It appears that these two groups share radically
different views on where software is headed. This difference may be more
important than the individual items in the table.

The second impression, after realizing that the two groups are on dif
ferent wavelengths, is the heavy emphasis on programming languages,
operating systems, and algorithms by the academic group, in contrast to
the clear emphasis on standards and market-leading trends by the indus-

To find out where software is trialgroup.Academicsworryaboutevolutionaryorincrementalchanges
to already poorly designed languages and systems, while industrialists

headed, Computer took to the race to keep up with revolutionary changes in everything. Academics are
looking for better ideas, industrialists for better tools.

Internet, asking experts in The final section in Table 1 may reveal the cause of this chasm. The aca-
demic group uses words like "efficiency, difficult problem, and evolution,"

academia and industry to while the industrial expert uses words like "time to market, opportunity,
and revolution" to describe their world views. To an industrial person,

share their vision of things are moving fast-they are revolutionary. To an academic, things
are moving too slowly, and in the wrong direction-they are only evolu-

software's future. Their tionary changes which are slave to an installed base.
Whether you are in academia or in industry, I think you will find the

responses suggest a strong following brief descriptions of where software is headed interesting and
thought provoking. Let us know if you like this article or if you have other

polarization within the suggestions for how we can bring you up to date on the thinking of your
peers.

software community. -Ted Lewis, Naval Postgraduate School

Computer 0018·9162/95/$4.00 © 1995 IEEE

Table 1. Academic vs. industrial world views.

Academic

Parallel Processing
• New portable

languages (HPF)
• Extensions to Unix

• Algorithms

00 Programming
• New languages

(KidSim)
• New operating

systems
• Algorithms

Research
• New higher-level

languages
• Algorithms
• Proof of Fermat's

Theorem
• Temporal databases

• Isochronous network
protocols

• Software agents
• Multimedia software

engineering
• Formal methods
• Better undergraduate

software engineering
courses

Major Concerns
• Efficiency
• Difficult chronic

problems
• Evolution

Industrial

Networked Processing
• C++ for client/server

• Microsoft Windows,
Novell, Unix

• Rapid application
development tools

Object Technology
• OLE, OpenDoc,

Smalltalk parts
• DCE and/or CORBA

• Business objects

R&D
• Productivity software

• WWWtools
• 3D graphics/GUls

• Adding OT to RDBMS
WWW search engines

• Digital convergence

• Smart e-mail
• End-user

programming
• Software tools
• Improving group

communications

Opportunities
• Time to market
• Opportunity to

make money
• Revolution

• The Desktop

THE FUTURE OF SOFTWARE
Dave Power, SunSoft

T he software industry is in the midst of a revolution,
with developer limitations decreasing and user

choice becoming increasingly a factor. The lower cost of
network bandwidth and the emergence of object-oriented
programming promise a bright future. Here are some of
the things I see on the horizon: true networked computing,
object stores, universal application access, ubiquitous
information access, and the convergence of applications,
content, and interactivity.

REALIZATION OF THE NETWORKED COMPUTING

MODEL. There has been a lot of talk about client-server
computing over the past few years, and it may seem fatu
ous to pitch it as a novel concept. But the reality of client
server is only now upon us. You can actually see this trend
by looking at how big companies are positioning them
selves. Sun has been saying for years that the network is
the computer. Now Microsoft is also touting its network
ing capabilities, and IBM is calling itself network-centric.

True networked computing is just that: computing over
a network, with applications, data, and processing power
all dispersed across the network. Instead of focusing on
individual CPU limitations, developers can write applica
tions that take advantage of network bandwidth, make
the most efficient use of the technology, and target the
needs of the user. When companies begin to buy into a true
networked computing model, software designers can
begin to take full advantage of multi threaded, multipro
cessing capabilities.

OBJECT-ORIENTED SOFTWARE. Today, we're already
losing track of where application code lives. With object
oriented design, that code is moving with the object it
describes, to enhance and manipulate it. The payoff with
objects will come in application development. Developer
productivity will be enhanced as application development
becomes quicker. Soon there will be a standard way to
define objects so they can be recognized and used by dif-

August1995

41

ferent operating systems, and stores of objects will reside
on the network for different applications to use.
Developers will be able to reuse or modify bits of applica
tions-objects-that already exist.

Another benefit of object-oriented software is the cre
ation of new business opportunities. In the future, appli
cation developers will specialize in horizontal and vertical
object development, and we will see the emergence of spe
cialized object developers in place of traditional indepen
dent software vendors. Financial instruments, for
example, might be marketed as objects with performance
histories and customization options for the consumer .

A UNIVERSAL DESKTOP? We won't converge upon a sin
gle operating system, simply because computing is not a
one-size-fits-all venture. Different operating systems pro
vide optimal environments for different types of customers.
Unix, for example, provides strong support for networking
and scalability, making it particularly well-suited for busi
ness enterprises. Windows and Macintosh offer a variety
of very popular and versatile personal productivity appli
cations, and personal digital assistants will eventually catch
up to today's PCs. But application developers are using
object technology to build portable applications that can
run in any of these environments.

A world where one operating system reigns would be
suboptimal: The operating system would be too big for
some, too small for others. Like rose wine, it would serve
only people who can't make up their minds. Rather, inte
gration should, and can, happen at a higher level than the
operating system. The API (application programming inter
face) translation in such products as Wabi is one way to
achieve this. The standardization of objects is another, as
we've seen with object linking and embedding interoper
ability.

BUSINESS INFORMATION NAVIGATOR. Which brings
us to the reason computers exist at all: information.
There's a lot of hype about the information superhighway,
and a lot of focus on the consumer market-making sure
home consumers have access to on-line information, for
instance. But what's true of the home market is even more
true of the business market: Businesses need access to crit
ical information; they need to know where to find it; and
they need the tools to access it. The Business Information
Navigator will emerge as the new "killer app."

Right now, it's easier to get information from a public
domain server in another country than to get a piece of
information you might need from your company database.
Imagine the equivalent Internet tools-ftp, telnet,
gopher-put to work for internal information. Michael
Crichton's Disclosure describes a visionary implementa
tion in which users don a virtual reality helmet to access
company information through a virtual interface that
appears as an extended hallway of filing cabinets. Perhaps
a more practical rendition of this idea is a workstation
designed to let an office worker access information regard
less of location-via the Internet or internally from cor
porate databases. A workstation that breaks protocol
barriers to let knowledge workers-whether they be CEOs,
marketing managers, or research assistants-get and use
the required information. We're not talking about

i Computer

increased CPU power; what we need are more search
engines and protocol converters.

With the Business Information Navigator, it shouldn't
matter what operating system you're running. Your desk
top becomes more of an information access tool, and the
integration comes from a higher level than the operating
system.

CONVERGENCE OF APPLICATIONS, CONTENT, AND

INTERACTIVITY. Again, there's a lot of talk about bringing
interactivity to the home market. Almost all PCs built for
home use have CD-ROM drives and multimedia capabili
ties. But the business market has more practical uses for
audio, video, and interactivity capabilities, and more
money to implement them. The products and services
being brought to the home are, in fact, widely available in
the business market but are grossly underused.

Text is limited. We achieve a greater ability to commu
nicate by supplementing text with audio and video. Sun
employees, for example, regularly receive both audio and
video messages from Scott McNealy, Sun's CEO. For peo
ple at remote sites in particular, these messages are more
personal and informative and more likely to be viewed or
listened to than a text-only e-mail message. There is also
a tremendous demand for videoconferencing. As the work
force moves increasingly toward telecommuting, the abil
ity to communicate visually from a computer will become
even more critical.

To date, businesses really haven't taken advantage of
the consumer trend toward new media. Companies are
rallying to bring new delivery media such as cable and
fiber optics to the home market, along with the receiving
media (TVs and computers) to grab, store, and manipu
late information. However, they are ignoring a potentially
bigger user: the business market. At Sun, for instance, we
have good, fast access to the Internet, from which users
can access news from CNN or get real-time stock prices.

Many opportunities await us in the software industry,
both in development of new applications and in new ways
of doing business. We might also want to rethink the use
of technologies already at hand. The time is ripe .. .let's
seize the day. I

Dave Power is vice president and general manager at
SunSoft PC Desktop Integration-a Sun Microsystems
business unit. The SunSoft PC Desktop Integration unit
develops and markets a suite of products that allow
Solaris and other Unix users to run applications writ
tenfor non-Unix environments. Power received his bach
elor's and master's degrees in engineering from Tufts
University and an MBA from Stanford University.

Readers can contact the author at SunSoft, Two Eliza
beth Drive, Chelmsford, MA 01824; e-mail dave.power
@east. sun. com.

· Software Technology

FROM PROCESS TO PRODUCT: WHERE
IS SOFTWARE HEADED?
Bertrand Meyer, ISE Inc.

T o understand where software is going, we must real
ize that the evolution of software technology is not

primarily determined by software technology. The idea
that other factors also play a role is not original, but in
most other advanced fields-think of computer hardware
or genetic engineering-the primary factors are techno
logical. If you study trends in electronic component inte
gration and VLSI design, you have a good shot at finding
out what computers will look like two, five, even ten years
down the road. You must also consider market forces
will Intel hold its own against newly hungry rivals?-but
the driving force is technology.

Not so in software today. Technology has taken a back
seat to market considerations, largely because a single com
pany, Microsoft, has been so incredibly successful at cap
turing not only market share but also mind share. No other
major industry is so totally dominated by one player. This
phenomenon is recent, and it is impossible to say how long
it will last-that largely depends on how well or how poorly
the Redmond team executes its next moves. But it will have
as much influence on the evolution of software technology
as anything that happens in a research lab, in a university
classroom, or in the boardroom of another company. What
is new is not that commercial factors are important for tech
nology, but that they are so closely intertwined with tech
nological factors and so often dominate them.

Here is a typical example. Software companies today are
removing provably better features from their products
because they do not "conform to Windows conventions."
You get into an argument about why a product does some
thing in a certain way; after a while everyone agrees that a
certain user interface convention is good and that the
reverse convention can cause trouble for users. And you
comply, because if you do not follow the market you do not
have a market. What is the lesson for the software technol
ogist? Not that Windows conventions are all bad (many of
them are excellent) but that in many cases being good or
bad is less important than being the Windows convention.

That such events happen so commonly testifies to
Microsoft's success and to its product quality; quarreling
with this success would be futile and foolish. It would be
just as absurd to deny the many positive effects that such
standardization has had on a previously fragmented indus
try. And everyone knows that no empire is eternal.

Let's pretend for a moment, however, that we can ignore
all this and concentrate on technology. Here is what I
think-from an optimist's perspective-will change in
software over the next few years. Reading the crystal ball
is only fun if you make real predictions, so let's dive in:

• Reuse will become much more of a reality. The scene has
already changed considerably. It's no longer necessary to
preach reuse (although one does need to dispel reuse
myths, which are gaining more ground as reuse pro
gresses). Partly thanks to the level playing field estab
lished by Microsoft, we will see the current growing

supply of reusable solutions turn into a real explosion.
• A reusability infrastructure will be built, based on the

Internet. The problem of how to charge fairly for
reusable software will be solved to the satisfaction of
both producers and consumers.

• Object technology is here to stay. The real question is
how long it will take for the general computing public to
realize the limitations-already clear to most experts
in the field-of first-generation hybrid approaches and
adopt true object-oriented techniques, for all that they
imply and, as a result, all that they bring.

• The "process culture" of traditional software engineer
ing, which still dominates most software engineering lit
erature and the major conferences, will at last yield to
the "product culture" developed by the truly innovative
and vibrant part of the industry-the people who make
successful mass-market software for personal comput
ers and workstations.

• I do not see much future in the next few years for some
approaches that were recently heralded as promising:
functional programming, logic programming, and
expert systems (in their application to software). Some
of them will find, or have already found, a niche, and all
will remain useful as part of every software developer's
bag of tricks, but it is hard to see how any of them could
fundamentally affect our field over the next 10 years.

• Software education will improve, based on the increased
understanding that there is a difference between know
ing how to program a computer (increasingly a basic skill
for the population at large, adding a P to the three Rs of
K-12 education) and being a software professional.

The big question mark in the future is formal methods.
It is difficult here, for someone like me who became a com
puter scientist by working on abstract data types and the
original Z, to avoid mistaking wishful thinking for tech
nology assessment. It is clear to all the best minds in the
field that a more mathematical approach is needed for
software to progress much. But this is not accepted by the
profession at large. I can see two possible scenarios. The
best one is that software science education will involve
higher doses of formalism and that this will translate over
time into a more formal approach in the industry at large.
The other scenario is that formal techniques will be used
only in high-risk development projects controlled by gov
ernmental regulatory agencies and will continue to exert
some influence on the better programming languages. I
must say that, wishful thinking aside, the last scenario is
more likely-barring the unhappy prospect of a widely
publicized, software-induced catastrophe. I

Bertrand Meyer is with ISE Inc., Santa Barbara,
Calif He is an expert in object technology, the designer
of the Eiffel language and associated basic reusable
libraries, chair of the TOOLS conference, and the author
of many books, including Object Success: A Manager's
Guide to Object Technology (Prentice Hall, 1995). His
e-mail address is bertrand@eiffel.com and his Web page
is http://www.eiffel.com.

August1995 -

mailto:bertrand@eiffel.com
http://www.eiffel

· Objects

SOFTWARE IS HEADED TOWARD
OBJECT·ORIENTED COMPONENTS
Jack Grimes and Mike Potel, Taligent

S oftware development is becoming too expensive for
the creation of high-function applications and systems.

Further, these solutions must adapt to changing environ
mental conditions so that they can continue to meet their
requirements. We believe that object-oriented, framework
based components are the preferred construction technol
ogy for developing software solutions that will be both
flexible and economically constructed.

WHAT PROBLEMS DO COMPONENTS SOLVE? Large soft
ware systems have several problems that components,
whether 00 or not, can solve. One is the uncoupling of
application and system development in both time (func
tional evolution) and space (geography). Separation in time
means that an application or system can be released and
years later, a component can be added to it and be func
tionally well integrated. Separation in space means that
component development can be loosely coupled, so that
developers need very little interaction or information about
the internals of each other's software. What is necessary is
agreement and standardization of the interfaces.

Another important problem is scale-the construction of
applications and systems for complex problems. For exam
ple, one view is that C programs up to 50,000 lines can be suc
cessfully written using structured programming techniques.
This is a crossover point where larger C programs must use
object-based techniques (encapsulation of their data struc
tures at all levels) to be successfully completed. "Successfully''
emphasizes the delivery of software of sufficient quality to be
used in mission- or business-critical applications. People will
argue over the crossover point, which varies for each lan
guage, but most will accept the idea that the concept of encap
sulation-for example, using abstract data types in
Ada-becomes a necessity at some scale. By breaking larger
problems down into many smaller ones, components help
with the scale problem.

How DO COMPONENTS SOLVE THESE PROBLEMS?

Applications and systems that support external components
define an interface that is open (publicly available), so that
developers can implement functionality independently from
interface design. Good examples are the plug-ins available
for the Adobe PhotoShop graphics package. Adobe provides
the interface specification. Then, a hardware or software
supplier can develop a product that can be accessed easily
from within PhotoShop by the end user, as if the function
ality were delivered "in the box" when it was actually devel
oped and delivered independently of PhotoShop itself. More
recently, the same approach has been taken by OpenDoc
and OLE. The keys are the independence of development
efforts, the potential separation in time of the development,
and the factoring of problems into subproblems.

ARE OBJECTS NECESSARY TO BUILD COMPONENTS? No,
but objects fit nicely since they provide fine granularity for
hiding data structures. This is why there is the close associ-

Computer

ation between objects and components. Using objects sim
ply makes component interfaces easier to understand and
components easier to create.

WHAT ARE THE ALTERNATIVES FOR COMPONENT CON

STRUCTION? Libraries, both procedural and object, are one
alternative. They have existed for years and represent com
ponents in a primitive sense. The developer calls them, and
they provide encapsulated functionality that can be reused.
They can be developed independently in space and time,
and provide a level of abstraction that helps with the prob
lem of scale.

Object-oriented frameworks represent a more recent
approach to component implementation. In addition to
encapsulation, frameworks provide two additional benefits:
flow of control and object orientation. Frameworks, as a
grouping of classes that together provide a service, increase
the level of abstraction. Frameworks also provide flow of con
trol. This directly improves the scale of solutions that can be
created because frameworks can be composed of other
frameworks and represent the design of a service.

Object-orientation means more than encapsulation. For
complex system construction from components, the level of
abstraction provided by encapsulation is not enough. There
is still a problem with the granularity of the components
used. To simplify the development, certainly at the level of
component assembly, one wants to use fewer, larger com
ponents. This fits well with the use of visual builders.
However, to increase the generality of the solutions created,
one wants more, smaller components. Larger components
are less likely to deliver the needed functionality without
customization. 00 frameworks address both issues by
allowing developers to modify existing components at var
ious levels of granularity by providing two interfaces: an
external, "calling" interface (like object libraries provide),
and levels of internal, "be called" interfaces. Why should the
granularity of functionality seen from the outside be the
same as that available to the developer? The developer
needs more flexibility than that provided by a "black box."

Frameworks provide this variable granularity in a way
that doesn't compromise the developer's independence in
time and space. A developer can deliver a smaller compo
nent that modifies the behavior of a previously delivered,
larger component. 00 frameworks provide this through
inheritance and other 00 techniques supported directly in
C + +, Smalltalk, Ada95, Eiffel, and so forth.

In the final analysis, the incorporation of object-oriented
concepts of inheritance and polymorphism are an economic
issue. That is, they improve the development costs and pro
vide for reuse of design. Components implemented with
object-oriented frameworks are simply a good solution to
the problems of independence of development in time and
space-and problems of scale.

WHAT ARE THE IMPLICATIONS OF COMPONENT SOFT

WARE? A paradigm shift is occurring. Analogous to the par
adigm shift in database technology 20 years ago when
relational databases were introduced, the use of 00 tech
nology for component construction is in its early days. One
of the implications for independent software vendors is the
prospect of many more products, each smaller. While this
will certainly occur in the longer term, many ISVs are using

component software mechanisms to implement next-gen
eration, "full-sized" applications. They will deliver these
applications to appear on the shelf, as they do now, with
many components in the box. This provides the above-men
tioned benefits to their internal development. In addition, it
allows them to release modified, more specialized products
for more narrow markets that weren't previously practical
due to development cost.

For example, if a company wants a particular chart added
to an ISVs charting application, this request will be much
easier to accommodate if the developer can ship a compo
nent to the company that modifies the application to pro
vide the required chart. Or, if the 00 interfaces for the
application are available to the in-house developers, they
can make the change themselves. This incremental change
is very hard to accomplish for a large application or compo
nent written in C, but may be quite easy for a component
based application written in C + +.

ARE INFRASTRUCTURE CHANGES NECESSARY AS WELL?

Yes, long term. When component software is the norm, sev
eral changes will be needed. Software licensing will become
more of an issue. Lots of components means that automated
ways of tracking usage and royalties become more impor
tant. At some point, the cost of licensing a component must
be less than the cost of a postal stamp.

For some combination of component size and communi
cation bandwidth, electronic delivery becomes not only
practical but required to match the delivery cost with the
component cost. How will we pay for components delivered
over networks? Fortunately, Visa and MasterCard are col
laborating toward an answer.

Ultimately, we believe component software will funda
mentally change the underlying programming systems used
today. Systems such as Windows and Unix are procedural,
library-oriented programming models designed to support
the one-time development of monolithic applications of a
certain size by a single programmer or team in one location.
Object-oriented frameworks will facilitate the development
of much more advanced and interoperable-but smaller
programs developed by multiple, independent program
mers and teams. These programs will be customized
repeatedly over time to meet changing needs. I

Jack Grimes is director of technology evaluation at
Taligent. Grimes earned a PhD in electrical engineering
and computer science and two MS degrees, one in elec
trical engineering and one in experimental psychology.
He has published on subjects from visual perception to
VLSI graphics to object technology.

Mike Potel is vice president of technology development
at Taligent. He received his BS in math from the Univer
sity of Michigan and his MS and PhD in information sci
ences from the University of Chicago.

The authors can be reached at Taligent, 10201 N. De
AnzaBlvd., Cupertino, CA 95014-2233; email {jgrimes,
potel}@taligent.com.

· Software Agents

SOFTBOTS,KNOVVBOTS,AND
VVHATNOTS
Ron Vetter, North Dakota State University

D istributed software agents (and network computing
in general) will be the trend for software systems over

the next five years. That is, we are headed for a computing
environment where CPUs and storage devices will be
widely distributed and connected by high-speed commu
nication networks, making information readily accessible
on a global scale.

Continued growth of the global information infra
structure, and its associated datasets, will cause informa
tion overload in every sense of the word. Simply put, the
amount of information available in cyberspace is enor
mous and growing. Finding useful information, when it is
needed, will be difficult. With an ever-expanding global
Internet, it will become increasingly important to better
understand how to design, build, and maintain distrib
uted software systems.

One solution to this problem is the development ofhigh
level software entities whose aim is to search for and find
information of interest over this global network infra
structure. Several software systems exist today for this
very purpose, and others are under development. These
systems have a variety of names, including softbots, intel
ligent agents, knowbots, personal agents, and mobile
agents. Since there are several interpretations for such sys
tems, I will use the generic term software agent to mean a
distributed computer program that is capable of carrying
out a specialized function. In the context of this discus
sion, a distributed software agent is one whose goal is to
intelligently find information of interest to users over a
collection of heterogeneous networked computers.

What are the important issues for emerging software
systems, given this anticipated trend in agent technology?
How can the software community prepare for and con
tribute to this trend? How will different agents work
together and how will they communicate? These are just
a few of the questions that need to be addressed before
agent technology becomes widely used.

First-generation software agents that reduce work and
information overload have already been built and studied.
Some of these agents provide personalized assistance with
meeting scheduling, e-mail handling, electronic news fil
tering, and selection of entertainment. In each of these sys
tems, agents are able to observe and imitate the user, receive
positive and negative feedback from the user, receive
explicit instructions from the user, and ask other agents for
assistance when needed. These first -generation agents,
though useful, still lack the structure needed to perform
effectively in a large-scale global network environment.

Several algorithmic issues remain unresolved and need
to be studied further by the software engineering commu
nity. For example, how will heterogeneous agents, built by
different developers for different computing platforms,
interact and collaborate. Consider the current state of affairs
in distributed computing. Today, the client-server paradigm
is the most widely used communication model for building
distributed networked systems. Typically, in a client-server

August1995 -

J!j

paradigm remote procedure calls are used to facilitate
client-server interactions over the network. In the future, a
form of remote programming may well emerge, whereby
the network carries objects (data and procedures) to be exe
cuted on remote machines. For example, General Magic has
developed a software technology called Telescript that sup
ports the development of distributed applications executing
over a communication network. Telescript is an agent-based
language that allows users to develop intelligent applica
tions that are able to carry out specialized functions on
behalf of the user. 1 Although this form of interaction is not
yet well understood, it can simplify the development and
introduction of new software systems.

One final issue is how agents will be programmed. That
is, how will ordinary people tell agents what to do? This
might be done using traditional programming languages,
but not everyone knows (or wants to learn) a typical pro
gramming language. KidSim2 offers one approach to this
problem: It uses programming by demonstration and
graphical rewrite rules to develop a system that allows
children to program agents in the context of a simulated
microworld. One of the principles found useful in devel
oping such programming environments is to make the task
visual, interactive, and modeless. Whether these ideas, or
others, can be applied to software agents in general should
be a fruitful area of research in the years to come. I

References __

1. J.E. White, "Mobile Agents Make a Network an Open Plat

form for Third-Party Developers," Computer, Vol. 27, No. 11,

Nov. 1994, 89-90.

2. D. Smith, A. Cypher, and J. Spohrer, "KIDS IM: Programming

Agents Without a Programming Language," Comm. ACM, Vol.

37, No. 7, July 1994, 55-67.

Various pointers to information and resources concern
ing software agents can be found on the Internet at
http://www.cs.umbc.edu/agents. Readers should also refer
to the special issue on intelligent agents in Communications
of ACM, Vol. 37, No. 7, July 1994.

Ronald J. Vetter is an assistant professor in the
Department of Computer Science and Operations
Research at North Dakota State University in Fargo. His
research interests include high-performance computing
and communications, multimedia systems, and high
speed optical networks.

Vetter received his BS and MS degrees in computer sci
ence from North Dakota State University in 1984 and
1986, respectively, and his PhD in computer science from
the University of Minnesota, Minneapolis, in 1992. He is
a member of the ACM and the IEEE Computer and Com
munications Societies.

Readers can contact the author at the Department of
Computer Science, IACC Building, Room 258, North
Dakota State University, Fargo, ND, 58105-5164; e-mail
rvetter@plains.nodak.edu.

Computer

· Software Engineering

A RETROSPECTIVE LOOK FORWARD
Phil Laplante, Burlington County College/
New Jersey Institute of Technology

T o understand where software is headed, it is inter
esting and informative to look back at where software

has been. From its earliest inception as the reconfigura
tion of wires and switches, to machines codes, micropro
grams, and macroprograms, to assembly codes and higher
order languages, the development of software has always
been a quest for greater abstraction in support of greater
complexity. And it is unlikely that software engineering
will change the direction of that evolution.

As hardware systems become increasingly complex (bil
lions of gates in newer systems as opposed to a few hundred
in the first computers) and support more and different kinds
of devices and applications, a richer framework for software
engineering will be needed to permit the conversion of com
plex behavior from concept to a set of instructions that ulti
mately map into those gates. Fortunately, those very
complex machines for which the software is targeted pro
vide powerful platforms that can help us construct that soft
ware. For example, object-oriented methods require bulky
compilers that generate relatively massive code. However,
even the most modest personal computers are fast enough
to mask the inefficiency of such primitive software engi
neering methods. I say primitive because although object
oriented techniques have been hailed as innovative and the
solution to software engineering problems such as reusabil
ity, testability, maintainability, and so forth (the so-called
"ilities"), it is deeply rooted in concepts that evolved in the
1970s with the revolutionary language CLU and in the the
ories of information hiding attributed to David Parnas.

Nor is any single framework for software engineering
(object-oriented or otherwise) going to be sufficient. At a
recent NATO Advanced Study Institute on Real-Time
Systems, a distinguished panel was asked, "What is the
proper software engineering framework for the develop
ment of real-time systems?" All six panel members
answered differently. It is my steadfast opinion that devel
opment of a unified software engineering framework for
all applications areas is folly. Efforts would be best
expended concentrating on applications areas. Frankly,
some academics (and some practitioners) have begun to
wonder if computer science as a distinct field can survive;
the study of architecture has become dominated by elec
trical engineers, the study of algorithms by mathemati
cians, and the study of software engineering by
applications experts. Why shouldn't traditional software
engineering be absorbed into applications disciplines? This
eventuality represents somewhat of a full circle in the evo
lution of computing science-a science that was originally
founded by physicists, mathematicians, and engineers.

To a certain extent I have avoided predicting the shape
of software engineering in the next century. I have argued
that as systems become more complex, so should software
engineering techniques and tools. One prediction is that
software engineering tools will expand beyond the rather
flat, keyboard- and screen-driven interfaces. Human
beings arguably perform more complex processing while

http://w.cs.umbc.edu/agents
http://nodak.edu

driving a car. Why not also have software engineering tools
that involve interaction with sound and force feedback,
and use of the eyes, feet, arms, voice, and head for input?
The next software engineering tools will be more graphi
cal, colorful, and musical. We must expand the portions
of the brain used in creating computer programs; typing
and clicking are not enough.

Current research focuses on artificially intelligent soft
ware systems using "intelligent agents" that can anticipate
the needs of users and systems designers. While these
agents are promising, we must never forget their origins in
early expert systems (nested CASE statements) along with
languages supporting data abstraction such as CLU (and
successor object-oriented languages like Smalltalk). We
must also never forget what software engineering tools
are: abstraction mechanisms that simply represent layers
of complexity that can now be smoothed over by increas
ingly fast hardware. The original Fortran compiler was
introduced as an "automatic program generator"-the
ultimate in artificially intelligent systems. (The Fortran
compiler has not evolved much beyond its original, bril
liant form.) New forms of"intelligent" software and soft
ware engineering tools will be largely incremental
improvements on existing manifestations, with better
interfaces enabled by faster hardware.

The sad fact is that software engineering has not evolved
nearly as fast as the hardware has. And most of the inno
vations in software engineering and software systems are
not profound innovations; rather, they are variations on
very old themes. These innovations are primarily enabled
by faster hardware and better interface devices. It is con
ceivable that the next generation of software will be just
like this one. I don't mean to sound pessimistic or mean
spirited-I am not. I simply am not allured by the bells and
whistles attached to well-worn and well-known prinici
ples of software engineering. And I caution skepticism for
some of the "snake-oil" that I feel is being sold as panacea.

What will the next generation of software be like? I twill
be more of the same, just bigger, faster, and with prettier
wrapping. I

Phil Laplante is dean of Burlington County College/
New Jersey Institute of Technology's Technology and
Engineering Center in Mount Laurel, New Jersey. Prior
to that, he was the chair of the Department of Computer
Science and Mathematics at Fairleigh Dickinson Uni
versity. His research areas are in software engineering,
real-time processing, image processing, and real-time
image processing. He also spent seven years in industry
designing high-reliability avionics and support software.
He is a licensed professional engineer in New Jersey and
continues to consult to industry on real-time systems
and real-time image processing. He is coeditor-in-chief of
the journal, Real-Time Imaging.

Readers can contact the author at Burlington County
College/New Jersey Institute of Technology, Technology
and Engineering Center, Mt. Laurel, NJ 08054; e-mail
laplante@njit.edu.

THE PAST AS PROLOGUE
Wolfgang Pree and Gustav Pomberger
University of Lim;

B efore we outline future software trends, let's briefly
look back. The past has taught us that no single tech

nology or concept constitutes a breakthrough. Computer
aided software engineering, prototyping, automated
programming, object-orientation, and visual programming
are just a few examples of technologies that have been her
alded as a panacea for the known deficiencies of software
development. But promising technologies are not applied
immediately in industrial software development environ
ments; indeed, it often takes decades for new technologies
to have an impact outside of research laboratories. There
are many reasons for this dilemma, the most important
being that many companies are stuck with legacy software
and often believe that they cannot afford to overcome this
hurdle. The computer industry "helps" them by providing
products compatible with the older ones.

Another phenomenon characterizes software develop
ment. Although the problems software attempts to solve
are complex and thus pose difficulties in product devel
opment, unnecessary complexity is added in most soft
ware systems. Programmers are often proud of producing
complicated solutions, and meticulous engineering is not
rewarded.

What can we expect from the future? Extrapolating
from the past, we envision a pessimistic scenario. The soft
ware crisis will grow ever worse with the addition of new
domains and because new technologies and concepts
won't migrate into the mainstream.

A look at current and soon-to-be-established de facto
standards lends weight to such pessimism. Take object
oriented technology as an example. Though object
orientation could help overcome essential problems in
software development, the most widely used object
oriented languages are antiquated; they are too compli
cated and thus provide no adequate tool for state-of-the-art
software engineering. Unfortunately, higher level stan
dards-for example, standards for object/ component dis
tribution and operating systems-are being built on top
of these languages. Such premature standards add signif
icant complexity to software products. Programmers are
forced to produce unnecessarily complicated and unpro
fessional solutions for problems that could otherwise be
solved much more efficiently.

Though standards are becoming the vogue in the com
puter industry, they perpetuate the software crisis. Despite
much negative experience with de facto standards, the
industry continues to adopt them. Thus, we predict that
adopters of such standards will not be able to exploit the
potential of the underlying concepts and probably will
arrive at a dead end. It is simply too early to establish stan
dards. Continuing to do so will create the impression-or
reality-that marketing people and economic forces, not
scientific advances, drive software technology.

The trend of forming increasingly larger project teams
to develop software also exacerbates the software prob
lem. Wirth states that "the belief that complex systems
require armies of designers and programmers is wrong. A
system that is not understood in its entirety, or at least to

August1995 -

mailto:laplante@njit.edu

a significant degree of detail by a single individual, should
probably not be built."1

Unlike other engineered products, software is developed
almost from scratch. The percentage of reused components
is very low. Thus, software suffers from teething troubles
and quality problems common to newly built products. This
should not be necessary. Object-oriented concepts can over
come the reusability problem when they are used to build
generic software architectures-that is, frameworks-for
a particular domain so that components can be easily
replaced or added. Again, existing and emerging de facto
standards, as well as an industry that hesitates to apply this
technology, delay the long-awaited breakthrough.

Though we draw a pessimistic picture of software's
future, there is also hope. The future looks bright for those
who depart from the well-worn path. An increasing num
ber of companies that have applied computer technology
almost since its inception, such as banks, recognize that
they can no longer meet future requirements by merely
maintaining legacy software. They have the chance to
show courage by replacing the old systems with really new
ones built without compromise.

Those who wait for a silver bullet will be disappointed.
No single concept, method, or tool will result in a break
through. The key to successful software development lies
in overcoming the obstacles sketched above and in apply
ing a combination of already well-known concepts, meth
ods, and tools to software development. We hope that the
few who set off for new shores are so successful that the
rest are forced to follow. I

References ---------------~
1. N. Wirth, "A Plea for Lean Software," Computer, Vol. 28, No.

2, Feb. 1995, pp. 64-68.

Wolfgang Pree is an associate professor of applied
computer science at the Johannes Kepler University of
Linz. He worked for many years in the area of object-ori
ented software development and has taught several
courses at universities around the world, including
Washington University in St. Louis, the University of
Linz, and the University of Zurich. He is the author of
Design Patterns for Object-Oriented Software Devel
opment (Addison-Wesley/ACM Press, 1995).

Gustav Pomberger is professor of computer science
at the Johannes Kepler University of Linz. His research
interests include prototyping, object-oriented software
development, compositional software development, and
software development environments. He is editor of the
journal Software-Concepts and Tools and has pub
lished numerous articles and books in the field of soft
ware engineering.

Readers can contact the authors at the C. Doppler Lab
oratory for Software Engineering, Johannes Kepler Uni
versity, Altenbergerstrasse 69, A-4040, Linz/Auhof,
Austria, {pree, pomberger }@swe. uni-linz. ac. at.

Computer

· Parallel Software

PORTABLY SUPPORTING PARALLEL
PROGRAMMING LANGUAGES
Mark D. Hill, James R. Larus, and David A. Wood
University of Wisconsin

U niprocessor computers flourish while parallel com
puters languish. To a large measure, uniprocessors'

success is due to a common and universally accepted pro
gramming model that has proven suitable for programs
written in many styles and high-level languages. This
model allows programmers to select the language most
appropriate for expressing an application. Furthermore,
programmers transfer most programs between comput
ers without worrying about the underlying machine archi
tecture (operating systems and user interfaces are, of
course, another story). Computers did not always provide
such a congenial environment. Several decades ago, every
program was crafted for a particular machine in machine
specific assembly language.

Parallel computers still languish at this stage. They do
not share a common programming model or support many
vendor-independent languages. A program written for a
workstation will not exploit the parallelism in a shared
memory multiprocessor. Similarly, when a program
exceeds the resources of a bus-based multiprocessor, it
must be rewritten for the message-passing world of work
station clusters or massively parallel processors.

High Performance Fortran (HPF) is a ray of light in this
bleak world. Vendors across the entire spectrum of
machines have announced HPF compilers. Unfortunately,
HPF is a domain-specific language targeted at a narrow
range of applications whose primary data structure is
dense matrices. If your application can be written easily
in Fortran 77, it may run in parallel in HPF.

General-purpose parallel languages cannot succeed
without a common underlying model that gives pro
grammers intuition as to the cost of operations and com
piler writers a common basis for implementing these
languages.

What is this common model? We believe it is a shared
address space in which any processor can access any
shared datum at a uniform, processor-independent
address. A shared address space extends the uniprocessor
model in a way that preserves programmers' expertise and
supports the complex, pointer-rich data structures that
underlie most large applications. Processor-independent
addresses also allow dynamic load balancing and trans
parent data partitioning.

Note that a shared address space does not require
shared-memory hardware. The latter is only one imple
mentation technique. Languages such as HPF and runtime
libraries such as the University of Maryland's CHAOS
library for irregular applications implement a shared
address space using compilers or runtime code. However,
these languages and libraries are narrowly focused on par
ticular application domains and do not support a common
programming model. Other languages, such as Split-C,
aim for a wider domain of applications, but their pro
gramming model remains closely tied to a particular type
of machine.

To address this problem, the Wisconsin Wind Tunnel
research project has developed the Tempest interface,
which provides a common parallel computer program
ming model. Tempest consists of a substrate-imple
mented in either software or a combination of hardware
and software-that allows compilers and programmers
to exploit different programming styles across a wide
range of parallel systems.

Tempest provides the mechanisms necessary for effi
cient communication and synchronization: active mes
sages, bulk data transfer, virtual memory management,
and fine-grain access control. The first two mechanisms
are commonly used for short, low-overhead messages and
efficient data transfer, respectively. The latter two mech
anisms allow a program to control its memory so that it
can implement a shared address space. Fine-grain access
control is a novel mechanism that associates a tag with a
small block of memory (for example, 32-128 bytes). The
system checks this tag at each Load or Store. Invalid oper
ations-loads of invalid blocks or stores to invalid or read
only blocks-transfer control to an application-supplied
handler.

Because Tempest provides mechanisms, not policies, it
supports many programming styles. Current parallel
machines are designed for a single programming style
message passing or shared memory-which forces pro
grammers to fit a program to a machine rather than
allowing them to choose the tools appropriate for the task
at hand. Programs written for a particular parallel
machine are rarely portable, thus limiting the appeal and
use of these machines. By separating mechanism from pol
icy, Tempest allows a programmer to tune a program with
out restructuring it. In particular, Tempest allows a
programmer to select (from a library) or develop a cus
tom coherence protocol that provides an application with
both a shared address space and efficient communication.

Tempest's success depends on effective implementa
tions throughout the parallel machine pyramid.
Symmetric multiprocessors (SMPs) form the base of this
pyramid. Most programs are, and will continue to be,
developed on these inexpensive and ubiquitous machines.
Larger jobs with low communication requirements may
require a step up to networks of desktop workstations
(NOWs). Networks of dedicated workstations, possibly
with additional special hardware, can trade higher cost
for increased performance. Finally, at the pyramid's apex,
supercomputers and massively parallel processors (MPPs)
offer the highest performance for those able to pay for it.

We have developed several Tempest implementations.
Typhoon is a proposed high-end design. It uses a network
interface chip containing the interprocessor network inter
face, a processor to run access-fault handlers, and a reverse
translation lookaside buffer to implement fine-grain access
control. The Blizzard system implements Tempest on exist
ing machines without additional hardware. It currently runs
on a nonshared-memoryThinking Machines CM-5 and a
network of Sun Sparcstations and uses one of two tech
niques to implement fine-grain access control. Blizzard-E
uses virtual memory page protection and the memory sys
tem's ECC (error-correcting code) to detect access faults.
Blizzard-S rewrites an executable program to add tests
before shared-memory Load and Store instructions.

Preliminary performance numbers show that with ade
quate hardware support, shared memory implemented on
Tempest is competitive with hardware shared memory.
However, the real benefits and large performance
improvements arise from the custom coherence protocols
made possible by Tempest. As our experience with
Tempest grows, we continue to refine it. Whether it
becomes, or influences, a standard substrate for parallel
computing remains to be seen. Nevertheless, we believe
that a multiparadigm, portable, standard substrate is
essential if parallel computers are ever to flourish. I

MarkD. Hill is an associate professor in both the Com
puter Sciences Department and the Electrical and Com
puter Engineering Department at the University of
Wisconsin-Madison. His work targets the memory sys
tems of shared-memory multiprocessors and high-per
formance uniprocessors.

He earned a BSE in computer engineering from the
University of Michigan (1981) and an MS and PhD in
computer science from the University of California
Berkeley (1983 and 1987). He is a 1989 recipient of the
National Science Foundation's Presidential Young Inves
tigator award, a Director of ACM SIGARCH, a senior
member of IEEE, and a member of IEEE Computer Soci
ety and ACM.

James R. Larus is an associate professor in computer
sciences at the University of Wisconsin-Madison. His
research interests include parallel programming, pro
gramming languages, and compilers. He received his AB
in applied mathematics from Harvard University (1980)
and an MS (1982) and PhD (1989) in computer science
from the University of California at Berkeley. He is a
1993 recipient of the National Science Foundations's
National Young Investigator award and a member of
IEEE Computer Society and ACM.

David A. Wood is an assistant professor in both the
Computer Sciences Department and the Electrical and
Computer Engineering Department at the University of
Wisconsin-Madison. His interests include the design and
evaluationof computer architectures, with an emphasis
on memory systems for shared-memory multiproces
sors. He received a BS and PhD in Computer Science from
the University California-Berkeley (1981and1990). He
is a 1991 recipient of the National Science Foundation's
Presidential Young Investigator award and a member of
ACM, IEEE, and the IEEE Computer Society.

The authors can be contacted at the Department of Com
puter Sciences, University of Wisconsin-Madison, 1210
West Dayton Street, Madison, WI 53706; e-mail
{markhill, larus, david}@cs.wisc.edu;http://www.cs.
wisc.edu/-wwt.

AugustI995

http:/�www.cs

ti

Parallel bits
Hesham El-Rewini, University of Nebraska at Omaha

P arallel computing has experienced a number of
setbacks over the past few years. Several parallel

computer manufacturers went out of business, a num
ber of parallel programming languages proved unsuc
cessful, and parallel applications development is still
far from being an easy task. There is a recent wave of
skepticism about the future of parallel computing. Will
parallel computing continue along the same lines? Will
it set off in new directions? Or will it quietly expire?

Parallel computing will survive by setting off in new
directions. Traditionally, scientific computation has
been the major driving force behind parallel com
puting. Today, commercial applications are emerging
as another significant force driving the development
of future parallel systems. In addition to computa
tion-intensive scientific applications (such as numeric
simulation of complex systems), data-intensive busi
ness applications (such as videoconferencing,
advanced graphics, and virtual reallity) will begin to
take advantage of parallelism.

The new advances in network technology have nar
rowed the distinction between the two worlds of par
allel and distributed computing. It is now feasible to
develop applications on remotely distributed com
puters as if they were parts of one parallel computer.
This trend will continue to flourish in the future as
the reliability of such systems improves. Future paral
lel systems will be networks of heterogeneous com
puters' comprising some or all of the following:
workstations, personal computers, shared-memory
multiprocessors, and special-purpose machines. We
will witness greater integration of parallel computa
tion, high-performance networking, and mutimedia
technologies. Naturally, this will influence the design
of operating systems and programming languages.

In an attempt to gain some insight on the future of
parallel computing, I asked several scholars active in
this field to speculate about its future. Below, I set
forth their thoughts as they relate specifically to the
software aspects of parallel computing.

THE FUTURE OF PARALLEL COMPUTING
We will see general-purpose parallel computing

within the next 10 years. Just as standard languages
and portable software made sequential computers a
universal form of computing, standard parallel lan
guages must be developed if parallel computers are to
achieve the same degree of popularity. Moreover,
these languages (or software in general) will need to
be portable, enabling the user to ignore the imple
mentation details of a given platform.

Future parallel computer programmers will not
concern themselves with the tedious task of how par
allelism is achieved. Compilers or operating systems
will take charge of distributing parallelism onto dif
ferent processors and also of exploiting levels of par
allelism in a particular program (or application). If
parallel computing is to gain more acceptance, the

Computer

programming of such computers should be made eas
ier, even if we have to sacrifice some performance.

-AlbertZomaya, The UniversityofWesternAustralia

APPLICATIONS
By sheer numbers, embedded systems, particularly

in the area of signal processing, account for a large per
centage of parallel applications. This technology is dis
tinct from the "distributed" computing perspective.

The "application package" approach, which hides
the implementation of parallelism, may force a pro
grammer to take an inherently parallel problem and
code it into a sequential solution. Parallelizers will
never do well in finding and exploiting the original
parallelism of such a solution. Areas such as signal or
image processing are moving toward methods that
let programmers express inherent parallelism while
requiring little system overhead.

I will add my own opinion that the one common
need across many different parallel system domains is
for increased fault tolerance, both hardware and soft
ware supported.

-Scott Cannon, Utah State University

BUSINESS APPLICATIONS. Business applications will
define the market for parallel systems applications,
with numerically intensive industrial code running
efficiently on parallel systems. Programming lan
guages will be predominantly high-level applica
tion/field-specific or user-oriented (graphical)
problem-specification languages that offer transpar
ent exploitation of parallelism. Intelligent and fully
integrated programming environments will become
available, incorporating application/field-specific user
interfaces and interactive programming support, as
well as methods and techniques for efficient reuse of
software at different levels of abstraction.

-Karsten M. Decker, Swiss Scientific Computing Center

ACADEMIC RESEARCH. In 10 years, 95 percent of the
machines will be shared-memory multiprocessors that
run databases like Oracle, lnformix, and so on for busi
ness applications. The scientific market will distinguish
itself only by adding large memories to Cray and SGI
boxes. But this will be only about 2 percent of the
market.

Researchers will continue to make slow progress
toward useful tools-for example, languages, oper
ating systems, and visualization tools; this will keep
us busy and funded but out of the mainstream.
Perhaps in 10to 20 years some of this will pay off, and
companies will actually use it!

-Ted Lewis, Naval Postgraduate School

GETTING SERIOUS. If parallel processing is to grow,
it has to adapt to popular applications. We seem to
be headed toward graphics-driven applications,
mainly in the form of games. It is time for parallel pro
cessing to move from scientific applications to every
day applications in business and recreation. There is

potential for applying parallel processing to spread
sheet applications for modeling large systems.

-Ted Mims, University of Illinois at Springfield

LANGUAGES
A "functional" version of C and Fortran will prevail

and facilitate parallelizing compilers. Parallel pro
grammers will still have access to pointers and other
imperative features of C/Fortran but in a limited way.
Parallel versions of C/Fortran will not survive, since
they are the equivalent of assembly programming
in sequential programming. Tools will also play a
very important role in developing parallel applica
tions and making them portable across different
architectures.

-Behrooz Shirazi, The University of Texas at Arlington

POLYGLOTISM. There will be lots of parallel pro
gramming languages, and most people will use an
application package that hides the parallelism from
them. It will just look like a very fast sequential
computer.

-Michael J. Quinn, Oregon State University

A CAVEAT FROM THE COMMERCIAL WORLD
In the commercial world of Windows and

Windows NT, it is hard for me to envision parallel
programming ever becoming mainstream unless par
allel programming (constructs, data, and so forth) is
subsumed by the tools, language, and the underly
ing hardware. The average Windows programmer
has a hard enough time getting multiple threads
running right without getting deadlocked. Given
this, parallel programming is either relegated to the
dustbin or to the chosen or brave few. However, I do
hope that operating systems use more PP constructs.
Almost all OS houses now have 32-bit systems and
support of multiple threads.

In 10 years, I envision machines in the commercial
arena with dozens (but less than 100) of nodes and
with shared memory. Shared memory challenges the
average programmer who will never get the concept
of each processor having its own memory right. Yes,
an OS can provide a single "virtual memory" over a
distributed-memory system. But today's hardware
has performance limitations on how "smoothly" vir
tual memory can be mapped over distributed mem
ory. In fact, database programmers have begun
noticing bottlenecks on Sequent machines that have
4-16 nodes and multiple memory modules. Perhaps
in 10 years the hardware limitations will be over
come so that we can have multiple nodes with inde
pendent memory virtualized as a shared-memory
system by the OS.

I also envision coarser grained objects than we
have today. Thus, one can imagine multiple objects
working in parallel to solve a problem. These objects
will in turn use the underlying PP constructs (but
remember ... the chosen few rule). I certainly hope
that we get better language and tools support to
bring PP to the average programmer.

-Alok Sinha, Microsoft

· The Curriculum

CHALLENGES OF SOFTWARE DESIGN
AND THE UNDERGRADUATE
COMPUTING CURRICULUM
Bruce W. Weide, Ohio State University

A lmost from its inception, the software industry has
endured a perennial state of crisis. We've all heard

the complaints. "Studies have shown that...some three
quarters of all large systems are 'operating failures' that
either do not function as intended or are not used at all."1

Why is the crisis mentality-and the crisis itself-so
prevalent, so persistent? Educators' contributions to the
muddle should not be overlooked. As an academic com
puter scientist, my observations on the future of software
address the centrality of software design in software engi
neering and the direction of software engineering
education.

Design here includes not just the traditional high levels
of user-interface design and macroarchitecture (boxes and
arrows, flows, and so forth), but also microarchitecture
(component interface design) and details right down to
the code level. Poor design is a major culprit in the soft
ware crisis, and CS curricula should treat software design
differently than they do now.

THE SOFTWARE DEVIL IS IN THE DETAILS. Many
respected voices in computing call for a relatively quick
and easy attack on the software crisis: greater emphasis
on software engineering processes. The backers of this
position generally claim that improved management is
more important than improved technical solutions (the
technical problems having already been "solved"). A seri
ous problem with this approach is its underlying assump
tion that product quality derives largely from process
quality, that high-quality products inevitably result when
people are well managed. These are dubious propositions
at best, especially for an emerging field such as software.
There is just no solid evidence to support such wishful
thinking. After all, if the code doesn't work or is unmain
tainable as designed, nice high-level pictures and process
certification won't help much.

Meanwhile, many other computer scientists believe that
the best response to the software crisis lies in improving
understanding of software itself-hence, the recent
emphasis on formal methods, object-oriented design, com
ponent-based design, and so forth. One feature of this
approach is that it is a long-term proposition, requiring
additional fundamental research. Because of its inherently
more technical nature, technology transfer in this approach
relies largely on a "bottom-up" infusion of new ideas
through the entry of recent graduates into the workforce.

I concede that process issues play a nontrivial role. But
if software engineers in the trenches do not know how to
design well, no amount of clever administration or man
agement can produce high-quality systems. Other engi
neering disciplines acknowledge this. We should, too.

CURRENT CS CURRICULA DO NOT ADEQUATELY

ADDRESS DESIGN. What are the implications of this cen
trality of design in software engineering? Most CS curricula

AugustI995 -

g

include a sequence of courses emphasizing software design.
Even assuming that the instructors of these courses teach
and students actually learn-what the instructors intend,
graduates are unlikely to escape (much less help solve) soft
ware's chronic crisis. Unintegrated course sequences on
software system design can have only limited impact on the
practices of future software designers. Why? The instruc
tor in the next course down the line has a completely dif
ferent view of how software should be designed, or possibly
no well thought out view at all. Students quickly fall out of
practice in applying concepts and methodologies just
learned, especially if they get the message (even implicitly)
that those particular concepts and methodologies are not
so important or fundamental or necessary.

Why doesn't every decent undergraduate computer sci
ence program advocate a specific, detailed approach to soft
ware design and development and teach it in depth? There
are many problems, not the least of which is that it is as hard
to teach good design as to do good design. This fact oflife
is a problem for traditional engineers. But software engi
neers face the added difficulty that most educators cannot
even agree on what a well-designed software system should
look like, and the same is true for practitioners. It is easy to
observe this by examining computer science textbooks,
technical papers, and commercial "industrial-strength" soft-

1 ware. Except for egregiously poor design practices, most
software engineers and software engineering educators
cannot separate fair-to-good software designs from excel
lent ones. Beyond the tenets of structured programming,
few accepted community standards stipulate what software
systems should be like at the detail level.

This situation presents a clear problem for educators:
Exactly what should we teach regarding design? But there
is a less obvious problem, too. If the instructors in a course
sequence do not reinforce one another's ideas about the
details of how software should be designed, students get
mixed signals and conclude that those details do not really
matter, when precisely the opposite is true.

To avoid the limitations of single-course efforts and the
mixed signals sent by an unintegrated course sequence,
effective software design instruction demands a critical

1

mass of faculty with a shared vision of how to design and
1 develop industrial-strength software systems. These fac

ulty must be involved in the entire design sequence start-
ing from CSl. Perhaps at least four to five should be "on
board"-that is, agree on the details of the approach and
design principles and technology to be taught. I know from
experience that assembling such a team is no small feat,
because faculty members are usually militant individual
ists, especially when it comes to how software ought to be
designed. But it is not impossible.

Readers interested in contributing a short article
(1,000-1,500 words) to an upcoming roundtable
on object technology should contact Scott
Hamilton at s.hamilton@computer.org by August
21, 1995.

Computer

To the best of my knowledge, no existing curricula are
comparable-in content or in level of integration-to what
is required to address the educational needs of designers
and developers of software systems. Developing a con
sensus on any detailed design approach that can be shown
to lead to high-quality software systems and creating an
integrated curriculum based on it are important chal
lenges for software educators over the next decade. I

Reference _
1. W. Gibbs, "Software's Chronic Crisis," Scientific American,

Sept. 1994, pp. 86-95.

Bruce W. Weide is an associate professor of computer
and information science at Ohio State University in
Columbus. His research interests include reusable soft
ware components and software engineering, including
software design, formal specification and verification,
data structures and algorithms, and programming lan
guage issues.

He received a BSEE degree from the University of Toledo
and a PhD in computer science from Carnegie Mellon Uni
versity. He has been at Ohio State since 1978. He is codi
rector of the NSF- and ARPA-supported Reusable Software
Research Group at OSU, which is responsible for the
Resolve discipline and language for component-based soft
ware (see URLhttp://www.cis.ohio-state.edu/hyper
text/rsrg/RSRG. html).

Readers can contact the author at the Department of
Computer and Information Science, Ohio State Univer
sity, 2015 Neil Avenue, Columbus, OH 43210; e-mail
weide@cis. ohio-state. edu.

GLOBAL TRENDS IN
SOFTWARE ENGINEERING
The September 1995 issue of IEEE Software will

include a spedal report from the magazines
Editorial Board and Industry Advisory Board about

current trends in the software industry.
The 25 panelists-devewpers, researchers, educators,

managers, and consultants--examine the trends
according to three principle drivers that have gained

importance in the last five years: gobal politics,
global economics, and techno!-Ogical developments.
To subscribe, use the form on the facing page or call
(714) 821-8380. For more information, visit our

Web site at http://www.computer.org.

Software

mailto:s.hamilton@computer.org
http://www.cis.ohio-state
http://www.cmnputw.org

