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J 
obs needing to be processed in a manufacturing plant, bank cus
tomers waiting to be served by tellers, aircraft waiting for landing 
clearances, and program tasks to be run on a parallel or distributed 

computer: What do these situations have in common? They all encounter 
the scheduling problem that emerges whenever there is a choice con
cerning the order in which tasks can be performed and the assignment 
of tasks to servers for processing. In general, the scheduling problem 
assumes a set of resources and a set of consumers serviced by those 
resources according to a certain policy. The nature of the consumers and 
resources as well as the constraints on them affect the search for an effi
cient policy for managing the way consumers access and use the resources 
to optimize some desired performance measure. Thus, a scheduling sys
tem comprises a set of consumers, a set of resources, and a scheduling 
policy. 

A task in a program, a job in a factory, and a customer in a bank are 
examples of consumers. A processing element in a computer system, a 
machine in a factory, and a teller in a bank are examples of resources. First 
come, first served is an example of a scheduling policy. Scheduling policy 
performance varies with circumstances. While the equitable first-come, 
first-served policy is appropriate in a bank, it may not be the best policy for 
jobs on a factory floor or tasks in a computer system. This article addresses 
the task scheduling problem in many of its variations and surveys the 
major solutions. 

The scheduling techniques we discuss might be used by a compiler 
writer to optimize the code that comes out of a parallelizing compiler. The 
compiler would produce grains of sequential code, and the optimizer 
would schedule these grains such that the program runs in the shortest 
time. Anotheruse of these techniques is in the design of high-performance 
systems. A designer might want to construct a parallel application that 
runs in the shortest time possible on some arbitrary system. We believe 
the methods presented here can also be adapted to other (related) 
resource allocation problems of computing. 

Suppose a team of programmers wants to divide a programming task 
into subsystems. Let's say each programmer depends on some other pro
grammer(s) for interface specifications; otherwise, the programmers work 
in parallel. Thus, the team can be modeled as a parallel processor, and the 
program to be written can be modeled as parallel tasks. The scheduler 
now tries to find the assignment of subsystems to programmers that will 
let the team finish the program in the shortest time. 

This article concerns scheduling program tasks on parallel and distrib
uted systems. The tasks are the consumers, and they will be represented 
through the use of directed graphs called task graphs. The processing ele
ments are the resources, and their interconnection networks can be rep
resented through the use of undirected graphs. The scheduler generates a 
schedule in the form of a timing diagram called the Gantt chart, which is 
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Target machine 

Figure 1. The components of a scheduling system. 

used to illustrate the allocation of the parallel program 
tasks onto the target machine processors and the execu
tion order of the tasks. Figure 1 shows the components of 
a scheduling system. Task graphs, target machines, and 
Gantt charts will be described in a later section. 

We will provide models for representing parallel pro
grams, parallel systems, and communication cost. Then, 
since task scheduling has been shown to be computation
ally intractable in many cases, we will summarize the NP
complete results. (See the sidebar "NP-completeness.") 
Solutions to this problem can be categorized into optimal 
algorithms for some restricted cases and heuristic algo
rithms for the more general cases. We present several opti
mal algorithms for solving the scheduling problem in some 
special cases. We then cover scheduling heuristics and 
summarize three scheduling tools. 

SCHEDULING MODEL 
A parallel program is modeled as a partially ordered set 

(poset) P = (V, <), where Vis a set of tasks. The relation 
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Gantt chart 

V; < vj inP implies that the comp
1

utation of task vj depends 
on the results of the computation of task V;. In other words, 
task v; must be computed before task vj, and the result of 
the computation of task v; must be known by the proces
sor computing task vj. Associated with each task V; is its 
computation cost A;. Associated with each arc (i,j) con
necting tasks V; and vj is the communication cost Dij. The 
partial order < is conveniently represented as a directed 
acyclic graph called a task graph G = (V, E). A directed 
edge (i,j) between two tasks V; and vj specifies that v; must 
be completed before vj can begin. 

The target machine is assumed to be made up of an arbi
trary number of processing elements. Each processing ele
ment can run one task at a time, and all tasks can be 
processed by any processing element. The processing ele
ments are connected via an arbitrary interconnection 
topology that can be represented by an undirected graph. 
Three parameters, S;, B;, and I;, are associated with each 
processing element p;, where S; is the speed, B; is the time 
to initiate a task on p;, and I; is the time to initiate a message 
on P;. Associated with each edge connecting two process
ing elements is the transfer rate over the link between the 
two processing elements. 

Figure 2 shows an example of a task graph and a target 
machine. The task graph consists of nine nodes, with each 
node representing a task. The number shown in the upper 
portion of each node is the task number. The number in 
the lower portion of a node i represents the parameter A;, 
and the number next to an edge (i,j) represents the para- · 
meter Du; for example, A, = 6, and D12 = 25. The target 
machine is an eight-node hypercube. 

A schedule of the task graph G = (V, E) on m processors 
is a functionf that maps each task to a processor and a start-



ingtime. Formally,/: V--7 {1, 2, ... , m} x [0, =). Iff(v) = 

(i, t) for some v E V, we say that task vis scheduled to be 
processed by processor P; starting at time t. There exists no 
u, VE Vsuch thatf(u) = f(v). Notethatifu < v,f(u) = (i,t1), 
andf(v) = (j, t2), thent1 < t2.Aschedule can be represented 
informally using Gantt charts. A Gantt chart consists of a 
list of all processors in the target machine, and for each 
processor a list of all tasks allocated to that processor 
ordered by their execution time, including task start and 
finish times. The scheduling goal is to minimize the total 
completion time of a parallel program. This performance 
measure is known as the schedule length or 
maximum finishing time. Figure 3 shows 
examples of Gantt charts. 

COMMUNICATION COST 
MODELS 

Two key components contribute to the 
total completion cost: execution time and 
communication delay. Several different 
models can be used to compute the com
munication delay. Here, we present three 
models that can be used to compute the cost 
of executing a parallel program on a set of 
processing elements. Communication delay 
is the key element differentiating these 
models. Given a task graph G = (V, E) and 
its schedule f on m processors, we define 
proc(v) to be the processor assigned to 
processtaskvinfforeveryvE V. Thethree 
models, A, B, and C, are as follows: 

Model A 
In this model, the Gantt chart that rep

resents the schedule f does not reflect the 
communication delay, but it shows that the 
precedence relations between tasks are 
preserved. Program completion cost can be 
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nication cost + execution cost, where execution cost = 
schedule length and communication cost == nl).mber of 
messages * communication delay per message. Here, num
ber of messages = number of processor-task pairs (P, v) 
such that processor P does not compute task v but com
putes at least one direct successor ofv. 

ModelC 
In this model, we assume the existence of an 1/0 proces

sor that is associated with every processor in the system. 
The term processing element is used to imply the existence 
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computed as total cost = communication Figure 2. An example of a task graph (a) and a target machine (b). 
cost + execution cost, where execution cost 
= schedule length and communication 
cost = number of messages * communica
tion delay per message. Here, the number 
of messages = the number of node pairs 
(u, v) such that (u, v) E E and proc(u) * 
proc(v). 

Time P1 P2 

ModelB 
This model is similar to Model A, but it 

uses a more practical method in evaluating 
the number of messages. By counting each 
arc (u, v) such that proc(u) * proc(v) as 
communication using Model A, we may be 
passing the same information between a 
given pair of processors several times. For 
instance, if tasks u, v, and w E V such that 
(u, v), (u, w) EE andproc(v) = proc(w) * 
proc(u), then the result of computing u 
must be communicated to the processor 
computing v and w. This communication is 
counted twice in Model A and only once in 
Model B, as follows: Total cost = commu-

0 

Time P1 P2 P3 
0 2 

2 3 4 

4 6 5 

5 7 8 

Figure 3. Communication models: (a) task graph, {b) Gantt chart 
{Models A and B), (c) Gantt chart {Model C). 
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of an I/O processor. A processing element can execute a 
task and communicate with another processing element at 
the same time. Communication time between two tasks 
allocated to the same processing element is assumed to be 
zero. For any two tasks v;, vi E V, ifv; < vj andf(v;) = (k, t), 
then vi should be scheduled on either 

• processor Pk on time t1 and t 1 ~ t +A; or 
• processor p1, l t= k on time t2 and t2 ~ t +A; + Dw 

When this model is used, the communication delay can 
be easily shown on the Gantt chart representing the sched
ule. Also note that a task can be scheduled in the commu
nication holes in a Gantt chart. In other words, a task can. 
be assigned to a processing element for execution while 
this processing element is communicating_ with another 
processing element. The program completion time is com
puted as total cost = schedule length. 

Example 1 
Consider the task graph given in Figure 3a. We compute 

the program completion cost of this task graph on three 
processing elements using the three models given above. 
Suppose that tasks are assigned arbitrarily to processors as 
follows: Tasks 1, 4, 5, and 8 are assigned to processor Pl, 
tasks 2 and 9 are assigned to processor P2, and tasks 3, 6, 
and 7 are assigned to processor P3. In this example, we 
assume (for simplicity) thatthe communication delay per 
message equals one unit of time. The Gantt charts shown 
in Figure 3 reflect the assignment given above. The Gantt 
chart in Figure 3b shows only the precedence constraints 
on the tasks; it does not show the communication delay. 
This Gantt chart can be used to compute the completion 
cost using Models A and Bas follows: 

Model A 
Execution cost = schedule length = 4 units of time 
Number of messages= I (1, 6), (2, 5), (2, 6), (3, 4), 

C3, 5), C4, 9), C5, 9), C6, 8), C6, 9) I = 9 
Communication cost = 9 * 1 units of time 
Total cost = 4 + 9 = 13 units of time 

ModelB 
Execution cost = schedule length = 4 units of time 
Number of messages = I (P3, 1), (Pl, 2), (P3, 2), 
(Pl, 3), (P2, 4), (P2, 5), (Pl, 6), (P2, 6) I = 8 

Definitions 
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Communication cost = 8 * 1 units of time 
Total cost = 4 + 8 = 12 units of time 

ModelC 
The Gantt chart of Figure 3c reflects both the prece

dence relation and the communicatipn cost on the basis 
of Model C as follows: 

Total cost = schedule length = 6 units of time 

THE NP-COMPLETENESS OF THE 
SCHEDULING PROBLEM 

In this section we list some of the NP-complete results in 
the scheduling problem. It has been proven thatthe prob
lem of finding an optimal schedule for a set of tasks is NP
complete in the general case. and in several restricted 
cases. 1 For a formal definition of the notion of NP-com
pleteness and other related issues, refer to the literature. 1-2 

When communication cost is ignored 
Below, we give the formal definition of some versions of 

the scheduling problem that were proven to be NP-complete. 

• (Problem 1): General scheduling problem. Given a set 
T of n tasks, a partial order < on T, weightA;, 1 sis n, 
and m processors, and a time limit k, does there exist 
a totalfunctionhfrom Tto {O, 1, ... , k- l} such that 

(1) ifi <j, thenh(i) +A;sh(j) 
(2) for each iin Th (i) +A; s k 
(3) for each t, 0 st< k, there are at most m values 

of i for which h(i) st< h(i) +A;? 

The following problems are special cases of problem 1: 

• (Problem 2): Single-execution-time scheduling. We 
restrict problem 1 by requiring A; = 1, 1 sis n. (All 
tasks require one time unit.) 

• (Problem 3): Two-processor, one- or two-time-units 
scheduling. We restrict problem 1 by requiring m = 

2, and A; in {l, 2}, 1 s i ·s n. (All tasks require one or 
two time units, and there are only two processors.) 

• (Problem 4): Two-processor, interval-order schedul
ing. We restrict problem 1 by requiring th~ partial 
order < to be an interval order and m = 2. 

• (Problem 5): Single execution time, opposing forests. 
We restrict problem 1 by requiring A; = 1, 1 sis n, 
and the partial order < to be an opposing forest. 

(See the "Definitions" sidebar for an explanation of"inter
val orders" and "forests.") 

In 1972 Karp proved problem 1 to be NP-complete. 
In 1975 Ullman proved problems 2 and 3 to be NP
complete. Problem 4 was proven to be NP-complete by 
Papadimitriou and Yannakakis in 1979. In 1983 Garey, 
Johnson, Tarjan, and Yannakakis proved that problem 5 is 
also NP-complete. References to the proofs are listed in 
the literature. 2 

Considering communication cost 
. The complexity of the scheduling problem changes on the 

basis of which cost model is used to compute communica
tion. The following is a summary of the NP-complete results 



using these models. Using Model A, Afrati et 
al. showed that scheduling a tree with com
munication on an arbitrary number of 
processors is an NP-complete problem. 2 

Using Model B, Prastein proved that by 
taking communication into consideration, 
even when the execution time for all tasks 
is identical and equal to the communica
tion cost between any pair of processors, 
the problem of scheduling an arbitrary 
precedence program graph on two proces
sors is NP-complete and scheduling a tree
structured program on arbitrarily many 
processors is also NP-complete. Prastein 
also indicated that scheduling a tree-struc
tured task graph on two processors, using 
Model B, is an open problem in general. 2 

Task level 

Using Model C, Papadimitriou and 
Yannakakis proved that the problem of 
optimally scheduling unit-time task graphs 
with communication on an unlimited num
ber of processors is NP-complete when the 
communication between any pair of 
processors is the same and greater than or 
equal to one. In addition, they introduced 
an algorithm to approximate the optimal 
schedule length within a factor of two. 2 

Figure 4. Scheduling an in-forest on three identical processors: 
(a) task graph, (b} Gantt chart. 

OPTIMAL SCHEDULING ALGORITHMS 
Scheduling task graphs is known to be polynomial in 

only a few cases. In this section we discuss the solutions 
when communication cost is ignored and those when com
munication cost is considered. 

When communication cost is ignored 
There are only three cases for which polynomial-time 

algorithms can be obtained: tree-structured task graphs 
on an arbitrary number of processors, interval orders on 
an arbitrary number of processors, and arbitrary task 
graphs on two processors. 

SCHEDULING TREE-STRUCTURED TASK GRAPHS. In a classic 
paper,3 Hu presented an algorithm called the level algo
rithm, which can be used to solve the scheduling problem 
in linear time when the task graph is either an in-forest (each 
task has at most one immediate successor) or an out-forest 
(each task has at most one immediate predecessor) and all 
tasks have the same execution time. In this section, we 
assume that the task graph is an in-forest of n tasks. There 
is no loss of generality if we assume that all the tasks have 
unit execution times. The algorithm given in this section is 
linear in the number of tasks. We first define the following: 

Task level 
Let the level of a nodex in a task graph be the maximum 

numberofnodes (includingx) on any path fromxto a ter
minal task (leaf). In a tree, there is exactly one such path. 
A terminal task is at level 1. 

Ready tasks 
Let a task be ready when it has no predecessors or when 

all its predecessors have already been executed. 

Algorithm 1 

(1) The level of each node in the task graph is cal
culated as given above and used as each node's 
priority. 

(2) Whenever a processor becomes available, assign it 
the unexecuted ready task with the highest prior
ity. 

Algorithm 1 can be used in the out-forest case with sim
ple modification. 

Example2 
Consider the problem of scheduling the task graph 

given in Figure 4a on a fully connected target machine of 
three identical processors. Applying Algorithm 1, we first 
compute the level at each node. At the beginning, among 
all the ready tasks ( 4, 5, 8, 9, 10, 11, 13, and 14), tasks 13 
and 14 at level 5 are assigned first, as shown in the result
ing schedule given in Figure 4b. Following the path from 
node 13 (or node 14) to the terminal node 1, we can see 
that regardless of the number of available processors, at 
least five units of time will be required to execute all the 
tasks in the system. With only three processors, the opti
mal schedule length is six. Note that the schedule shown 
in Figure 4b is not the only optimal schedule that the algo
rithm can generate. 

SCHEDULING INTERVAL-ORDERED TASKS. The algorithm we 
present here is for scheduling interval-ordered tasks on 
an arbitrary number of processors. An interval order is a 
task graph in which the nodes can be mapped into inter
vals on the real line and two nodes are related if the cor
responding intervals do not overlap. 2·4•5 The properties of 
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interval orders make it possible to apply a simple greedy 
algorithm to find an optimal schedule when the execution 
time of all tasks is the same. At any given time, if there is 
more than one task ready for execution, picking the task 
with the maximum number of successors will always lead 
to the optimal solution, since its set of successors will 
include the set of successors of other ready tasks. This idea 
is presented in Algorithm 2.5 

Algorithm2 

(1) The number of successors of each node is used as 
its priority. 

Figure 5. Scheduling an interval order on three iden
tical processors: (a) task graph, (b) Gantt chart. 

(2) Whenever a processor becomes available, assign 
it the unexecuted ready task. with the highest 
priority. 

This algorithm solves the unit-execution-time scheduling 
problem for interval order (V, E) in OCIEI + IVI) time, 
since the number of successors of all tasks can be com
puted in 0( IE I) time and sorting the tasks according to 
the number of successors can be done in 0 ( I VI ) time using 
the bucket sort technique. Step 2 can be implemented in 
OCJVl)time. 

Example3 
Consider the probfem of scheduling the interval order 

given in Figure Sa on a fully connected target machine of 
three identical processo~s. Figure Sb shows the resulting 
schedule after Algorithm 2 is applied. 

ARBITRARY TASK GRAPHS ON TWO PROCESSORS. When all 
tasks have the same execution time, there are no known 
polynomial algorithms for scheduling task graphs on a 
fixed number of processors m if m > 2. The first polyno
mial-time algorithm form = 2, based on matching tech
niques, was presented by Fujii et al. 6 The time complexity 
of their algorithm is O(n2·5). Improved algorithms have 
been obtained by Coffman and Graham, Sethi, and 
Gabow.7.8 The time complexity of these three algorithms is 
O(n2), O(min(en, n2·61)), and O(e + na(n)), respectively, 
where n is the number of nodes and e is the number of arcs 
in the task graph. 

Below, we present the algorithm given by Coffman and 
Graham. The approach is similar to that used 
for scheduling trees: Labels giving priority are 
assigned to tasks, and a list for scheduling the 
task graph is constructed' from the labels. 
Labels from the set {1, 2, ... , n} are assigned 
to each task in the task graph by the function 
L(*), as we explain in Algorithm 3. 

Algorithm3 

(1) Assign 1 to one of the terminal tasks. 
(2) Let labels 1, 2, . . . , j - 1 be already 

assigned. Let S be1 the set of unassigned 
tasks with no unlabeled 'successors. We 
next select an element of S to be assigned 
label}. For each nodex in S define l(x) as 
follows: Lety1,y2, ••• ,yk be the immediate 
successors of x. Then l(x) is the decreas
ing sequence of integers formed by order
ing the set {L(y1), L(y2),, .. , L(yk)}. Letx 
be an element of S such that for allx' in S, 
l(x) :<:: l(x') (lexicographically). DefineL(x) 
=j. 

(3) When all tasks have been labeled, use the 
list (Tn, Tn_1, ••• , T1), where for all i, 1 :<:: i :<:: 

n, L(T;) = i, to schedule the tasks. 

Figure 6. A task graph and its optimal schedule on two proces
sors: (a) task graph, (b) Gantt chart. 

Since each task executes for one unit of time, 
processors 1 and 2 both become available at the 
same time. We assume that processor 1 is 
scheduled before processor 2. 

Computer 



Figure 7. (a) Tree-structured task graph, (b) augmented task graph, and (c) an optimal schedule of the tree 
in (a) with communication. 

Example4 
To understand the algorithm, let's examine the task 

graph given in Figure 6a. The three terminal tasks are 
assigned the labels 1, 2, and 3. At this point, the set S of 
unassigned tasks with no unlabeled successors becomes 
{ 4, 5}. Also, note that 1( 4) = {2, l}, and 1(5) = {3}. Since 
{3} > {2, l} (lexicographically), we assign labels 4, 5 to 
the tasks as given in the figure. The algorithm continues 
until all tasks are labeled. The number within each node 
in Figure 6 indicates its label. Task 15, with the highest 
label, is scheduled first on processor 1, then task 10 is 
scheduled on processor 2. After tasks 15 and 10 complete, 
the only ready tasks are 13 and 14. Recall that a task is 
called ready when all its predecessors have been executed. 
Try the labeling algorithm on the rest of the nodes in the 
given task graph. Figure 6b shows the output schedule 
that results after applying Algorithm 3. 

Considering communication cost 
Here we present two cases for which scheduling task 

graphs with communication is known to be polynomial: 
scheduling trees on two processors and scheduling inter
val orders on an arbitrary number of processors. 

SCHEDULING TREES ON TWO PROCESSORS. The main idea 
of the algorithm presented below is to augment the task 
graph with new precedence relations to compensate for 
communication. Scheduling the augmented task graph 
without considering communication is equivalent to 
scheduling the original task graph with communication. 2 

Here we assume that the tree is an in-forest. However, the 
algorithm can be easily modified to handle the out -forest 
case. The time complexity of the algorithm is O(n2). We 
first define the following: 

Node depth 
A node with no predecessors has a depth of zero. The 

depth of any other node is defined as the length of the 

longest path between the node and any node with depth 
zero. 

Operation swapall 
Given a schedule f, we define the operation swapall(j, 

x,y), where x andy are two tasks inf scheduled to start at 
time t on processors i and j, respectively. The effect of this 
operation is to swap all the task pairs scheduled on proces
sors i andj in the schedule! at time ti,'\/ t1, t1 2". t. 

Algorithm4 

(1) Given anin-forestG = (V,E), identifythe sets of sib
lings 51, 52, ••• , Sb where S; is the set of all nodes in 
V with a common child, child (S;). 

(2) El f---E 
(3) For every set S; 

• Pick node u E S; with the maximum depth 
• El f--El - (v, child(S;)) '\/ v E S; and v * u 
•El f--El u (v, u) VvE S;andv7ou 

(4) Obtain the schedulefby applying Algorithm 1 on 
the augmented in-forestF = (V, El). 

(5) For every set S; in the original in-forest G, if node u 
(with the maximum depth) is scheduled inf in the 
time slot immediately before child(S;), but on a dif
ferent processor, then apply the operation swap
all(child (S), x,j), where xis the task scheduled in 
the time slot immediately after u on the same 
processor. 

Examples 
Consider the in-forest shown in Figure 7a. The in-for

est, after the new arcs are added, is shown in Figure 7b. 
Algorithm 1 can be applied to this augmented in-forest to 
obtain a schedule wherein communication delays are con
sidered. The operation swapall is applied when commu-
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Figure 8. Scheduling an interval order with commu
nication on three processors: (a) task graph, (b) 
Gantt chart. 

nication restrictions are violated in the output schedule. 
The final schedule is shown in Figure 7c. 

SCHEDULING INTERVAL ORDERS WI1H COMMUNICATION. We 
present an algorithm that we (Ali and El-Rewini) intro
duced in 1993 that finds a solution when execution time 
is the same for all tasks and is identical to communication 
delay. 4 We first define the following: 

• nz(v): the number of successors of task v. 
• start-time ( v, i,f): the earliest time at which task v can 

start execution on processor Pi in schedulef. 
• task(i, t,f): the task scheduled on processor Pi at time t 

in schedule f. If there is no task scheduled on processor 
p1 at time tin schedule!, then task(i, t,f) returns the 
emptytaskef>. Notethatn2 (<j>) < ni(v) foranytaskvE V. 

Algorithms 

(1) Use n2 (v) as the priority of task v, and ties are bro
ken arbitrarily. 

(2) Nodes with highest priority are scheduled first. 
(3) Each taskv is assigned to processor pi with the min

imum start titne. 
( 4) If start-time(v, i,f) = start-time(v,j,f), 1 ~ i,j ~ m, 

task v is assigned to processor p; if task(i, start
time(v, i,f) - l,f) has the minimum n2 • 

The time complexity of the algorithm is O(ne), where n is 
the number of tasks and e is the number of arcs in the inter
val order. 

Example6 
In this example, we schedule the interval order of 

Figure Sa. We assume that the communication cost on 
all arcs equals one. As shown in Figure Sb, scheduling 
tasks 6, 5, 3, and 4is1straightforward. At this point, tasks 
1 and 2 have the same out degree (ni(l) == nz(2) == 0), 
but we will assume that task 2 is considered for schedul
ing before task l. Task 2 can start execution on proces
sors Pl, P2, and P3 at the same time (third time slot). 
Algorithm 5 will not schedule it on processor Pl, so task 
1 can start execution in the third time slot. Otherwise, 

Computer 

the schedule length would have been four instead of 
three. 

HEURISTIC ALGORITHMS 
To provide solutions to real-world scheduling problems, 

we must relax restrictions on the parallel program and the 
target machine representations. Recent research in this 
area has emphasized heuristic approaches. A heuristic pro
duces an answer in less than exponential time but does 
not guarantee an optimal solution. Intuition usually helps 
us come up with heuristics that use special parameters 
affecting the system indirectly. A heuristic is said to be bet
ter than another heuristic if solutions approach optimal
ity more often, or if a near-optimal solution is obtained i!f 
less time. The effectiveness of these scheduling heuristics 
depends on several parameters of the parallel program 
and the target machine. A heuristic that can optimally 
schedule a particular task graph on a certain target 
machine may not produce optimal schedules for other task 
graphs on other machines. As a result, several heuristics 
have been proposed, each of which may work under dif~ 
ferent circumstances. 

One class of scheduling heuristics that includes many 
schedulers is list scheduling. In list scheduling, each task 
is assigned a priority, then a list of tasks is constructed in 
a decreasing priority order. A ready task with the highest 
priority is scheduled on the task's "best" available proces
sor. The schedulers in this class differ in the way they 
assign priorities to tasks and in the criteria used to select 
the "best'' processor to run the task. Priority assignment 
results in different schedules because hodes are selected 
in a different order. Algorithm 6 shows the general list
scheduling algorithm. 

Algorithm6 

(1) Each node in the task graph is assigned a priority. 
A priority queue is initialized for ready tasks by 
inserting every task that has no immediate prede
cessors. Tasks are sorted in decreasing order of task 
priority. 

(2) As long as the priority queue is not empty, do the 
following: 

• Obtain a task from the front of the queue. 
• Select an idle processor to run the task. 
• When all the immediate predecessors of a par

ticular task are executed, that successor becomes 
ready and can be inserted into the priority queue. 

A different type of scheduling heuristics tries to partition 
the scheduling process into two phases: processor assign
ment (allocating tasks to the system processors) and task 
ordering (scheduling the tasks allocated on each proces
sor). Task graphs can be clustered as an intermediate phase 
to solve the allocation problem of the scheduling process. 
Algorithm 7 shows the general idea of this method. 

Algorithm 7 

(1) Clusterthe tasks assuming an unlimited number of 
fully connected processors. Two tasks in the same 



cluster are scheduled in the same processor. 
(2) Map the clusters and their tasks onto the given num

ber of processors (m). In this step, the following 
optimizations are performed: 

• Cluster merging. If the number of clusters is 
greater than the number of available processors, 
the clusters are merged into m clusters. 

• Physical mapping. The actual architecture is not 
fully connected. A mapping must be determined 
such that overall communication between clus
ters is minimized. 

• Task execution ordering. After the processor 
assignment of tasks is fixed, execution ordering 
is determined to ensure the correct dependence 
order between tasks. 

More details on scheduling heuristic algorithms can be 
found in the literature. z,9-11 

SCHEDULING TOOLS 
Software development is intrinsically difficult and time 

consuming for both sequential and parallel computing 
applications. However, designing and writing software for 
parallel computers is even more difficult because of the 
increased complexity incurred in dealing with task sched
uling, synchronization, and performance. The use of soft
ware tools is one way to make software development for 
parallel computers easier. 

The software development process for parallel com
puters starts with identifying parallelism in an applica
tion, continues through task partitioning, scheduling, and 
performance tuning, and ends with code generation. 
Experience has shown that it is very difficult to automate 
this entire process. However, it is possible to automate 
some phases of the development life cycle to increase pro
gramming productivity and take advantage of the com
puter's ability to perform tedious chores better than 
humans. Task scheduling appears to be one such chore 
that would benefit by being automated through software 
tools. In developing a parallel application, a programmer 
needs help in answering a number of scheduling-related 
questions. What is the best grain size for the program 
tasks? What is the best scheduling heuristic? How can per
formance be improved? How many processors should be 
used? Where should synchronization primitives be 
inserted in the code? Answers to these questions and many 
others can be determined through cooperation between 
a tool and a human program developer. Software tools 
have been used at two different phases of the software 
development life cycle: design and code generation. Three 
scheduling tools in particular incorporate many of the 
heuristics in the literature: Parallax, Hypertool, and 
Pyrros. We describe them only briefly; more details can be 
found in the literature.10-12 

Parallax 
Parallax is a software tool that aids in parallel program 

design by automating a number of scheduling heuristics 
and performance analysis tools. 12 As Figure 9 shows, 
Parallax produces (1) schedules in the form of Gantt charts 
for several scheduling algorithms, (2) performance charts 

in the form of line and bar graphs, and (3) critical-path 
analysis. With Parallax, a user can 

• model a parallel program as a task graph, 
• choose a method of optimization from several sched

uling heuristics that will automatically produce a 
schedule, 

• choose the topology of the desired target machine (or 
design an arbitrary topology for the parallel proces
sor of interest), and 

• observe anticipated scheduling and performance esti
mates obtained from scheduling the task graph onto 
the target machine. 

Parallax, which supports most of the scheduling heuris
tics introduced in the literature, is a tool for investigating 
scheduling heuristics before actually executing a parallel 
program. That is, Parallax is a design tool as opposed to a 
programming tool. It can also be used to refine an exist
ing parallel program after performance data has been col
lected from one or more runs. The basic idea behind 
Parallax is to help a human user create a parallel program 
design as a task graph, enter the target machine as a graph, 
and then perform a number of "what if" analyses. 

Pyrros 
Pyrros is a compile-time scheduling and code genera

tion tool. 11 Its input is a task graph and the associated 
sequential C code. The output is a static schedule and a 
parallel C code for a given architecture. Pyrros has the fol
lowing components: a task graph language with an inter
face to C, a scheduling system, a graphic displayer, and a 
code generator. The task graph language lets users define 
partitioned programs and data. The scheduling system is 
used for clustering the graph, load balancing and physi
cal mapping, and computation/ communication ordering. 
The graphic displayer is used for displaying task graphs 
and scheduling results. The code generator inserts syn
chronization primitives and performs code optimization 
for various parallel machines. A user first edits the pro
gram with the task graph language to specify the depen
dence information between partitioned program 
segments, the associated C code, weights, and the maxi
mum number of processors available. Pyrros can display 

Scheduling heuristics 
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Figure 9. An overview of the Parallax software tool. 
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the input dependence graph to help the user verify the cor
rectness of the flow dependence between tasks, and it can 
also generate the schedule and the code. The user can 
check the scheduling result by letting Pyrros display the 
schedule Gantt chart in the graph window and the statis
tics information in a separate text window. Figure 10 
shows an overview of Pyrros. 

Hype1rtool 
Hypertool takes a user-partitioned program as its input, 

automatically allocates the partitions to processors, and 
inserts proper synchronization primitives where needed.10 

First, a designer develops a proper algorithm, performs 
partitioning, and writes a program as a set of procedures. 

Figure 10. An overview of the Pyrros compile-time 
sched~1ling and code generation tool. 

Figure '11. An overview of Hypertool, which gener
ates peirformance estimates. 

Computer 

The program looks like a sequential program, and it can be 
debugged on a sequential machine. Through parallel code 
synthesis and optimization, this program is automatically 
converted into a parallel program for a distributed-mem
ory target machine. Hypertool can then generate perfor
mance estimates, including execution time, communi
cation time, suspension time for each processor, and net~ 
work delay for each communication channel. If the result 
is not satisfactory, the programmer can use the informa
tion provided by Hypertool's performance estimator and 
explanation facility to try to redefine the partitioning strat
egy and the size of the partitions. Figure 11 illustrates the 
Hypertool components. 

THE GOAL OF SCHEDULING IS TO DETERMINE an assignment of 
tasks to processors and an order in which tasks are exe
cuted to optimize some performance measure. Scheduling 
is a computationally intensive problem and known to be 
NP-complete. Because of the problem's intractability, 
recent research has emphasized heuristic approaches. 
Optimal algorithms can be obtained only in some, 
restricted cases. Even though several instances of the prob
lem have been proven to be NP-complete, several open 
problems remain. For example, scheduling task graphs 
when communication is not considered and when all tasks 
take the same amount of time on fixed m::: 3 processors is 
still an open problem. 

More research is needed to obtain optimal algorithms 
when certain restrictions are relaxed in the cases that have 
already been solved. For example, communication delay is 
a major parameter in parallel and distributed systems and 
should be considered. Since optimal schedules can be 
obtained in restricted cases that may not represent real
world situations, a simplified suboptimal approach to the 
general form of the problem is needed. Recent research in 
this area has emphasized heuristic construction, evalua
tion, and application. The challenge is to incorporate real
world parameters into our problem solutions. Another 
research direction is the development of scheduling soft
ware tools to help design parallel programs, automatically 
generate parallel code, and estimate performance. I 
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