
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1995-12

Task Scheduling in Multiprocessing Systems

El-Rewini, Hesham

http://hdl.handle.net/10945/41234

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Feature

Task Scheduling in
Multiprocessing
Systems
Hesham El-Rewini and
Hesham H. i\li
University of Nebraska at
Omaha

Ted Lewis
Naval Postgraduate School

-The complex problem of

assigning tasks to processing

elements in order to optimize

a performance measure has

resulted in numerous

heuristics aimed at

approximating an optimal

solution.

0018-9162/95/$4.00 © 1995 IEEE

J
obs needing to be processed in a manufacturing plant, bank cus­
tomers waiting to be served by tellers, aircraft waiting for landing
clearances, and program tasks to be run on a parallel or distributed

computer: What do these situations have in common? They all encounter
the scheduling problem that emerges whenever there is a choice con­
cerning the order in which tasks can be performed and the assignment
of tasks to servers for processing. In general, the scheduling problem
assumes a set of resources and a set of consumers serviced by those
resources according to a certain policy. The nature of the consumers and
resources as well as the constraints on them affect the search for an effi­
cient policy for managing the way consumers access and use the resources
to optimize some desired performance measure. Thus, a scheduling sys­
tem comprises a set of consumers, a set of resources, and a scheduling
policy.

A task in a program, a job in a factory, and a customer in a bank are
examples of consumers. A processing element in a computer system, a
machine in a factory, and a teller in a bank are examples of resources. First
come, first served is an example of a scheduling policy. Scheduling policy
performance varies with circumstances. While the equitable first-come,
first-served policy is appropriate in a bank, it may not be the best policy for
jobs on a factory floor or tasks in a computer system. This article addresses
the task scheduling problem in many of its variations and surveys the
major solutions.

The scheduling techniques we discuss might be used by a compiler
writer to optimize the code that comes out of a parallelizing compiler. The
compiler would produce grains of sequential code, and the optimizer
would schedule these grains such that the program runs in the shortest
time. Anotheruse of these techniques is in the design of high-performance
systems. A designer might want to construct a parallel application that
runs in the shortest time possible on some arbitrary system. We believe
the methods presented here can also be adapted to other (related)
resource allocation problems of computing.

Suppose a team of programmers wants to divide a programming task
into subsystems. Let's say each programmer depends on some other pro­
grammer(s) for interface specifications; otherwise, the programmers work
in parallel. Thus, the team can be modeled as a parallel processor, and the
program to be written can be modeled as parallel tasks. The scheduler
now tries to find the assignment of subsystems to programmers that will
let the team finish the program in the shortest time.

This article concerns scheduling program tasks on parallel and distrib­
uted systems. The tasks are the consumers, and they will be represented
through the use of directed graphs called task graphs. The processing ele­
ments are the resources, and their interconnection networks can be rep­
resented through the use of undirected graphs. The scheduler generates a
schedule in the form of a timing diagram called the Gantt chart, which is

December 1995 A

Target machine

Figure 1. The components of a scheduling system.

used to illustrate the allocation of the parallel program
tasks onto the target machine processors and the execu­
tion order of the tasks. Figure 1 shows the components of
a scheduling system. Task graphs, target machines, and
Gantt charts will be described in a later section.

We will provide models for representing parallel pro­
grams, parallel systems, and communication cost. Then,
since task scheduling has been shown to be computation­
ally intractable in many cases, we will summarize the NP­
complete results. (See the sidebar "NP-completeness.")
Solutions to this problem can be categorized into optimal
algorithms for some restricted cases and heuristic algo­
rithms for the more general cases. We present several opti­
mal algorithms for solving the scheduling problem in some
special cases. We then cover scheduling heuristics and
summarize three scheduling tools.

SCHEDULING MODEL
A parallel program is modeled as a partially ordered set

(poset) P = (V, <), where Vis a set of tasks. The relation

Computer

Gantt chart

V; < vj inP implies that the comp
1

utation of task vj depends
on the results of the computation of task V;. In other words,
task v; must be computed before task vj, and the result of
the computation of task v; must be known by the proces­
sor computing task vj. Associated with each task V; is its
computation cost A;. Associated with each arc (i,j) con­
necting tasks V; and vj is the communication cost Dij. The
partial order < is conveniently represented as a directed
acyclic graph called a task graph G = (V, E). A directed
edge (i,j) between two tasks V; and vj specifies that v; must
be completed before vj can begin.

The target machine is assumed to be made up of an arbi­
trary number of processing elements. Each processing ele­
ment can run one task at a time, and all tasks can be
processed by any processing element. The processing ele­
ments are connected via an arbitrary interconnection
topology that can be represented by an undirected graph.
Three parameters, S;, B;, and I;, are associated with each
processing element p;, where S; is the speed, B; is the time
to initiate a task on p;, and I; is the time to initiate a message
on P;. Associated with each edge connecting two process­
ing elements is the transfer rate over the link between the
two processing elements.

Figure 2 shows an example of a task graph and a target
machine. The task graph consists of nine nodes, with each
node representing a task. The number shown in the upper
portion of each node is the task number. The number in
the lower portion of a node i represents the parameter A;,
and the number next to an edge (i,j) represents the para- ·
meter Du; for example, A, = 6, and D12 = 25. The target
machine is an eight-node hypercube.

A schedule of the task graph G = (V, E) on m processors
is a functionf that maps each task to a processor and a start-

ingtime. Formally,/: V--7 {1, 2, ... , m} x [0, =). Iff(v) =

(i, t) for some v E V, we say that task vis scheduled to be
processed by processor P; starting at time t. There exists no
u, VE Vsuch thatf(u) = f(v). Notethatifu < v,f(u) = (i,t1),
andf(v) = (j, t2), thent1 < t2.Aschedule can be represented
informally using Gantt charts. A Gantt chart consists of a
list of all processors in the target machine, and for each
processor a list of all tasks allocated to that processor
ordered by their execution time, including task start and
finish times. The scheduling goal is to minimize the total
completion time of a parallel program. This performance
measure is known as the schedule length or
maximum finishing time. Figure 3 shows
examples of Gantt charts.

COMMUNICATION COST
MODELS

Two key components contribute to the
total completion cost: execution time and
communication delay. Several different
models can be used to compute the com­
munication delay. Here, we present three
models that can be used to compute the cost
of executing a parallel program on a set of
processing elements. Communication delay
is the key element differentiating these
models. Given a task graph G = (V, E) and
its schedule f on m processors, we define
proc(v) to be the processor assigned to
processtaskvinfforeveryvE V. Thethree
models, A, B, and C, are as follows:

Model A
In this model, the Gantt chart that rep­

resents the schedule f does not reflect the
communication delay, but it shows that the
precedence relations between tasks are
preserved. Program completion cost can be

25

nication cost + execution cost, where execution cost =
schedule length and communication cost == nl).mber of
messages * communication delay per message. Here, num­
ber of messages = number of processor-task pairs (P, v)
such that processor P does not compute task v but com­
putes at least one direct successor ofv.

ModelC
In this model, we assume the existence of an 1/0 proces­

sor that is associated with every processor in the system.
The term processing element is used to imply the existence

30

computed as total cost = communication Figure 2. An example of a task graph (a) and a target machine (b).
cost + execution cost, where execution cost
= schedule length and communication
cost = number of messages * communica­
tion delay per message. Here, the number
of messages = the number of node pairs
(u, v) such that (u, v) E E and proc(u) *
proc(v).

Time P1 P2

ModelB
This model is similar to Model A, but it

uses a more practical method in evaluating
the number of messages. By counting each
arc (u, v) such that proc(u) * proc(v) as
communication using Model A, we may be
passing the same information between a
given pair of processors several times. For
instance, if tasks u, v, and w E V such that
(u, v), (u, w) EE andproc(v) = proc(w) *
proc(u), then the result of computing u
must be communicated to the processor
computing v and w. This communication is
counted twice in Model A and only once in
Model B, as follows: Total cost = commu-

0

Time P1 P2 P3
0 2

2 3 4

4 6 5

5 7 8

Figure 3. Communication models: (a) task graph, {b) Gantt chart
{Models A and B), (c) Gantt chart {Model C).

December 1995

2

P3

3

6

7

:Q

of an I/O processor. A processing element can execute a
task and communicate with another processing element at
the same time. Communication time between two tasks
allocated to the same processing element is assumed to be
zero. For any two tasks v;, vi E V, ifv; < vj andf(v;) = (k, t),
then vi should be scheduled on either

• processor Pk on time t1 and t 1 ~ t +A; or
• processor p1, l t= k on time t2 and t2 ~ t +A; + Dw

When this model is used, the communication delay can
be easily shown on the Gantt chart representing the sched­
ule. Also note that a task can be scheduled in the commu­
nication holes in a Gantt chart. In other words, a task can.
be assigned to a processing element for execution while
this processing element is communicating_ with another
processing element. The program completion time is com­
puted as total cost = schedule length.

Example 1
Consider the task graph given in Figure 3a. We compute

the program completion cost of this task graph on three
processing elements using the three models given above.
Suppose that tasks are assigned arbitrarily to processors as
follows: Tasks 1, 4, 5, and 8 are assigned to processor Pl,
tasks 2 and 9 are assigned to processor P2, and tasks 3, 6,
and 7 are assigned to processor P3. In this example, we
assume (for simplicity) thatthe communication delay per
message equals one unit of time. The Gantt charts shown
in Figure 3 reflect the assignment given above. The Gantt
chart in Figure 3b shows only the precedence constraints
on the tasks; it does not show the communication delay.
This Gantt chart can be used to compute the completion
cost using Models A and Bas follows:

Model A
Execution cost = schedule length = 4 units of time
Number of messages= I (1, 6), (2, 5), (2, 6), (3, 4),

C3, 5), C4, 9), C5, 9), C6, 8), C6, 9) I = 9
Communication cost = 9 * 1 units of time
Total cost = 4 + 9 = 13 units of time

ModelB
Execution cost = schedule length = 4 units of time
Number of messages = I (P3, 1), (Pl, 2), (P3, 2),
(Pl, 3), (P2, 4), (P2, 5), (Pl, 6), (P2, 6) I = 8

Definitions

Computer

Communication cost = 8 * 1 units of time
Total cost = 4 + 8 = 12 units of time

ModelC
The Gantt chart of Figure 3c reflects both the prece­

dence relation and the communicatipn cost on the basis
of Model C as follows:

Total cost = schedule length = 6 units of time

THE NP-COMPLETENESS OF THE
SCHEDULING PROBLEM

In this section we list some of the NP-complete results in
the scheduling problem. It has been proven thatthe prob­
lem of finding an optimal schedule for a set of tasks is NP­
complete in the general case. and in several restricted
cases. 1 For a formal definition of the notion of NP-com­
pleteness and other related issues, refer to the literature. 1-2

When communication cost is ignored
Below, we give the formal definition of some versions of

the scheduling problem that were proven to be NP-complete.

• (Problem 1): General scheduling problem. Given a set
T of n tasks, a partial order < on T, weightA;, 1 sis n,
and m processors, and a time limit k, does there exist
a totalfunctionhfrom Tto {O, 1, ... , k- l} such that

(1) ifi <j, thenh(i) +A;sh(j)
(2) for each iin Th (i) +A; s k
(3) for each t, 0 st< k, there are at most m values

of i for which h(i) st< h(i) +A;?

The following problems are special cases of problem 1:

• (Problem 2): Single-execution-time scheduling. We
restrict problem 1 by requiring A; = 1, 1 sis n. (All
tasks require one time unit.)

• (Problem 3): Two-processor, one- or two-time-units
scheduling. We restrict problem 1 by requiring m =

2, and A; in {l, 2}, 1 s i ·s n. (All tasks require one or
two time units, and there are only two processors.)

• (Problem 4): Two-processor, interval-order schedul­
ing. We restrict problem 1 by requiring th~ partial
order < to be an interval order and m = 2.

• (Problem 5): Single execution time, opposing forests.
We restrict problem 1 by requiring A; = 1, 1 sis n,
and the partial order < to be an opposing forest.

(See the "Definitions" sidebar for an explanation of"inter­
val orders" and "forests.")

In 1972 Karp proved problem 1 to be NP-complete.
In 1975 Ullman proved problems 2 and 3 to be NP­
complete. Problem 4 was proven to be NP-complete by
Papadimitriou and Yannakakis in 1979. In 1983 Garey,
Johnson, Tarjan, and Yannakakis proved that problem 5 is
also NP-complete. References to the proofs are listed in
the literature. 2

Considering communication cost
. The complexity of the scheduling problem changes on the

basis of which cost model is used to compute communica­
tion. The following is a summary of the NP-complete results

using these models. Using Model A, Afrati et
al. showed that scheduling a tree with com­
munication on an arbitrary number of
processors is an NP-complete problem. 2

Using Model B, Prastein proved that by
taking communication into consideration,
even when the execution time for all tasks
is identical and equal to the communica­
tion cost between any pair of processors,
the problem of scheduling an arbitrary
precedence program graph on two proces­
sors is NP-complete and scheduling a tree­
structured program on arbitrarily many
processors is also NP-complete. Prastein
also indicated that scheduling a tree-struc­
tured task graph on two processors, using
Model B, is an open problem in general. 2

Task level

Using Model C, Papadimitriou and
Yannakakis proved that the problem of
optimally scheduling unit-time task graphs
with communication on an unlimited num­
ber of processors is NP-complete when the
communication between any pair of
processors is the same and greater than or
equal to one. In addition, they introduced
an algorithm to approximate the optimal
schedule length within a factor of two. 2

Figure 4. Scheduling an in-forest on three identical processors:
(a) task graph, (b} Gantt chart.

OPTIMAL SCHEDULING ALGORITHMS
Scheduling task graphs is known to be polynomial in

only a few cases. In this section we discuss the solutions
when communication cost is ignored and those when com­
munication cost is considered.

When communication cost is ignored
There are only three cases for which polynomial-time

algorithms can be obtained: tree-structured task graphs
on an arbitrary number of processors, interval orders on
an arbitrary number of processors, and arbitrary task
graphs on two processors.

SCHEDULING TREE-STRUCTURED TASK GRAPHS. In a classic
paper,3 Hu presented an algorithm called the level algo­
rithm, which can be used to solve the scheduling problem
in linear time when the task graph is either an in-forest (each
task has at most one immediate successor) or an out-forest
(each task has at most one immediate predecessor) and all
tasks have the same execution time. In this section, we
assume that the task graph is an in-forest of n tasks. There
is no loss of generality if we assume that all the tasks have
unit execution times. The algorithm given in this section is
linear in the number of tasks. We first define the following:

Task level
Let the level of a nodex in a task graph be the maximum

numberofnodes (includingx) on any path fromxto a ter­
minal task (leaf). In a tree, there is exactly one such path.
A terminal task is at level 1.

Ready tasks
Let a task be ready when it has no predecessors or when

all its predecessors have already been executed.

Algorithm 1

(1) The level of each node in the task graph is cal­
culated as given above and used as each node's
priority.

(2) Whenever a processor becomes available, assign it
the unexecuted ready task with the highest prior­
ity.

Algorithm 1 can be used in the out-forest case with sim­
ple modification.

Example2
Consider the problem of scheduling the task graph

given in Figure 4a on a fully connected target machine of
three identical processors. Applying Algorithm 1, we first
compute the level at each node. At the beginning, among
all the ready tasks (4, 5, 8, 9, 10, 11, 13, and 14), tasks 13
and 14 at level 5 are assigned first, as shown in the result­
ing schedule given in Figure 4b. Following the path from
node 13 (or node 14) to the terminal node 1, we can see
that regardless of the number of available processors, at
least five units of time will be required to execute all the
tasks in the system. With only three processors, the opti­
mal schedule length is six. Note that the schedule shown
in Figure 4b is not the only optimal schedule that the algo­
rithm can generate.

SCHEDULING INTERVAL-ORDERED TASKS. The algorithm we
present here is for scheduling interval-ordered tasks on
an arbitrary number of processors. An interval order is a
task graph in which the nodes can be mapped into inter­
vals on the real line and two nodes are related if the cor­
responding intervals do not overlap. 2·4•5 The properties of

December I995

interval orders make it possible to apply a simple greedy
algorithm to find an optimal schedule when the execution
time of all tasks is the same. At any given time, if there is
more than one task ready for execution, picking the task
with the maximum number of successors will always lead
to the optimal solution, since its set of successors will
include the set of successors of other ready tasks. This idea
is presented in Algorithm 2.5

Algorithm2

(1) The number of successors of each node is used as
its priority.

Figure 5. Scheduling an interval order on three iden­
tical processors: (a) task graph, (b) Gantt chart.

(2) Whenever a processor becomes available, assign
it the unexecuted ready task. with the highest
priority.

This algorithm solves the unit-execution-time scheduling
problem for interval order (V, E) in OCIEI + IVI) time,
since the number of successors of all tasks can be com­
puted in 0(IE I) time and sorting the tasks according to
the number of successors can be done in 0 (I VI) time using
the bucket sort technique. Step 2 can be implemented in
OCJVl)time.

Example3
Consider the probfem of scheduling the interval order

given in Figure Sa on a fully connected target machine of
three identical processo~s. Figure Sb shows the resulting
schedule after Algorithm 2 is applied.

ARBITRARY TASK GRAPHS ON TWO PROCESSORS. When all
tasks have the same execution time, there are no known
polynomial algorithms for scheduling task graphs on a
fixed number of processors m if m > 2. The first polyno­
mial-time algorithm form = 2, based on matching tech­
niques, was presented by Fujii et al. 6 The time complexity
of their algorithm is O(n2·5). Improved algorithms have
been obtained by Coffman and Graham, Sethi, and
Gabow.7.8 The time complexity of these three algorithms is
O(n2), O(min(en, n2·61)), and O(e + na(n)), respectively,
where n is the number of nodes and e is the number of arcs
in the task graph.

Below, we present the algorithm given by Coffman and
Graham. The approach is similar to that used
for scheduling trees: Labels giving priority are
assigned to tasks, and a list for scheduling the
task graph is constructed' from the labels.
Labels from the set {1, 2, ... , n} are assigned
to each task in the task graph by the function
L(*), as we explain in Algorithm 3.

Algorithm3

(1) Assign 1 to one of the terminal tasks.
(2) Let labels 1, 2, . . . , j - 1 be already

assigned. Let S be1 the set of unassigned
tasks with no unlabeled 'successors. We
next select an element of S to be assigned
label}. For each nodex in S define l(x) as
follows: Lety1,y2, ••• ,yk be the immediate
successors of x. Then l(x) is the decreas­
ing sequence of integers formed by order­
ing the set {L(y1), L(y2),, .. , L(yk)}. Letx
be an element of S such that for allx' in S,
l(x) :<:: l(x') (lexicographically). DefineL(x)
=j.

(3) When all tasks have been labeled, use the
list (Tn, Tn_1, ••• , T1), where for all i, 1 :<:: i :<::

n, L(T;) = i, to schedule the tasks.

Figure 6. A task graph and its optimal schedule on two proces­
sors: (a) task graph, (b) Gantt chart.

Since each task executes for one unit of time,
processors 1 and 2 both become available at the
same time. We assume that processor 1 is
scheduled before processor 2.

Computer

Figure 7. (a) Tree-structured task graph, (b) augmented task graph, and (c) an optimal schedule of the tree
in (a) with communication.

Example4
To understand the algorithm, let's examine the task

graph given in Figure 6a. The three terminal tasks are
assigned the labels 1, 2, and 3. At this point, the set S of
unassigned tasks with no unlabeled successors becomes
{ 4, 5}. Also, note that 1(4) = {2, l}, and 1(5) = {3}. Since
{3} > {2, l} (lexicographically), we assign labels 4, 5 to
the tasks as given in the figure. The algorithm continues
until all tasks are labeled. The number within each node
in Figure 6 indicates its label. Task 15, with the highest
label, is scheduled first on processor 1, then task 10 is
scheduled on processor 2. After tasks 15 and 10 complete,
the only ready tasks are 13 and 14. Recall that a task is
called ready when all its predecessors have been executed.
Try the labeling algorithm on the rest of the nodes in the
given task graph. Figure 6b shows the output schedule
that results after applying Algorithm 3.

Considering communication cost
Here we present two cases for which scheduling task

graphs with communication is known to be polynomial:
scheduling trees on two processors and scheduling inter­
val orders on an arbitrary number of processors.

SCHEDULING TREES ON TWO PROCESSORS. The main idea
of the algorithm presented below is to augment the task
graph with new precedence relations to compensate for
communication. Scheduling the augmented task graph
without considering communication is equivalent to
scheduling the original task graph with communication. 2

Here we assume that the tree is an in-forest. However, the
algorithm can be easily modified to handle the out -forest
case. The time complexity of the algorithm is O(n2). We
first define the following:

Node depth
A node with no predecessors has a depth of zero. The

depth of any other node is defined as the length of the

longest path between the node and any node with depth
zero.

Operation swapall
Given a schedule f, we define the operation swapall(j,

x,y), where x andy are two tasks inf scheduled to start at
time t on processors i and j, respectively. The effect of this
operation is to swap all the task pairs scheduled on proces­
sors i andj in the schedule! at time ti,'\/ t1, t1 2". t.

Algorithm4

(1) Given anin-forestG = (V,E), identifythe sets of sib­
lings 51, 52, ••• , Sb where S; is the set of all nodes in
V with a common child, child (S;).

(2) El f---E
(3) For every set S;

• Pick node u E S; with the maximum depth
• El f--El - (v, child(S;)) '\/ v E S; and v * u
•El f--El u (v, u) VvE S;andv7ou

(4) Obtain the schedulefby applying Algorithm 1 on
the augmented in-forestF = (V, El).

(5) For every set S; in the original in-forest G, if node u
(with the maximum depth) is scheduled inf in the
time slot immediately before child(S;), but on a dif­
ferent processor, then apply the operation swap­
all(child (S), x,j), where xis the task scheduled in
the time slot immediately after u on the same
processor.

Examples
Consider the in-forest shown in Figure 7a. The in-for­

est, after the new arcs are added, is shown in Figure 7b.
Algorithm 1 can be applied to this augmented in-forest to
obtain a schedule wherein communication delays are con­
sidered. The operation swapall is applied when commu-

December 1995 -

H

Figure 8. Scheduling an interval order with commu­
nication on three processors: (a) task graph, (b)
Gantt chart.

nication restrictions are violated in the output schedule.
The final schedule is shown in Figure 7c.

SCHEDULING INTERVAL ORDERS WI1H COMMUNICATION. We
present an algorithm that we (Ali and El-Rewini) intro­
duced in 1993 that finds a solution when execution time
is the same for all tasks and is identical to communication
delay. 4 We first define the following:

• nz(v): the number of successors of task v.
• start-time (v, i,f): the earliest time at which task v can

start execution on processor Pi in schedulef.
• task(i, t,f): the task scheduled on processor Pi at time t

in schedule f. If there is no task scheduled on processor
p1 at time tin schedule!, then task(i, t,f) returns the
emptytaskef>. Notethatn2 (<j>) < ni(v) foranytaskvE V.

Algorithms

(1) Use n2 (v) as the priority of task v, and ties are bro­
ken arbitrarily.

(2) Nodes with highest priority are scheduled first.
(3) Each taskv is assigned to processor pi with the min­

imum start titne.
(4) If start-time(v, i,f) = start-time(v,j,f), 1 ~ i,j ~ m,

task v is assigned to processor p; if task(i, start­
time(v, i,f) - l,f) has the minimum n2 •

The time complexity of the algorithm is O(ne), where n is
the number of tasks and e is the number of arcs in the inter­
val order.

Example6
In this example, we schedule the interval order of

Figure Sa. We assume that the communication cost on
all arcs equals one. As shown in Figure Sb, scheduling
tasks 6, 5, 3, and 4is1straightforward. At this point, tasks
1 and 2 have the same out degree (ni(l) == nz(2) == 0),
but we will assume that task 2 is considered for schedul­
ing before task l. Task 2 can start execution on proces­
sors Pl, P2, and P3 at the same time (third time slot).
Algorithm 5 will not schedule it on processor Pl, so task
1 can start execution in the third time slot. Otherwise,

Computer

the schedule length would have been four instead of
three.

HEURISTIC ALGORITHMS
To provide solutions to real-world scheduling problems,

we must relax restrictions on the parallel program and the
target machine representations. Recent research in this
area has emphasized heuristic approaches. A heuristic pro­
duces an answer in less than exponential time but does
not guarantee an optimal solution. Intuition usually helps
us come up with heuristics that use special parameters
affecting the system indirectly. A heuristic is said to be bet­
ter than another heuristic if solutions approach optimal­
ity more often, or if a near-optimal solution is obtained i!f
less time. The effectiveness of these scheduling heuristics
depends on several parameters of the parallel program
and the target machine. A heuristic that can optimally
schedule a particular task graph on a certain target
machine may not produce optimal schedules for other task
graphs on other machines. As a result, several heuristics
have been proposed, each of which may work under dif~
ferent circumstances.

One class of scheduling heuristics that includes many
schedulers is list scheduling. In list scheduling, each task
is assigned a priority, then a list of tasks is constructed in
a decreasing priority order. A ready task with the highest
priority is scheduled on the task's "best" available proces­
sor. The schedulers in this class differ in the way they
assign priorities to tasks and in the criteria used to select
the "best'' processor to run the task. Priority assignment
results in different schedules because hodes are selected
in a different order. Algorithm 6 shows the general list­
scheduling algorithm.

Algorithm6

(1) Each node in the task graph is assigned a priority.
A priority queue is initialized for ready tasks by
inserting every task that has no immediate prede­
cessors. Tasks are sorted in decreasing order of task
priority.

(2) As long as the priority queue is not empty, do the
following:

• Obtain a task from the front of the queue.
• Select an idle processor to run the task.
• When all the immediate predecessors of a par­

ticular task are executed, that successor becomes
ready and can be inserted into the priority queue.

A different type of scheduling heuristics tries to partition
the scheduling process into two phases: processor assign­
ment (allocating tasks to the system processors) and task
ordering (scheduling the tasks allocated on each proces­
sor). Task graphs can be clustered as an intermediate phase
to solve the allocation problem of the scheduling process.
Algorithm 7 shows the general idea of this method.

Algorithm 7

(1) Clusterthe tasks assuming an unlimited number of
fully connected processors. Two tasks in the same

cluster are scheduled in the same processor.
(2) Map the clusters and their tasks onto the given num­

ber of processors (m). In this step, the following
optimizations are performed:

• Cluster merging. If the number of clusters is
greater than the number of available processors,
the clusters are merged into m clusters.

• Physical mapping. The actual architecture is not
fully connected. A mapping must be determined
such that overall communication between clus­
ters is minimized.

• Task execution ordering. After the processor
assignment of tasks is fixed, execution ordering
is determined to ensure the correct dependence
order between tasks.

More details on scheduling heuristic algorithms can be
found in the literature. z,9-11

SCHEDULING TOOLS
Software development is intrinsically difficult and time

consuming for both sequential and parallel computing
applications. However, designing and writing software for
parallel computers is even more difficult because of the
increased complexity incurred in dealing with task sched­
uling, synchronization, and performance. The use of soft­
ware tools is one way to make software development for
parallel computers easier.

The software development process for parallel com­
puters starts with identifying parallelism in an applica­
tion, continues through task partitioning, scheduling, and
performance tuning, and ends with code generation.
Experience has shown that it is very difficult to automate
this entire process. However, it is possible to automate
some phases of the development life cycle to increase pro­
gramming productivity and take advantage of the com­
puter's ability to perform tedious chores better than
humans. Task scheduling appears to be one such chore
that would benefit by being automated through software
tools. In developing a parallel application, a programmer
needs help in answering a number of scheduling-related
questions. What is the best grain size for the program
tasks? What is the best scheduling heuristic? How can per­
formance be improved? How many processors should be
used? Where should synchronization primitives be
inserted in the code? Answers to these questions and many
others can be determined through cooperation between
a tool and a human program developer. Software tools
have been used at two different phases of the software
development life cycle: design and code generation. Three
scheduling tools in particular incorporate many of the
heuristics in the literature: Parallax, Hypertool, and
Pyrros. We describe them only briefly; more details can be
found in the literature.10-12

Parallax
Parallax is a software tool that aids in parallel program

design by automating a number of scheduling heuristics
and performance analysis tools. 12 As Figure 9 shows,
Parallax produces (1) schedules in the form of Gantt charts
for several scheduling algorithms, (2) performance charts

in the form of line and bar graphs, and (3) critical-path
analysis. With Parallax, a user can

• model a parallel program as a task graph,
• choose a method of optimization from several sched­

uling heuristics that will automatically produce a
schedule,

• choose the topology of the desired target machine (or
design an arbitrary topology for the parallel proces­
sor of interest), and

• observe anticipated scheduling and performance esti­
mates obtained from scheduling the task graph onto
the target machine.

Parallax, which supports most of the scheduling heuris­
tics introduced in the literature, is a tool for investigating
scheduling heuristics before actually executing a parallel
program. That is, Parallax is a design tool as opposed to a
programming tool. It can also be used to refine an exist­
ing parallel program after performance data has been col­
lected from one or more runs. The basic idea behind
Parallax is to help a human user create a parallel program
design as a task graph, enter the target machine as a graph,
and then perform a number of "what if" analyses.

Pyrros
Pyrros is a compile-time scheduling and code genera­

tion tool. 11 Its input is a task graph and the associated
sequential C code. The output is a static schedule and a
parallel C code for a given architecture. Pyrros has the fol­
lowing components: a task graph language with an inter­
face to C, a scheduling system, a graphic displayer, and a
code generator. The task graph language lets users define
partitioned programs and data. The scheduling system is
used for clustering the graph, load balancing and physi­
cal mapping, and computation/ communication ordering.
The graphic displayer is used for displaying task graphs
and scheduling results. The code generator inserts syn­
chronization primitives and performs code optimization
for various parallel machines. A user first edits the pro­
gram with the task graph language to specify the depen­
dence information between partitioned program
segments, the associated C code, weights, and the maxi­
mum number of processors available. Pyrros can display

Scheduling heuristics

Speedup curves

Gantt charts

I Efficiency charts I
\Utilization charts\

I Critical-path into.\

\ Machine display \

I Program display j

Figure 9. An overview of the Parallax software tool.

December 1995 '*

the input dependence graph to help the user verify the cor­
rectness of the flow dependence between tasks, and it can
also generate the schedule and the code. The user can
check the scheduling result by letting Pyrros display the
schedule Gantt chart in the graph window and the statis­
tics information in a separate text window. Figure 10
shows an overview of Pyrros.

Hype1rtool
Hypertool takes a user-partitioned program as its input,

automatically allocates the partitions to processors, and
inserts proper synchronization primitives where needed.10

First, a designer develops a proper algorithm, performs
partitioning, and writes a program as a set of procedures.

Figure 10. An overview of the Pyrros compile-time
sched~1ling and code generation tool.

Figure '11. An overview of Hypertool, which gener­
ates peirformance estimates.

Computer

The program looks like a sequential program, and it can be
debugged on a sequential machine. Through parallel code
synthesis and optimization, this program is automatically
converted into a parallel program for a distributed-mem­
ory target machine. Hypertool can then generate perfor­
mance estimates, including execution time, communi­
cation time, suspension time for each processor, and net~
work delay for each communication channel. If the result
is not satisfactory, the programmer can use the informa­
tion provided by Hypertool's performance estimator and
explanation facility to try to redefine the partitioning strat­
egy and the size of the partitions. Figure 11 illustrates the
Hypertool components.

THE GOAL OF SCHEDULING IS TO DETERMINE an assignment of
tasks to processors and an order in which tasks are exe­
cuted to optimize some performance measure. Scheduling
is a computationally intensive problem and known to be
NP-complete. Because of the problem's intractability,
recent research has emphasized heuristic approaches.
Optimal algorithms can be obtained only in some,
restricted cases. Even though several instances of the prob­
lem have been proven to be NP-complete, several open
problems remain. For example, scheduling task graphs
when communication is not considered and when all tasks
take the same amount of time on fixed m::: 3 processors is
still an open problem.

More research is needed to obtain optimal algorithms
when certain restrictions are relaxed in the cases that have
already been solved. For example, communication delay is
a major parameter in parallel and distributed systems and
should be considered. Since optimal schedules can be
obtained in restricted cases that may not represent real­
world situations, a simplified suboptimal approach to the
general form of the problem is needed. Recent research in
this area has emphasized heuristic construction, evalua­
tion, and application. The challenge is to incorporate real­
world parameters into our problem solutions. Another
research direction is the development of scheduling soft­
ware tools to help design parallel programs, automatically
generate parallel code, and estimate performance. I

References ~~~~~~~~~~~~~~~~~
1. J. Ullman, "NP-Complete Scheduling Problems," J. Computer

and System Sciences, Vol. 10, 1975, pp. 384-393.

2. H. El-Rewini, T. Lewis, andH. Ali, TaskSchedulinginParalleland

DistrihutedSystems, Prentice Hall, Englewood Cliffs, N.J., 1994.
3. T.C. Hu, "Parallel Sequencing and Assembly Line Problems,"

Operations Research, Vol. 9, No. 6, 1961, pp. 841;848.
4. H. Ali and H. El-Rewini, "An Optimal Algorithm fo•r Schedul­

ing Interval Ordered Tasks with Communication onNProces­
sors," J. Computer and System Sciences, to appear in 1995.

5. C.H. Papadimitriou and M. Yannakakis, "Scheduling Interval­

Ordered Tasks," SIAMJ. Computing, Vol. 8, 1979, pp. 405-409.
6. M. Fujii, T. Kasami, and K. Ninomiya, "Optimal Sequencing

of Two Equivalent Processors," SIAMJ. Appl. Math., July 1969.
7. E.G. Coffman, Computer; and Job-Shop Scheduling Theory,

John Wiley & Sons, Somerset, N.J., 1976.
8. H. Gabow, "An Almost Linear Algorithm for Two-Processor

Scheduling," J.ACM, Vol. 29, No. 3, July 1982, pp. 766-780.
9. A. Gerasoulis and T. Yang, "A Comparison of Clustering

Heuristics for Scheduling DAGs on Multiprocessors," J. Par-

allel and Distributed Computing, Dec. 1992, pp. 276-291.

10. M. Wu and D. Gajski, "Hypertool: A Programming Aid for
Message-Passing Systems," IEEE Trans. Parallel and Distrib­
uted Systems, Vol. 1, No. 3, July 1990, pp. 101-119.

11. T. Yang and A. Gerasoulis, "PYRROS: Static Task Scheduling
and Code Generation for Message Passing Multiprocessors,"
Proc. Sixth ACM Int'l Conj. Supercomputing, ACM, New York,
1992, pp. 428-443.

12. T. Lewis and H. El-Rewini, "Parallax: A Tool for Parallel Pro­
gram Scheduling," IEEE Parallel and Distributed Technology,
Vol. 1, No. 2, May 1993, pp. 62-72.

Hesham El-Rewini is an associate professor of computer
science at the University of Nebraska at Omaha. His research
interests include parallel programming environm,ents and
task scheduling, and he has coauthored two books and pub­
lished numerous articles on these topics. He was a guest edi­
tor for IEEE Parallel and Distributed Technology's August
1993 issue and is guest editor for the magazine's Fall 1996
issue on the engineering of complex distributed systems, for
which he is currently accepting papers. He is on several inter­
national conference program committees and continues to
chair the software track of the Hawaii International Con­
ference on System Sciences. El-Rewirii received BS and MS
degrees from the University of Alexandria, Egypt, in 1982
and 1985, respectively, and a PhD from Oregon State Uni­
versity in 1990, all in computer science. He is a member of
the ACM and the IEEE Computer Society.

Hesham H. Ali is an associate professor of computer sci­
ence at the University of Nebraska at Omaha. He is the coau­
thor of two recent books, Task Scheduling in Parallel and
Distributed Systems and Introduction to Graph Algo­
rithms, and the author of numerous articles in his research
fields, which include the development of graph analysis and
generation tools and the application of graph theory in par­
allel computing and VLSI design. Ali received BS and MS
degrees from the University of Alexandria, Egypt, in 1982
and 1985, respectively, and a PhD from the University of
Nebraska-Lincoln in 1988, all in computer science. He is a
member of the ACM.

Ted Lewis is professor and chair of computer science at the
Naval Postgraduate School in Monterey, California. A past
editor-in-chief of both Computer and IEEE Software, he has
published extensively in the areas of parallel computing and
real-time software engineering. He received a BS in mathe­
matics from Oregon State University in 1966 and MS and PhD
degrees from Washington State University in 1970and1971,
respectively. He is a member of the IEEE Computer Society.

Readers can contact El-Rewini and Ali at the Department of
Computer Science, University of Nebraska at Omaha,
Omaha, NE 68182-0243, e-mail {rewini, hesham}@
cs. unomaha. edu and Lewis at the Department of Computer
Science, Naval Postgraduate School, Monterey, CA 93943-
5100, e-mail lewis@cs.nps.navy.mil.

Judith Schlesinger, a former parallel computing area editor
for Computer, coordinated the review of this article and
recommended it for publication. Her e-mail address is
judith@super.org.

I :iti,!!!,1,'.. !!.:·.'·!!}!!!.!l:l l~
:··:; ::. ~-::-:·:~···' ": :: ;'~ . .-"·:· .. ':~.::-=- :-:· .. -·.".':; ,. :··i-·.

··~; ·: .. -::.··~ :~~·~: r·;·J":·.·~~-:--~ ...i:--{~c ·.:·-::: ::· .. ·c::. ·:: ::- . ··~
.,,"·:··:i.~::i: .. -::.: ~:: ~~· ... :··· :·:·· .. :;-:~ ":·.~ ~· .. ··::.:;.::--:; (?:~··.

·:. "::- .·.·:
· .. •::

w '•.'··: .. · . .:.:. .". .: , . • . ." ·. ~- .. I .. : •• ··.·: • ,",i','

Y PROGRAMMING AND

DEVELOPMENT TOOLS FOR

COMMUNICATIONS

PROFESSIONALS, ENGINEERS,

AND SCIENTISTS

Y SOFTWARE ENGINEERING

Y VLSI DESIGN AND TESTING

Y GRAPHICS APPLICATIONS

,. OBJECT-ORIENTED

PROGRAMMING

Y COMMUNICATIONS AND

NETWORKING

Y COMPUTFR SYSTEMS AND

ARCHITECTURES

1· . i . ·: . :" :, .• :,'·! ,· ·,' ·: .> ~:·." . : .. 'i-:.i . : '• : :. r. ' ::• ~-· .

·.r·: .·. . . ·.: i • . .'· •. · :·.:· ... ·~:·

Theron Shreve, /\cquisitions Ecii!'o1

685 Canton Street, Norwood, MA 02062

(800) 225-9977 aqartech@world.std.com

·~ Artech House Publishers , " , , " .. .

Reader Service Number 2

Give your
students the best ...

Teach prograniming the
o~ject-oriented way with

Eiffel
Call today to .ioin the ISE Unh·ersity
Partnership Program.
llnix, VMS, PC's
and more.

Phone: 805-685-1006 Fax: 805-685-6869
E-mail: info(a:,eiffcl.com WWW: ht1p://www.eiffcl.com

Reader Service Number 3

http://cs.unomaha.edu
mailto:lewis@cs.nps.navy.mil
http://aqartech8world.std.com

