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Constrained Node Placement and Assignment
in Mobile Backbone Networks

E. M. Craparo

Abstract— This paper describes new algorithms for mobile
backbone network optimization. In this hierarchical communi-
cation framework, mobile backbone nodes (MBNs) are deployed
to provide communication support for regular nodes (RNs).
While previous work has assumed that MBNs are unconstrained
in position, this work models constraints in MBN location. This
paper develops an exact technique for maximizing the number
of RNs that achieve a threshold throughput level, as well as
a polynomial-time approximation algorithm for this problem.
The approximation algorithm carries a performance guarantee
of 1

2 , and we demonstrate that this guarantee is tight in some
problem instances.

I. INTRODUCTION AND BACKGROUND

The mobile backbone network architecture has been pro-

posed to alleviate scalability problems in ad hoc wireless

networks [1], [2]. Noting that most communication capacity

in large-scale single-layer mobile networks is dedicated to

packet-forwarding and routing overhead, Xu et al. propose

a multi-layer hierarchical network architecture and demon-

strate the improved scalability of a two-layer framework [2].

Srinivas et al. [3] define two types of nodes: regular nodes

(RNs), which have restricted mobility and limited commu-

nication capability, and mobile backbone nodes (MBNs),

which have superior communication capability and which

can be deployed to provide communication support for the

RNs. In addition to scaling well with network size, the

mobile backbone network architecture naturally models a va-

riety of real-world systems, such as airborne communication

hubs that are deployed to provide communication support for

ground platforms, or mobile robots that are used to collect

data from stationary sensor nodes.
Srinivas et al. [4] and Craparo et al. [5] address problems

involving simultaneous MBN placement and RN assignment.

Both [4] and [5] seek to simultaneously place K MBNs,

which can occupy any location in the plane, and assign N
RNs to the MBNs, in order to optimize a various throughput

characteristics of the network. Srinivas et al. describe an

enumeration-based exact algorithm and several heuristics

for maximizing the minimum throughput achieved by any

RN [4]. Craparo et al. study the problem of maximizing

the number of RNs that achieve a threshold throughput

level τmin; they propose an exact algorithm based on mixed-

integer linear programming, as well as a polynomial-time

approximation algorithm with a constant-factor performance

guarantee [5].
A key feature of the formulations in [4] and [5] concerns

the potential locations of the MBNs. Although the MBNs
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can feasibly occupy any locations in the plane, [4] and [5]

demonstrate that the MBNs can be restricted to a relatively

small set of locations (O(N3)) without compromising the

optimality of the overall solution. In particular, each MBN

can be placed at the 1-center of its assigned RNs. (An

MBN is located at the 1-center of a set of RNs if the

maximum distance from the MBN to the any of the RNs

in the set it minimized.) Additionally, each 1-center location

l is associated with a unique radius of communication. This

radius is the maximum possible distance between an MBN

at location l and any of the RNs in subsets for which

l is a 1-center [5]. Thus, the restriction of MBNs to 1-

center locations not only dramatically reduces the size of

the feasible set of MBN locations, but also removes the

communication radius as a separate decision variable in the

optimization problem.

In the formulations in [4] and [5], it is always possible

to place MBNs in 1-center locations because the MBNs

are assumed to be capable of occupying any location. In

some applications, this assumption is valid. For instance,

an airborne communication hub (e.g., a blimp) could easily

be placed at the 1-center of its assigned RNs. In other

applications, however, the potential locations of the MBNs

may be limited. In hastily-formed networks operating in

disaster areas, for instance, ground-based communication

hubs are generally restricted to public spaces such as schools,

hospitals, and police stations [6]. In this case, the mobile

backbone network optimization problem is constrained, in

the sense that the MBNs can occupy only a discrete set of

locations, and these potential locations are given as input

data. In this application, it is generally impossible to place

each MBN at the 1-center of its assigned RNs. Although the

restriction of MBNs to a finite set of locations can reduce the

size of the solution space with respect to MBN placement,

the maximum communication radius of each MBN is a

separate decision variable in this case, and the formulations

of [4] and [5] are inappropriate. This paper formulates a

mobile backbone network optimization problem with MBN

placement constraints and provides exact and approximation

algorithms for solving this problem.

II. PROBLEM STATEMENT

This paper uses the communication model of [4] and [5],

in which the throughput τ that can be achieved between

an RN n and an MBN k is a monotonically nonincreasing
function of two quantities: the distance between n and k, and

the number of RNs that are assigned to k (and thus interfere

with n’s transmissions). We assume that RNs assigned to
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one MBN encounter no interference from RNs assigned to

other MBNs (for example, because each “cluster” consisting

of an MBN and its assigned RNs operates on a dedicated

frequency).

Under such a throughput model, we pose the constrained
placement and assignment (CPA) problem as follows: given

a set of N RNs distributed in a plane, place K MBNs in the

plane while simultaneously assigning the RNs to the MBNs,

such that the number of RNs that achieve throughput at least

τmin is maximized. MBNs can occupy locations from the set

L= {1, ...,L}, L ≥ K, and each RN can be assigned to at

most one MBN.

We do not require the MBNs to be “connected” to one

another; this model is appropriate for applications in which

MBNs serve to provide a satellite uplink for RNs, such as in

the hastily-formed networks mentioned in Section I. It is also

appropriate for applications in which the MBNs are powerful

enough to communicate effectively with one another over the

entire problem domain. We also assume that the positions of

RNs are known exactly, through the use of GPS, for example.

Problem CPA is similar to the message ferrying problem,

in which RNs have a finite amount of data available to

transmit, and MBNs must efficiently collect this data [7]-

[10]. CPA differs in that it does not assume that the RNs have

a limited amount of data to transmit; rather, CPA seeks to

provide throughput on a permanent basis. In this sense, CPA

is similar to a facility location problem. However, whereas

CPA seeks to efficiently utilize a limited resource (the

MBNs), most facility location problems focus on servicing

all customers at minimum cost. Additionally, the through-

put model in this work does not correspond to a notion

of “service” in any known facility location problem. CPA

is also similar to cellular network optimization; however,

most approaches to cellular network optimization involve

decomposition of the problem. Some formulations take base

station placement as input and optimize over user assignment

and transmission power, with the objective of minimizing

total interference [11]-[14]. Others use a simple heuristic

for the assignment of users to base stations and focus on

selection of base station locations [15], [16]. In contrast, CPA

seeks to optimize the network simultaneously over MBN

placement and RN assignment, without assuming that RNs

have variable transmission power capabilities.

III. NETWORK DESIGN FORMULATION

A key insight concerning the structure of the throughput

function facilitates solution of CPA. Consider a cluster of

nodes consisting of an MBN and its assigned RNs. Note

that if the RN that is farthest away from the MBN achieves

throughput of at least τmin, then all other RNs in the cluster

also achieve throughput of at least τmin. Thus, in order to

guarantee that all regular nodes in a cluster achieve adequate

throughput, we need only ensure that the most distant RN in

the cluster achieves throughput of at least τmin [5].

Leveraging this insight, we can obtain an optimal solution

to the simultaneous MBN placement and RN assignment

problem via a network design formulation. In network design

problems, a given network can be augmented with additional

arcs for a given cost, and the objective is to “purchase” a

set of augmenting arcs, subject to a budget constraint, in

order to optimize flow in some way [17]. The formulation

of the network design problem used in this work is similar

to that presented in [5], in that the geometry and throughput

characteristics of the problem are captured in the structure of

the network design graph. Relative to the formulation in [5],

however, we must use additional constraints in the network

design problem. These constraints account for the fact that

the communication radius of each MBN is an independent

decision variable, i.e., it is not uniquely determined by the

selection of an MBN location.

Our network design problem is formulated on a graph G=
(N ,A ) of the form shown schematically in Figure 1. The

graph G is constructed as follows:

The nodes of G consist of a source s, a sink t, and two node

sets, N= {n1, ...,nN} and M= {m1
1, ...,m

N
L }. N represents the

RNs, while M represents possible combinations of MBN

locations and communication radii; node mn
l represents an

MBN at location l and that communicates with RNs within

radius rn
l of l, where rn

l is the distance from location l to

RN n. The source s is connected to each of the nodes in N

via an arc of unit capacity. For each RN i, candidate MBN

location l, and communication radius rn
l , ni is connected to

node mn
l if and only if ri

l ≤ rn
l . All of the arcs connecting

nodes in N to nodes in M have unit capacity. Finally, each

node in M is connected to the sink, t. The capacity of the arc

connecting node mn
l to t is the product of a binary variable

yn
l and a constant cn

l . The binary variable yn
l represents the

decision of whether to place an MBN at location l with

maximum communication radius rn
l . The constant cn

l is the

maximum number of RNs that can be assigned to an MBN

at location l such that an RN at a distance rn
l from l achieves

throughput at least τmin. This quantity can be computed given

a throughput function, τ , and a desired minimum throughput

level, τmin. For an invertible throughput function, one can

take the inverse of the function with respect to cluster size,

evaluate the inverse at the desired minimum throughput level

τmin, and take the floor of the result to obtain an integer value

for cn
l . If the throughput function cannot easily be inverted

with respect to cluster size, one can perform a search for

the largest cluster size cn
l ≤ N such that τ(cn

l ,r
n
l ) ≥ τmin. A

binary search for cn
l would involve O(log(N)) evaluations of

the function τ for each radius.

The objective of the network design problem is to “ac-

tivate” a subset of the arcs entering t in such a way as to

maximize the volume of flow that can travel from s to t. In

addition to the capacity and flow conservation constraints

typical of network models, the network design problem

also includes cardinality and multiple-choice constraints. The

cardinality constraint states that exactly K arcs are to be

activated, reflecting the fact that K MBNs are available for

placement. The multiple-choice constraints state that at most

one arc with subscript l can be activated for each l = 1, ...,L.

These constraints allow at most one MBN to be placed at

each location; in other words, the locations 1, ...,L represent
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Fig. 1. Schematic representation of the graph on which an instance of the network design problem is posed.

item classes, while the possible radii r1
l , ...,r

N
l represent items

within each class, and the multiple-choice constraints state

that at most one item can be selected from each class.

We denote the network design problem on G as the

Multiple-Choice Network Design (MCND) problem. MCND

can be solved via the following mixed-integer linear program

(MILP):

max
x,y

N

∑
i=1

xsni (1a)

subject to
L

∑
l=1

N

∑
n=1

yn
l = K (1b)

N

∑
n=1

yn
l ≤ 1 ∀ l = 1, . . . ,L (1c)

∑
i:(i, j)∈A

xi j = ∑
k:( j,k)∈A

x jk j ∈N \{s, t} (1d)

xi j ≥ 0 ∀ (i, j) ∈A (1e)

xi j ≤ 1 ∀ (i, j) ∈A : j ∈N \{t}
(1f)

xmn
l t ≤ yn

l cn
l ∀ l,n (1g)

xnimn
l
≤ yn

l ∀ i, l,n (1h)

yn
l ∈ {0,1} ∀ l,n. (1i)

The objective of MCND is to maximize the flow x that

traverses G, which corresponds to the total number of RNs

that can be assigned at throughput τmin. Constraint (1b) states

that K arcs (MBN locations) are to be selected, and constraint

1c states that at most one MBN can be placed at each

location. Constraints 1d-1g are network flow constraints,

stating that flow through all internal nodes must be conserved

(1d) and that arc capacities must be observed (1e - 1g). Con-

straint (1h) is a valid inequality that improves computational

performance by reducing the size of the feasible set in the

LP relaxation. Constraint (1i) ensures that yn
l is binary for

all l,n. Note that, for a given specification of the y vector,

all flows x are integer in all basic feasible solutions of the

resulting linear network flow problem.

An optimal solution to a instance of MCND provides both

a placement of MBNs and an assignment of RNs to MBNs.

An MBN is placed at location l if yn
l = 1 for some n. RN

i is assigned to the MBN at location l if and only if the

flow from node ni to node m j
l is equal to 1 for some j. The

equivalence between MCND and the original problem CPA

is more formally stated in Theorem 1:

Theorem 1 Given an instance of CPA, the solution to the
corresponding instance of MCND yields an optimal MBN
placement and RN assignment.

Proof: Due to space constraints, the proof of Theorem 1

appears in [18].

A. Hardness of network optimization

Although an optimal solution to MCND provides an

optimal solution to the corresponding instance of CPA,

the MILP approach described above is not computationally

tractable from a theoretical perspective. This fact motivates

consideration of the fundamental tractability of CPA itself.

If CPA is NP-hard, it may be difficult or impossible to find

an exact algorithm that is significantly more efficient than

the MILP approach. Unfortunately, CPA is indeed NP-hard:

Theorem 2 Problem CPA is NP-hard.
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Proof: The proof of Theorem 2 appears in Appendix I.

IV. APPROXIMATION ALGORITHM

The probable intractability of CPA motivates consideration

of approximate techniques. This section describes an approx-

imation algorithm for MCND that runs in polynomial time

and has a constant-factor performance guarantee.

The approximation algorithm is based on the insight that

the maximum number of RNs that can be assigned is a

submodular function of the set of mobile MBN locations and

communication radii that are selected. Given a finite ground

set D = {1, . . . ,d}, a set function f (S), S⊆D, is submodular

if

f (S∪{i, j})− f (S∪{i})≤ f (S∪{ j})− f (S) (2)

for all i, j ∈ D, i �= j and S ⊂ D \ {i, j} [19]. Theorem 3

describes the submodularity of the objective function in the

context of problem MCND:

Theorem 3 Given an instance of MCND on a graph G, the
maximum flow that can be routed through G is a submodular
function of the set of arcs incident to t that are selected.

Proof: The proof of Theorem 3 is similar to that of

Lemma 1 in [5] and will not be presented in this paper.

A. Submodular Maximization with Multiple-choice and Car-
dinality Constraints

Submodular maximization has been studied in many con-

texts, and with a variety of constraints. Nemhauser et al. [20]

showed that for maximization of a nondecreasing, nonnega-

tive submodular function subject to a cardinality constraint,

a greedy selection technique produces a solution whose

objective value is within 1− 1
e of the optimal objective value,

where e is the base of the natural logarithm [21]. Approx-

imation algorithms have also been developed for submodu-

lar maximization subject to other constraints; for example,

Sviridenko [22] described a polynomial-time algorithm for

maximizing a nondecreasing, nonnegative submodular func-

tion subject to a knapsack constraint, and Lee et al. discuss

submodular maximization over multiple matroids [23].

In MCND, we aim to maximize a nonnegative, nonde-

creasing submodular function subject to L multiple-choice

constraints and one cardinality constraint. Fortunately, a

simple greedy approach provides a provably good solution

to MCND.

Consider Algorithm 1. Algorithm 1 starts with an empty

set of selected arcs, S, and iteratively adds the arc that

produces the maximum increase in the objective value, f ,

while maintaining feasibility with respect to the multiple

choice constraints. After K iterations, Algorithm 1 produces

a solution that obeys both the multiple-choice and cardinality

constraints of MCND. The running time of Algorithm 1 is

polynomial in K, L, and N; it requires solution of O(KLN)
maximum flow problems on bipartite networks with at most

N + K + 2 nodes each. Moreover, Algorithm 1 carries a

theoretical performance guarantee, as stated in Theorem 4:

Algorithm 1
S← /0

max f low← 0

U ←{1, ...,L}
for k=1 to K do

for l ∈U do
for n=1 to N do

if f (S∪{yn
l })≥ max f low then

max f low← f (S∪{yn
l })

y∗ ← yn
l

l∗ ← l
end if

end for
end for
S← S∪{y∗}
U ←U \{l∗}

end for
return S

Theorem 4 Algorithm 1 is an approximation algorithm for
MCND with approximation guarantee 1

2 .

Proof: Due to space constraints, the proof of Theorem 4

appears in [18].

That is, if the optimal solution to an instance of MCND has

objective value OPT , then Algorithm 1 produces a solution

S such that f (S)≥ 1
2 OPT .

The performance guarantee of 1
2 shown in Theorem 4

is indeed tight for some problem instances. For example,

consider the instance of CPA shown in Figure 2(b), with

K = 2, τ(c,r) = 1
cr2 and τmin = 1. The corresponding instance

of MCND is shown in Figure 2(a). Note that on the first

iteration of the greedy algorithm, nodes m1
1, m2

1 and m1
2 are all

optimal; each allows one unit of flow to traverse the graph.

Assume that the greedy algorithm selects node m1
1. Then,

on the greedy algorithm’s second iteration, nodes m1
2 and

m2
2 remain available for selection. However, neither of these

nodes allows any additional flow to traverse the graph; thus,

the total objective value obtained by the greedy algorithm

is equal to 1, while an exact algorithm would have selected

nodes m2
1 and m1

2 to obtain an objective value of 2.

While a theoretical performance guarantee is useful, the

empirical performance of Algorithm 1 is also of interest. Fig-

ure 3 shows the average performance of Algorithm 1 relative

to an exact (MILP) algorithm, for randomly-generated in-

stances of CPA and their corresponding instances of MCND.

As the figure indicates, Algorithm 1 tends to significantly

outperform its performance guarantee, achieving average

objective values up to 90% of those obtained by the exact

algorithm, with a dramatic reduction in computation time.

These results indicate that Algorithm 1 is a promising

candidate for large-scale network design problems.

V. CONCLUSION

This paper has described new algorithms for maximizing

the number of RNs that achieve a threshold throughput level
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Fig. 2. Example of an instance of CPA for which the 1
2 approximation

guarantee of Algorithm 1 is tight. From left to right, the nodes shown are
MBN 2, RN 1, MBN 1, and RN 2.

in a mobile backbone network. While previous work on this

topic has assumed that MBNs are unconstrained in position,

this paper models constraints in MBN location. Techniques

developed in this paper include an exact algorithm based on

mixed-integer linear programming (MILP) and polynomial-

time approximation algorithm. Experimental results indicate

that the approximation algorithm achieves good performance

with a drastic reduction in computation time, making it

suitable for large-scale applications. The approximation al-

gorithm carries a theoretical performance guarantee, and we

have shown that this performance guarantee can indeed be

tight in some instances, although the empirical performance

of the approximation algorithm tends to exceed the perfor-

mance guarantee.

APPENDIX I

PROOF OF THEOREM 2

The proof of Theorem 2 reduces an instance of the Eu-
clidean K-center problem on points to CPA. In the Euclidean
K-center problem, the input is a set of N points on the plane

and a positive real number r, and the objective is to determine

whether it is possible to place K discs of radius r in the plane

such that every input point is within distance at most r from
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(a) Performance of the approximation algorithm developed in this paper,
relative to an exact solution technique, in terms of number of RNs assigned
at the given throughput level.
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values represented, a logarithmic scale is used.

Fig. 3. Comparison of the exact and approximation algorithms developed
in this paper.

the center of at least one disc, i.e., every point is covered by

at least one disc. The Euclidean K-center problem on points
has the additional restriction that the center of each disc must

coincide with one of the N input points. Both versions of the

problem are known to be NP-complete [25].

Proof:
Fix an instance of the Euclidean K-center problem on

points. Denote the input points by N= {1, ...,N} and the

radius by r. This instance can be reduced to an instance

of CPA as follows: Define N RNs, and let their locations

coincide with the input points. Next, define N candidate

MBN locations also coinciding with the input points, and

let K be the number of MBNs to be placed. Fix τmin, and

define the throughput function τ as follows:

τ(Ak,dnk) = τ(dnk) =

{
τmin if dnk ≤ r,
0 if dnk > r.

(3)
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Note that τ fits the assumptions stated in Section II; it is

monotonically nonincreasing with dnk and does not vary with

Ak.

Denote an optimal solution to CPA by (A∗,B∗), where B∗
denotes the placement of the MBNs (i.e., the subset of the

candidate locations 1, ...,N that are occupied by MBNs) and

A∗ denotes the optimal assignment of RNs to MBNs. Assume

without loss of generality that the nodes are numbered such

that B∗ = {1, ...,K}. Let Ak denote the set of RNs assigned

to MBN k in solution (A∗,B∗).
If the optimal objective value of this instance of CPA is

equal to N, then the answer to the original Euclidean K-

center problem on points is YES. Given a solution to CPA

(A∗,B∗) in which ∑k |Ak| = N, a solution to the Euclidean

K-center problem on points in which all points are covered

can be constructed by placing discs at locations B∗. By our

assumption that all RNs in the set Ak achieve throughput at

least τmin, it follows that all RNs in the set Ak are within

radius r of the disc at location k and thus are covered by

that disc. Furthermore, since each RN can be assigned to at

most one MBN, the fact that ∑k |Ak|=N implies that all RNs

achieve throughput at least τmin. Therefore, all nodes in the

original Euclidean K-center problem on points are covered

by discs placed at locations B∗.
Likewise, if the answer to the original Euclidean K-center

problem on points is YES, then the optimal objective value

the corresponding instance of CPA must be equal to N. Let

B∗ denote a placement of discs such that each input point is

covered by at least one disc, and again denote this placement

by B∗ = {1, ...,K}. Let Cn ∈ B∗ denote the set of discs that

cover point n. If point n is covered by the disc at location

k ∈ Cn, then the RN at location n can be assigned to an

MBN at location k and achieve throughput at least τmin in

CPA. Since throughput is not a function of cluster size in

Eqn. (3), a feasible solution to CPA consists of a placement

of MBNs at the locations in B∗ and an assignment A in which

each RN n is assigned to exactly one of the MBNs occupying

locations in Cn.

Thus, the Euclidean K-center problem on points can be

reduced to CPA. The time required to perform this reduction

is polynomial in the number of input points; therefore, CPA

is NP-hard.
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