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Abstract – In this paper, person detection with 

simultaneous or subsequent human body posture 

recognition is achieved using parts-based models, since 

the search space for typical poses is much smaller than 

the kinematics space. Posture recovery is carried out by 

detecting the human body, its posture and orientation at 

the same time.  Since features of different human postures 

can be expected to have some shared subspace against 

the non-person class, detection and classification 

simultaneously is tenable. Contrary to many related 

efforts, we focus on postures that cannot be easily 

distinguished after segmentation by their aspect ratio or 

silhouette, but rather require a texture-based feature 

vector. The approaches presented do not rely on explicit 

models nor on labeling individual body parts. Both the 

detection and classification are performed in one pass on 

the image, where the score of the detection is an ensemble 

of votes from parts patches. 

Keywords: posture recognition, part-based detectors, 

pose detection, multi-class detectors, Adaboost. 

 

1 Introduction 

  Detection and recognition of human postures from 

images attracts an increasing amount of research in the 

last years. Surveillance, human-machine interaction, 

multimedia retrieval, health-care and biometrics are only 

a few disciplines that motivates original contributions in 

the area of machine vision. These works can be divided 

into three dimensional (3D) and two dimensional (2D) 

human posture recognition. 3D view-based human 

posture recognition requires the collection of a large set 

of independent 2D view images of the scene, which is 

computationally expensive and produces a huge search 

space. Moreover, installation, calibration, object 

matching, switching, data fusion and occlusion are noted 

in [1] as the main problems in multiple camera systems. 

Alternatively, the work presented in [2], illustrates how 

3D human posture can be recovered from still images 

efficiently and accurately, which goes hand in hand with 

the requirement of low cost monocular solutions relying 

heavily on simple visual features obtained from a single 

view.  

 Many approaches have been proposed for human 

posture recognition. Most of their recognition accuracy is 

affected by the high variability that exists within the same 

postures performed by different people.  

 3D human body pose is recovered from monocular 

image sequences in [3] by applying non-linear regression 

on histogram-of-shape context descriptor vectors. This 

system was validated with human walking sequences on a 

low-clutter background. In [4] a system was developed to 

monitor human-behavior for safety purposes. Four main 

postures in each of three views (frontal, left-headed, and 

right-headed) were classified: standing, crouching, sitting 

and laying.  The classification was performed by using a 

Bayesian framework utilizing features extracted from 

projection histograms of the silhouette. Projection 

histograms [5] use an HMM for classification and a 

multi-camera setup to overcome occlusions. Four main 

postures were detected: standing, crawling, sitting, and 

lying. The authors rely strongly on a successful 

segmentation in the preprocessing stage since the features 

are extracted from the human silhouette blobs. Juang et 

al.’s work [6] also requires a successful segmentation for 

their visual surveillance system to recognize four 

postures: standing, bending, sitting, and lying. The 

features are obtained from the DFT coefficients from 

projected histograms, similar to [4-5] and the 

classification is done through a neural fuzzy inference 

network. In [8], 2D images are collected from different 

view angles and Fourier descriptors are extracted from 

the contours. Classification is obtained using aspects-

graph representation to recognize eight human postures, 

including standing, kneeling, sitting and laying down.  

Image-matching on successive convexification and linear 

programming [9] can successfully recognizing human 

postures in cluttered images and videos Yoga poses, 

skating and baseball postures are recognized using this 

approach.    

 In summary, there are two main approaches for 

recovering human pose from images: model-based 

approach (or direct approach) and the learning based 

approach (or indirect approach) [3]. Model-based 

approaches assume that a parametric body model is 

known. Through incrementally predicting and updating 

pose variables a cost function representing the pose is 

optimized. Learning-based approaches do not require a 

detailed human body model. The model is learned by 
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training examples representing typical human poses and 

followed by search and comparison, where the new poses 

are interpolated.     

 In our work we adopt the learning based approach, 

and, in particular, a parts-based approach, where the 

parts are stored in codebooks and later detected in 

promising regions (for example found with interest point 

detectors) rather than searching in all the possible 

subwindows of an image. The detection is based on 

casting votes for the object center from the parts matched. 

This approach was recently adopted for articulated 

objects detection such as pedestrians and showed very 

good performances [10-14]. We implemented the multi-

class approach presented in [15] for marine posture 

recognition. This will be integrated with into the BASE-

IT system, an intelligent methodology for marine’s 

training evaluation using behavior analysis [16]. 

 As opposed to [15] the multiview appearance of 

each of the postures that we consider is very similar (e.j. 

marine standing back and front view) and hence the 

classification task is extremely more difficult.      

 We discuss the parts-based method in Section 2 for 

a single class and for a multiclass problem. Our dataset 

and a detailed description of the experiments and results 

are presented in Section 3. Section 4 suggests further 

directions of improvements and concludes the paper. 

 

2 Parts-based object detection 

 In this section, we briefly review our approach of 

object detection using single and multi-class detectors. 

First, we will describe the feature extraction process from 

patches (or parts) and then we will describe the basic and 

shared classifiers.  

2.1 Dictionary of parts 

 The dictionary is built from features (patches) 

extracted from a set of eight images per class, similar to 

[12]. For each image we apply the following operations: 

2D convolution using each filter from a bank of four 

filters: a delta function, x and y derivatives and a 

Gaussian. Following the convolutions, 20 patches are 

selected in x,y locations randomly, lying inside the 

annotated silhouette of the object and over interest points, 

found by a simple canny edge detector. In those locations 

x,y patches are extracted in all the filtered images and 

also grayscale normalized. The patches’ sizes are 

described by the triplet {width, height and depth} where 

the first two are symmetric are selected randomly 

between 9x9 to 25x25, and the depth is equal to the 

number of filters, 4. Prior to extracting the patches, the 

objects are normalized to a standard scale of 128x48 for 

marines standing and to 64x48 for marines kneeling. 

Each patch is also associated with the place from where it 

was extracted, relative to the center of the object. This 

location information is stored as a binary mask centered 

at the object center. This mask, in turn, is decomposed in 

two vectors containing the x,y offset distances 

respectively {lx, ly}, after applying a blurred delta 

function to them. The reason for this it is that is faster to 

compute cross correlation using vectors than matrices. 

Hence, each entry i in the dictionary has the form 

vi={filter, patch, lx, ly, image no.}. A total of 640 entries 

per class were obtained using the procedure which is 

depicted in Figure 1.    
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Figure 1. Dictionary entries: patches selected randomly (on the 

left image) are convolved with a bank of filters. The position of 

the patches is represented by the location matrix (right). Since 

the red patch is at almost the same horizontal position and at the 

top, relative to the center, the position matrix has a bright spot. 

 

2.2 Computing the training vectors 

 A set of training images including each of the eight 

objects that we are interested detecting is collected for the 

training phase of the system. From each image a few 

feature vectors are obtained using the following method:  

 1. Scale all the images in the training set so the 

objects are enclosed in a bounding box of 128x48 and 

64x48 for standing and kneeling respectively, and the 

images are not larger than 200x200.  

 2.  For each image j normalized in scale, each entry 

i of the dictionary is applied to it in the following way. 

The image is convolved with the filter in entry i, and 

convolved again with a Guassian to smooth the response. 

Next, it is cross-correlated with the patch in entry i, 

yielding a strong response where this patch appears in the 

filtered image. Finally, the 1D filters lx and ly are applied 

to the cross-correlated image, effectively “voting” for the 

object center. This is summarized in Eq. 1: 
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( )( , ) * * T

i i i x y
v x y I f P l l= ⊗    (1) 

Where * is the convolution operator, ⊗  is the 

normalized cross correlation operator, vi(x,y) is the 

feature vector entry i, f is a filter, P is a patch, and lx and 

ly are the x,y location vectors with respect to the center of 

the image respectively.  

 3. For each image in step 2, we extract feature 

vectors v(x,y). A positive sample vector is obtained by 

retrieving v at the x,y coordinates in the center of the 

object. The negative training samples were a subset of 20 

vectors retrieved from x,y locations that had a high 

response to (1).  

Each of these vectors is accompanied with a class label 

(1 to 8) and -1 for negative samples. Given 25 images per 

class, we obtain a training set of 4000 negative and 200 

positive samples, each with 640 features, see Figure 2. 
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Figure 2. Positive and negative vector set creation using the 

dictionary entries and sampling the center out of the silhouette 

points. Each sampled point, is a vector, where an entry j in the 

vector represents the number of votes assigned by patch Pi. 

 

2.3 Multiclass Adaboost with shared 

features 

In this section we briefly describe the joint boosting 

algorithm used for multi-class multi-view object 

detection. For a more detailed discussion, refer to [15].  

A boosting algorithm is an additive model where weak 

learners are sequentially added to form a strong classifier. 

For the multiclass case, the strong learner is defined as: 

1

( , ) ( , )
M

m

m

H v c h v c
=

=∑
 

(2) 

Where v is the input feature vector, M is the number of 

boosting iterations, c is a specific class and H(v,c)=log 

P(zc=1|v)/P(zc = -1|v) is the logistic function where z is 

the  membership label (±1). When the expectation is 

replaced by an average over the training data, the cost 

function can be written as:  
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(3) 

Where N is the number of training vectors, 
c

iw
are the 

weights for sample i and for class c, 
c

iz is the membership 

label for sample i for class c (±1). The weak shared 

learner, also called, regression “stump” is defined for the 

multiclass in (4): 
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 where vf is the component fth from the vector v, θ is a 

threshold,  δ is the indicator function, aS and bS are 

regression parameters. S(n) is a subset of the classes 

labels. Each round of boosting consists of selecting the 

shared “stump” and the shared feature f that minimizes 

(3), from the subset of classes S(n), in the following stated 

procedure: Pick a subset of classes S(n). Search all the 

components f of the feature vector v, for each component, 

search over all the discrete values of θ and for each 

couple {f, θ}, find the optimal regression parameters aS 

and bS using (5-7).  Finally, select {f, θ, aS, bS} that 

minimizes (3).  
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Therefore a shared weak learner is associated with a set 

of 6 parameters {f, θ, aS,bS, kc, Sn} of the subset of classes 

selected. It is more efficient to keep a pointer to the entry 

in the dictionary from where f was obtained rather than 

keeping the whole feature vector. This will also provides 

us with the patch, filter and location vectors entries in the 

dictionary which will be used for the detection stage. This 

new weak learner is added to the previous accumulated 

learner, for each training example: H(vi, c)= H(vi, 

c)+hm(vi, c) where hm is computed for the optimal subset 

of classes.  The optimal subset of classes is the one that 

minimize the misclassification error by selecting a feature 

shared by those classes. Finally, the chain the chain of 

weak learners is stored in the accumulated learner. 
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2.4 Detection 

 To detect an object of class c in a test image we 

need to compute the score for every pixel in the image, 

provided by the strong classifier H(v,c) evaluated in all 

the pixels. If the score exceeds some threshold the object 

is detected. In order to calculate H(v,c) we use the 

following procedure.  

 We find all the shared weak learners that shares 

class c, and for each sharing weak learner do: 

 1. Obtain the 4-tuple {f, θ, aS, bS} from the weak 

learner. Since f is associated with an entry in the 

dictionary, we retrieve the corresponding filter, patch and 

vectors Lx, Ly from the dictionary, and apply them to the 

test image using (1). 

 2. Calculate hm(v)=  aδ(vf> θ)+b where Vf is the 

image obtained in the previous step.  

 Finally add up all the weak learners together. Each 

weak learner votes for the center of the object that we are 

searching for, and it is expressed by a grayscale image 

obtained in step 2. The accumulated image will have 

bright pixels where the weak learners “agreed” about the 

center of the object in the “voting space”. A maxima in 

the accumulated image indicates the probability to find 

the object in that location.  

 Each strong detector of a different class outputs an 

accumulated image. Thus, it is possible that more than 

one strong detector will vote for the same (or very close) 

pixel coordinates. This situation is not rare since some 

postures are very similar.  To solve this conflict, peaks 

that are closer than a given radius are clustered together, 

and the resulting class of the detection is the one from the 

class with the highest maxima. 

 

3   Experiments and results 

 We applied the multi-class detector to the problem 

of posture classification and orientation extraction to 

images including marines performing eight body 

configurations (two postures in four orientations each), 

captured in an actual training environment. For this 

experiment, we trained a person detector with the 

traditional Viola & Jones method [17] and Leibe et al. 

[13] codebook based approach. 

3.1 Performance 

 In order to compare the performance of both 

detectors we consider two tasks: (a) object detection and, 

(b) detection and class recognition. In the first case we 

are interested in finding the probability of a marine’s 

presence in general, that is, in any pose or posture. The 

second experiment determines the ability to distinguish 

between the configurations in addition to finding the 

exact location of the marines.  

Testing and training relied on our online database of 

images which is an extended version of the MIT-CSAIL 

online annotation tool and database LabelMe [7] but 

allowing azimuth orientation annotation for the objects. 

We manually annotated 4166 images of marines 

performing several exercises, from which we selected 

eight different classes: two postures (standing and 

kneeling) and four orientations each, based on the torso 

(frontal, oriented left, right or away from the camera). 

For the dictionary creation, eight samples per class were 

used, for training 25 images and for testing another 25 

per class. The images were resized to 128 x 48 for 

standing, and for kneeling to 64 x 48 and then images 

were cropped to a size of 200 x 200 for the training set 

and 256 x 256 for the testing set.  

Our first experiment consisted of object location 

detection. We used a straightforward approach of running 

the multiclass detector on the image and considered any 

class detection falling into the “true” annotated bounding 

box as a hit.  For the Viola-Jones detector, we evaluated 

the common stages of the cascade tree and skipped the 

branches. Each detection has a score assigned, which 

represents the votes casted for that detection. We 

normalize each detection score to a probability by 

dividing each score by the maximum score detected in the 

testing set, hence the maximum score is smax(i, I)=P(O = 

1|.) where i is the location in image I where the best score 

was obtained.  By varying the threshold of the scores 

(between 0-1), we obtain a ROC curve (Figure 3).  False 

alarms are counted per test area / per image which had an 

average of 30000 test areas. 
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Figure 3. ROC Plot for the marine location detector 

The second experiment shows how good the multi-class 

detector can deal with the two specific postures and four 

orientations in the images. 
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A true hit is obtained if the class voting for the detection 

corresponds to the true annotated bounding box, 

otherwise the target was missed. Other detections from 

the remaining classes (regardless if they detected the 

marine or not) are considered false alarms. We adopt the 

precision-recall metric (PR) rather than ROC since the 

former is defined for binary detection problems and not 

multi-class, and is not a solution independent metric 

when calculating the false alarm rate.  

The PR points are obtained by changing the score 

threshold, as done in the previous experiment, see Figure 

3. Given that TP is the number of true hits, nP is the 

number of objects to be detected, FP is the false alarms, 

then recall is defined as TP/nP and precision is 

TP/(TP+FP) . The performance of the PR is expressed by 

the F1 score = (2*recall*precision)/(recall+precision). 

The F1 score is summarized in Table 1. 

Table 1. F1 score for posture detection 

Class

Method 1 2 3 4 5 6 7 8

Sharing 0.509 0.298 0.4 0.05 0.697 0.5 0.582 0.755
Leibe's based 0.274 0.2 0.129 0.221 0.211 0.151 0.217 0.219  

The performance of posture recognition is summarized in 

Table 2.  

 
Table 2. Confusion matrix for 8 posture categories: (a) Multi-

class Sharing; (b) Leibe’s based, and (c) Viola-Jones 

Given class Assigned Class

1 2 3 4 5 6 7 8

Standing 0 19 4 5 6 0 0 1 0

Standing 90 4 11 8 6 0 1 0 0

Standing 180 9 4 12 4 0 0 0 0

Standing 270 3 5 0 20 0 0 0 0

Kneeling 0 0 0 0 0 16 2 2 2

Kneeling 90 0 0 0 0 2 17 3 2

Kneeling 180 0 0 0 0 0 1 26 0

Kneeling 270 0 0 0 0 0 1 2 20

(a)

Given class Assigned Class

1 2 3 4 5 6 7 8

Standing 0 17 10 6 12 9 0 5 1

Standing 90 15 18 3 12 7 1 8 1

Standing 180 11 15 6 11 7 0 5 0

Standing 270 5 12 8 17 2 1 9 1

Kneeling 0 0 0 0 0 16 1 1 5

Kneeling 90 0 0 0 0 6 8 4 7

Kneeling 180 0 0 0 0 5 3 10 5
Kneeling 270 0 0 0 0 8 5 1 14

(b)

Given class Assigned Class

1 2 3 4 5 6 7 8

Standing 0 12 2 0 2 7 0 3 0

Standing 90 0 4 2 2 2 1 1 1

Standing 180 3 1 6 0 5 0 3 0

Standing 270 0 3 0 3 0 0 0 1

Kneeling 0 0 1 0 0 19 7 6 1

Kneeling 90 0 2 0 5 4 21 5 1

Kneeling 180 1 0 0 0 8 1 4 6
Kneeling 270 1 0 0 2 5 3 3 6

( c)  
 

The confusion matrices shows the number of postures 

classified correctly, the (diagonal values), and the 

confused postures (off-diagonal). See Figure 7 for 

examples of typical detections and posture recognitions. 

The multi-class Viola-Jones detector does not perform a 

non-maximum suppression but rather accepts all matches 

for an area. Hence the total number of detections can be 

higher than the number of areas supplied. 

 

3.2 Shared Classes 

 To gain insights about the effect of the features 

selected, of those shared and also the classifier 

performance, we study the distribution of features 

selected by the strong detector. In order to discuss the 

concept of sharing architecture, let defines a sharing 

topology as a binary number Bi, where each digit 

represent a class. Thus, for a given binary number having 

K being “ones”, means that K classes share a feature. The 

decimal representation of this value is D(Bi). For 

example, the sharing topology Bi = 00001101 means that 

classes 1,3 and 4 are shared by the weak shared learner i. 

 The distribution of shared classes can be obtained by 

observing the number of times that specific subsets of 

weak detectors share a feature in our strong classifier. 

Figure 5 shows that the seven top most popular weak 

detectors do not share classes, but the last two do share 

classes: D(Bi)= 1,4,8,32,2,64,16,144,6 used  11,10,9,9,7 

,7,6,6,4 times, respectively. The most popular sharing 

occurs for D(Bi)=144, which is Bi= 10010000 (with 6 

occurrences) meaning that classes 5 and 8 are shared 

(MSB is in the left).  Since shared features can generalize 

better on similar data, this could explain the reason that 

both the F1 scores, for class 5 and 8 are the higher than 

all the others (~0.7 and 0.75).  

 In addition, we present the proportion of classes that 

have features selected from the dictionary (to which 

classes the patches selected belong to) by the weak 

detectors in Figure 6. The fact that the class owing the 

most popular feature is ‘8’ may explain also the reason 

that class ‘8’ has the highest F1 score. Even though the 

dictionary has an equal number of entries (patches) from 

the different classes, the strong detector “picks” the 

patches that best separate the classes feature-space.  
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Figure 5. Distribution of weak shared learners within the strong 

classifier. D(Bi) is the binary encoded sharing topology.  
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Figure 6. Distribution of the classes having features selected by 

the strong detector 

 

4 Conclusions 

To conclude, we applied three approaches to articulated 

(human) body pose and posture recognition with the goal 

of providing input to a behavior analysis system.  Our 

results of the ROC curves show that the Viola-

Jones/“complete” method (non-parts based) performs well 

on the detection task only, but performs worse on the 

more fine-grained posture/pose recognition than the 

parts-based methods.  The results support the hypothesis 

that feature sharing contributes to posture/pose 

recognition during training and testing, and that the 

patches capitalize on the commonality between 

postures/poses without loosing their characteristics.  This 

motivates future work to use the Viola-Jones method for 

detection only, and the parts-based approach for posture 

recognition only on detected area.  This will not only 

increase accuracy of the posture recognition, but will 

speed up the whole process.   

Results indicate the multi-class sharing method 

achieves higher posture recognition rates than the Leibe-

based method (see Section 3.2 and Table 2(a)-(b)).  The 

multi-class sharing method selects dictionary entries 

based on the amount of common features between classes, 

while the Leibe-based approach does not take this into 

account.  However, the Leibe-based approach is 

significantly faster, since it requires less convolutions.  

The detection and recognition performance is 

encouraging and we will extend our dataset to a larger 

number of classes.  With additional temporal processing, 

our methods are expected to perform sufficiently well for 

behavior analysis. 

In future work, we are interested in combining the two 

parts-based approaches presented in this paper to yield a 

faster parts-based method which takes advantage of multi-

class feature sharing.   
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Figure 7. Examples of detections: Each row of images shows the detection of one specific class. The first four classes are ordered from top to 

bottom as following: standing 0, 90, 180, 270 degrees torso. The last four classes are, from top to bottom: kneeling 0, 90, 180, 270 degrees 

torso. The color of the bounding box is red for standing and yellow for kneeling. The orientation is expressed by the direction of the arrow 

within the bounding box. The boldness of the bounding box is proportional to the score of the detection.   


