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Abstract 

\Ye present the quadratic and cubic normal forms 
of a nonlinear control system around an equilibrium 
point. These are the normal forms under change of 
state coordinates and invertible state feedback. The 
system need not be linearly controllable. A control 
bifurcation of a nonlinear system occurs when its 
linear approximation loses stabilizability. We study 
some important control bifurcations, the analogues 
of the classical fold, transcritical and Hopf bifurcations. 
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1 Introduction 

The theory of normal forms and bifurcations of dynam
ical systems is well-known [8]. One considers a smooth 
vector field 

f(x,µ) (1.1) 

depending on a parameter µ. The equilibria of the vec
tor field are those Xe, µe such that f(xe, µe) = 0. Per
haps the most important property of an equilibrium 
i:-; its stability. In the first approximation this is de
termined by the stability of its linear approximation 
around Xe, /Le, 

of 
ox (xe, µe)5x. (1.2) 

If all the eigenvalues of M (Xe, µe) lie in the open left 
half plane then the system (1.1) is locally asymptoti
cally stable around the Xe, µe. If one or more eigen
Yalues lie in the open right half plane then the system 
( 1.1) is unstable. If all the eigenvalues lie in the closed 
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left half plane but some are on the imaginary axis then 
the first approximation is not decisive, the system ( 1.1) 
may be locally asymptotically stable or unstable, de
pending on higher degree terms. 

The character of the equilibria can change at a crit
ical value of the parameter, perhaps two branches of 
equilibria cross or a branch looses or gains stability. 
Such a state and parameter is called a bifurcation point 
of the parametrized vector field. A local b~furcation 
takes place at a parameter value where the system loses 
structural stability with respect to parameter varia
tions, i.e. the phase portrait around the equilibrium at 
the critical parameter value is not locally topologically 
conjugate to the phase portraits around the equilibria 
at nearby parameter values. If the local linearizations 
at two equilibria have no poles on the imaginary axis 
and the same numbers of strictly stable and strictly 
unstable poles then the local phase portraits are topo
logically conjugate. Therefore a bifurcation is charac
terized mathematically by one or more eigenvalues of 
the linearized system crossing the imaginary axis. We 
restrict our discussion to local bifurcations which we 
refer to as bifurcations. 

A standard approach to analyzing the behaviour of the 
parametrized ODE (1.1) around a bifurcation point is 
to treat the parameter as an additional state variable 
with dynamics µ = 0 and to compute the center mani
fold of the extended dynamics through the bifurcation 
point and the dynamics restricted to this manifold [8]. 
The center manifold is an invariant manifold of the dif
ferential equation which is tangent at the bifurcation 
point to the eigenspace of the neutrally stable eigen
values. In practice, one does not compute the center 
manifold and its dynamics exactly, in most cases of in
terest, an approximation of degree two or three suffices. 
If the other eigenvalues are in the open left half plane, 
then this part of the dynamics is locally asymptoti
cally stable and therefore can be neglected in a local 
stability analysis around the bifurcation point. The bi
furcation point will be locally asymptotically stable for 
the complete dynamics iff the dynamics on the center 
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manifold is locally asymptotically stable. Of course, at 
some nearby equilibria the dynamics may be unstable. 

The next step is to compute the Poincare normal form 
of the center manifold dynamics. From its normal form 
the bifurcation is recognized and understood. Familiar 
examples are the fold (or saddle node), the transcrit
ical and the Hopf bifurcations. The first two of these 
depend on the normal form of degree two and the last 
one depends on the normal form of degree three. The 
fold and Hopf bifurcations are the only ones that are 
generic and of codimension 1, i. e., depend on a single 
parameter, so these are the most important. 

The study of bifurcations of differential equations with 
control was initiated by Abed and Fu, [1], [2]. They 
considered systems where the parameter is distinct 
from the control 

i: f(x,u,µ) (1.3) 

They assumed that the uncontrolled system u = 0 un
dergoes a bifurcation at a critical value of the parame
ter µ.o and they studied the stabilizability of the system 
b~· quadratic and cubic feedbacks. 

Kang, [5] studied the degree two normal forms and bi
furcations of control systems with (1.3) and without a 
parameter (1.4). A control system does not need a pa
rnmPter to bifurcate, the control can play the same role. 
ThP equilibria of a controlled differential equation, 

x = f(x,u) (1.4) 

ctre thosP values of Xe, Ue such that f(xe, ue) = 0. The 
<'quilibria are conveniently parametrized by u or one 
of the statP varaibles. Two key facts differentiate bi
furcations of a control system (1.4) from that of a 
parametrized system ( 1.1). The first is that for the 
latter the structural stability of the equilibria is the 
crucial issue but for the former the stabilizability by 
state fePdback is the crucial issue. A control system 
(1.4) is linearly controllable (linearly stabilizable) at 
.r,. u.e if the local linear approximation 

is controllable ( stabilizable). If the linear approxima-
1 ion is stabilizable, then the nonlinear system is locally 
stabilizable. If the linear approximation is not stabi
lizable, then the nonlinear system may or may not be 
locally stabilizable, depending on higher degree terms. 
A control bifurcation of (1.4) takes place at an equilib
rium where the linear approximation loses stabilizabil
ity. Notice that this is different from the bifurcation 
of a parametrized system (1.1) which take place at an 
equilibrium where there is a loss of structural stability 
with respect to parameter variations. Frequently this 
loss of structural stability is caused by a loss of linear 

stability, one or more eigevalues of (1.2) crossing the 
imaginary axis. To empahsize this distinction we shall 
refer to the latter as a classical bifurcation. 

The other difference between control and classical bi
furcations is that when bringing the control system 
into normal form, a different group of transformations 
is used. For classical bifurcations, we use parameter 
dependent change of state coordinates and change of 
parameter coordinates but for control bifurcations we 
use change of state coordinates and state dependent 
change of control coordinates (invertible state feed
back) to simplify the dynamics. 

After reviewing Kang's work on the normal forms of de
gree two control systems, we extend it to degree three 
normal forms. Similar results for discrete time sys
tems can be found in [3], [7]. Kang studied the control 
theoretic analogue of the transcritical bifurcation. \Ve 
extend this to a study of the control theoretic ana
logues of the fold and the Hopf bifurcations. We will 
study the stabilizability of these around the bifurcation 
point. We will also discuss the parametrized stabiliz
ability of the parametrized family to nearby equilibria 
by a parametrized control law. Because of space limi
tations, the proofs will appear elsewhere [6]. 

2 Normal Forms 

Consider a smooth (C4 ) control system (1.4) where xis 
n dimensional, u is one dimensional and f (0, 0) = 0. It 
is well known that by linear change of state coordinates 
and linear state feedback, the system can be brought 
to the form 

where x1, x2 are ni, n2 dimensional, ni + n2 = n, A 1 

is in Jordan form, A 2 , B2 are in controller (Brunovsky) 

form and fJdl ( x1, x2, u) is a vector field which is a homo
geneous polynomial of degree d in its arguments. The 
linear change of coordinates that brings A1 to Jordan 
form may be complex. 

A pair A2, B2 is in controller form if 

0 1 0 0 0 
0 0 1 0 0 

A2 = B2 = 

0 0 0 1 0 
0 0 0 0 1 
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The following theorem is a slight extension of Kang [5]. 

Theorem 2.1 There exist a quadratic change of coor
dinates and a quadratic feedback 

[ ~~ ] [ :t~~~~::~~~ l 
u u. - 0:~2l(x1,x2,u) 

which transforms the system (2.5) into the quadratic 
normal form 

] [ :~ ] + [ ;2 ] v (2.6) 

+ 111;1] 

+ 0 
+ 
+ 

111here l,[d,;d2 J = l}d,;d2 J(z1 ; z2 , v) denotes a polyno

mial vector field homogeneous of degree d1 in z1 and 
of degree d2 in z2, v. The vector field ll2;0] is in the 
q1wdratic normal form of Poincare [8}, 

lJ2;oJ (2.7) 

where e] is the ith unit vector in Zr space and Zr,i is 
the ith component of Zr· The other vector fields are as 
follows. 

n, n1 11] ;l] LL jl i 'Yi el Z1 ,j z2,1 (2.8) 
i=l j=l 
n, n2+1 

Ji0;2] LL <5JJ ei z2. 
i 1 2,J (2.9) 

i=l j=l 
n2-l n2+1 

-10;2] L L (11 e; z2 . (2.10) h i 2 2,J 
i=l j=i+2 

inhere for notational convenience we have defined 
:2 n 2 +l = v. The vector field, fJ0

;
2
], is in quadratic 

!"ontroller form (4}. 

The following is theorem is new. 

Theorem 2.2 There exist a quadratic and cubic 
diange of coordinates and a quadratic and cubic feed
huck 

"I' 

which transforms the system (2.5) into the cubic nor
mal form 

+ 

+ 

+ 

+ 
+ 

112;1] 

0 
+ 
+ 

111;2] 

1J2;1] 
+ 
+ 

(2.11) 

110;3] l 
f
-[o;3] 
2 

where the quadratic part 
-13 OJ rem. Furthermore f 1 ; 

is as in the previous theo

is in the cubic normal form 
of Poincare f 8}, 

JJ3;0] (J jkl i - - (2 12) i el Z1,j "'-l,k "'l.l · 

The other cubic vector fields are as follows. 

112;1] 

111;2] 

1J2;1] 

ni n1 ni 

~~~ kl . 
L...,L...,L..., 'If e1 z1,j z1,k z2,1(2.13) 
i=l j=l k=j 

ni n1 n2+1 

LL L bfkk el z1,j z~,k 
i=l j=l k=l 

n1 n2 n2+1 

LL L Ef kk e1 z2,1 z§,k 

i=l j=l k=j 

n2-l n1 n2+1 

(2.14) 

(2.15) 

L L L (rk e2 Z1,j z~.k (2.16) 
i=l j=l k=i+2 

n2-l n2+1 k 

fJ0;3] L L L 77fkk e2 z2.j z~.k" (2.17) 
i=l k=i+2 j=l 

These theorems hold even when some of the eigenval
ues of A1 are not real. The linear change of coordinates 
that diagonalizes A1 is complex and the correspond
ing coefficients in the normal forms are complex. The 
real dimension of the parameter space is unchanged as 
the complex coordinates come in conjugate pairs hence 
some coefficients are required to be complex conjugates 
of each other. 

3 Control Bifurcations 

The constants in the above normal forms 
\ (Jjk jkk 11 d d l" d l /\i, i , ... , 7); are ca e mo u 1 an t iere are 
a lot more than are needed to understand the simplest 
types of bifurcations that are possible. Recall that 
in the bifurcation theory of a parametrized system of 
ODEs, the interesting part of the dynamics is that 
restricted to the center manifold. This leads to a 
great reduction in the dimension of the ODE that 
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must be studied. A similar fact holds true when 
studying control bifurcations. In most applications 
one will ultimately use state feedback in an attempt 
tu stabilize the system so the coordinates that are 
linearly stabilizable can be ignored to a large extent. 
If there are modes which are neutrally stable and are 
11ot linearly stabilizable, then the particular choice of 
f<•edback will influence the shape of center manifold 
of the closed loop system and the dynamics thereon. 
It might be possible to achieve asymptotically stable 
center manifold dynamics by the proper choice of 
kPdback although it will not be exponentially stable. 
011P can also reduce the number of moduli by consid
<'ring weaker forms of equivalence than smooth change 
of coordinates and invertible smooth feedback. We 
now discuss some important bifurcations of control 
s.vstmns. Some of this has already been established by 
hang. 

3.1 Fold Control Bifurcation 
.T ust as with classical bifurctions, the simplest control 
bifurcation is the fold. This control bifurcation has not 
hPPn studied before. The uncontrollable part is one 
dimensional and unstable, ni = 1, Ai > 0. Because 
the linearly controllable part of the quadratic normal 
form (2.6) is in Brunovsky form, the equilibria Ze, Ve 

are most conveniently parametrized by µ = Ze2,i · The 
('quilibria ze(µ), Ve(µ) are given by 

zeu -µ2 A1i(W + 0(µ)3 

JL 

0(µ)2 i = 2, ... , n2 + 1. 

The local linearization around Ze, Ve is 

where k 

28} 1 () 

( [ Ai +0wrP ~~ J + 0(µ)2) [ !~ J 

+ ([ ;2 ] + 0(µ)2) v 

Z Ze(µ), V v - ve(µ) and ~ 
0]. 

If the transversality condition 8}1 -::J- 0 is satisfied then 
the system is linearly controllable hence stabilizable 
H bout any equilibrium except µ = 0. Consider a 
parametrized family of feedbacks v = fi(z, µ) of the 
form 

1J (3.18) 

Ideally one would like to find a continuous family of 
fPPdbacks that makes the family of equilibria asymptot
ically stable, i. e., for each small µ, the closed loop sys
Mn z = J ( z, i'i( z, µ)) is asymptotically stable to Ze (µ). 
The lowest degree terms of more general smooth feed
backs will be like (3.18). 

Clearly the the z2 subsystem is stabilizable for all µ 
by proper choice of K 2 and this gain can be chosen 
independent ofµ. The question is can we find Ki (JL) 
which stabilizes the zi coordinate for all small lµI. 

Since the linear approximations are stabilizable for 
µ -::J- 0, it is certainly possible to find a stabilizing 
feedback at each such µ. The linear approximation at 
µ = 0 has an uncontrollable, unstable mode so it is not 
possible to stabilize it. But is it possible to stabilize 
the approximations for µ i- 0 with a feedback that is 
bounded through µ = O? The answer is no for systems 
with a fold control bifurcation. For any bounded feed
back, the closed loop system will be unstable in some 
neighborhood ofµ= 0. 

The closed loop linear approximation 

is clearly unstable at µ = 0 since Ai > 0. Furthermore 
if the feedback v = K 2 (µ) z2 stabilizes the z2 subsys
tem then Ai is a simple positive root of the character
istic polynomial of the closed loop system whenµ = 0. 
Hence there is a positive root of the characteristic poly
nomial for small lµI. 

By using higher and higher gain, it is possible to sta
bilize the system closer and closer to µ = 0. But if the 
feedback (3.18) is continuous, at best it will stabilize 
only some small but not too small µ > 0 or only some 
small but not too small µ < 0. If a smooth family 
of feedbacks does stabilize the system for some small 
µ > 0, the parametrized closed loop system generi
cally undergoes a classical fold bifurcation (also called 
a saddle-node bifurcation) at some smaller µ > 0. 

We illustrate this with a simple example in normal form 

The equilibria are Ze,i = µ 2, Ze,2 = µ,Ve = 0. Under 
the feedback v = Ki(µ)ii + K2(µ)h the closed loop 
linear approximation is 

[ 
~i ] 
Z2 

where i = z - Ze (µ), v = v - Ve(µ). This is asymptoti
cally stable iff the trace is negative and the determinant 
is positive, which yields the inequalities -2µK 1 (µ) < 
K 2(µ) < -1. Clearly there is no bounded K1(µ) that 
satisfies these for all small Iµ I· 

Ifwe choose Ki= 10 and K 2 = -2 then the closed loop 
linear approximation is stable forµ> 0.1 and unstable 
forµ < 0.1. It undergoes a fold bifurcation atµ= 0.1. 
If we choose K 1 = -10 and K 2 = -2 then the closed 

p. 4 



loop linear approximation is stable for µ < -0.1 and 
unstable for µ > -0.1. It undergoes a fold bifurcation 
at p = -0.1. 

To see this. consider the closed loop nonlinear system 
under the feedback with K 1 = 10 and K2 = -2 in 
coordinates centered at the the bifurcation, z1 = z1 -

0.01. 22 = Z2 - 0.1, fl=µ - 0.1, 

z1 - o.2z2 - z~ 

l0z1 - 2z2 - 10µ2. 

It is convenient to reparametrize by 11 = p2 ::'.". 0. The 
center manifold is given by 

.:2 = 1011+521+2500112 -100011z1 +125z~ + O(z1, 11) 3 

mid the center manifold dynamics is 

~1 = 211 - 500112 + 30011z1 - 5oozr + o(z1, 11)3 

or in the variables z l = J55( z1 - 311), f) = 211 - 150112, 

.h = v - z? + O(z1, v) 3
, 

the familiar form of a fold bifurcation. 

3.2 Transcritical Control Bifurcation 
I\:ang [5] studied this control bifurcation but not under 
this name. This is the degenerate case of the above 
where again n 1 = 1 but A1 = 0. Hence this control 
bifurcation is not generic. Kang showed that the local 
behaviour is determined by the roots of quadratic form 

/3 11 :2 11 dl 2 0 
l Zi.1+11 z1,1z2,1 + u1 z2,1 = 

If this form is positive or negative definite, then there is 
only an isolated equilibrium which is unstabilizable. If 
it is indefinite but not degenerate, there are two curves 
of equilibria which cross. For example, suppose /3f1 = 
l. 11 1 = 0, JP = -1 and all the other nonlinear terms 
are zero. Then the equilibria are 

.,± 
-e l.l 

Ze2.1 

±µ 

µ 

0 i = 2, ... , n2 + 1. 

Let Ze (p), Ve(µ) be one smooth curve of equilibria, e.g., 
::ti, the local linearizations around it are 

([26 ~~]+0(µ)2)[~~] 
+ ( [ ;2 ] + 0(µ)

2) v 

,,·here z = z--ze(µ), v = v-ve(µ) and~= [-2 0 ... OJ. 

The linear approximation of the closed loop dynamics 
under a smooth feedback (3.18) is 

I z1 ] 
l '.:2 

which is neutrally stable at µ = 0. If the feedback 
stabilizes the z2 subsystem when µ = 0 then the de
terminant of the full system matrix changes sign at 
µ = 0 so generically the closed loop system under
goes a fold bifurcation. Under quadratic feedback 
v = K1 (zr - µ 2) + K2z2 the system will undergo a 
transcritical bifurcation if A2 + B 2K 2 is Hurwitz. 

3.3 Hopf Control Bifurcation 
This control bifurcation has not been studied before. 
The uncontrollable modes are a nonzero complex con-
jugate pair, 

A1 = [ ~ ~ ] 

where A= 11 + iw, .\ = 11 - iw, w =f. 0. The equilibria 
Ze (µ),Ve(µ) are given by 

~el,l ] 2 A-1 [ 511 
] + 0(µ)3 1 -µ 1 511 

~el,2 2 
Ze2,l µ 

Ze2,i 0(µ)2 i = 2, ... , n2 + 1 

where Jf1, JP is a complex conjugate pair. 

The local linearization around Ze, Ve is 

( [ A1 ~ µf ~~ ] + 0(µ)2) [ !~ ] 
+ ( [ ;2 ] + 0(µ)

2) v 

where z = z - ze(µ), ii= v - Ve(µ) and 

0 
0 ~ ] 

where 1f1, 1~ 1 and rf1, 1i1 are complex conjugate 
pairs . 

If the transversality condition ~ =f. 0, is satisfied then 
the system is linearly controllable except when µ = 0. 
If 11 < 0 then the system is stabilizable about any equi
librium but if 11 ::'.". 0 then the system is not stabilizable 
when µ = 0. The case 11 ::'.". 0 is called a Hopf control 
bifurcation. We distinguish two subcases, 11 > 0 and 
II= 0. 

If 11 > 0 then it requires larger and larger gain to sta
bilize the system closer and closer to µ = 0. But if 
the feedback (3.18) is continuous it will stabilize only 
for some small µ > 0 or for some small µ < 0 but not 
both. At µ = 0 the poles of the closed loop system 
are A,.\ and the poles of A2 + B2K2 (0). The latter 
can be made stable but the former are unstable. If the 
feedback is bounded then as µ __, 0 the poles coverge 
to these. The system is controllable for µ =f. 0 so the 
poles can be placed arbitrarily by feedback. The poles 
associated primarily with the z2 subsystem can be kept 
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stable but the two poles associated primarily with the 
: 1 subsystem will cross into the right half plane at some 
small value(s) ofµ. Depending on the choice of feed
back. they will cross one at a time as real poles, cross 
together through 0 or cross together as a nonzero com
plex conjugate pair. If they cross separately as real 
poles then generically the closed loop system under
goes a fold bifurcation as the first pole crosses. If they 
cross together as a nonzero complex conjugate pair then 
g<'nerically the system undergoes a Hopf bifurcation. If 
t h<'y cross together through zero the situation can be 
quitP complicated and will not be discussed here. 

If 1; = 0 and the feedback (3.18) is continuous then 
generically the system undergoes a Hopf bifurcation at 
f' = 0. We illustrate this with an example. 

±1,1 

:i;l.2 

±2 

The equilibria are 

2 
-X1,2 - X2 

X1,l - X~ 
u. 

X µ 2 
. el,l 

Xei,2 -µ2 

Xe2 µ 

Ue 0 

and the linear approximations are 

i\1 -x1,2 - 2µx2 

xu x1,1 - 2µx2 

x2 u 
\\·here .11.1 = xu - µ 2

, X1,2 = x1,2 + µ2, x2 = x2 -
fl. u = u. The linear approximations are controllable 
except at fJ = 0. 

\\'e choose the feedback u = l0x1,1 + 5x1,2 - 3x2 which 
place the poles at -1 ±i, -1 whenµ= 0.1. Nearµ= 0 
t llP poles of the closed loop linear approximations are 

s -3 + 10µ + 0(µ) 2 

s -5µ ± i + 0(µ) 2 . 

The closed loop dynamics is 

2 
-X1,2 - X2 

X1,1 - x3 
lOxu + 5x1,2 - 3x2 + 3µ - 5µ 2

. 

(3.19) 

The first Lyapunov coefficient (see [8], (10.50)) is 
11 (0) = -70.11. This and (3.19) imply that the closed 
loop system undergoes a supercritical Hopf bifurction 
e1t /1 = 0. For small µ > 0 the origin is locally expo
m~utially stable. For small µ < 0 the origin is unstable 
hut there is a locally asymptotically stable limit cycle 
nearby. At /.1 = 0 the origin is locally asymptotically 
,;tablP but not locally exponentially stable. 

4 Conclusions 

We have presented the normal form to degree 3 of a 
smooth control system around an equilibrium point un
der the group of smooth coordinate changes and in
vertible smooth feedback. From these normal forms we 
were able to identify the simplest control bifurcations, 
the fold control bifurcation, the transcritcal control bi
furcation and the Hopf control bifurcation. We empha
size the distinction between a control bifurcation and a 
classical bifurcation. A control bifurcation occurs at an 
equilibrium where the control system loses linear sta
bilizability. A classical bifurcation occurs at an equi
librium where the dynamical system loses structural 
stability with respect to parameter variations. Bifur
cation control is different from a control bifurcation. 
The former refers to the modification by feedback of 
a classical bifurcation of the u = 0 system. Of course 
these concepts are closely related and when a system 
with a control bifurcation is modified by smooth feed
back the result is a classical bifurcation. 
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