
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1987-03

The state of software maintenance

Schneidewind, Norman F.

IEEE

IEEE Transactions on Software Engineering, v. SE-13, no. 3, March 1987, pp. 303-310

http://hdl.handle.net/10945/40278

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36732628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987 303

The State of Software Maintenance
NORMAN F. SCHNEIDEWIND, SENIOR MEMBER, IEEE

Abstract-A state of software maintenance survey is presented, in
dicating the incongruity of the simultaneous existence of importance
and neglect in this field. An overview is given of selected developments
and activities covering the following topics:

• The "Maintenance Problem."
• Models.
• Methods for improving maintenance.
• Metrics.
• Maintenance information management.
• Standards.
• Maintenance of existing code.
• Surveys.

The paper concludes with a prognosis of what is ahead in mainte
nance: a battle and tradeoff between the forces for maintaining the
base of existing software and the forces for the evolution of new sys
tems. An Appendix is provided for the reader who desires information
about a software maintenance conference and a special interest group.

Index Terms-Metrics, models, software maintenance.

l. INTRODUCTION

To gauge the state of software maintenance, ask your
. self these questions:

• How many articles have appeared in this TRANSAC
TIONS on the subject of maintenance in the last couple of
years? Answer: none between August 1985 and Novem
ber.1986, inclusive, and few prior to this period in the
history of the TRANSACTIONS. However, before rushing to
judgement about the "guilt" of TSE, realize that it is not
unique in this regard among technical journals.
· Some additional questions to ponder:

• How many computer science departments have a
course in maintenance?

• How many doctoral dissertations have there been in
maintenance?

To work in maintenance. has been akin to having bad
breath. Yet, examine the "Problem" below and ask your
self whether there is any justification for this neglect. But,
first, a disclaimer, followed by some definitions so that
we may proceed from a common reference point.

The information which follows represents a selected
overview of the state of the software maintenance field.
Since this is a· survey paper, it is difficult to cover every
aspect of the field, given time and page limitations. We
apologize for any significant work which may not be cov
ered.

Manuscript received October 31, 1986.
The author is with the Naval Postgraduate School, Monterey, CA 93943.
IEEE Log Number 8612830.

A. Definitions

Maintenance: Modification of a software product after
delivery to correct faults, to improve performance or other
attributes, or to adapt the product to a changed environ
ment [1].

Maintainability: The ease with which a software sys
tem can be corrected when errors or deficiencies occur,
and can be expanded or contracted to satisfy new require
ments [2].

B. Why Is There a Maintenance Problem?

There is a maintenance problem because [3]:
• 75-80 percent of existing software was produced

prior to significant use of structured programming.
• It is difficult to determine whether a change in code

will affect something.
• It is difficult to relate specific programming actions

to speci.fic code.
The main problem in doing maintenance is that we can

not do maintenance on a system which was not designed
for maintenance. Unless we design for maintenance, we
will always be in a lot of trouble after a system goes into
production.

In addition, there is the very significant personnel prob
lem concerning the myth that there is no challenge for
creative people in maintenance.

According to Zvegintzov, most software is immortal
(immoral?). He says that all surveys of the distribution of
effort between new systems and present systems show
about a 50-50 split [4]. This is the case because of the
following important considerations:

• Functions are added, not replaced.
• Every new function must be tied into the present sys

tem.
• Systems are not totally replaced, except for overrid

ing economic or technical reasons.
• Organizations strive for compatibility in systems, not

perfection.
Specifically, Lientz and Swanson report from a survey

of data processing managers in 487 data processing or
ganizations that: departments spend about half of their ap
plication staff time on maintenance; over 40 percent of the
effort in supporting an operational application system is
spent on providing user enhancements and extensions; the
average application system is between three and four years
old, consists of about 55 programs and 23 000 source
statements, and is growing at a rate of over 10 percent a
year; and about one-half man-year is allocated annually
to maintain the average system [5].

U.S. Government work not protected by U.S. copyright

304 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

If all programs to be maintained were well documented
and cleanly structured, and used third-normal form data
models and data dictionaries for generating the program
mer's data, the task of the maintainer would be much eas
ier. The problem for most maintainers is that they have to
maintain ill-documented code that is covered with patches
with no comprehensible structure and that has data rep
resentations buried in the program code. It is a major de
tective operation to find out how the program works, and
each attempt to change it sets off mysterious bugs from
the tangled undergrowth of unstructured code [2].

C. Why Is Maintenance Hard?

Maintenance is hard because [6]:
• We cannot trace the product nor the process that cre

ated the product.
• Changes are not adequately documented.
• Lack of change stability (See Metrics Section ·be

low).
• Ripple effect of making changes.
• Myopic view that maintenance is strictly a postdeliv

ery activity.
One consequence of this lack of attention to maintain

ability requirements during design is loss of traceability.
This is defined as the ability to identify the technical in
formation which pertains to a software error detected dur
ing the operational phase (or other postrequirements
phase) and thereby trace the error to the applicable design
specifications and user requirements statements [7].

D. Why Is Maintenance Expensive?

In the early days of programming, when programmers'
salaries were an almost insignificant percentage of the data
processing budget, when programmers spent most of thek
time writing new programs, and when machine resources
were expensive, the mark of a well written program was
efficiency. Twenty years later, when programmers' sala
ries consume the majority of the data processing budget,
when programmers spend most of their time maintaining
programs, and when hardware is cheap, a new standard
for well written programs has emerged: how main_tainable
are they, especially for future generations of programmers
[8]?

E. Should Existing Code Be Discarded?

If existing code is so bad, why should it be retained?
Belady believes that we cannot and should not declare
"old" software obsolete or not worth studying [9]. This
collection of functions is an important asset, embodying
a wealth of experience, and constitutes an inventory of
''ideas'' for identifying· the building blocks of future sys
tems. Even if the code itself is inelegant and possibly not
reusable, a study of the specifications and identification
of the most frequently used components could reveal a set
of generic classes of algorithms and functions which could
be usable in future systems.

II. MODELS

A. Do We Have the Wrong Model for Maintenance?

Since the software industry does not seem to have a
good understanding of and model for maintenance, it is
worthwhile to consider some proposed models which pro
vide insight into the maintenance process. Lehman sug
gests that change is intrinsic in software, and must be ac
cepted as a fact of life, and since software undergoes
change throughout its life, there is no ~son to distin
guish maintenance from initial development. Evolution
ary development is inevitable [10], [11]. Furthermore, the
very act of installing software changes _the environment;
pressures operate to modify the environment, the prob
lem, and technological solutions. Changes generated by
users and the environment and the consequent need for
adapting the software to the changes is unpredictable and
cannot be accommodated without iteration. Programs
must be more alterable and the resultant change process
must be planned and controlled. According to Lehman,
large programs are never completed, they just continue to
evolve. In other words, with software, we are dealing with
a moving target and that, in effect, "maintenance" is per
formed continuously. Lehman suggests that the word
"maintenance" not be used and that the term "program
evolution" be used instead. If this model of the software
process is correct, it suggests that change activity and
change management should be an integral part of devel
opment and all other phases of the life of software. In this
view, a change would be no more associated with ''main
tenance'' than with development.

B. Do Requirements End in the Requirements Phase?

Lehman's view seems to be supported by Lientz and
Swanson [12]. They state that the approach which is in
vogue of getting requirements right before starting the de
sign may be based on the fallacious assumption that re
quirements are fixed. The reality is that requirements
change continually, often in response to organizational
change. These changes are more likely to emanate from
experience in the use of the system than from an abstract
specification in the early design of the system. The major
problem in requirements assessment may not be the de-.
velopment of a complete, consistent and unambiguous
specification, prior to design, but, rather, the evolution of
requirements which allow a timely response of the soft
ware to organizational change. Requirements assessment
during maintenance may be as demanding as during de
velopment.

C. Is the Life Cycle Model-Appropriate for
Maintenance?

The traditional view of the software life cycle has done
a disservice to maintenance by depicting it solely as a sin
gle step at the end of the cycle. In fact, it would be more
accurately portrayed as 2nd, 3rd, · · · , nth round devel
opment [13]. The traditional view also fosters the idea

SCHNEIDEWIND: STATE OF SOFTWARE MAINTENANCE

that structured techniques are best applied to develop
ment, whereas their application to maintenance is equally
valid.

In contrast, the traditional view of maintenance is that
it is an activity confined to the postdelivery phase, is not
directly related to development, and has its own special
requirements.

III. METHODS FOR IMPROVING MAINTENANCE

Software maintenance authors have made many sug
gestions for improving the maintainability of software.
These suggestions can be classified into three categories:
design approach, maintenance practices, and manage
ment.

A. What Design Approaches Are Needed?

Software design practices should include criteria for
maintainability [14]. These criteria are the following:

• Design software with maintainability in mind.
• Develop design criteria for achieving maintainabil-

ity.
• Simplicity should outweigh completeness.
• Change management should be used to:

-Limit the effects in the maintenance phase of a
change made in the design phase.

-Determine ripple effects on other modules of mak
ing a change to a common module:

• global variables.
• modules which invoke or are invoked by a com

mon module.
-Determine the effect on a module of making a

change to a local variable.
• Evaluate the design for excessive complexity.
Another design approach to aid maintenance describes

the design in terms of parts and the interconnections of
those parts [15]. With parts interconnections as the focal
point of the design and documentation, the system main
tainer can more readily judge the possible ripple effect of
change. Three levels-system, assembly, and compo
nent-are shown in list and graphical form, where each
succeeding level provides a more detailed description of
the previous level. A parts list and connections list is
shown for each level. The parts list shows functions and
the data associated with the functions. The connections
list shows the input/output relationships between func
tions and data.

B. What Maintenance Practices Are Needed?

Maintainability can be significantly improved if the fol
lowing practices are used [16], [14], [17], [18]:

• Change Management:
-Make easiest changes first.
-Change one module at a time.
-Inspect proposed changes for each type of side ef-

fect.
-Run regression tests after every change.

305

• Produce guidelines for modifying and retesting
software.

-Provide information to support assessment of the
impact of a change in various parts of the software.

C. What Other Practices Are Needed?

• Identify source statements which have been changed
with a number which is associated with' the change re
quest.

• Learn to read programs (alien code).
• Keep diaries of bugs and maintenance issues.
• Centralize variable declarations in a program,

-Use abstract data types to define the legitimate types
and values which objects of a type may assume and a set
of operations which may be performed on that type.

• Centralize symbolically defined and referenced da
tabase definitions in a computer processible data dictio
nary.

• Since it can be taken for granted that software will
evolve and change, each programmer in the process
should give consideration to the next programmer in the
life cycle.

One of the major sources of error in making mainte
nance modifications arises when neither the program nor
the documentation reveal that sections of a program that
are far apart are related. As suggested by Letovsky and
Soloway, this may cause the programmer to make as
sumptions about the plans of a program which are based
purely on local information. This can lead to an inaccu
rate understanding of the program as a whole [19]. Their
solution to this problem is to provide answers to the two
questions:

What information needs to be provided to the reader
of the program?
When and how should this information be provided?

Easily accessible information is needed to form correct
interpretations of delocalized plans. What is needed is to
move from documenting· the code itself to documenting
the plans in the code. A tool which may provide this ca
pability is under development.

D. What Management Policies Are Needed?

Some guidelines offered by McClure [14] for improving
the management of maintenance are the following:

• Involve maintainers in design and testing.
• Put the same emphasis on the use of standards in

maintenance as in design.
• Rotate personnel between design and maintenance.
• Make design documentation available to maintainers

at design time.
• Carry over the use of design tools into maintenance.
• Use configuration management and change request

procedures.
• Establish a liaison between users and maintenance.
Boehm suggests the following for maximizing the mo

tivation and, hence, productivity of maintenance person
nel [20]:

306 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

• Couple software objectives to organi?ational goals.
• Couple software maintenance rewards to organiza

tional performance. ·
• Integrate software maintenance personnel into oper-

ational teams. · ·
• Create a discretionary perfective maintenance bud

get.
• Create the perquisites of software ownership.

-Participation by maintenance personnel in: devel
opment standards creation, development reviews, and ac
ceptance test preparation.

• Rectify the negative image of software maintenance.
The reader can see that the objective of these guidelines

is to integrate design and maintenance-to reverse the
current procedure of considering and managing these ac
tivities in disparate and separate functions.

E. What Tools Are Needed?

Tools are needed in maintenance to look for (and hope
fully find) structure [2]:

• Looking for structure. Several types of structure need
to be understood: .

-Procedural structure.
-Control structure.
-Data structure.
- Input/ output structure.

• Understanding data aliases:
-Data may be referred to by several names.

• Following data flow:
-Where do data originate? Where are they used?

• Following control flow:
- The consequences of executing each path must be

understood ..
• Understanding versions of a program:

-How does a change affect different versions . of a
program?

Tools are available which address the above areas.
These consist of displaying the following [2]:

• Structure Chart: Shows hierarchy and call/called re
lationships.

· • Data Trace: Origins, uses, and modifications of var
iables.

• Control Trace: Shows control flow statements and in
dicates how a destination can be reached from a given
origin.

• Version Comparisons: Statements which differ be
tween two versions of a program are highlighted.

Addition~ly, the following tool capabilities are useful
for maintenance [21] :

• Stored test execution information giving dynamic be-
havior of a program. ·

• Test cases to exercise modified sections of a pro
gram.

• Symbolic and actual execution information.
An interesting tool is one designed to restructure un

structured code. One tool of this type is called structured
retrofit, involving the restructuring of Cobol programs
[22]. The application of this kind of tool rests on the

premise that with 7 out of 10 programmers involved in
maintenance, and costs for this activity soaring, mainte
nance must be made easier and, hence, less costly. Fur
thermore, the argument is made that even if the code is
bad, the logic of the design may not be bad. In other ·
words, the design concept was good but its implementa
tion was poor. Since this poor code is meeting user re
quirements but is difficult and costly to maintain, it should
be salvaged, where feasible.

The structured retrofit procedure consists of the follow
ing steps:

• Scoring: Programs are evaluated as candidates for re-
structuring by scoring them against the following criteria:

-Degree of structure.
-Level of nesting,
-Degree of complexity.
-Breakout of verb utilization.
-Analysis of potential failure modes.
-Trace of control logic.

However, even if a program scores low on the above
criteria but still runs with little time required for mainte
nance, it will not be retrofitted.

• Compilation: Programs which are to be retrofitted are
compiled. Programs which do not compile cleanly are re
ferred to others for resolution. Programs continue in the
retrofit process only if they compile cleanly.

• Restructuring: Programs that are unstructured are put
through this process to make them structured. The result
ing program will produce the same transformation on the
same input data as the original program.

• Formatting: Programs are made more readable
through the formatting process. They are then recompiled
to pick up possible syntax errors.

• Validation: The same inputs are applied to the orig
inal and restructured programs and the outputs are com
pared on a bit-by-bit basis by a file-to-file compare utility.

• Optimization: The code is optimized to reduce over
head which may have been introduced by the restructuring
process.

It is claimed that structured retrofit has been able to
restructure 60 percent of programs offered automatically,
another 20 percent with some manual intervention, and
20 percent cannot be restructured cost-effectively.

IV. METRICS

In order to perform maintenance effectively, we must
be able to measure the effects of design approaches on
maintenance and, especially important, be able to mea
sure the effects of maintenance approacl}es on future
maintenance!

Ideally, we want maintenance to improve software. Our
minimum objective is .that maintenance should have a
neutral effect. Unfortunately, too often, maintenance
makes software worse, due to unforseen ripple effect. In
order to minimize ripple effect, software must be stable.
Stability must be achieved at design time, not during the
maintenance phase. Stability in design is achieved by
minimizing potential ripple effect caused by interaction

SCHNEIDEWIND: STATE OF SOFTWARE MAINTENANCE

between modules (i.e., a change to a module causes un
desirable changes to other modules). The definitions and
concepts applicable to achieving design stability were de
veloped by Yau and Collofello [23]; these are the follow
ing:

• Program stability: Quality attribute indicating the re
sistance to the potential ripple effect which a program
would have when it is modified.

• Module stability: A measure of the resistance to the
potential ripple effect of a modification of the module on
other modules in the program.

• Logical stability: Measure of resistance to impact of
modification on other modules in terms of logical consid
erations.

• Performance stability: Measure of resistance to im
pact of modification on other modules in terms of perfor
mance considerations.

• "Maintenance activity" is a change to a single var
iable.

• Intramodule change propagation involves flow of
changes within the module as a consequence of a modi
fication.

• Intermodule change propagation involves flow of
changes across modules as a consequence of a modifica
tion.

• Intramodule change propagation is utilized to iden
tify the set of interface variables which are affected by
logical ripple effect as a consequence of a modification to
a variable definition ip a module. This requires an iden
tification of which variables constitute the module's in
terfaces and the potential intramodule change propagation
among the variables in the module.

• Once an interface variable is affected by a change,
the flow of changes may cross module boundaries and af
fect other modules. Interface change propagation is used
to identify the set of modules involved in intermodule
change propagation as a consequepce of affecting an in
terface variable in a module.

• Measure the complexity of affected modules to ana
lyze the possible relationship between complexity and
vulnerability to ripple effect.

• Compare stability of alternate versions of module for
the purpose of making a design choice. (However, there
may be no time available to design alternatives.)

• Use as predictor of amount of maintenance required.
• Reject request for maintenance if it involves modi

fying unstable modules.
• Restructure modules with poor stability.
The measure of design stability of a module, proposed

by Yau and Collofello [23], [24], is the reciprocal of the
total number of assumptions made by other modules about
the given module. If the given module has poor design
stability and it is modified, it is likely to produce unde
sirable effects on other modules, which either invoke,
share global data with, or are invoked by the given mod
ule. The rationale of this metric is that modules which
cause large ripple effects, if modified, are among the
modules with poor design stability. This definition of sta-

307

bility only applies to modular software. This point illus
trates one of the difficulties in trying to improve mainte
nance: much of the existing software which must be
maintained is not modular!

More information needs to be captured in a metric than
just the effects of a change to a single variable or the ef
fects of changes to a set of variables. What is needed is
the effects of changes on other aspects of a program, such
as documentation. Also, since all assumptions are not
equally important, this metric could possibly be improved
by weighting the assumptions. Although this metric ad
dresses an important aspect of maintainability dealing with
assumptions that are made about interfaces between mod
ules, it is silent on the subject of intramodule design char
acteristics. Despite these limitations, this metric would be
very useful, primarily, for deciding among design alter
natives for new software.

An approach to assessing the difficulty of maintaining
a program is to quantify program difficulty as the sum of
the difficulties of the constituent parts [25]. A Maintain
ability Analysis Tool was developed to analyze the diffi
culty of understanding and maintaining Fortran programs
by assigning weights, which represent relative difficulty
of understanding, to various program attributes, such as
syntactic elements (e.g., parameter) and syntactic attri
butes (e.g., name in COMMON). The numeric weights
and factors are summed for a program to yield a measure
of difficulty. Obviously, there can be a lot of subjectivity
involved in assigning weights and measures.

A strategy for determining whether to continue to main
tain software is to focus on modules which may be can
didates for rewriting. These error prone modules need to
be identified. One method for identifying error prone
modules is to . have maintenance personnel record infor
mation about: 1) which modules were changed, 2) how
much effort was involved in making the changes, and 3)
reasons for making the changes [26].

Another aspect of applying metrics to maintenance is
the establishment of criteria for determining whether
maintenance is being performed effectively. Arnold and
Parker [27] established the following criteria for 40 te
lemetry processing projects at the NASA/Goddard Space
Flight Center:

· • Desired effort distribution: Distribution of mainte
nance effort between enhancements/restructurings and
fixes.

• Desired frequency distribution: Distribution of re
ports approved for action between enhancements/restruc
turings and fixes.

• Completion rates: Rates for enhancements/restruc
turings and fixes.

• Effort per change: Labor time limits for enhance
ments/restructurings and fixes.

V. MAINTENANCE INFORMATION MANAGEMEENT

Since maintenance usually involves having to under
stand what someone else did to the code, information
about the characteristics of the code and specifications (if

308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

they exist) are essential to doing an effective job of main
tenance. Important elements of the information base are:
control flow information, data flow information, and dec
laration information [28]. This information base should
be established as part of every design and maintenance
activity.

VI. ST AND ARDS

In general, development standards have been inappro
priate for use in maintenance [29]. Of greater concern is
the fact that standards efforts have not addressed mainte
nance.

Although no standards exist for maintenance, manage
ment guides are available from the National Bureau of
Standards, which provide methodologies and procedures
for conducting an effective maintenance program [30],
[31]. Among the recommendations of [30] are the follow
ing:

• Develop a software maintenance plan.
• Recognize improvement of maintainability.
• Elevate maintenance visibility in the organization.
• Reward maintenance personnel; provide a career path

and training.
• Establish and enforce standards.
The major conclusion of [31] is that, in addition to de

veloping software with maintenance in mind, software
must also be maintained with maintenance in mind!

VII. MAINTENANCE OF EXISTING CODE

This activity involves maintaining software which has
not been modularly designed. It dominates maintenance
work.

A. Restructuring

As reported above, in the description of the structured
retrofit system, unstructured code can be. converted to a
structured format. Due a proof by Jacopini and Bohm,
any computable algorithm in any language, can be rep
resented by a structured graph. This result is the basis for
restructuring programs. Unstructured programs typically
have graphs whose nodes are so connected that the graph
cannot be effectively partitioned into independent re
gions. However, by means of a graph simplification pro
cess, an unstructured program can be rendered into a
structured form. The original unstructured program is
parsed into an abstract syntax tree. Several tree to tree
transformations are performed to reduce the tree to a few
simple control flow expressions. When the tree is suffi
ciently simple, it is transformed into a control flow graph.
This simplification process terminates when the topology
of the graph represents a structured algorithm.

Although the method sounds impressive there are prob
lems in restructuring when the program has GOTO's. In
addition, an enormous amount of machine time may be
required to develop new control graphs representing the
new structure [8]. However, if it is determined that re
structuring is more economical than rewriting, it is clear

that restructuring is only feasible when an automated
method such as this is used.

It is not always feasible to make unsti:uctured code look
like structured code and more readable by using struc
tured documentation. In a study conducted by Schneide
wind [32] to analyze the effectiveness of documentation
for maintenance purposes, where the documentation had
been created with the intent of making the software more
readable and understandable by showing a 'hierarchical
structure' of unstructured code, it was found that the new
documentation did not always tell the truth about the code
logic as represented by the program listing. The reason
for this was that the hierarchical documentation could not
faithfully describe software which was unstructured. Les
son learned: the code must also be restructured. •

B. Recovering the Design with Abstract Specifications

For situations in which no specifications exist, a tech
nique called Maintenance by Abstraction is claimed to al
low one to recover the design by using the following steps
[33]:

• Inspect the code.
• Propose a set of abstractions (directed graph repre-

sentations of the code).
• Choose the most suitable set of abstractions.
• Construct a specification from the abstractions.
The recovered design (i.e., the specification derived

above) is then applied to the Transformation-based Main
tenance Model. The directed graph representation of the
code is examined to find nodes representing design deci
sions such that the order of design decisions can be re
versed-for the purpose of making maintenance changes
in a way that will not affect the final implementation. It
appears that this complex procedure would only be cost
effective on large programs.

The IBM Federal Systems Division is upgrading the
Federal Aviation Administration National Airspace Sys
tem, 20 year old, 100 000 line, en route software by mod
eling programs as either function abstractions (transforms
a value in input domain to output range) or data abstrac
tions (class of data objects and the set of operations per
formed on them) [34]. Function abstractions can also be
regarded as entities which do not retain data across in
vocations and data abstractions as entities which do retain
data. The abstractions were used by the designer to de
termine the required change (added, deleted, and updated
functions as needed).

VIII. SURVEYS

To provide a feel for the characteristics of maintenance
as practiced in various organizations, results from several
surveys are presented briefly below.

In a survey of 487 data processing organizations, it was
found that most maintenance is perfective (55 percent):
performed to enhance performance, improve maintaina
bility, or improve executing efficiency. This is followed
by adaptive maintenance (25 percent): performed to adapt

SCHNEIDEWIND: STATE OF SOFTWARE MAINTENANCE

software to changes in the data requirements or process
ing environments. Lastly, there is corrective maintenance
(20 percent): performed to identify and correct software
failures, performance failures, and implementation fail
ures' [12].

Chapin [35] reports that from a limited survey of users
of fourth generatfon languages that although these lan
guages are beneficial for development, their use may make
maintenance more difficult and expensive. One reason he
cites for this situation is that interprogram .and intersystem
communication of data with these languages is often ob
scure, thus rendering the effect of a maintenance action
unclear.

In another survey by Chapin [36], he reports on infor
mation collected from supervisory personnel closest to
software maiittenance work. The survey consisted of 260
questionnaires collected from 123 data processing instal
lations; there were 769 responses across the various ques
tions. The biggest problems identified were poor docu
mentatfon and inadequate staff. With regard to the latter,
there is a problem in matching the characteristics of the
software to be maintained with appropriate personnel.

IX. PROGNOSIS

Much of the problem will remain of being condemned to
maintain existing, nonstructured code for a long tirrie into
the future-perhaps 20 years. This situation will only
change wheri two things happen: 1) software development
environments become so effective and programmer pro
ductivity becomes so great that it will be more economical
to develop new systems than to maintain old systems; 2)
organizations want to do business in new ways. Thus the
decision will not be over the cost of reprogramming or
redesign, but about whether organizations. will adapt their
information systems to support the organization's survival
in a changing world. In the interim,· restructuring tech
niques will be an important tool for attempts io convert a
0 sow's ear into a silk purse." In making the restructuring
decision, only relevant costs should be considered. The
fact that a lot of money has been spent in the past is ir
relevant to making a decision about the future. These are
sunk costs; only future costs should be considered. The
cost to rewrite, redesign, or develop a new system are
relevant costs.

Ort the personnel front, there is hope. Software engi
neers are being sensitized to the need for considering
maintainability in their designs. More academics will do
research in maintenance when academic administrators
recognize the importance of maintenance. Computer sci
ence programs will contain a course on maintenance when
academics themselves recognize the importance of main
tenance!

APPENDIX

The following lists some information about an impor
tant conference and a special interest group in the field of
software maintenance:

309

A. Conference

The first conference in software maintenance, spon
sored by technical societies, was the Software Mainte
nance Workshop, held at the Naval Postgraduate School,
Monterey, CA, December 6-8, 1983 [37]. It was spon
sored by the IEEE Technical Committee on Software En
gineering of the. IEEE Computer Society, National Bu
reau of Standards, and the Naval Postgraduate School,
and in cooperation with the ACM Special Interest Group
on Software Engineering.

The second conference was the Conference on Software
Maintenance-1985, held at the Sheraton Inn Washington
Northwest, Washington, DC, November 11-13, 1985. It
was sponsored bythe same organizations as above, minus
the Naval Postgraduate School, and with the addition of
the Data Processing Management Association, and in co
operation with the Association for Women in Computing,
and the Software Maintenance Association.

The next conference, Conference on Software Mainte
nance-1987, will be held in Austin, TX, September 21~
24, 1987. For information contact:

Roger J. Martin, General Chair
National Bureau of Standards
Bldg. 225, Rm. B266
Gaithersburg, MD 20899
(301) 921-3545

B. Special Interest Group

The Software Maintenance Association (SMA) is a spe
cial interest group in the field. For information about this
organization and a maintenance newsletter, contact:

Nicholas Zvegintzov
141 Marks Place, #SF
Staten Island, NY 10301
(718) 981-7842.

REFERENCES

[l] An American National Standard IEEE Standard Glossary of Software
~ngineering Terminology, ANSI/IEEE Standard 729, 1983.

[2] J. Martin and C. McClure, Software Maintenance: The Problem and
Its Solutions, Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] D. P. Freedman and G. M. Weinberg, "A checklist for potential side
effects of a maintenance change," in Techniques of Program and Sys
tem Maintenance, Girish Parikh, Ed. Ethotech., Inc., 1980, pp. 61-
68.

[4] N. Zvegintzov, "Nanotrends," Datamation, pp. 106-116, Aug.
1983.

[5] B. P. Lientz and B. E. Swanson, "Problems in application software
maintenance," Commun. ACM, vol. 24, no. 11, pp. 763-769, Nov.
1981.

[6] N. F. Schneidewind, ''Quality metrics standards applied to software
maintenance" (Abstract), in Proc. Comput. Standards Conj 1986
(Addendum), IEEE Comput. Soc., May 113-15, 1986.

[7] fyt. B. Kline and N. F. Schneidewind, "Life cycle comparisons of
hardware and software maintainability,'' in Proc. Third Nat. Rel.
Conj, Birmingham, England, Apr./May 1981, p. 4A/3/l-4A/3/14.

(8] E. Bush, "The automatic restructuring of COBOL," in Proc. Conj
Software Maintenance-1985. Washington, DC: IEEE Comput. Soc.
Press, Nov. 1985, pp. 35-41.

[9] L. A. Belady; "Evolved software for the 80's," Computer, vol. 12,
no. 2, pp. 79-82, Feb. 1979.

[IO] M. M. Lehman, "Programs, life cycles, and laws of software evo
lution," Proc. IEEE, vol. 68, no. 9, Sept. 1980.

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

[11] -, "Program evolution," Dep. Computing, Imperial College of
Science and Technology, London SW7 2BZ, England, Res. Rep. DoC
82/1, Dec. 1982.

[12] B. P. Lientz and E. B. Swanson, Software Maintenance Management.
Reading, MA: Addison-Wesley, 1980.

[13] J. R. McKee, "Maintenance as a function of design," in AF/PS Conf
Proc., vol. 53, 1984 Nat. Comput. Conf., pp. 187-193.

[14] C. L. McClure, Managing Software Development and Maintenance.
New York: Van Nostrand, 1981.

[15] J. Silverman, N. Giddings, and J. Beane, "An approach to design
for-maintenance," in Proc. Software Maintenance Workshop, R. S.
Arnold, Ed. Washington, DC: IEEE Comput. Soc. Press, Dec.
1983, pp. 106-110.

[16] R. L. Glass and R. A. Noiseux, Software Maintenance Guidebook.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[17] J.B. Munson, "Software maintainability: A practical concern for life
cycle costs," Computer, vol. 14, no. 11, pp. 103-109, Nov. 1981.

[18] E. Yourdon, "Structured maintenance," in Techniques of Program
and System Maintenance, Girish Parikh, Ed. Ethotech, Inc., 1980,
pp. 211-213.

[19] S. Letovsky and E. Soloway, "Delocalized plans and program com
prehension," IEEE Software, vol. 3, no. 3, pp. 41-49, May 1986.

[20] B. Boehm, "The economics of software maintenance," in Proc. Soft
ware Maintenance Workshop, R. S. Arnold, Ed. Washington, DC:
IEEE Comput. Soc. Press, Dec. 1983, pp. 9-37.

[21] Z. Kishimoto, "Testing in software maintenance and software main
tenance from the testing perspective," in Proc. Software Mainte
nance Workshop, .R. S. Arnold, Ed. Washington, DC: IEEE Com
put. Soc. Press, Dec. 1983, pp. 166-117.

[22] M. J. Lyons, "Salvaging your software asset (tools based mainte
nance)," in AF/PS Conf Proc., 1981 Nat. Comput. Conf., pp. 337-
341.

[23] S. S. Yau and J. S. Collofello, "Some stability measures for software
maintenance," IEEE Trans. Software Eng., vol. SE-6, pp. 545-552,
Nov. 1980.

[24] -, "Design stability measures for software maintenance," IEEE
Trans. Software Eng., vol. SE-JI, pp. 849-856, Sept. 1985.

[25] G. M. Berns, "Assessing software maintainability," Commun. ACM,
vol. 27, no. 1, pp. 14-23.

[26] H. Schafer, "Metrics for optimal maintenance management," in Proc.

Conf Software Maintenance-I985. Washington, DC: IEEE Com
put. Soc. Press, 1985, pp. 114-119.

[27] R. S. Arnold and D. A. Parker, "The dimensions of healthy main
tenance," in Proc. 6th Int. Conf Software Eng. Washington, DC:
IEEE Comput. Soc. Press, Sept. 1982, pp. 10-27.

[28] J. S. Collofello and J. W. Blaylock, "Syntactic information useful
for software maintenance," in AF/PS Conf Proc., vol. 54, 1985 Nat.
Comput. Conf., pp. 547-553.

[29] N. F. Schneidewind, "Usability of military standards for the main
tenance of embedded computer software," in Advisory Group for
Aerospace Research & Development Conf Proc. 330, Software for
Avionics, North Altantic Treaty Organization, The Hague, Nether
lands, Sept. 6-10, 1982, pp. 21-1-21-6.

[30] J. A. McCall, M.A. Herdon, and W. M. Osborne, "Software Main
tenance Management," Nat. Bureau Standards, NBS Special Pub!.
500-129, Oct. 1985.

[31] R. 1. Martin and W. M. Osborne, "Guidance of software mainte
nance," Nat. Bureau Standards, NBS Special Pub!. 500-106, Dec.
1983.

[32] N. F. Schneidewind, "Evaluation of maintainability enhancement for
the TCP/TSP Revision 6.0 Update .20," Naval Postgraduate School,
Rep. NPS54-82-004, Feb. 1982.

[33] G. Arango, "TMM: Software maintenance by transformation," IEEE
Software, vol. 3, no. 3, pp. 27-39, May 1986.

[34] R. N. Britcher and i. J. Craig, "Using modem design practices to
upgrade aging software systems," IEEE Software, vol. 3, no. 3, pp.
16-24, May 1986.

[35] N. Chapin, "Software maintenance with fourth· generation lan
guages," ACM Software Engineering Notes, vol. 9, no. I, pp. 41-
42, Jan. 1984.

[36] -, "Software maintenance: A different view," in AF/PS Conf
Proc. 54, Nat. Comput. Conf., 1985, pp. 509-513.

[37] R. S. Arnold, N. F. Schneidewind, and N. Zvegintzov, "A software
maintenance workshop," Commun. ACM, vol. 27, no. 11, pp. 1120-
1121, 1158.

Norman F. Schneidewind (A'54-M'59-M'72-SM'77), for a photograph
and biography, see this issue, p. 301.

