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Virtual Reality 

Exploiting Reality 
with Multicast 
Groups 

M ultiuser networked virtual worlds have 
generated intense interest in the graph­

ics community. High-bandwidth wide area communi­
cations, the success of World Wide Web applications 
such as the National Center for Supercomputing 
Application's Mosaic browser, and government fund­
ing of Distributed Interactive Simulation (DIS) have 
fueled the desire to expand networked virtual worlds 
beyond local area networks. However, the Internet has 

proved a challenging environment 
for real-time applications such as 

Large, multiuser virtual interactive virtual worlds and mul-
timedia. 

environments demand high- We wanted to expand the capa-
bilities of simulations and virtual 

bandwidth communications, environments (VEs) by exploiting 
multicast networks to serve 1,000 or 

in part to keep each entity more simultaneous users. Today, 
military simulations demand these 

aware of others' actions. numbers, and in the future, distrib­
uted interactive entertainment 

Limiting an entity to its area applications-such as multiplayer 
games-will require scalable net-

of interest permits larger work architectures to provide rich 
environments and profitable 

environments. returns. 

September 1995 

This article describes our investi­
gation into developing large distributed simulations. 
The architecture we describe logically partitions virtu­
al environments by associating spatial, temporal, and 
functional classes with network multicast groups. We 
exploit the actual characteristics of the real-world large­
scale environments being simulated by focusing or 
restricting an entity's processing and network resources 
to its area of interest via a local area-of-interest manag­
er (AOIM). For example, a simulated infantryman in a 
virtual environment doesn't need to know the condition 
of a simulated truck 20 virtual kilometers away. 

Problems scaling DIS 
Advances in computer architectures and graphics, as 

well as standards such as the IEEE 1278 Distributed 
Interactive Simulation (DIS) and BBN (Bolt Beranek and 
Newman) Simnet protocols have made small-scale (less 

Michael R. Macedonia, Michael J. Zyda, 
David R. Pratt, Donald P. Brutzman, 
and Paul T. Barham 
Naval Postgraduate School 

than 300 interactive players), realistic, man-in-the-loop 
simulations possible.1 The military has used these stan­
dards for several years. Unfortunately, Simnet, which 
was developed for small-unit training, and its descen­
dant, DIS, are unsuitable for large-scale multiplayervir­
tual environments. 

Several major problems associated with scaling the 
current suite of DIS protocols illustrate the difficulty of 
building large virtual environments: ' 

• Enormous bandwidth and computational require­
ments for large-scale simulation. A Simnet or DIS simu­
lation with 100,000 players can require hundreds of 
megabits per second of network bandwidth to each com­
puter in the simulation-too expensive today. 

Maintaining the state of all other entities, particular­
ly with dead-reckoning algorithms (which use second­
order kinematics equations), will be a major bottleneck 
for large-scale simulation. Recent experiences with the 
US Army's Synthetic Theater of War (STOW) exercises 
confirmed this.2 

Faster computers and networks will not necessarily 
satisfy these needs. First, faster networks require faster 
processors merely to copy packets from the network into 
user space even before the application touches the pro­
tocol data unit (PDU). Second, the creeping demand for 
more realism (for example, collision detection and con­
straint satisfaction) will introduce a rapid rise in com­
putational and spatial complexity with even modest-size 
virtual environments.3 

We conjecture that a single host can realistically man­
age only about 1,000 entities in real time, despite future 
advances in computer graphics architectures, due to 
computational complexity. 

•Multiplexing of different media at the application 
layer. The current DIS protocol requires the application 
to multiplex and demultiplex different types of real-time 
data (for example, simulation packets, audio, and video) 
at the application layer rather than at the network or 
transport layers. Therefore, the virtual environment 
must treat continuous video streams the same as bursty 
simulation traffic-that is, through allocation of buffers 
and timing at the application layer. This can be very 
expensive. 

0272-17-16/95/$4.00 © 1995 IEEE 



•Lack of an efficient method for handling static objects. 
Events like explosions can change many static entities, 
such as bridges and buildings. These and other station­
ary objects must send update messages at regular inter­
vals to inform participants of their current state. For 
example, a tank that has been destroyed must constantly 
notify the environment that it is dead, in order to infonn 
new entrants or other entities that might have missed 
the original state-change message. 

• Models and world databases must be replicated at 
each simulator. DIS has no mechanism to distribute 
objects on demand. This is a necessity fur large simula­
tions, particularly when simulators are heterogeneous 
and controlled by different organizations, amongwhom 
minimal coordination is expected prior to an exercise. 

Furthermore, it is neither feasible nor efficient for each 
simulator to store every model and database for a 
100,000-entity simulation. For example, a human simu­
lation (say, a dismounted infantryman) on land normally 
need not concern itself with naval vessels-unless the 
infantryman is near enough to the ocean to see them. 

The DIS protocol's origins explain some of these short­
comings: 

•Event and state paradigm. DIS requires VE simula­
tions to be stateless; data is fully distributed among the 
participating hosts, and entities are semi-persistent. 
Therefore, every entity must learn about every event, just 
on the chance that it might need to know it. To accom­
plish this, the protocol asks each entity to regularly com­
municate its state information (as an entity state protocol 
data unit, or ESPDU) to every participant-even though 
the ESPDU data may be redundant or unnecessary (such 
as aircraft markings). These keep-alive ESPDU messages 
can comprise 70 percent of the traffic in large simulations. 

In the real world, however, different entities have dif­
ferent sensing capabilities, and these can be translated 
into a viftual entity's data requirements. In a large vir­
tual environment, two ground vehicles 200 kilometers 
apart probably don't need to know of each other. Yet, 
under the current architecture, they must inform each 
other of state changes and updates. This avoids the reli­
ability problems of a central server, simplifies commu­
nication protocols, and minimizes latency while 
guaranteeing that hosts entering a simulation would 
eventually build their entity database through entity 
state and event messages. Furthermore, broadcast 
ESPDU updates help maintain a consistent view among 
simulators, within a particular tolerance. 

•Real-time system trade-offs. Large distributed sys­
tems often compromise reliability (that is, a guarantee 
that sent data has been received) to achieve real-time 
performance. Truly reliable systems require acknowl­
edgment schemes, such as the one used in Transport 
Control Protocol (TCP). These defeat the notion of real 
time, particularly if a player host must establish a virtu­
al connection with every other entity host to ensure that 
they received data correctly. Thus large environments 
must rely on connectionless (and therefore unreliable) 
network protocols, such as the User Datagram Protocol 
(UDP), for wide-area communications. 

Related Work 
Partitioning virtual worlds into spaces is a common metaphor for 

virtual environments. Multi-user dungeons (MUDs) have used this 
idea, and projects like Jupiter from Xerox PARC (Palo Alto Research 
Center) have extended it to associating rooms with multicast video 
and audio teleconferences.1 Benford described a concept for the 
spatial interaction of objects in a large-scale virtual environment.2 

Benford's spatial model uses different levels of awareness between 
objects based on their relative distance and mediated through a 

negotiation mechanism. 
An implementation using DIVE (Distributed Interactive Virtual 

Environment) uses "standard VR collision detection" to determine 
~. when transitions between awareness levels should occur. 

3 

' The MASSIVE (Model, Architecture, and System for Spatial 
! Interaction in Virtual Environments) from the University of 

Nottingham project also uses this approach. However, the need for 
collision detection, reliable communication, and strong data 

. consistency have made it difficult for DIVE and MASSIVE to scale 
beyond a handful of users.2 This may change as their developers 
pursue multicast communications and weaker data consistency. 
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Real-time environments need to avoid transactions 
between individual entities, since they require reliable 
communications. Furthermore, schemes that use a cen­
tral database do not work well in a large virtual envi­
ronment due to 1/0 contention. For example, AT&Ts 
Imagination network limits the number of concurrent 
players in a game to four because they are centrally 
served and bandwidth is limited to modem speed (less 
than 28 Kbps). 

•No middleware layer. DIS does not mediate between 
distributed VE applications and the network. It uses a 
bridged network in which every message is broadcast 
to every entity. 

However, large simulations require internetworking 
(routing over the network layer) because this allows the 
use of commercial services rather than private networks. 
This lets us connect diverse, remote sites; use different 
local network topologies and technologies (such as 
Ethernet and FDDI); and take advantage of rich topolo­
gies for partitioning bandwidth-which provides 
robustness and optimizes routes for minimizing latency. 
Since current standards confine DIS to the data link 
layer, we limit ourselves to using bridges, which are an 
order of magnitude slower than routers when reconfig­
uring after topological changes. Bridges also limit the 
number of stations to the tens of thousands. A router 
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1 An armored 
brigade in a 
combat-training 
exercise at the 
US Army 
National 
Training Center, 
Fort Irwin, 
California. The 
area is 60 by 50 
kilometers. 
Friendly vehicles 
are blue; enemy 
vehicles are red. 
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network is limited only by the numbers accommodated 
in the address space. 

•Origins as small training-unit systems for LANs. Many 
of these problems devolve from the fact that until recent­
ly DIS and Simnet were used exclusively for small-scale 
training simulations. In this mode it has been relatively 
easy to ensure that the virtual environment components 
have homogenous sets of models and terrain databases 
by replicating them at each host. The monolithic nature 
of these small-scale environments, which could be dis­
tributed over a local area network, obviated the need 
for middleware. Hence, broadcast communication suf­
ficed for these limited environments. 

These origins also influence current assumptions 
about the density and activity rates of entities in large 
simulations that do not necessarily match the real world. 
Simnet players participated for short periods (several 
hours) and were very active because simulation aimed to 
train crews in coordinated drills. Furthermore, entities 
were densely packed in the simulated area because that 
best represented a small unit in close combat and 
because of the difficulty in using large terrain databases. 

The Simnet experience contrasts sharply with real 
exercises. Figure 1 shows the location of some of the 
2,191 entities in an actual combat training scenario at 
the US Army National Training Center at Fort Irwin, Cal­
ifornia, replayed in the Janus Combat Model. Our analy­
sis of this exercise showed that in the 10 hours of total 
maneuver, one third of the vehicles did not move. As the 
exercise progressed, over half of the vehicles became 
disabled and stopped all movement. Furthermore, 60 
percent of the terrain was outside the detection range 
of all the vehicles. 

Exploiting reality 
Increasing the number of entities by more than two 

orders of magnitude requires us to think beyond these 
artificial situations. We believe it is inappropriate to 

strictly extrapolate the Simnet and 
DIS experience (or any of the small­
scale research virtual environ­
ments) to large VEs. Moreover, large 
VEs are likely to have domain­
specific requirements such as strong 
data consistencies and process syn­
chronization, which allow partici­
pants to manipulate objects together 
and interact closely. We can exploit 
aspects of the real world, such as 
areas of interest and movement 
rates, to efficiently use multicast 
groups, eliminate ESPDU keep-alive 
updates, enhance the reliability of 
large VEs, and reduce overall band­
width requirements. We do this by 
grouping entities within spatial, 
temporal, and functional classes, 
and associating these classes with 
multicast networks. 

Spatial classes 
In the real world, which virtual 

environments emulate, entities have a limited area of 
interest. For example, a tank on a battlefield can affect 
and observe other entities out to a range of less than 4 
kilometers. On the other hand, a person on foot typi­
cally has an area of interest of only several hundred 
meters. This would be the case for a dismounted 
infantryman or a human simulated for a typical role­
playing adventure game. Entities whose areas of inter­
est overlap are members of a spatial class or group in the 
virtual environment. 

In a military simulation, membership in spatial class­
es would change relatively slowly. Helmbold studied 
advance rates and found that land combat operations 
stand still 90 to 99 percent of the time.4 The world record 
for aggregate movement in modern warfare was 92 kilo­
meters per day for four days (about 6 kilometers per 
hour) by the 24th Mechanized Infantry Division in 
Desert Storm. 5 Individual vehicles may move much 
faster, but they would not continue at high rates very 
long because they fight as part of units in which move­
ment must be coordinated. 

Our approach is computationally efficient-constant 
time versus O(log n) for simple collision detection using 
octrees or bounding volumes-and takes advantage of 
multicast networks for partitioning the environment. 6 

Functional classes 
Entities within a common functional class may com­

municate with other entities in that class. For example, 
simulated radio traffic should be restricted to only the 
interested parties of a functional group. Functional 
classes could also relate to system management or ser­
vices, such as simulation host status messages. 

For example, in a military simulation, a functional 
class might be an air control group, comprised of enti­
ties primarily concerned with other entities and events 
occurring in the air. Air defense and aircraft entities 
would make up most of this group. Aircraft and air 



defense systems are relatively sparse 
compared to other combat systems 
such as tanks. Each air defense sys­
tem would also belong to a spatial 
class. Aircraft interested in a partic­
ular area of ground can focus and 
join the spatial group associated 
with its area of interest. 

Temporal classes 
Some entities do not require real­

time updates of all state changes. A 
system management entity might 
only need updates every several minutes. Similarly, a 
simulator of a space-borne sensor only needs a general 
awareness of ground vehicle entities and therefore can 
accept low-resolution (that is, infrequent) updates. 
When it needs more resolution, the simulator, like air­
craft entities, can focus and become part of a spatial 
group. Entities requiring updates at a similar rate may 
belong to similar temporal classes. 

Area-of-interest manager 
We propose using a software "glue" between the DIS 

event and state POU paradigm and the network layers, 
which are wedded to reality. The area-of-interest man­
ager (AOIM) partitions the VE into a set of workable, 
small-scale environments or classes to reduce computa­
tional load on individual hosts, minimize communica­
tions on network tail links, and localize reliability 
problems. Furthermore, the AOIM is distributed at every 
simulator, to distribute partition processing among hosts. 

Multicast network groups 
The AOIM uses spatial, temporal, and functional 

classes to establish membership in multicast network 
groups, as shown in Figure 2. Multicast services allow 
arbitrarily sized groups to communicate on a network 
via one source transmission. 

Multicast provides one-to-many and many-to-many 
delivery services for applications such as teleconfer­
encing and distributed simulation, where we want to 
communicate with several other hosts simultaneously. 
For example, a multicast teleconference allows a host to 
send voice and video simultaneously to a set of (but not 
necessarily all possible) locations. With broadcast, data 
is sent to all hosts, while unicast or point-to-point routes 
communication between only two hosts. 

The Internet Group Management Protocol provides 
an addressing scheme for an unreliable, connectionless, 
multicast service routable over the Internet. 6 For the 
AOIM, IP Multicast allows the creation of transient mul­
ticast groups that can be associated with an entity's area 
of interest (AOI). 

In this context, IP Multicast addresses can essential­
ly be used as context labels instead of physical destina­
tions. Figure 3 shows this. Players X, Y, and Z send data 
to the IP Multicast group address 224.11.22.56 rather 
than explicitly forwarding packets to each and every 
player. The network takes over this requirement. 
Players A and B send and receive traffic relevant only 
to their group, 224.11.22.33, while C is a member of 

2 Relationship between entity and 
multicast groups. One entity may 
belong to several spatial and 
functional classes, as well as a 
temporal class. 

Player~ 

Player A 

+ 

'-"' PlayerZ 

• • • • • Multicast group 224.11.22.56 
-- Multicast group 224.11.22.33 

1st brigade net 

A company 

A company 

both and participates in each session. 
Therefore, multiplexing and demultiplexing is done 

at the network level. This separates traffic into classes 
such as audio, video, and simulation data. For example, 
the radio communications functional class can be 
mapped to a particular multicast group address or chan­
nel group (Figure 4). The network interface hardware 
filters appropriate multicast groups, so this does not con­
sume processor cycles. 

As stated before, such partitioning is necessary to 
reduce the enormous computational requirements of 
large (100,000 player) simulations. A 1990 Simnet exer­
cise with 1,000 objects was limited not by network band­
width (loads ran at 50 percent), but by local host 
processor performance. 

3 Multicast 
communications 
in a simulation. 
Groups are 
expressed as IP 
Multicast 
addresses. 
Player( is a 
member of both 
multicast 
groups. 

4 Radio 
communications 
in a functional 
class can be 
mapped to a 
channel group, 
as shown in this 
hierarchy of 
communication 
channels for a 
military 
organization. 
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5 Area of 
interest for a 
vehicle mapped 
to a subset of 
multicast 
groups. 
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Associations 
To illustrate our ideas, let's use the AOIM to associate 

spatial classes with multicast addresses. Let's say we par­
tition the virtual environment into hexagonal cells, each 
mapped to a multicast group. Figure 5 shows a vehicle 
associated with seven cells, which represent its area of 
interest. Hence, it is also a member of seven network 
multicast groups. The vehicle's host listens to all seven 
groups but, with two exceptions (when joining or leav­
ing groups), it sends PDUs only to the one associated 
with the cell it occupies. 

We use hexagons for several reasons. First, they are reg­
ular, uniformly orientated, and uniformly adjacent. As the 
vehicle moves through the environment, it uniformly adds 
and deletes the same number of cells (and multicast 
groups). A vehicle's area of interest is typically defined by 
a radius-like a cellular telephone's transmitter signal. If 
we divided the VE into squares, we would either need to 
include more area than necessary (and thus include more 
entities in our area of interest) or use smaller grids­
requiring more multicast groups-and compute which 
grids the vehicle should be associated with. 

Group changes 
Entities can belong to several groups at once, to avoid 

boundary or temporal aliasing. A ground-based entity 
will likely have few group transitions within an hour 
because, on average, vehicle groups move slowly rela­
tive to the entire virtual environment. A vehicle moving 
at the Desert Storm record advance rate would traverse, 
on average, one cell each hour. When it moves cells, the 
vehicle in Figure 5 must join and leave three multicast 
groups associated with cells at the periphery of its area 
of interest, where change is less critical-ameliorating 
the effects oflatency caused by joining and leaving new 
groups. The outlined clear cells are removed from its 
area of interest, and the outlined grey cells are added as 
the vehicle moves to a new cell. 

We use group changes as an opportunity for database 
updates-similarto a paged-memory scheme-to elim­
inate regular ESPDU updates. We do this in a logical, 
distributed manner using knowledge about the age of 
entities with respect to their particular group. 

An entity joins a group as a passive or active member. 
Active members send as well as receive PD Us within the 
group, are located in the cell associated with the group 
(that is, the center of seven cells), and can become the 

group leader. Passive members normally do not send 
PD Us to the group except when they join or leave. They 
are associated with the group because the cell lies with­
in their area of interest, yet they do not occupy the cen­
tral cell. 

When an entity joins a new group, it notes the time it 
entered and issues a Join Request PDU to the cell group. 
The PDU has a flag indicating whether the cell is active 
or passive. The group leader replies with a Pointer PDU 
that references the request and in turn multicasts a PDU 
containing a pointer to itself or another active entity. 
The new member sends a Data Request PDU to the ref­
erenced source, which issues a Data PDU containing the 
aggregate set of active entity PDUs. A passive entity 
becomes an active member of a group by reissuing the 
Join Request PD U with a flag set to active when entering 
a cell. Departures from the group are announced with a 
Leave Request POU. 

The oldest member of the group is group leader, and 
we use timestamps to determine the oldest member. The 
first active member of a group will issue several Join 
Request PD Us before concluding that it is the sole mem­
ber of the group and therefore the oldest. When a pas­
sive entity determines that there is no leader, it merely 
listens for active members. A new active member of an 
established group issues a Join Request PDU, receives 
the Data POU, notes the join timestamps of the mem­
bers, and keeps track of those who enter and leave. 

Rationale 
The Data POU may be sent reliably to the issuer of the 

Join Request POU via a unicast protocol as a heavy­
weight object, that is, a large data set requiring reliable 
transfer. In a distributed simulation with many mem­
bers, reliability, as provided in the Transmission Control 
Protocol, would normally penalize real-time perfor­
mance merely by having to maintain timers for each 
host's acknowledgment. 

Moreover, flow control is inappropriate for DIS, since 
systems with humans in the loop can recover from a lost 
state message more gracefully than from late arrivals. 
Fortunately, DIS tolerates some unreliability and medi­
ates it with dead-reckoning and smoothing algorithms. 
Other applications, such as packet voice and video, use 
adaptive techniques to handle lost packets and delays. 

However, we can reliably send the Data PDU because 
the entity will normally be joining a group at the periph­
ery of its area of interest, where latency is not as criti­
cal. Learning about new members of entity groups 
under the DIS model typically takes at least five seconds 
while transiting through the virtual environment to a 
new active group. Assuming sufficient bandwidth, new­
entrant learning can take less than one second under 
our architecture. 

Furthermore, large VEs will naturally have some 
unreliability. Currently, an entire DIS simulation involv­
ing hundreds of entities can fail due to a single rogue 
application, because all communication is broadcast. 
One malfunctioning device or application can jam an 
entire simulation. Partitioning the VE into groups pre­
vents problems from disrupting the entire simulation. 

The area-of-interest manager can run as a separate 



thread or process and eliminates the need to change cur­
rent DIS POU semantics. The upper-level application 
simulating an entity need not know of the partitioning. 
Therefore, we can adapt many current DIS applications 
to support this architecture. 

Communications model 
We conjecture that a large, real-time virtual environ­

ment cannot guarantee strong data consistency and reli­
able communication among all its participants 
simultaneously. Instead, four types of communication 
can be established which, used together, allow stronger 
consistency than simply broadcasting state messages. 
They provide a much richer world through a mechanism 
for sending large objects reliably and supporting VE par­
titioning. 

•Lightweight interactions. These messages are com­
posed of the same state, event, and control PD Us used 
in the DIS paradigm but implemented with multicast. 
They are lightweight because the complete semantics 
of the message are encapsulated within the maximum 
transfer unit (MTU) of the underlying data link to per­
mit asynchronous real-time interactive use. Therefore, 
these PDUs are not segmented. They are either received 
completely or not at all because they are communicat­
ed via connectionless and unreliable (unacknowledged 
data) networks. The MTU values are 1,500 bytes for 
Ethernet and 296 bytes for 9,600-bps Point-to-Point 
Protocol (PPP) links. 

•Network pointers. We propose lightweight refer­
ences to resources, similar to Uniform Resource 
Identifiers (URI) defined in the Hypertext Transfer 
Protocol (HTTP). Pointers are multicast to the group, 
and members cache them. Therefore, common queries 
need not be present, and the server can direct respons­
es to other group members. We distinguish between 
pointers and lightweight interactions (for example, a 
Join Request POU) because pointers do not completely 
contain an object, but rather its reference. Pointers pro­
vide a powerful mechanism for referencing not only the 
current aggregate state of the group but also terrain, 
model geometry, and entity behaviors defined by a 
scripting language. Network pointers in the World-Wide 
Web have revolutionized Internet communication. 

•Heavyweightobjects. These objects require reliable, 
connection-oriented communication. For example, an 
entity may require model geometry after joining a group 
not in its database. The entity multicasts a request for 
the geometry and receives in response a multicast point­
er to the source. It then establishes a reliable network 
connection over which to receive the heavyweight object 
of the model geometry. As efforts such as the Virtual 
Reality Modeling Language (VRML) gain acceptance, 
heterogeneous systems may be able to exchange this 
type of information. 

•Real-time streams. Video and audio traffic provide 
continuous streams of data that require real-time deliv­
ery, sequencing, and synchronization. Moreover, these 
steady streams will be long-lasting, persisting from sev­
eral seconds to days. They are multicast on a particular 
channel to a functional class. In contrast to the current 

DIS protocol, we propose using pointers to direct entities 
to these channels, rather than forcing the virtual envi­
ronment (which may be as simple as a text-based appli­
cation) to receive both lightweight DIS PDUs and 
real-time video streams. Moreover, the VE can spawn a 
separate process that incorporates an adaptive receiver 
and thereby separates the handling of bursty simulation 
messages from real-time streams. 

Status of the work 
We have implemented an IP Multicast version of the 

NPSNet-IV 30 vehicle simulator using a network library 
developed by Paul Barham and John Locke that suppons 
multiple threads and dynamic creation of multicast 
groups.7 Furthermore, we are incorporating the algo­
rithms to support the area-of-interest manager and have 
developed a simulation to predict and evaluate the 
results. NPSNet is widely used by universities, industry, 
and government for distributed virtual environment 
research. The Naval Research Laboratory is using 
NPSNet to explore large DIS. We are also collaborating 
with Sarcos Inc. and the University of Pennsylvania to 
insert humans into virtual environments. For example, 
Figure 6 shows an NPSNet simulation to develop med­
ical training applications for a project sponsored by 
ARPA. NPS has developed a new DIS POU to communi­
cate the human articulations over the network. 

The multicast version of NPSNet has been success­
fully tested over the Internet with several sites, includ­
ing the Naval Research Laboratory, George Mason 
University, Massachusetts Institute of Technology, 
Sprint, Stanford Research Institute, and the Rand 
Corporation. We have also modified a version of the 
Modular Semi-Automated Forces (Modsaf) simulator 
developed by Loral to support multicast for generating 
many simulated military vehicles and aircraft. 

Simulation 
We developed a DIS network simulation to examine 

these questions: 

• Does partitioning using our architecture reduce band­
width and computational requirements for large VEs 
as compared to the DIS model? 

• Does the architecture scale, and if so how well? 

6 Medic 
conducting 
first-aid in 
NPSNet. The 

medic's 
movement is 
based on the 
University of 
Pennsylvania's 

tack Motion 
Library, 
developed for 
the Army 
Research 
Laboratory. 
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bandwidth of 
multicast (4-
kilometer 
hexagons) 
versus 
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with 2, 191 
entities. 

8 The 
maximum 
number of 
entities in an 
area of interest 
stayed constant 
at about 1,800, 
even as we 
increased the 
number of 
entities in the 
simulation from 
2, 191 to four 
times that 
amount. 

44 September 1995 

26000 26!500 27000 
Sirlul•tion TirH (S•oonds) 

Bcas-t -
M' 3.c-t ----

27!500 28000 

We were interested in the effect of entity distribution 
and maneuvering on our architecture-particularly as 
compared to the current DIS broadcast scheme. We col­
lected entity behavior data from Janus, a large con­
structive model widely used by the US Army for research 
and training. The data was based on a real-world mili­
tary scenario (similar to one proposed for STOW 97) 
and actual large-scale exercises at the National Training 
Center. After postprocessing, we applied our partition­
ing algorithms to the military entity. 

Our simulation using spatial partitioning showed that, 
in a military context, as the number of entities increased, 
the mean peak bandwidth was less than T-1 rates, 1.5 
Mbps. (See Figure 7.) The highest peaks represent the 
transfer of large data objects when entities transition 
among groups. This bandwidth will be quite feasible over 
networks to the home or office in the near future. AT&T 
and Intel, for example, plan to convert cable systems to 
provide 28-Mbps bandwidth to the home.8 

The AOI architecture takes advantage of the fact that 
it does not use entity keep-alives or heartbeats for new 
entrants and reduces the bandwidth costs associated with 
them. Rather, new entrants are informed of the existence 
of other entities during the Join procedure. Furthermore, 
assuming that entities are distributed across different sub­
nets, multicast association reduces the traffic demands 
on tail links by confining the scope of an entity's com­
munication to its area of interest and implicitly directing 
its traffic to a subset of hosts on the network. 

Perhaps more important than ameliorating band­
width costs, partitioning can reduce the amount of state 
that an entity must maintain. This architecture, as 
opposed to the DIS model, scales with the increase in 
entities. For our simulation, using the National Training 
Center data with 4-kilometer-radius hexagons, the max­
imum entities in occupied areas of interest held rela­
tively constant at approximately 1,800, as we increased 
the numberof total entities from 2,191 to four times that 
amount (Figure 8). This number probably represents 
the worst case, consisting of a mixture of tanks and light 
infantry with their weapon systems and vehicles. 

The peak number of entities using the architecture 
presents a feasible computational goal. Moreover, we 
can reduce the maximum AOI density by making our 
hexagons smaller or reduce the impact by doing appli­
cation-level filtering. 

Limitations and future research 
Out work does not address all the problems of build­

ing large virtual environments for military simulations. 
First, this architecture may complicate developing 
secure environments because encryption devices may 
need to authenticate every other device for each multi­
cast address. 

Second, we have not analyzed the impact of fast­
moving entities such as aircraft. We conjecture that this 
will not be a major obstacle for a number of reasons. Most 
aircraft fly too high or too fast to actually observe indi­
vidual ground entities and establish an association with 
them except for air defense systems. In the case of a sys-

tem like JSTARS (Joint Surveillance 
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tracks ground vehicles, we suggest 
that it can belong to the functional 
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air group and could receive low-rate 
ESPDUs from the temporal all group. 

For example, each ground entity 
might send an ESPDU to the all group 
every hour or every time it moved 5 
kilometers. For 50,000 entities, this 
is roughly 13 PD Us per second. Low­
flying aircraft like helicopters must 
normally hover or circle to acquire a 
target and fly at one-fifth the speed 
of fighters. Therefore, these aircraft 
can join the spatial groups associat­
ed with their target area. These 
actions and the effects of other types 
of entity behavior need exploration. 
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Third, we did not directly consid-

si.ui.tion Ti .. '"'°"""'> er network topology in our simula-



tions. We need to determine whether this architecture 
might be more appropriate for a network with many sub­
nets having a single entity or host located atthe site ver­
sus one with a handful of subnets having hundreds of 
entities represented on each host. Our data suggests the 
former, and in the future we need to use models such as 
those being developed by the Naval Research Labora­
tory to examine this issue. 

We also need to examine the impact of other parti­
tioning methods, such as functional partitioning. In par­
ticular, we have not tested the impact of multimedia 
communication using this architecture, though we have 
used voice and video in conjunction with NPSNet. • 
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