
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1975

Microcomputer software design - A checkpoint

Kildall, Gary A.

http://hdl.handle.net/10945/40162

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36732519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Microcomputer software design-A checkpoint

by GARY A. KILDALL
Naval Postgraduate School
Monterey, California

INTRODU.CTION

The general availability of low cost microcomputers has .
revolutionized digital design and digital applications. Us­
ing LSI chip technology, microcomputers are no more
than scaled-down central processing units with minicom­
puter capability, and are treated as component computers
at the heart of a digital design. Thus, microcomputers find
wide application in both dedicated and general purpose
roles, ranging from simple controllers through smart ter­
minals and test instruments to small business data
processing systems.

In each application, hardware and software modules are
intermixed to minimize unit cost. As a result, the overall
quality of a microcomputer-based product is directly de­
termined by the quality of its hardware and software
components. Similar to its hardware counterparts, the
product's programmed subsystems must be well specified
and engineered for long term reliability. In fact, well­
engin eered software has never been as important:
packaged systems are often produced in the hundreds or
thousands, where each program is permanently stored in
unalterable ROM (Read-Only-Memory). Unreliable pro­
grams have far-reaching effects, while ill-specified
software hinders product adaptability.

A particular high level language has emerged as an aid
to ·the microcomputer software engineer which forecasts
some industry standardization. This paper briefly reviews
current design aids, with particular emphasis on ap­
plicability of high level languages in the microcomputer
environment. A particular project case study is presented
which exemplifies current design methodology, followed
by projected trends in microcomputer software aids.

BEYOND THE DATA SHEET

In essence, a microcomputer is simply another in­
tegrated circuit chip set, with somewhat more than
average capability. In fact, many design engineers
consider a microcomputer CPU as simply a ROM-driven
LSI chip which, with proper arrangement of l's and O's in
the external ROM, can be tailored to act like a custom
chip. The design engineer breadboards a circuit including
the microcomputer, fills the ROM's with binary codes
which drive the chip, and proceeds to debug with logic
probe and scope. Although costly in development and

99

maintenance time, this approach is quite popular since no
external support is required beyond the chip's data sheet.

At the opposite end of the applications spectrum, the
microcomputer is considered just another processor which,
independent of physical characteristics, provides a key to
product update and new marketing areas. Often from a
minicomputer background, customers are unwilling to
return to primitive programming tools and meager design
support.

As a result of demands from a broad customer base,
many of today's semiconductor housiS find themselves in
the software business. A recent survey cross-references ten
microcomputer manufacturers by the software design aids
which they support. 1 Of these manufacturers:

all ten support a cross-assembler,
four offer resident assemblers,
three provide a resident editor,
eight support relocatable or absolute loaders,
five provide primitive debugging facilities,
six offer cross-simulators, and
two support a high level language.

The cross products all require a larger host computer for
actual execution. That is, cross-assemblers are usually
written in ANSI standard FORTRAN to allow some
measure of machine independence. The customer either
purchases the program directly from the manufacturer, or
contracts with a timesharing service which supports the
manufacturer's software.

Resident software systems, on the other hand, execute
using microcomputer developmental hardware. Most
manufacturers offer a built-up microcomputer prototyping
system as a hardware developmental aid, including CPU,
memory, I/0 access, and front panel control. In this con­
figuration, the microcomputer has minicomputer charac­
teristics, and thus can support its own software systems,
including assemblers, paper tape editors, loaders, and
debuggers. Although some of these resident software tools
are quite comprehensive, current manufacturer's offer­
ings are hindered by limited I/ 0 facilities. As a result,
resident software tools are less convenient than cross
systems, but are generally less expensive to support.

Although similar in capability to a minicomputer,
developmental systems generally incorporate features pe­
culiar to microcomputer systems development. National's
IMP-16P prototyping machine, for example, contains spe-

100 National Computer Conference, 1975

Figure 1-Rockwell's PPS-4 microcomputer development system

cial circuitry for loading reprogrammable ROM's, while
Rockwell's "assemulator," shown in Figure 1, contains a
built-in assembler and CPU emulator for programming
and debugging their PPS-4 microcomputer. Thus, the
manufacturer's developmental systems are generally inap­
propriate as end-user products.

Cross simulators are also used on larger host computers
to programmatically simulate actions of the microcom­
puter. The primary problem, however, is that extensive
program testing and simulation of real-time external
events, such as signals input from a device controller, is
tedious and expensive. Thus, cross simulators are princi­
pally used to step-through subroutines and program
modules independent of the electronic environment. A
simulator is extremely useful, however, when exact execu­
tion time must be determined for time-critical program
segments.

Two major manufacturers of microcomputer chip sets
are currently supporting a particular subset of PL/I as a
base language for their products. Intel's language, called
PL/M, has been available since mid-1973 through a cross­
compiler, while National's product, called PL/M+, will
be available in mid-1975 as an integral part of their
resident developmental system. Intel's PL/M provides a
base language for their 8-bit processors, and National's
PL/M+ is designed for the IMP-16 and PACE microcom­
puters. The two languages are basically compatible, thus
allowing transportation of customer software between
these two manufacturers.

SYSTEMS LANGUAGES

As interest grows in PL/M-like languages for microcom­
puter systems development, one immediately questions
the· suitability of high-level languages in such an environ­
ment. First, does a language such as PL/M support
necessary low-level control functions which occur in
microcomputer systems, or does the designer "lose con­
trol" of his machine? Second, how memory-efficient can a
translator for such a language be? The cost of high­
quantity electronics products is largely determined by
component count, and high-level language translators are
notorious for their inefficient code sequences, resulting in

excessive memory requirements in the final product.
Thus, the discussion focuses on experiences with Intel's
product as a benchmark for this class of languages.

First, a few general comments on PL/M itself. The lan­
guage is modest in structure and scope: basic operators are
tied closely to the capabilities of 8- and 16-bit processors,
augmented by structures for writing assignments, simple
expressions, conditional statements, looping control, and
subroutine mechanisms. The result is a language which
simplifies the expression of microcomputer systems, while
allowing access to all machine functions, without becom­
ing completely dependent upon a particular CPU organi­
zation. The language has facilities which are reflected
within the capability of the microcomputer, and, simi­
larly, each machine function is reflected in some high-level
statement. Architecture-oriented languages of this sort,
often referred to as systems languages, are traditionally
used to implement the lowest level system functions to
avoid the rigidities of assembly language coding. In the
larger computer environment, systems languages are often
used to implement operating systems, language processors,
utilities, and some applications software. Thus, they are
themselves self-supporting, generally requiring little exist­
ing system support. As illustrated in the examples which
follow, this close relationship between the language and
the machine architecture holds also for PL/M.

The Appendix contains a sample PL/M program which
indicates the basic facilities of the language. This
particular language has global characteristics of the "PL­
family," but derives its basic structure from the
microcomputer problem environment, as described
above.2

As a final comment, one notices that after decades of ad
hoc programming, there is finally an emerging body of
theory and practice concerning software engineering3·4

•
5

•
6

which is gaining industrial acceptance. Languages such as
PL/M, which provide clear representation of control
flows, are important tools in support of structured
programming techniques. When combined with
professional project management and programming
practices, the result is usually well-specified, reliable, and
efficient software systems.7

•
8

•
9

A CASE STUDY

Given the current level of support, how does one ap­
proach a microcomputer project which involves a total
system design? Non-trivial projects are generally evolu­
tionary in nature, where each phase of development and
testing is a controlled experiment. In the case of software
generation, the designer starts with cross systems for
initial program development and testing, gradually mov­
ing to resident developmental systems, and then to a
breadboarded prototype. Since system malfunctions can
occur at any level, from low voltage power supplies
through marginal IC's to programming blunders, this evo­
lutionary approach isolates the range of errors at each

stage. A particular microcomputer project is outlined
below which demonstrates this approach.

A dedicated computer system was recently constructed
at the Naval Postgraduate School to be used by Navy
divers while working underwater for extended periods.
The device monitors the dive time and depth, and
produces a continuous read-out of the "safe ascent depth."
The safe ascent depth is the depth to which the diver can
ascend from his current depth without contracting the
"bends." As the diver descends, his blood takes on
nitrogen, and as he ascends, the nitrogen is given off. De­
pending upon the length of time he has worked at various
depths on a particular dive, he can rise only to the safe
ascent depth before nitrogen gases form in the blood.
Thus, the computer keeps the diver informed of this
depth. The diving computer has four principal functions
to perform:

compute partial pressures of nitrogen for several con­
trolling tissues,

monitor external parameters such as elapsed time and
current dive depth,

drive simple displays with the current and safe ascent
depths, and

control the sequencing of external monitoring, comput­
ing, and display.

The final prototype was developed in two man-months,
with approximately three weeks devoted to software
development, and the remainder in hardware design and
debugging.

With the overall analysis of the dive problem complete,
a BASIC program was written which computed test
values. The computations involved 32-bit signed integer
values with fixed precision. Since the 8 bit processors
support only simple operations on 8-bit quantities,
subroutines were written in PL/M to provide necessary
functions. Each subroutine was compiled using the PL/M
cross-compiler on the school's IBM S/360, and the ma­
chine code was read-in by another program, called
INTERP / 8, which simulates 8008 CPU actions. Using the
break point and display commands of the simulator, the
numeric subroutine package was checked-out, using only
the S / 360, with no physical microcomputer hardware.

The numeric subroutines were augmented by additional
PL/M coding which evaluated standard formulae
(essentially the same as those of the BASIC program) for
determining the partial pressures of nitrogen for a
particular depth. Again, these subroutines were checked­
out under simulation by inserting test values in simulated
memory, running a single computation, and displaying the
values resulting from the simulation. A control and se­
quencing program was then written which simulated a
complete dive by looping through a predetermined dive
profile of times and depths. Using the simulation, several
complete dive profiles were run, and the intermediate and
final results were compared with the BASIC program. Ex­
tensive testing was infeasible, however, since a simulated

Microcomputer Software Design 101

fifteen minute diYe to a depth of 130 feet required over
thirty minutes of S/360 CPU time.

Transition to real microcomputer hardware thus be­
came necessary to complete the testing. From this point
on, the program was compiled using the cross PL/M com­
piler on the SJ 360, but executed in real time using a
developmental system. A paper tape was produced from
the SJ 360 compilation containing the 8008 machine code
which was then loaded through the Teletype reader into
the memory of the developmental system, and executed.

In order to properly check-out the central algorithms,
another set of subroutines was written in PLJM which
provided basic communication between the program and
Teletype, allowing the program to read commands, write
test results, and read and print 32-bit fixed point numbers.
These subroutines formed a software test bed which would
eventually be discarded. Each test involved a dive profile
with various times and depths preset from the Teletype
console. The program would run the dive profile and print
the safe ascent depth at crucial points in the test. The
computations executed in five times real time (a 30
minute dive was completed in six minutes of 8008 time),
and thus it was possible to verify results by comparing
with both the BASIC program and standard Navy diving
tables. After check-out, the central algorithms were
separated from the test environment, and set aside for the
final prototype.

At this point, it was determined that there were several
disadvantages in using the 8008 for the final prototype,
including factors such as power consumption and com­
pactness. Thus, the design was altered to incorporate the
newer 8080 microcomputer. Because of its increased
speed, the 8080 could be "shut-down" for longer periods
between each computation, resulting in significant power
savings (partial pressures were updated every two seconds,
and could be computed in 50 milliseconds). The PLJM
language is upward compatible along this processor line,
and thus the program was recompiled using the 8080 ver­
sion of PL/M.

The prototype was constructed and debugged, and, upon
completion, I/0 drivers were coded in PLJM, placed into
erasable ROM in the prototype, and independently
tested. The IJO drivers were then combined with the core
computation and control algorithms. The total program
was compiled on the SJ 360, placed into ROM in the pro­
totype and checked-out. As shown in Figure 2, the com­
pleted prototype is contained on a single 7 X 9 wirewrap
board with space for 2K bytes of erasable ROM (the
program currently uses 1.2K), and 1024 bytes of random
access memory.

ADDITIONAL APPLICATIONS

The case study given above serves to illustrate current
methods used to develop dedicated microcomputer
software. In addition, the application involves both bit­
level and simple numeric processing, which are both han­
dled well in this particular high level language. To

102 National Computer Conference, 1975

Figure 2-N avy SCUBA diving computer, using the Intel microcomputer

illustrate the range of applicability of PL/M, however, ad­
ditional projects from more traditional computer areas are
considered.

There is current industry-wide interest in incorporating
today's low-cost peripherals with microcomputer devices
to build inexpensive general purpose processors for
resident microcomputer development and end-user ap­
plications. One such computer system, shown in Figure 3,
includes a floppy disk operating system, which imple­
ments a named file structure with dynamic disk allocation
on multiple disks, sequential or random access, and
optimal disk arrangement strategies. When combined with
the system's loaders, language processors, editors, and
debuggers, the resulting facility rivals that of most time­
sharing services for microcomputer program development.
All software modules are written in PL/M including basic
file management subroutines (3K), transient console com­
mand handler (2K), and various utility programs. An in­
definite number of programs and subsystems can be sup­
ported since they reside on disk, and are loaded into
memory on demand. Clearly, this particular application of
a microcomputer heavily overlaps traditional general-pur­
pose minicomputer areas.

A number of language processors have been imple­
mented in PL/M, including a translator for the BASIC
language as an aid in developing microcomputer programs
which make heavy use of floating point operations. The
BASIC translator operates under the disk system
described above, and produces code which is executed in­
terpretively by a special run-time subroutine package.
More importantly, any translated program can optionally
be loaded into ROM with the run-time subroutines, and
placed into a circuit with a microcomputer which executes
the program repetitively at the push of a button.

The translator for BASIC was itself written in PL/M
(5K), and demonstrates its use as an implementation lan­
guage. That is, PL/M has only simple operations, and
thus is relatively easy to implement for any microcom-

puter. Given that PL/M exists, further special-purpose
programs, such as the BASIC translator can be coded
easily. As a result, all system software can be transported
between different architectures if the base language can be
transported. It is reassuring to know, for example, that the
disk system software, BASIC translator, and BASIC pro­
grams will execute on Intel's 8008 and 8080 machines, as
well as National's IMP-16 and PACE microcomputers
with little modification.

SUITABILITY OF PL/M

These examples indicate the suitability of one high-level
language in microcomputer systems design. Based upon
this implementation, the most straightforward applica­
tions were those which the basic machine could already
perform, including bit-level I/ 0 control and character
manipulation found in word-processing, operating systems,
and language processors. In these cases, the algorithms
were easy to express, and simple to debug and maintain.
The operating system application, however, contains
heavier use of table subscripting and run-time address
computations. Although these functions were easy to
express in PL/M, the underlying computations are more
complicated for Intel's 8-bit machines. General floating
point applications were by far the most complicated to
code and debug in PL/M and, in general, resulted in a se­
quence of unintelligible mainline calls on these numeric
subroutines.

The question of memory-efficiency is also a part of the
suitability discussion. Again, the bit-level and character
processing functions result in short code sequences which
are quite competitive with good assembly language
programming. The 16-bit address computations found in
operating system work cause excessive program length un­
less the programmer uses techniques, such as localizing
computations to common subroutines, which minimize
this overhead. The general floating point application took
an inordinate amount of program storage, due principally
to the lack of basic machine facilities to perform these
functions. One should consider implementing basic
arithmetic functions of this sort in PL/M-compatible

Figure 3-A disk-based microcomputer development system

assembly language where the side-effects of the machine
can be more easily exploited. In any case, measured
overhead for PL/M is in the range 10 percent to 35
percent when compared with assembly language coding,
based upon experienced programmers and the current
PL/M compiler.fl

One can conclude, however, that the most suitable prob­
lems for expression in PL/M are precisely those problems
which are most appropriate for the 8-bit processors. That
is, the low-level functions are all present in PL/M, and the
high-level functions are not. Further, the low-level func­
tions are exactly the ones which are most memory-effi­
cient.

FUTURE TRENDS

Microcomputer development practices seem to change
on a monthly basis as manufacturer support increases,
and· hardware component costs decrease. Although any
projections are questionable in light of this advancing
technology, several trends are evident. First, the use of in­
convenient and expensive cross development tools will be
short-lived. Although the cost for cross assembly and cross
compilation is comparable, either approach can rapidly
consume project funds. Inexpensiv.e disk-based resident
developmental machines are becoming commercially
available which, although still somewhat primitive, can be
purchased for the price of the timesharing services
necessary for even a moderate project. National's PL/M +,
for example, will be available in mid-1975 as an integral
part of their floppy disk-based development system, while
numerous independent companies are providing add-on
equipment for Intel, Rockwell, and other manufacturers.
Due to the developmental nature of these systems,
resident language processors will soon be augmented by
comprehensive debuggers which provide high level
reference through symbolic names and statement context.

Current interest in PL/M as a base language indicates
that high level language standards are possible to some
degree in the 8-bit processor category. Although there are
obvious customer benefits in training, documentation,
benchmarking, program portability, and machine inde­
pendence, standardization also benefits the manufacturer.
The present similarity between Intel's PL/M and Na­
tional's PL/M + allows the companies to "second source"
one another at the language compatibility level. Thus able
to share customer bases, their products can .compete on a
meaningful level: questions of suitability are settled by
benchmarked performance and cost, not simply on the
cycle time of the CPU. The role of the microcomputer has
expanded since the initial introduction of PL/M, however,
and thus the language must evolve to suit these applica­
tions. Nearly all major manufacturers have investigated
the implementation of a PL/M-like language for their
processors, and one can only guess whether these factors
will lead to a unified base language, or simply a ·maze of
confused dialects.

Microcomputer Software Design 103

REFERENCES

1. Falk, H., "Microcomputer Software Makes its Debut," IEEE
Spectrum, Vol. 10, No. 11, October, 1974.

2. A Guide to PL/M Programming, Intel Corporation, 3065 Bowers
Ave., Santa Clara, Ca., 95051.

3. Buxton, J., Software Engineering Techniques, Nato Science Commit­
tee, OTAN/NATO, 1110 Bruxelles, Belguim, April, 1970.

4. Dahl, et al., Structured Programming, Academic Press, 1972.
5. Kernighan, B., et al., The Elements of Programming Style, McGraw

Hill, 1974.
6. Yourdon, Advanced Programming Techniques Volume 1: Program

Structure and Design, Yourdon, Inc., New York, N.Y., 1974.
7. Davidow, · W., "Processors and Profits: How Microprocessors Boost

Them," Electronics, July 11, 1974.
8. Metzger, Managing a Programming Project, Prentice Hall, 1973.
9. Kildall, G., "Systems Languages: :vlanagement's Key to Controlled

Software Evolution," Proceedings of the 1974 Western Electronics
Show and Convention, September, 197 4.

APPENDIX

The listing given in Figure 4 is an example of an 8080
PL/M p:wgram which executes on an Intel developmental
system. The purpose of the program is to test a procedure
which keeps track of the elapsed time since system start­
up. After each minute of elapsed time, the program prints:

hh HRS mm MINS

at the teletype, where hh and mm are decimal values for
the hours and minutes of elapsed time.

The following run-time environment is assumed. A
Teletype is connected to the 8080 CPU through a UART
(Universal Asynchronous Receiver-Transmitter). In addi­
tion, an external interrupt is generated every \ioth of a
second, and is used for the basic program timing.

The program consists of a number of procedures
followed by calls on these procedures. The mainline
procedures are listed below along with their function in
the program:

PRINTCHAR print the single ASCII character in
CHAR

CRLF
PRINTBCD
PRINT

send a carriage-return and line-feed
print two decimal digits
print a sequence of characters

One "interrupt procedure," called TIMEKEEPER, is de­
fined with the attribute INTERRUPT 2. This interrupt
attribute results in control transfer to TIMEKEEPER
whenever interrupts are enabled and the external inter­
rupt occurs.

The first PL/.M statement which is executed follows the
TIMEKEEPER procedure. The four variables FRACS,
SECS, MINS, and HRS are zeroed. The first variable,
FRACS, is a byte variable· 'which tallies the number of
Yt;0ths of a second which have elapsed during a one second
interval. The remaining variables each hold a pair of BCD

104 National Computer Conference, 1975

00001 1
00002 1
00003 1
00004 1
00005 1
00006 1
00007 1
00008 1
00009 1
00010 1
00011 1
00012 1
00013 1
00014 1
00015 1
00016 1
00017 1
00018 1
00019 1
00020 1
00021 1
00022 1
00023 2
00024 2
00025 2
00026 2
00027 2
00028 2
00029 2
00030 2
00031 2
00032 2
00033 1
00034 1
00035 2
00036 2
00037 2
00038 1
00039 1
00040 2
00041 2
00042 2
00043 2
00044 2
00045 1
00046 1
00047 2
00048 2
00049 2
00050 2
00051 2
00052 2
00053 2
00054 3
00055 3
0005 6 2
00057 2
00058 1
00059 1
00060 1
00061 .1

/*THE FOLLOWING 8080 PL/M PROGRAM COMPUTES AND DISPLAYS THE
ELAPSED TIME SINCE SYSTEM START-UP. THE ELAPSED TIME IS
PRINTED AT THE TELETYPE CONSOLE EVERY MINUTE */

DECLARE
/* LITERAL SUBSTITUTIONS IN THE PROGRAM */
TRUE LITERALLY 'l',
FALSE LITERALLY 'O',
FOREVER LITERALLY 'WHILE TRUE',

/* TELETYPE CONSTANTS FOR UART */
TTO LITERALLY 'O', /*DATA TO TTY IS OUTPUT(Q) */
TTS LITERALLY 'l', /*STATUS PORT IS INPUT(!) */

/* SPECIAL CHARACTERS (NON GRAPHIC) */
BEL LITERALLY '7', /*RING TELETYPE BELL*/
CR LITERALLY '15Q', /*CARRIAGE RETURN (15 OCTAL)*/
LF LITERALLY 'OAH'; /* LINE FEED CA HEXADECIMAL) */

/* TELETYPE OUTPUT SUBROUTINES */

PRINTCHAR: PROCEDURECCHAR);
DECLARE CHAR BYTE;
/*PRINT THE 8-BIT ASCII CHARACTER IN 'CHAR' AT THE
TELETYPE CONSOLE */

DO WHILE ROR(INPUTCTTS),2);
/* WAIT FOR UART TRANSMIT READY */
END;

OUTPUTCTTO) = NOT CHAR;
END PRINTCHAR;

CRLF: PROCEDURE;
/* SEND A CARRIAGE-RETURN FOLLOWED BY A LINE-FEED •/
CALL PRINTCHAR(CR); CALL PRINTCHARCLF);
END CRLF;

PRINTBCD: PROCEDURE(B);
/* PRINT THE BCD-PAIR HELD IN THE 8-BIT VARIABLE 'B' */
DECLARE B BYTE;
CALL PRINTCHARCSHR(B 4) + 'O');
CALL PRINTCHAR((B AN6 OFH) + 1 0 1);

END PRINTBCD;

PRINT: PROCEDUREfA);
/* WRITE CHARACTERS TO THE TELETYPE STARTING AT ADDRESS 'A'
IN MEMORY UNTIL THE FIRST '$' CHARACTER IS ENCOUNTERED */
DECLARE A ADDRESS,

(MESSAGE BASED A) BYTE;

DO WHILE MESSAGE <> '$';
CALL PRtNTCHARCMESSAGE);
A = A + 1;
END;

ENO PR I NT;

/* END OF TELETYPE OUTPUT SUBROUTINES */

/* FRACS HOLDS THE NUMBER OF l/60THS OF A SECOND WHICH

00062 l
00063 1
00064 1
00065 1
00066 1
00067 1
00068 2
00069 2
00070 2
00071 2
00072 2
00073 2
00074 2
00075 2
00076 2
00077 3
00078 3
00079 3
00080 3
00081 4
00082 4
00083 4
00084 4
00085 5
00086 5
00087 5
00088 4
00089 3
00090 2
00091 1
00092 1
00093 1
00094 1
00095 1
00096 1
00097 1
00098 1
00099 1
00100 1
00101 1
00102 1
00103 1
00104 1
00105 1
00106 2
00107 2
00108 3
00109 3
00110 3
00111 3
00112 3
00113 3
00114 3
00115 3
00116 3
00117 2
00118 1
NO PROGRAM

Microcomputer Software Design 105

HAVE ELAPSED IN THE LAST PARTIAL SECOND, WHILE
SECS, MINS, AND HRS HOLD THE ELAPSED TtME COUNTS •/

DECLARE CFRACS, SECS, MINS, HRS) BYTE;

TtMEKEEPER: PROCEDURE INTERRUPT 2;
/• THE TIMEKEEPER PROCEDURE rs CALLED THROUGH AN EXTERNAL
INTERRUPT (RST 2) EVERY l/60TH OF A SECOND. THE PROCEDURE
UPDATES THE VALUES OF HRS, MINS, AND SECS SO THAT THE TOTAL
ELAPSED TIME SINCE SYSTEM START-UP IS MAINTAINED IN
BCD-PAIR FORM */

fF CFRACS := FRACS + 1) >= 60H THEN /* ONE FULL SECOND •/
DO;
FRACS = O;

IF (SECS := DECCSECS + 1)) = 60H THEN/* ONE MINUTE */
DO;

END;

SECS = OOH;

IF (MINS := DECCMINS + 1)) = 60H THEN /* HOUR */
DO;

END;

MINS = O;
IF (HRS := DECCHRS + 1)) = 24H THEN

/* ONE DAY ELAPSED •/ HRS = O;
END;

END Tl MEKEE PER;

/* SET COUNTERS TO ZERO •/
FRACS, SECS, MINS, HRS = O;

/* START COUNTING TIME */
ENABLE;

/* WRITE INITIAL MESSAGE */
CALL CRLF; CALL CRLF;
CALL PRINT(.'** ELAPSED TIME COUNTER**$');
CALL CRLF;

/* WRITE ELAPSED TIME EVERY MINUTE */
DO FOREVER; /* OR UNTIL RESET, WHICHEVER COMES FIRST */
IF SECS = OOH THEN

END;
EOF
ERRORS

DO; /* PRINT ELAPSED HOURS AND MINUTES */
CALL CRLF;

g~tt ~~:~+~~~~~R§}];c~LLR~~YNtT~·~obks*'');
CALL PRINTBCO(MINS); CALL PRINT(.'MINS$');
CALL PRINTCHAR(BEL);
CALL CRLF;

/* NOTE THAT 'SECS' MUST HAVE CHANGED WHEN THE MESSAGE
WAS SENT (ASSUMING 10 CPS TRANSMISSION RATE) •/
ENO;

Figure 4-A sample PL/M program for the 8080 microcomputer

106 National Computer Conference, 1975

numbers. The ENABLE statement turns on the 8080
interrupt system.

At this point, the program execution must be considered
in two parts: the mainline code which continues past the
ENABLE statement, and the interrupt code which is exe­
cuted each time an interrupt is generated. If the interrupt
system had not been enabled, the mainline code within the
DO FOREVER block would execute indefinitely, and,
since the value of SECS remains at zero, the message

00 HRS 00 MINS

would print continuously.
Given that the interrupt system has been enabled, the

interrupt which occurs 60 times each second causes the
mainline code to stop at each interrupt. The TIME-

KEEPER procedure immediately receives control, with
the interrupt system automatically disabled and the ma­
chine state saved. Upon completion of the interrupt
processing, control returns back to the interrupted main­
line code to the point of interruption with the machine
state restored, and interrupts enabled. As a result, the
values of SECS, MINS, and HRS are continuously incre­
mented as the mainline progi:am executes. Thus, the
program output will appear as follows:

00 HRS 01 MINS
00 HRS 02 MINS
00 HRS 03 MINS

and so-forth, with one minute intervals between each line
of output.

