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Abstract Determining where and when to invest resources during and after a disruption can
challenge policy makers and homeland security officials. Two decision models, one static
and one dynamic, are proposed to determine the optimal resource allocation to facilitate
the recovery of impacted industries after a disruption where the objective is to minimize
the production losses due to the disruption. This paper presents conditions for optimality for
each model as a function of model parameters as well as an algorithm to solve for the optimal
conditions in both models. Both models are applied to the Deepwater Horizon oil spill,
which adversely impacted several industries in the Gulf region, such as fishing, tourism, real
estate, and oil and gas. Results demonstrate the importance of allocating enough resources to
stop the oil spill and clean up the oil, which reduces the economic loss across all industries.
These models can be applied to different homeland security and disaster response situations
to help governments and organizations decide among different resource allocation strategies
during and after a disruption.
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1 Introduction

The 2010 explosion on the Deepwater Horizon oil rig resulted in the largest marine oil spill
in history (Robertson and Krauss 2010). Eleven people died and 16 other employees were
injured from the explosion, and nearly 5 million barrels of crude oil spilled into the Gulf of
Mexico. The environmental damage, loss of wildlife, and loss of business to several Gulf
industries exemplify the far-reaching consequences that disruptions can have on a region,
and government policy makers must allocate resources effectively to minimize the impacts
of a disruption. Officials who are responsible for helping an economic region recover from
such a disruptive event need to understand how the disruption impacts the economy, deter-
mine how to divide a budget among different industries and at a different points in time, and
analyze how allocating resources to particular industries benefits the regional economy.

This paper—a shorter version of which appears in MacKenzie et al. (2012b)—seeks
to help officials resolve those difficulties by developing a resource allocation for regional
economic recovery following a disruption. It makes the following contributions to operations
in homeland security and disaster management. First, the modeling approach allows a policy
maker to determine the level of resources that he or she should allocate to specific industries
in order to effectively reduce the adverse impact of a disruptive event. Second, unlike many
other homeland security resource allocation models, we focus on post-disruption decision
making that seeks to limit the impacts and enhance recovery. Third, because policy makers
are required to make decisions over the course of a disruption, we construct a discrete-time
dynamic model in addition to a static model. Finally, estimating values for model parameters
from a variety of sources enables these models to be applied to the Deepwater Horizon oil
spill, which adversely impacted several industries in the Gulf region. The application of
this analytical approach to the Deepwater Horizon oil spill generates insights into where
resources should be concentrated if a similar disruption occurs.

This paper provides a theoretical construct that can potentially assist policy makers to al-
locate resources following a disruption. Although the Deepwater Horizon oil spill represents
a real-world application of the models, consultation with government officials to estimate
parameters would be necessary in order to practically use these models. Section 2 reviews
previous optimal resource allocation models and expands on the unique contributions of this
paper. Section 3 develops and provides solutions for two decision models: (i) a static model
of both direct and indirect impacts from a disruption and (ii) a discrete-time dynamic model
where resources are allocated over time. Section 4 applies these models to the Deepwater
Horizon oil spill and analyzes the sensitivity of model results to key parameters. Concluding
remarks appear in Section 5.

2 Literature review

A resource allocation model seeks to answer the fundamental economic question of how to
satisfy unlimited wants with limited resources within a specific domain. Resource allocation
models are typically formulated as static or dynamic optimization problems with a resource
budget serving as a primary constraint. Such resource allocation models have been deployed
to analyze several policy-related problems.

Resource allocation models in engineering risk management generally focus on rein-
forcing different components or building redundancy within a system in order to maximize
reliability or minimize failure (Tillman et al. 1970; Misra and Ljubojević 1973; Elms 1997).
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Guikema and Paté-Cornell (2002) develop an optimization problem in which several com-
ponents can be upgraded, and the alternatives are whether or not to select a component for
upgrading and how much money to spend on upgrading the component. A two-period model
(Dillon et al. 2003) examines a problem for NASA where a decision maker minimizes the
technical risk of an exploration spacecraft in the first period and allocates the remainder of
the budget to minimize the risk of failure during the development phase. A dynamic model
(Dillon et al. 2005) extends this two-period model by allowing the decision maker to allocate
resources at different points in time to improve reliability.

Homeland security officials have struggled with how to allocate resources to differ-
ent geographic areas based on risk or cost effectiveness. An analysis of the Department
of Homeland Security’s fiscal year 2004 budget reveals that the department’s allocation to
urban areas to protect those areas from terrorism significantly differs from an allocation
based on the risk of a terrorist attack (Willis 2007). As Willis (2007) acknowledges, the de-
cision should be based on where the money reduces risk the most rather than on which areas
carry the most risk, but data do not exist to estimate the functional relationship between
investing in protection and risk reduction. This latter point applies to protection against nat-
ural disasters as well. Other resource models for homeland security deploy game theory to
help government officials understand how resources should be allocated differently to pro-
tect against a strategic actor like a terrorist (Major 2002; Bier 2007; Zhuang and Bier 2007;
Bakir 2011; Shan and Zhuang 2013a,b). Haimes et al. (2008) offer several systems engineer-
ing principles to help policy makers balance protective and resilience activities for critical
infrastructure protection against both terrorism and natural disasters.

Dynamic resource allocation models seek to efficiently allocate resources at different
points in time. Rather than allocating money, many of these models allocate discrete re-
sources such as machines at a work center (Miller and Davis 1978), specific resources
to complete a job (Daniels et al. 1997), and operators and cranes to unload or load ships
(Dell’Olmo and Lulli 2004). Consequently, these models are formed as integer programs,
whose solutions generally require heuristic algorithms like a genetic algorithm or branch
and bound for problems of realistic size. The medical field has been a natural application for
dynamic resource allocation problems as policy makers seek to understand the best inter-
vention strategies to stop the spread of disease (Zaric and Brandeau 2000; Brandeau 2005).
Dynamic resource allocation models seem to be sparser in the field of disaster management
or disaster response although Fiedrich et al. (2000) build a model to determine the place-
ment of machines and equipment to minimize fatalities after an earthquake and Petrovic et
al. (2012) provide a model for responding to a wildfire.

Two dynamic allocation models specific to oil spills (Psaraftis and Ziogas 1985; Srini-
vasa and Wilhelm 1997) focus on tactical decisions to determine the type of equipment to
clean up a spill. The decision variables in both models are discrete integers, and the mod-
els in this paper focus on strategic decision making as opposed to tactical decision making.
Game theoretic models in the context of oil spills include the strategic interaction between
an oil company and the government in terms of how much safety effort is exerted (Hausken
and Zhuang 2013) and the impact of competition between two oil companies on whether a
company will follow safety regulations and whether a government will enforce them (Che-
ung and Zhuang 2012).

The modeling approach in this paper borrows from the different resource allocation
models but also develops new insights and methods to aid policy makers. This paper focuses
on post-disruption decision making in order to limit the impacts and enhance recovery. A
risk-based input-output model has been proposed to improve preparedness decision making
in the face of potential disruptions (Crowther 2008), and such a model used in response
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decision making quantifies the decision maker’s objective by translating direct impacts from
a disruption into total production losses in a region. The functional form that translates
allocated resources to a reduction in direct impacts is borrowed from the engineering risk
analysis literature and is used to identify those industries where resources can most reduce
the impacts from a disruption.

The discrete-time dynamic model in this paper allows the decision maker to allocate re-
sources at different points in time. Unlike many other dynamic resource allocation models,
our model assumes resources are infinitely divisible like money, as opposed to discrete re-
sources, and the solution to this model relies on nonlinear optimization tools for continuous
variables. The resource constraint is one constraint for the entire time period as opposed to
a budget constraint for each individual period of time, as many dynamic models propose.

Finally, a policy maker can use the models to understand the effect of different factors
that may influence the optimal allocation of resources. The models seek to illuminate the
relationship between the optimal allocation and parameters like direct impacts, the effec-
tiveness of allocating resources, the resource budget, and time. By comparing the benefits of
allocating resources to help multiple industries simultaneously with the benefits of targeting
individual industries, this modeling approach can offer guidance on general recovery efforts
versus specific recovery tasks for an industry.

3 Resource allocation models

3.1 Inoperability Input-Output Model

Two resource allocation models, one static and one dynamic, measure the economic con-
sequences from a disruption, and a policy maker wishes to allocate resources to minimize
total production loss caused by the disruption. Production losses derive from both direct and
indirect impacts. Direct impacts represent production losses that result directly from final
consumers reducing their demand or from facilities that are inoperable due to the disruption.
Indirect impacts are production losses incurred by industries or firms who depend on those
directly impacted industries. Large-scale disruptions such as the 2011 Japanese earthquake
and tsunami can induce indirect impacts on a global scale (MacKenzie et al. 2012c).

Industries and economic sectors suffer from indirect impacts because of the interde-
pendencies among industries and infrastructure systems. Two entities are interdependent if
each impacts or influences the performance or functionality of the other entity (Rinaldi et al.
2001). Interdependence plays an important role in risk and policy analysis because a disrup-
tive event that directly impacts infrastructure, business, or the economy can induce partial
or even total failure in other systems, markets, and businesses that are not directly impacted
by the event. A variety of models (see Pederson et al. 2006; Medal et al. 2011) have been
proposed to understand and analyze the linkages among critical infrastructure systems. Net-
work models can quantify the vulnerability, resilience, and interdependence of infrastructure
systems (Dueñas-Osorio et al. 2007; Johansson and Hassel 2010). System dynamics mod-
els attempt to capture the interdependence between infrastructure and humans who rely on
infrastructure during a disruption (Conrad et al. 2006).

The models presented in this paper measure the economic interdependence among in-
dustries using an input-output model. Modeling economic interdependence in the midst of
a disruption seeks to quantify production and demand changes resulting from the disrup-
tive event (Okuyama and Chang 2004). The Leontief (1936) input-output model measures
these interdependent impacts by assuming that production changes are demand driven. If a
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disruption forces an industry to produce less or causes final demand to drop, less product
is demanded of suppliers. Linear dependencies among industries are driven completely by
these changes in final or intermediate demand. Despite the linear and demand-driven as-
sumptions, input-output models provide a reasonable estimate of the economic impacts of
disruptions (Boisvert 1992; Gordon et al. 2005; Okuyama 2008), and the models are sup-
ported by a large data collection effort undertaken by governments around the world.

The Inoperability Input-Output Model (IIM) (Santos and Haimes 2004) is a risk-based
extension of the Leontief input-output framework. A disruption directly impacts m industries
in an economy with a total of n industries, where m ≤ n. A vector c∗ is of length m, and c∗i
measures the direct impacts, in proportional terms, to industry i. The matrix D≡ (I−A∗)−1

is a square matrix of order n, where A∗ is the normalized interdependency matrix in the
IIM. The matrix D translates direct impacts to direct and indirect impacts. Each element in
the matrix, d ji, calculates the proportional loss in production for industry j due to a loss in
production in the directly impacted industry i. Each element on the diagonal of D is greater
than or equal to one because direct impacts in industry i lead to total impacts at least as large
as the direct impacts in that industry. If no interdependencies are present, D is the identity
matrix. Because the disruption does not directly impact all n industries but only m industries,
we use D̃, a n×m matrix whose columns correspond to the directly impacted industries from
D. Thus, D̃ translates the direct impacts in the m industries to direct and indirect impacts for
all n industries in the economy. Table 2 depicts D̃ for the Deepwater Horizon application.
Most of the off-diagonal elements are on the order of 10−2 or 10−3, which demonstrate that
the interdependencies between any two industries are fairly small. However, the column
sums of D̃ for the Real Estate, Accommodations, and Oil and Gas industries are 2.75, 1.39,
and 1.73, respectively. Indirect impacts due to economic interdependencies are 175%, 39%,
and 73% of the direct impacts for each of those industries.

Translating the proportional impacts to production losses requires multiplying the total
impacts by x, which is a vector of length n representing as-planned production for each in-
dustry in the economy. Total production losses due to the disruption is given by xᵀD̃c∗. The
IIM has been used to study a number of disruptions that concern policy makers including ter-
rorist attacks (Haimes et al. 2005), cyber security (Dynes et al. 2007), workforce disruptions
(Barker and Santos 2010), and waterway port closures (MacKenzie et al. 2012a).

3.2 Model 1: Static allocation

For the first model, a policy maker wishes to allocate resources to minimize total produc-
tion loss caused by the disruption. Equation (1) models the policy maker’s problem as an
optimization problem. The total budget, Z, is divided into resources allocated to each di-
rectly impacted industry, z1, . . . ,zm, and to all industries simultaneously, z0. These zi (where
i = 1, . . . ,m) and z0, which serve as the decision variables in the optimization problem, are
investments to promote recovery following a disruptive event. Under this model, the policy
maker’s goal is to minimize total production losses in a region as determined by the IIM.

minimize xᵀD̃c∗
subject to c∗i = ĉ∗i exp

(
−kizi− k0z2

0
)

i = 1, . . . ,m

z0 +
m

∑
i=1

zi ≤ Z

z0,zi ≥ 0 i = 1, . . . ,m

(1)



6 MacKenzie et al.

The direct impacts to each industry, c∗i , is a function of the allocation amounts, ki (the ef-
fectiveness of allocating resources to industry i), k0 (the effectiveness of allocating resources
to all industries simultaneously), and ĉ∗i (direct impacts if no resources are allocated). Di-
rect impacts on an industry can be assessed by (i) estimating the number of consumers that
would stop purchasing from an industry because of a disruption or (ii) measuring the amount
of production that would be lost if a facility were suddenly closed.

The model assumes that allocating resources reduces the impacts exponentially, which is
a frequent assumption in engineering risk problems (Bier and Abhichandani 2003; Guikema
and Paté-Cornell 2002; Dillon et al. 2005). As more resources are allocated to an indus-
try, the impacts on an industry decline at a constantly decreasing rate, and investing an
additional dollar to reduce risk returns less benefit than investing the first dollar. For each
directly impacted industry, the exponential function requires estimating a cost-effectiveness
parameter, ki. As (2) shows, this parameter can be assessed if zi, the amount of resources
needed to reduce the direct impacts on industry i by a given fraction c∗i

/
ĉ∗i , is known or can

be estimated.

ki =−
log
(

c∗i
/

ĉ∗i
)

zi
i = 1, . . . ,m (2)

The value of ki is always greater than or equal to 0 but has no upper bound. We expect ki
to be extremely small for large-scale disruptions where millions of dollars are necessary to
reduce the impacts. For example, if it takes $1 million to reduce the direct impacts by half,
ki = −log(0.5)

/
106 = 6.9∗10−7 = 0.69 per $1 million.

In addition to allocating resource to benefit a single industry, a policy maker can also
allocate resources to simultaneously benefit all industries, as represented by the parameter
z0. These resources could include activities such as cleaning the area and removing debris
after the disruption, repairing infrastructure that all the other industries require (e.g., electric
power, transportation), and engaging in risk communication efforts to inform the public that
a region is safe. The model squares this allocation amount because of an assumption that if
a major disruption occurs, allocating resources for these types of activities will not enhance
recovery unless a significant amount of resources is allocated. Mathematically, k0 < 1 and
squaring z0 reduces the impact of allocating z0 if

√
k0z0 < 1. Squaring z0 also assumes that

if a substantial amount of resources are allocated to all industries (i.e., if
√

k0z0 > 1), the
impact of this allocation is enhanced. We base this assumption on a belief that actions such
as containing a disruption like an oil spill and rebuilding infrastructure are crucial in order
to generate economic activity in a region after a disruption.

Equations (3) - (5) depict the Karush-Kuhn-Tucker (KKT) conditions for optimality,
where λ , λi, and λ0 are the Lagrange multipliers for the budget constraint, the nonnegative
constraints for zi, and the nonnegative constraint for z0, respectively. The parameter d∗i is a
vector of length n representing the ith column from the interdependency matrix D̃.

λ =

 ∏i:zi>0 (xᵀd∗iĉ∗i ki)
1/ki

exp
(

Z− z0 +∑i:zi>0
k0z2

0
ki

)

(∑i:zi>0 1/ki )

−1

(3)

zi =
1
ki

log
(

xᵀd∗iĉ∗i ki

λ −λi

)
−

k0z2
0

ki
λizi = 0 i = 1, . . . ,m (4)
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−2k0z0

m

∑
i=1

xᵀd∗iĉ∗i exp
(
−kizi− k0z2

0
)
+λ −λ0 = 0 λ0z0 = 0 (5)

The KKT conditions for optimality provide insight into the factors influencing the op-
timal allocation of resources to each industry. Equation (4) demonstrates that if some re-
sources are allocated to industry i, zi monotonically increases with xᵀd∗i and ĉ∗i . If industry
i induces large impacts on the entire economic region as measured by xᵀd∗i or if the direct
impacts for that industry as measured by ĉ∗i are large, government officials should devote
more resources to reduce losses for that industry. The optimal allocation depends on both
the impacts to industry i and the interdependent impacts that industry induces in the rest of
the economy. The optimal allocation to industry i increases as ki increases for smaller val-
ues of ki but decreases for larger values of ki. If allocating resources to an industry becomes
more effective, the industry requires fewer resources, leaving more resources available for
other industries.

Because the parameter z0 is squared within the exponential function, the optimization
problem is non-convex in z0, and the above conditions represent necessary but not sufficient
conditions. At most four distinct solutions exist that satisfy the KKT conditions: one solution
in which z0 = 0, one solution in which z0 = Z, and at most two solutions where z0 > 0.

If z0 > 0, (5) can be rewritten as (6) after substituting the expressions for λ in (3) and
for zi in (4).

exp
(
−k0z2

0
)[

Fexp

(
z0

∑i:zi>0 1
/

ki

)(
1−2k0z0 ∑

i:zi>0

1
ki

)
−2Gk0z0

]
= 0 (6)

where

F =

[
∏i:zi>0 (xᵀd∗iĉ∗i ki)

1/ki

exp(Z)

](∑i:zi>0 1/ki )
−1

G = ∑i:zi=0 xᵀd∗iĉ∗i
If z0 > 0, it satisfies (7).

Fexp

(
z0

∑i:zi>0 1
/

ki

)
=

2Gk0z0

1−2k0z0 ∑i:zi>0 1
/

ki
(7)

Equation (7) has at most two real solutions for z0 if 0 < z0 < Z, and each of these two
solutions for z0 leads to a unique solution for zi and λ that satisfies (3) and (4). Given z0, the
optimization problem in (1) is convex and the KKT conditions have one unique solution.

No solution exists for (7) if each zi > 0 (thus implying G = 0). If allocating resources
to each individual industry is optimal, then no resources should be allocated to collectively
benefit all industries.

We use these results to develop the following iterative algorithm to find a solution that
satisfies (3) - (5). The algorithm begins by assuming that zi = 0 for the the value of i that
minimizes xᵀd∗iĉ∗i ki. This is a reasonable starting point because (4) demonstrates that zi = 0
if xᵀd∗iĉ∗i ki < λ .

1. Find i0 = argmin{xᵀd∗iĉ∗i ki} and assume zi0 = 0 and zi > 0∀i 6= i0.
2. Use (7) to solve for z0.
3. Use (3) to solve for λ .
4. Use (4) to solve for zi.
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5. If Step 4 results in any zi = 0 when Steps 2 and 3 assumed that zi > 0 or vice versa, use
results from Step 4 and return to Step 2.

6. End when λ , z0, and zi satisfy (5).

The algorithm works because (7) can be solved for z0 without knowing the value of λ or the
values for zi and (3) can be solved for λ as a function of z0. If zi = 0 when it was initially
assumed to be greater than 0, (7) and (3) are solved again but with the understanding that
zi = 0. The original value of z0 under the assumption that zi > 0 is less than the new value of
z0 if zi = 0. Because zi is decreasing in z0—see (4)—recalculating zi using the larger value
for z0 will not change the assumption that zi = 0. Thus, the algorithm will not change zi > 0
to zi = 0 and then back to zi > 0.

Because (7) can have two solutions for z0, the above algorithm can be repeated with a
different solution for z0 in Step 2. Comparing the values of the objective function for these
two different solutions, the value of the objective function when z0 = 0, and the value when
z0 = Z reveals the optimal allocation of resources.

3.3 Model 2: Discrete-time dynamic allocation

Disruptions can last a period of time, and recovering from a disruption often requires allo-
cating resources over time. A discrete-time dynamic resource allocation model is given in
(8) where a policy maker allocates resources at fixed points in time. The disruption occurs at
time t = 0, and t = t f is the fixed final time in the model. The policy maker seeks to minimize
the total production losses (both direct and indirect) in the time interval [1, t f ] by allocating
resources in the time interval [0, t f −1]. The model assumes it takes one time period for the
allocated resources to reduce the industry impacts. The other variables in this model cor-
respond to those in static allocation model except that many of the variables change over
time.

minimize
t f

∑
t=1

x(t)ᵀ D̃c∗ (t)

subject to c∗i (t +1) = c∗i (t)exp
(
−ki (t)zi (t)− k0 (t)z2

0 (t)
)

i = 1, . . . ,m t = 0, . . . , t f −1
t f−1

∑
t=0

[
z0 (t)+

m

∑
i=1

zi (t)

]
≤ Z

z0 (t) ,zi (t)≥ 0 i = 1, . . . ,m t = 0, . . . , t f −1
c∗i (0) = ĉ∗i i = 1, . . . ,m

(8)

Because resources allocated over the entire time interval are constrained by the overall
budget Z, the optimal decision may be to allocate the entire budget in the first time period,
t = 0, or spread the resources over time. This timing decision depends on how the effective-
ness of allocation changes over time as governed by ki (t) and k0 (t). If each ki (t) and k0 (t)
remain constant over time or decrease with time, a policy maker should allocate the entire
budget Z at time t = 0. The optimal allocation follows the optimal allocation described in
the static allocation model.

If ki (t) or k0 (t) increases with time, it may be optimal to wait to allocate some of the
available resources. A trade-off exists between allocating resources so that recovery begins
immediately and saving resources in order to impact recovery the most. Although policy
makers may also hold resources in reserve because they are uncertain how the disruption
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will develop, the proposed dynamic model is deterministic. It assumes the decision maker
knows perfectly what will happen in the future. A deterministic model provides important
insight about allocating resources and is a useful step before building an accurate stochastic
model. Future extensions of the model will examine the impact of uncertainty on optimal
resource allocation after a disruption.

Solving the dynamic model using standard recursive relationships becomes impractical
because of the curse of dimensionality. At the last decision period t = t f − 1, the direct
impacts for each of the m industries can range between 0 and ĉ∗i and the remaining budget
can range between 0 and Z. Determining the optimal allocation for each possibility to inform
the decision in the previous period t = t f −2 requires a large number of calculations. Starting
at time t = 0 and moving forward fails because the allocation considering only the current
time period is not always optimal when considering multiple time periods.

Alternatively, the KKT conditions can be used as a basis for developing an iterative
algorithm to find a solution to Model 2. Equations (9) - (12) depict necessary conditions for
optimality with the following Lagrange variables: λ for the budget constraint, λi (t) for the
nonnegative constraint for zi (t), λ0 (t) for the nonnegative constraint for z0 (t), and µi (t) for
the first equality constraint in (8) that represents the change in direct impacts for industry i
from time t−1 to time t (Hull 2003).

λ =

 ∏
t f−1
t=0 ∏i:zi(t)>0 (−µi (t +1)c∗i (t)ki (t))

1/ki(t)

exp
(

Z−∑
t f−1
t=0

[
z0 (t)−∑i:zi(t)>0

k0 (t)z2
0 (t)

ki (t)

])

(

∑
t f −1
t=0 ∑i:zi(t)>0 1/ki(t)

)−1

(9)

ki (t)µi (t +1)c∗i (t)exp
[
−ki (t)zi (t)− k0 (t)z2

0 (t)
]
+λ −λi (t) = 0

λi (t)zi (t) = 0 i = 1, . . . ,m
(10)

2k0 (t)z0 (t)
m

∑
i=1

µi (t +1)c∗i (t)exp
(
−ki (t)zi (t)− k0 (t)z2

0 (t)
)
+λ −λ0 (t) = 0

λ0 (t)z0 (t) = 0
(11)

µi
(
t f
)
=−x

(
t f
)ᵀ d∗i

µi (t) = µi (t +1)exp
(
−ki (t)zi (t)− k0 (t)z2

0 (t)
)
−x(t)ᵀ d∗i i = 1, . . . ,m

(12)

Although multiple solutions can satsify the KKT conditions, it appears that the KKT
conditions will not be satisfied if z0 (t) > 0 for two different time periods, at least with
numbers similar to those used in the oil spill application in the next section. Future research
can explore under what specific conditions this result holds true, but the difficulty occurs in
having z0 (t)> 0 for two values of t that simultaneously satisfy (11).

If z0 (t) > 0 in exactly one time period t, the number of solutions that satisfy the KKT
conditions is relatively small. Similar to the static model, at most two solutions for 0 <
z0 (t) < Z satisfy both (9) and (11). Given a value for z0 (t) where z0 (t ′) = 0 for all time
t ′ 6= t, there is exactly one solution for all zi (t) and zi (t ′). (Like the static model, the dynamic
allocation model is convex in zi (t) given values for z0 (t).)

Algorithm 1 presents a method to calculate values for zi (t) ,z0 (t) ,c∗ (t) ,µµµ (t), and λ

that satisfy (9) - (12). (The variable µµµ (t) is a vector of length m whose elements are µi (t).)
The algorithm begins with an initial guess for λ , which is labeled λ (0) and iteratively solves
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for the other variables given λ (0). The calculated variables—zi (t) ,z0 (t) ,c∗ (t), and µµµ (t)—
are used in (9) to recalculate λ , which is labeled λtest . A new value of λ (1) is calculated
via line 25 in Algorithm 1 where α < 1 is the step size of each iteration. The algorithm
continues until the values of λ converge as governed by the parameter ε , which can be as
small as desired.

Algorithm 1: Algorithm to find a solution that satisfies KKT conditions of Model 2
Data: c∗ (0) ,x(t) , D̃, t f ,ki (t) ,k0 (t) ,α,ε,Z,λ (0)

Result: λ ,zi (t) ,z0 (t) ,c∗ (t) ,µµµ (t)
1 begin
2 j = 0
3 while |λ ( j+1)−λ ( j)|> ε do
4 Initialize zi (t) = z0 (t) = 0 for i = 1, . . . ,m and t = 0, . . . , t f −1
5 Use (12) to calculate µi (t) for i = 1, . . . ,m and t = 1, . . . , t f
6 for t← 0 to t f −1 do
7 Use (10) and (11) to derive a solution for zi (t) and z0 (t), given λ ( j) and µµµ (t +1)
8 c∗i (t +1) = c∗i (t)exp

(
−ki (t)zi (t)− k0 (t)z2

0 (t)
)

9 if t > 1 and zi (t)> 0 or z0 (t)> 0 then
10 µi (t) = µi (t +1)exp

(
−ki (t)zi (t)− k0 (t)z2

0 (t)
)
−x(t)ᵀ d∗i

11 while δµ > ε and δc∗ > ε do
12 µµµ prev = µµµ

13 c∗prev = c∗

14 for τ ← t−1 to 1 do
15 Use (10) and (11) to calculate zi (τ) and z0 (τ), given λ ( j) and µµµ (τ +1)
16 µi (τ) = µi (τ +1)exp

(
−ki (τ)zi (τ)− k0 (τ)z2

0 (τ)
)
−x(τ)ᵀ d∗i

17 for τ ← 2 to t do
18 c∗i (τ) = c∗i (τ−1)exp

(
−ki (τ−1)zi (τ−1)− k0 (τ−1)z2

0 (τ−1)
)

19 Use (10) and (11) to calculate zi (τ) and z0 (τ), given λ ( j) and c∗ (τ)
20 Evaluate µµµ (τ) as described in line 16

21 δµ = maxi,τ |µi (τ)−µprev,i (τ)|
22 δc∗ = maxi,τ |c∗i (τ)− c∗prev,i (τ)|

23 Use (9) to calculate λtest , given zi (t) ,z0 (t) ,µi (t), and c∗i (t)
24 j = j+1

25 λ ( j+1) = λ ( j)+α

(
λtest −λ ( j)

)

The direct impacts c∗ (t) begin with an initial condition c∗ (0) and are solved by moving
forward in time, but the Lagrange multipliers µµµ (t) have a fixed final condition µµµ

(
t f
)

and
are solved by moving backward in time. The algorithm initially assumes that no resources
are allocated in order to calculate initial values for µµµ (t) (lines 4 and 5). With these initial
values, the algorithm begins with time t = 0, calculates zi (0), z0 (0), and c∗i (1), advances
to time t = 1 and calculates zi (1), z0 (1), and c∗i (2). If zi (1) or z0 (1) is greater than 0, the
initial values for µi (1) need to be updated because µi (1) is initially calculated assuming
zi (t) = z0 (t) = 0 for t = 1, . . . , t f −1. The new values for µi (1) are calculated via line 10.

The algorithm continues by stepping forward in time. At each time t, the algorithm read-
justs previous values for zi (τ), z0 (τ), c∗ (τ), and µµµ (τ), where time τ ≤ t, if zi (t) or z0 (t)
is greater than 0 (lines 14 - 22). It iteratively adjusts these values until µµµ (τ) and c∗ (τ) con-
verge for all time τ ≤ t, where δµ and δc∗ as calculated in lines 21 and 22, respectively,



Optimal Resource Allocation for Recovery of Interdependent Systems 11

represent the largest difference between the previous value of µi (τ) and c∗i (τ) and the cur-
rent value of µi (τ) and or c∗i (τ). The variable ε again determines the magnitude of desired
convergence.

If λ ( j) converges to a value of λ , called λ ∗, the algorithm returns z∗i (t), z∗0 (t), and µ∗i (t)
and λtest = λ ∗ so that (9) - (12) are met. Examining each of the loops in the algorithm can
verify this claim. Lines 14 - 16 march backward in time and recalculate µµµ (τ) in each time
period based on new values for zi (τ) and z0 (τ). Lines 17 - 20 move foward in time and
recalculate c∗ (τ) based on the new values for zi (τ−1) and z0 (τ−1). This loop continues
until µµµ and c∗ converge within ε , at which point µµµ (τ), c∗ (τ), zi (τ), and z0 (τ) satisfy (10) -
(12) for time τ = 0, . . . , t. Similarly, when the loop from lines 6 - 22 concludes, µi (t), c∗ (t),
zi (t), and z0 (t) satisfy (10) - (12) for time t = 0, . . . , t f −1 as determined by λ ( j). If λ ( j) has
converged, this means that λ ( j) = λtest = λ ( j+1). Inputting the final values for µi (t), c∗ (t),
zi (t), and z0 (t) into (9) results in λtest = λ ∗, µi (t) = µ∗i (t), zi (t) = z∗i (t), and z0 (t) = z∗0 (t).

Unfortunately, the dynamic allocation problem is such that Algorithm 1 may not always
converge to λ ∗, and different values of λ ∗ can satisfy the KKT conditions. Consequently, it is
necessary to look at the values of λ ( j) to see if convergence occurs. It may also be necessary
to run the algorithm with different initial values for λ (0) in order to capture different values
of λ ∗, z∗i (t), z∗0 (t), and µ∗i (t) that satisfy (9) - (12). If z0 (t) > 0 for one time period t and
z0 (t ′) = 0 for all time t ′ 6= t, as appears to be the case in the numerical example, Algorithm
1 can be modified so that z0 (0) > 0 in one run, z0 (1) > 0 in the second run, z0 (2) > 0
in the third run, and so on until z0

(
t f −1

)
> 0. Because at most two solutions exist for

z0 (t) > 0, the algorithm can be repeated with different initial values for λ (0) to attempt to
capture the two different solutions. Assuming the algorithm converges, these runs should
result in multiple solutions that satisfy the KKT conditions: a maximum of 2t f solutions.
These solutions can also be compared with a solution where z0 (t) = 0 for all time periods
and production losses where z0 (t) = Z. The solution that minimizes production losses can
be considered optimal. Future research can explore more specifically what conditions are
necessary for convergence or how the algorithm may be altered to guarantee convergence.
The application section below demonstrates when convergence does and does not occur for
different values of Z.

The KKT conditions also reveal interesting relationships among optimal allocations over
time. Equations (10) and (12) can be used to relate zi (t) and zi (t +1), as shown in (13). This
equation assumes that zi (t) and zi (t +1) are both non-zero so that λi (t) = λi (t +1) = 0.

exp
[
−ki (t +1)zi (t +1)− k0 (t +1)z2

0 (t +1)
]
=

x(t +1)ᵀ d∗iki (t)
[ki (t)− ki (t +1)]µi (t +2)

(13)

Equation (13) reveals that the allocation decision at time t + 1 depends in large part on the
difference in the effectiveness of allocating at time t and time t +1.

If ki (t +1) > ki (t), the policy maker should allocate to industry i at time t + 1 only if
(13) is less than 1. Consequently, zi (t +1)> 0 only if ki (t +1)

/
ki (t) >

x(t +1)ᵀ d∗i
/
|µi (t +2)| + 1. This inequality demonstrates the relationship among the im-

portant factors (allocation effectiveness, interdependent production impacts, and future al-
locations as represented by µi (t +2)) that can help a policy maker decide whether or not
to allocate at time t + 1. As will be discussed during the oil spill application in Section
4, if there are no future allocations after time t + 1 and x(t) is constant for all time t,
x(t +1)ᵀ d∗i

/
µi (t +2) =

(
t f − t−1

)−1. In this instance, the effectiveness of allocating at

time t + 1 must be at least
(
t f − t−1

)−1 times more effective than allocating at time t for
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the policy maker to choose to allocate to industry i at time t +1. For example, if t f = 12 and
t = 5, the allocation effectiveness at time t = 6 must be at least 1

/
6 times (or 17%) more

effective than the effectiveness in the previous time period in order to allocate at time t = 6.
The allocation effectiveness at time t = 5 must only be 1

/
7 times (14%) more effective than

at time t = 4 to allocate resources at time t = 5.

4 Application: Deepwater Horizon oil spill

The resource allocation models are applied to a case study examining the economic impacts
of the Deepwater Horizon oil spill. As a result of the April 20, 2010 explosion on the Deep-
water Horizon oil rig, almost 5 million barrels of crude oil spilled into the Gulf of Mexico
until the leak was finally capped on July 15. BP, which operated the oil rig, agreed to es-
tablish a $20 billion fund to pay for the damage to the Gulf ecosystem, reimburse state and
local governments for the cost of responding to the spill, and compensate individuals for lost
business. This application measures the lost production in the region due to the spill’s direct
impacts on five different industries. Parameter estimation for the resource allocation models
derive from publicly available economic data, think-tank and government reports, journal
articles, and news stories.

4.1 Assumptions and parameter estimation

The models include five Gulf states (Texas, Louisiana, Mississippi, Alabama, and Florida).
Economic data collected by The U.S. Bureau of Economic Analysis (2010a,b, 2011) collects
economic data used to populate production for each industry in those states (the vector x)
and the interdependencies among industries (the matrix D̃ in Table ). The models combine
the five Gulf States into a single economy with a total of n = 63 industries.

The models focus exclusively on production losses due to inoperable facilities or re-
duced demand and ignore the severe environmental damage. Direct impacts from the oil
spill include: (i) demand losses because consumers decide to buy or consume fewer goods
and services as a result of the oil spill and (ii) less industry production because facilities are
inoperable. Demand losses occurred because people did not travel to the Gulf for vacation
or buy fish from the Gulf (and fewer fish were caught). Firms drilled for less oil in the Gulf
because of the moratorium, the lack of new leases and licenses, and the need for enhanced
safety measures. The models consider that the oil spill directly impacted the Fishing and
Forestry, Real Estate, Amusements, Accommodations, and Oil and Gas industries (m = 5).

The decision maker for this application is a hypothetical policy maker responsible for
limiting economic losses in the five Gulf states. The policy maker controls resources that
can be used to increase demand for seafood, tourism, and real estate in the Gulf, implement
new safety requirements in the offshore oil platforms, and remove crude oil from the Gulf
which benefits all of the impacted industries. Although the U.S. federal government has
responsibility for many of these areas, in practice, the federal government, state and local
entities, and the private sector all control resources that can be used for these types of tasks.

Table 2 displays the parameter estimates for the effectiveness of allocating resources, ki,
and the direct impacts for each industry, ĉ∗i . Allocating resources to one of the industries di-
rectly impacted by reduced demand means better communication about the risks, safety, and
cleanliness of the products and services produced by these industries. The models assume
that these resources can be expressed in monetary terms. If people are not consuming fish
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Table 1 Interdependence matrix D̃ for the Gulf region

Industry Fishing and Real Amuse- Accommo- Oil and
Forestry Estate ments dations Gas

Fishing and Forestry 1.120 0.026 0.005 0.013 0.005
Real Estate < 0.001 1.057 0.003 0.004 0.002
Amusements < 0.001 0.004 1.000 0.002 0.001
Accommodations < 0.001 0.022 0.002 1.005 0.003
Oil and Gas 0.001 0.011 0.002 0.004 1.067
Farms 0.003 0.002 0.002 0.002 0.001
Mining 0.001 0.033 0.006 0.005 0.023
Mining Support < 0.001 0.001 < 0.001 < 0.001 0.042
Utilities < 0.001 0.025 0.004 0.012 0.010
Construction < 0.001 0.024 0.001 0.002 0.021
Wood Products 0.004 0.092 0.003 0.011 0.016
Nonmetallic Mineral 0.001 0.056 0.002 0.004 0.022Products
Primary Metals 0.001 0.022 0.003 0.004 0.043
Fabricated Metal Products 0.002 0.027 0.002 0.005 0.034
Machinery 0.002 0.014 0.001 0.002 0.021
Computer and Electronic Products < 0.001 0.011 0.001 0.005 0.004
Electrical Equipment 0.002 0.023 0.002 0.005 0.012
Motor Vehicles 0.001 0.005 0.001 0.001 0.005
Other Transportation Equipment < 0.001 0.002 < 0.001 0.001 0.001
Furniture Products < 0.001 0.076 0.004 0.003 0.006
Misc. Manufacturing < 0.001 0.006 0.001 0.003 0.004
Food, Beverage, and Tobacco 0.001 0.002 0.003 0.004 0.001
Textile Mills 0.002 0.013 0.006 0.005 0.005
Apparel and Leather 0.001 0.009 0.002 0.003 0.003
Paper Products 0.001 0.015 0.003 0.018 0.009
Printing 0.001 0.023 0.006 0.016 0.006
Petroleum and Coal Products 0.001 0.007 0.001 0.002 0.004
Chemical Products 0.004 0.011 0.003 0.002 0.016
Plastics and Rubber Products 0.001 0.023 0.002 0.004 0.015
Wholesale Trade 0.001 0.009 0.001 0.003 0.007
Retail Trade < 0.001 0.010 0.001 0.001 0.002
Air Transportation < 0.001 0.016 0.002 0.004 0.003
Rail Transportation 0.001 0.019 0.003 0.005 0.022
Water Transportation < 0.001 0.001 < 0.001 0.001 0.002
Truck Transportation 0.001 0.015 0.004 0.004 0.008
Ground Passenger Transportation < 0.001 0.022 0.002 0.005 0.003
Pipeline Transportation < 0.001 0.011 0.002 0.005 0.065
Other Transportation 0.001 0.014 0.004 0.005 0.006
Warehousing and Storage 0.001 0.015 0.004 0.009 0.006
Publishing < 0.001 0.012 0.002 0.006 0.005
Motion Picture and Sound Recording < 0.001 0.009 0.003 0.017 0.002
Broadcasting and Telecommunications < 0.001 0.021 0.004 0.009 0.006
Information and Data Processing 0.001 0.274 0.004 0.006 0.011
Federal Reserve Banks < 0.001 0.064 0.002 0.003 0.005
Securities, Commodity

< 0.001 0.091 0.007 0.009 0.004Contracts, and Investments
Insurance Carriers < 0.001 0.004 < 0.001 < 0.001 < 0.001
Funds, Trusts, and Other 0.001 0.013 0.003 0.008 0.076Financial Vehicles
Rental and Leasing Services 0.001 0.065 0.006 0.016 0.011
Legal Services < 0.001 0.018 0.002 0.005 0.009
Computer Systems Design 0.001 0.038 0.007 0.018 0.013
Misc. Professional Services 0.001 0.028 0.007 0.031 0.031
Management of Companies < 0.001 0.066 0.006 0.016 0.007
Administrative and Support Services < 0.001 0.178 0.007 0.018 0.008
Waste Management Services 0.001 0.003 0.001 0.001 0.001
Educational Services < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Ambulatory Health Care Services < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Hospitals and Nursing < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Social Assistance < 0.001 0.024 0.008 0.013 0.007
Performing Arts, Sports, and Museums < 0.001 0.011 0.001 0.006 0.001
Food Services < 0.001 0.030 0.003 0.006 0.003
Other Services < 0.001 0.003 < 0.001 0.003 0.001
Federal Government < 0.001 0.006 0.001 0.002 0.001

Sum 1.166 2.754 1.170 1.386 1.733
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Table 2 Input values for Deepwater Horizon application

i Industry ki (per $1 million) ĉ∗i

1 Fishing and Forestry 0.074 0.0084
2 Real Estate 0 0.047
3 Amusements 0.0038 0.21
4 Accommodations 0.0027 0.16
5 Oil and Gas 0.0057 0.079

All industries simultaneously k0 = 7.4∗10−9 (per $1 million2)

caught in the Gulf of Mexico, resources can be devoted to testing fish for oil contamination
and to a public relations campaign explaining that fish are safe for consumption. A decrease
of $63 million in fishing revenue due to the oil spill (National Resources Defense Council
2011) enables the direct impacts for the Fishing and Forestry industry (i = 1) to be esti-
mated. The parameter k1 is derived from two studies (Richards and Patterson 1999; Verbeke
and Ward 2001) examining the effect of positive media stories following two different food
scares.

The direct impacts for Amusements (i = 3) and Accommodations (i = 4) are based on
an estimate that tourism declined in Louisiana, Alabama, Mississippi, and Florida by 30%
although tourism in Texas does not appear to have been impacted (Market Dynamics Re-
search Group 2010; Oxford Economics 2010). Tourism to the Gulf can be encouraged by
ensuring that the beaches are free of oil and debris and demonstrating to potential tourists
that the beaches are safe and open. The effectiveness parameters are derived from an Oxford
Economics (2010) study that argues for a return on investment of 15 to 1 in tourism market-
ing. For the Real Estate industry (i = 2), the models assume that the demand for housing in
the four states fell 10% and that increasing demand for housing depends entirely on tasks
devoted to helping all industries such as stopping the oil leak and cleaning up the oil. Hence,
k2 = 0.

Allocating resources to the Oil and Gas industry (i = 5) means implementing new safety
measures to reduce the risk of an accident on an offshore oil platform. The U.S. government
imposed a six-month moratorium on deepwater drilling in the Gulf of Mexico, and it did
not issue new leases for oil exploration in the Gulf until December 2011 (Fowler 2011).
Spending more to improve the safety of deepwater drilling may have induced the federal
government to lift the moratorium earlier and grant more licenses and leases. Direct im-
pacts are based on domestic oil production from the Gulf of Mexico in 2010 (U.S. Energy
Information Administration 2011), and k5 is derived from an estimate that the new safety
measures cost $183 million (McAndrews 2011).

Capping the oil leak, containing the spill, and removing crude oil from the ocean can
simultaneously benefit all five directly impacted industries. If less oil spills or if the oil is
cleaned up more quickly, people are more likely to eat fish from the Gulf and vacation on
its beaches. The Oil and Gas industry can also benefit because lifting the moratorium is less
politically sensitive if the consequences of the oil spill are limited. Approximately $11.6
billion was spent on stopping the oil leak and cleaning up the oil (Trefis Team 2011), and k0
(per $1 million squared) is estimated by assuming that

√
k0 ∗$11600 = 1. This assumption

implies that billions of dollars must be allocated in order to substantially reduce the direct
impacts on the five industries.
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Fig. 1 Production losses for Model 1 at different budget amounts

4.2 Model 1 results

Figure 1 depicts total production losses generated by the static allocation model for different
budgets ranging from $0 to $20 billion, where $20 billion reflect the amount in BP’s fund
for reimbursing cleanup costs and lost business. Production losses total $49.1 billion if no
resources are allocated and drop to $2.0 billion if the budget is $20 billion.

Table 3 shows the optimal allocation for each industry for five different budget amounts:
$1, $4.8, $5, $10, and $20 billion. As shown in the table, if the budget is less than or equal
to $4.8 billion, the policy maker should not devote any resources to simultaneously help
all industries because these industries do not benefit as much as they do from each one
being targeted individually. If the budget is $4.8 billion, Accommodations should receive
the largest share because the money is less effective for this industry but the direct impacts
are very large. The policy maker should spend $1.5 and $1.2 billion to help Amusements
and Oil and Gas but only $59 million for Fishing and Forestry because the direct impacts in
this latter industry are less severe and the resources are very effective.

Because spending money to help all industries recover simultaneously only becomes
optimal when the budget is $4.9 billion or greater, the shape of the curve in Figure 1 changes
at $4.9 billion. If no money is ever spent to help all industries recover, production losses will
not drop below $20 billion even if the budget is $20 billion, and the figure demonstrates that
the curve begins to flatten out when the budget is $4 billion. When the budget increases to
$4.9 billion, the shape of the curve changes and production losses drop significantly because
resources are allocated to help all industries. Production losses continue to decrease at a
steep rate because the model squares z0. Consequently, proportionally more resources should
be allocated to help all industries as the budget increases. As shown in Table 3, almost 95%
of a $20 billion budget should be spent on this category. As discussed in Section 3, squaring
z0 reflects the assumption that as more money is allocated to stop the oil spill and clean
the oil, these tasks become easier, the work is accomplished more quickly, and the affected
industries suffer less. This unique modeling assumption appears reasonable for a budget less
than $20 billion with the given parameters. If the budget were larger than $20 billion, almost
all of the money would be allocated to all industries because it becomes so effective. We will
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Table 3 Optimal allocation amounts for Model 1

Industry Millions of dollars allocated to each industry

Fishing and Forestry 0 59 33 12 0
Real Estate 0 0 0 0 0
Amusements 250 1,458 968 543 278
Accommodations 379 2,107 1,407 799 420
Oil and Gas 372 1,176 850 567 391
All industries simultaneously 0 0 1,741 8,079 18,911

Total budget 1,000 4,800 5,000 10,000 20,000

revisit this assumption by performing sensitivity analysis on the power to which z0 is raised
is varied.

4.3 Model 2 results

The effects from major disruptions can last several months or even years, and the Coast
Guard and BP engineers worked for almost three months to stop the oil leak. Government
officials working to contain and recover from disruptions need to make decisions at different
points in time. The discrete-time dynamic model discussed previously can provide guidance
on the optimal way to allocate resources over time. This model analyzes the oil spill for one
year and divides the year into 12 months, and t f = 12. Regional production is assumed to be
constant in each month, and x(t) = x

/
12 .

If the effectiveness of allocating resources, ki (t) and k0 (t), decreases or remains con-
stant with time, the policy maker should allocate all resources at time t = 0 according to
the optimal division suggested by the results from Model 1. Encouraging people to eat fish
caught in the Gulf and to vacation on the beaches may become more effective with time
because people will worry less about the risks. The effectiveness of allocating resources
to individual industries is assumed to increase linearly with time, and ki (t) = (t + 1)ki for
t = 0, . . . , t f − 1 and i = 1, . . . ,5. Tasks such as stopping the oil leak and removing crude
oil from the Gulf may not become more effective as time passes, and k0 (t) = k0 for all t.
Although these tasks may get easier as more oil is removed, the effectiveness remains in-
dependent of time. Because k0 (t) remains constant over time, it is never optimal to spend
money on z0 (t) = 0 for time t > 0. (When k0 (t) increases over time, numerical tests suggest
that solutions exist only when z0 (t) > 0 for one time period t and z0 (t) = 0 for all other
time periods. The time period t on which to spend money on z0 (0) depends on how much
the effectiveness increases over time.)

Fig. 2 demonstrates convergence or lack of convergence for Algorithm 1 for four dif-
ferent budgets ($1 billion, $5 billion, $10 billion, and $20 billion) with the assumption that
z0 (0) > 0. The convergence threshold is ε = 10−5, and the step size is α = 0.1 but as the
algorithm gets closer to convergence, decreasing the value of α allows the algorithm to con-
verge more quickly. If the budget is $1 billion, the algorithm never converges, regardless
of the initial value for λ (0). This lack of convergence reveals it is optimal that z0 (0) = 0.
If the budget is $5 billion, the algorithm does not converge if λ (0) > 0.854, and the al-
gorithm coverges to λ ∗ = 0.038 if λ (0) < 0.854. However, the algorithm also produces a
solution if λ (0) = λ ∗ = 0.854. Comparing production losses for these two solutions reveals
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Fig. 2 Convergence of Algorithm 1 for Model 2 with the assumption that z(0) > 0. (a) With a $1 billion
budget, the algorithm never converges. (b) With a $5 billion budget, the algorithm converges to two different
values of λ ∗, but if λ (0) > 0.854, the algorithm fails to converge. (c) With a $10 billion budget, the algorithm
converges to λ ∗ = 1.763 for any initial starting point. (d) With a $20 billion budget, the algorithm converges
to λ ∗ = 0.478 for any initial starting point.

that production losses are minimized when λ ∗ = 0.854. Because we do not know a priori
that λ ∗ = 0.854, it is necessary to run the algorithm multiple times with different initial val-
ues for λ (0) in order to obeserve that λ (0) = 0.854 represents a threshold for divergence and
convergence. If the budget is $10 or $20 billion, the algorithm converges for all the values
tested: 0 < λ (0) ≤ 100.

Results from Model 2 for four different budgets reveal that most of the resources should
be allocated to benefit all industries simultaneously at time t = 0 if the budget is $5 billion
or more (Table 4). If the budget is $1 billion, no resources should be allocated to help all in-
dustries because the amount of money that could be spent is too small to make a difference.
Similar to Model 1, this difference in the amount of resources that should be allocated to
all industries reflects our modeling assumption of squaring z0. Proportionally more money
should be spent to benefit all industries as the budget increases. All the money in this cat-
egory should be spent in the first time period because the effectiveness of allocating to all
industries remains constant over time. Spending billions of dollars in one month may be im-
possible in reality, and an extension of this model could include an additional constraint that
establishes a maximum amount that could be spent in a single time period. Even with such
a constraint, stopping the spill and cleaning up the oil should be accomplished as quickly
as possible, as Model 2 demonstrates. The remainder of the budget should be spent on the
other industries during the first five time periods, with most of the money being allocated
during the first two time periods. The deterministic nature of Model 2 ignores any incentive
the decision maker may have to hold money in reserve to learn more about how the oil spill
will impact industries.

No money should be spent after time t = 5 because of (13). Because ki (t) = (t +1)ki
increases linearly with time, the right-hand side of (13) equals 6

/
6 if t = 5 and no money

is spent for time t > 6. The fraction equals 1, and consequently, zi (6) = 0 for all i. If t = 4
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Table 4 Optimal allocation amounts for Model 2 (millions of dollars allocated to each industry)

$1 billion budget

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11

Fishing and Forestry 0 0 2 2 1 1 0 0 0 0 0 0
Real Estate 0 0 0 0 0 0 0 0 0 0 0 0
Amusements 0 125 61 34 21 15 0 0 0 0 0 0
Accommodations 0 190 87 48 30 21 0 0 0 0 0 0
Oil and Gas 180 96 40 22 14 10 0 0 0 0 0 0
All industries simultaneously 0 0 0 0 0 0 0 0 0 0 0 0

$5 billion budget

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11

Fishing and Forestry 3 7 3 2 1 1 0 0 0 0 0 0
Real Estate 0 0 0 0 0 0 0 0 0 0 0 0
Amusements 375 144 61 34 21 15 0 0 0 0 0 0
Accommodations 558 206 87 48 31 21 0 0 0 0 0 0
Oil and Gas 455 96 40 22 14 10 0 0 0 0 0 0
All industries simultaneously 2,745 0 0 0 0 0 0 0 0 0 0 0

$10 billion budget

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11

Fishing and Forestry 0 1 3 2 1 1 0 0 0 0 0 0
Real Estate 0 0 0 0 0 0 0 0 0 0 0 0
Amusements 49 144 61 34 21 15 0 0 0 0 0 0
Accommodations 92 206 87 48 31 21 0 0 0 0 0 0
Oil and Gas 238 96 40 22 14 10 0 0 0 0 0 0
All industries simultaneously 8,763 0 0 0 0 0 0 0 0 0 0 0

$20 billion budget

Months since disruption 0 1 2 3 4 5 6 7 8 9 10 11

Fishing and Forestry 0 0 0 1 1 1 0 0 0 0 0 0
Real Estate 0 0 0 0 0 0 0 0 0 0 0 0
Amusements 0 52 61 34 21 15 0 0 0 0 0 0
Accommodations 0 86 87 48 30 21 0 0 0 0 0 0
Oil and Gas 83 96 40 22 14 10 0 0 0 0 0 0
All industries simultaneously 19,276 0 0 0 0 0 0 0 0 0 0 0

and no money is spent for time t > 5, the right-hand side of (13) equals 5
/

7 . The fraction
is less than 1, and zi (5)> 0 for all i except i = 2 (Real Estate).

Given the assumptions that z0 (t) is squared and that k0 (t) remains constant over time,
Model 2’s results emphasize that stopping and containing the oil spill should be the top pri-
ority. When a disruption occurs, allocating resources to help individual industries recover
is sub-optimal if the disruption (e.g., an oil spill) is worsening. Although the policy maker
should spend most of the budget immediately to contain and clean up the spill, some re-
sources should remain in reserve to help specific industries recover once the primary disrup-
tion or spill is contained. If the model of a disruption relies on different assumptions, it may
be optimal to allocate more resources to individual industries and/or spend more money in
future time periods.
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Fig. 3 Contour plots of allocation to Fishing and Forestry industry with a budget of $10 billion

4.4 Sensitivity analysis

Sensitivity analysis on a few key parameters and on an important model assumption provides
insight into how these parameters and assumptions affect the optimal allocation of resources.
Sensitivity analysis is explored on the the direct impacts and the effectiveness of allocating
resources to the Fishing and Forestry industry, the effectiveness of allocating resources to
all industries, and the modeling assumption that z0 is squared. We perform the sensitivity
analysis on Model 1 although the conclusions can also be applied to Model 2.

The base case results for both models recommend allocating less than $60 million to the
Fishing and Forestry industry (i = 1). Sensitivity analysis can reveal if this recommendation
remains valid if the allocation effectiveness, k1, and direct impacts, ĉ∗1, change (Fig. 3). The
optimal allocation to this industry increases as ĉ∗1 increases. As k1 increases, the optimal
allocation initially increases but then decreases. Although the value of k1 at which the policy
maker should allocate the most to Fishing and Forestry depends on c∗1, the optimal allocation
decreases for k1 > 0.005 for any value of ĉ∗1. For a $10 billion budget, the most the industry
should receive is $710 million at k1 = 0.015 and ĉ∗1 = 0.5. This extreme level of direct
impacts is very unlikely, however, and $710 million still only represents 7.1% of the entire
budget. As the effectiveness increases, even less money needs to be allocated to the Fishing
and Forestry industry even if the direct impacts are very large. Although the recommended
allocation for this industry varies with k1 and ĉ∗1, the optimal solution is less sensitive if
k1 ≥ 0.04.

One of the most important parameters in the model is the effectiveness of allocating to
all industries, k0, which determines the amount that should be allocated to stop the oil spill
and clean up the the oil. The proportion of resources allocated to all industries in Model 1 is
highly sensitive to small changes in k0 (Fig. 4), especially for budgets of $10 billion or less.
For example, increasing k0 from its initial value of 0.74 ∗ 10−8 to 2.0 ∗ 10−8 increases the
proportion of a $5 billion budget that should be allocated to z0 from 0.35 to 0.62, and the
proportion for a $10 billion budget increases from 0.81 to 0.92. For values of k0 greater than
2.0∗10−8, the entire budget should be allocated to all industries when the budget is greater
than $10 billion. As such, the larger k0 is, the more effective it is to invest in industry-wide
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Fig. 4 Sensitivity Analysis on Effectiveness of Allocating Resources to All Industries

efforts. Because the optimal allocation is highly sensitive to very small changes in k0, a
more careful estimation of this parameter should be undertaken before the model is used as
a practical aid in responding to an oil spill.

The model squares the allocation to all industries, z0, due to the assumption that that
a lot of resources need to be allocated to all industries before it begins to have a large
impact. The results suggest that the vast majority of the budget should be allocated to help
all industries for budgets of $10 billion or more. Thus, we examine the extent to which the
optimal allocation amounts would change if z0 were not squared. The power to which z0 is
raised is varied from 1 to 3, and Fig. 5 records the proportion of the budget allocated to all
industries for four different budgets. The value of k0 also changes so that k 1/p

0 ∗11600 = 1
where p is the exponent.

For budgets of $10 billion or more, the fraction of the budget allocated to all industries
remains relatively constant as the power to which z0 is raised ranges from 1 to 3. A large
fraction should be allocated to z0 partly because of the need to help the Real Estate industry,
whose individual allocation effectiveness parameter equals zero. If the budget is $5 billion,
55% of the budget should be allocated to all industries if z0 is raised to 1. That percentage
decreases as the exponent increases until no money is allocated if the exponent is 2.2 or
larger. This sensitivity analysis on a key modeling assumption suggests that for large bud-
gets, a policy maker should allocate the vast majority of the budget to helping all industries
even if z0 is not squared.

5 Conclusion

This paper presented two different models to instruct a policy maker on the effective allo-
cation of resources to help industries recover after a disruption. The first model is a static
optimization problem that seeks to minimize production losses as measured by the IIM. The
second model also minimizes production losses but incorporates time by letting the policy
maker choose different allocation amounts at different points in time. The KKT conditions
for optimality enable the expression of optimal resource allocations as functions of model
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parameters, such as the initial impact, the effectiveness of allocating resources, and an in-
dustry’s production or interdependent effects in an economy. An algorithm can solve the
discrete-time dynamic optimization problem, and the optimal allocation at time t depends
on the effectiveness of allocating at time t and t +1.

Applying these models to the 2010 Deepwater Horizon oil spill requires estimating
parameters using a variety of newspaper accounts, journal articles, think-tank reports, and
government data. If no money is spent on recovery, we estimate that the Gulf region would
suffer $49.1 billion in production losses. The estimated damages from the oil spill were
estimated between $10 and $20 billion (Aldy 2011), and the Oxford Economics (2010) study
proposes that tourism revenues could decline by as much as $23 billion over a three-year
span. If the budget for recovering from the oil spill is $11.6 billion (the amount that BP spent
to stop the spill), the static model estimates that total production losses are $12.3 billion and
losses from the dynamic model total $10.8 billion (because effectiveness increases with
time). These results from the models align closely with the other estimates.

The discrete-time dynamic model reinforces the recommendation from the static model
that tasks to benefit all industries (e.g., stopping the oil spill and cleaning up the oil) should
be the immediate focus of government officials. If the budget is $5 billion, 55% of the budget
should be allocated immediately to help all industries recover, and this percentage increases
to 96% as the budget increases. If the effectiveness of allocating resources for individual
industries increases with time, some portion of the resources—between $720 million and
$2.2 billion, depending on the budget—should be allocated in the five months following the
disruption to help individual industries recover. As the sensitivity analysis demonstrated,
allocating the majority of a large budget to help all industries remains optimal even if z0 is
not squared.

The models in this paper and the application can guide government officials in making
decisions about recovering from future disruptions. First, the budget for recovering from a
disruption should be large enough to repair physical damage and limit environmental dam-
ages. These activities can benefit all of the directly impacted industries simultaneously and
may accomplish more than engaging in a risk communication campaign to help specific
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industries recover. Second, targeting individual industries can be beneficial. It can be opti-
mal to allocate the most money to industries with large direct impacts but where the money
is less effective such as Accommodations in the Deepwater Horizon application. Finally,
when allocation decisions are made over time, unless effectiveness substantially increases
with time, it is better to allocate most of the budget in the initial periods although bureau-
cratic and budgetary obstacles may force policy makers to allocate resources in later periods.
Finally, when allocation decisions are made over time, unless effectiveness substantially in-
creases with time, it is better to allocate most of the budget in the initial periods although
bureaucratic and budgetary obstacles may force policy makers to allocate resources in later
periods.

These recommendations do depend on modeling assumptions, however, and policy mak-
ers should understand the assumptions behind the models. If the model does not square z0
or if k0 is smaller, it may not be optimal to allocate such a large porportion of the budget
to all industries. If effectiveness increases over time, or if a dynamic model incorporates
uncertainty, it may not be optimal to spend as much as money in the initial time period as
suggested by Model 2 in this paper. Although we believe these assumptions are valid for
the type of oil spill disruption that motivated this paper, future research should explore the
validity of these and other assumptions, such as the exponential effect of resource allocation
and the linear model describing interdependent impacts. An empirical study could seek to
validate some of these assumptions, or a richer model could be developed that relaxes some
of these assumptions and incorporates greater complexity and uncertainty.
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Dueñas-Osorio, L., Craig, J. I., Goodno, B. J., & Bostrom, A. (2007). Interdependent Response of Networked
Systems. Journal of Infrastructure Systems, 13(3), 185-194.

Dynes, S., M.E. Johnson, E. Andrijcic, and B. Horowitz. (2007). Economic costs of firm-level information
infrastructure failures: Estimates from field studies in manufacturing supply chains. The International
Journal of Logistics Management 18(3), 420-442.

Elms, D. G. (1997). Risk balancing in structural problems. Structural Safety, 19(1), 67-77.
Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after

earthquake disasters. Safety Science, 41-57.
Fowler, T. (2011). Return to gulf: Big oil grabs leases. First auction of deep-water blocks

since BP disaster draws $337.6 million in winning bids. Wall Street Journal, 15 December.
http://online.wsj.com/article/SB10001424052970203893404577098773281211592.html. Accessed 17
December 2011.

Gordon, P., Moore II, J. E., Richardson, H. W., & Pan, Q. (2005). The Economic Impact of a Terrorist Attack
on the Twin Ports of Los Angeles-Long Beach. In P. G. H.W. Richardson, and J.E. Moore II (Ed.), The
Economic Impacts of Terrorist Attacks (pp. 262-286). Cheltenham, U.K.: Edward Elgar.
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