View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

alhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1994

Parallel Satellite Orbit Prediction Using
a Workstation Cluster

Stone, Leon C.

http://hdl.handle.net/10945/39479

‘E DUDLEY C@lhounisaproject of the Dudley Knox Library at NPS, furthering the precepts and
ﬂm goals of open government and government transparency. All information contained

m‘ KNOX herein has been approved for release by the NPS Public Affairs Officer.

LIBRARY Dudley Knox Library / MNaval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

https://core.ac.uk/display/36731842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARALLEL SATELLITE ORBIT PREDICTION
USING A WORKSTATION CLUSTER

Leon C. Stone
Shridhar B. Shukla
and

3. Neta *

Naval Postgraduate School
Code MA/Nd
Monterey, CA 93943

email: bneta@moon.math.nps.navy.mil

*Author to whom corrcspondence should be addressed.

Abstract

In this paper, the benefits of parallel computing using a workstation cluster are
explored for satellite orbit prediction. Data and function decomposition techniques are
used. Speedup and throughputl are the performance metric studied.

The software emploved for parallelization was the Parallel Virtual Machine (IPVM)
developed by the Oak Ridge National Lahoratory. PV enables a network of hetero-
geneous workstations to appear as a parallel multicomputer to the uger programs.

A speedup of almosgt 6 was achieved when using 8 SUN workstations.

Kevwords: Tarallel computing. orbit prediction. domain decomposition, PY M.

1 Introduction

With the introduction of small, relatively inexpensive computers, a vast amount of computing
resources are often left idle for a long period of time. A ship often has this characteristic,
A ship’s complement of computers is usually used for intermittent word processing or single
dedicated computational tasks. Wilh these computers networked together, a lot ol unused
CPU power is available. In order Lo tap into these unused assels, parallelizalion soltware
tools hiave been developed such as PVM [1] or Linda [4]. These programs operale at the user
level like an extra layer ol operaling sysiem code,

In this paper we discuss the use of Parallel Virtual Machine (PVM) [or parallelization.
The program to be parallelized is the Naval Space Command’s PPT2 satellite orbit predic-
tion model. PV M is a softwarc library, currently being refined, developed by the Ook Ridge
National Laboratory (ORNL). It is a software system that enahles a collection of hetero-
geneous computers to be used as a coherent and flexible concurrent computational system
[1]. PVM was chosen because it is relatively casy to use, and is an emerging standard for
software of its kind. [t is currently available free of charge from ORNL and installation is
relatively easy. 'V M version 3.2 1s used for this paper.

Parallelization could have been accomplished using a specific parallel multicomputer,
such as the INTEL hepercube [2]. These systems tend to be large and expensive. While
PVM may not accomplish the tasks as fast as, say, an INTEL iPSC/2 hypercube, (see Phipps
et al [2]) the process execution times were satisfactory for the application tested. A speedup
ol almost 6 when using a cluster ol 8 workstalious was achieved.

In the next section, we discuss parallelization of PPT2 including a variety ol domain
decomposition schemes and give a preliminary resulls ol our experiments on a small data
sel. Tu seclion 3, we discuss the results ol our experiments with a larger data sel and obtain
the optimal munber of input blocks to use along with speedup results.

2 Parallelization of PPT2

Currently the Naval Space Command tracks over 6000 Earth orbitting objects. With more
and more countries entering space exploitation, and as the United States increases its empha-
sis o1l space comnmunicalion, this data set of satellites will [orseeably increase dramaltically in

the future. These increases in the satellite catalog will increase the computational demands
on the computer tasked with orbit prediction. If the NAVSPACECOM’s orbital model’s
accuracy 1s increased or multiple calls to the orbit prediction algorithm are made for accu-
racy, or the number of abjects tracked is increased, then the computational demands may be
too much of a burden if the computer was a serial machine [2]. Given these computational
loads, and the time dependency of the results, parallel processing of the catalog is a logical
exlension.

Given a program and its associaled dala sel, there are two primary ways to process il in
parallel. The program can be separaled into individual sections (called conlrol decomposi-
tion) with a processor dedicaled to compute its respective part, much like a faclory assembly
line. The other method domain decomnposition is to divide up the data set and seud parts Lo
many scparate processors all running the same algorithm, but on different data. For PP12,
Phipps [2] showed that control decomposition is not cfficient. We thus experiment with var-
ions ways of decomposing the satellite catalogue and distributing it to multiple nodes cach
propagating the orbit to several given times.

2.1 Decomposition Strategies

The basic algorithm for all of the decomposition methods used a master/slave strategy. For
all the programs, there was one supervisor (master) node which decomposed the data set
and distributed it to the worker (slave) nodes. Sending information requires the packing (hy
sender) and unpacking (by recciver) of data and buffer initialization. Fach worker ran on
a separate processar and sent its results to a gathering node which printed the results to a
file and reported to the master when the process had completed for all satellites. Figure 1
graphically presents these relationships.

To get a general understanding of the decomposition requirements five decompaosition
strategies were developed. All the methods endeavored to minimize communication to com-
putation ralio and to keep the worker processors busy as much as possible Lo increase speedup
and elliciency. Ifach method is described below and denoted by dsl to dsh (lor decomposition
stralegy).
dsl: Send/Request One at a Time

The supervisor initially sends one satellite to cach individual worker node and waits for
the workers to individually request another satellite. This method brought out the high
PVM communications overhead which needed to be overcame for adequate speedup. Of
course, in case a worker node is slow, this will ensure it will not get more data than it can
process.

ds2: Send/No Request

The supervisor node [or this rouline sends one satellile al a time to each worker node in
a round-robin [ashion until the input [ile 1s distributed. This process reduces the communi-
cations aoverhecad hetween the supervisor and workers, but it does not keep all the processors
busy for a sufficiently long time, since the computation time is shorter than the time until
the next data is reccived.

ds3: Send Block

For this scheme, the master divides the number, 5. of input satellites by the number, 1,
of worker processors. The supervisor then sends a block of size 5/n to each worker. This is
much more efficient than the previous two methads, but for n greater than &, the workers
numbered eight and above were not getting data fast enough to notice effective processor
computational overlap.

dsd: Send ITall Block
Here, the master sends blocks of size S/(2n) to cach processor and sends another block
of the same size again. The smaller blocks take less time to send.

dsh: Multiple Block

The above scheme, ds4, was moditied to send a variety of block sizes, The master sends a
block of data to each worker, then the worker extractred one satellite at a tune from its input
buller and sent a block ol results, equal in size (o its input block, to the gathering processor.
Sending blocks of data between processors vice one data element al a time, minimized the
buller manipulation which resulted 1 lower execution times.

3 Results of PPT2 with PVM

Tor preliminary experimeniation, PVM was starled on eighteen dillerent workstations so
measuremnenis could be taken [or one to sixleen working nodes. The workstations are SUN
Sparc IT and Sparc IPX having 40 MIIz processors and conligured with 32 Mbytes ol systemn
mermory. The workstations are connected by a 10 Mbyles Ethernel based network. The [our
schemes dsl throngh dsd were used with data sets of 600 and 1200 satellites. The programs
were Tun ten times for cach number of processors in order fo get a good average time. The
results for 1200 satellites are given in Figure 2. "T'he figure shows a definite advantage in
sending two input bhlocks of data (ds1) to cach worker node over the other schemes.

The rest of our experiments are with decomposition strategy dsh and a cluster of cight
workstations. To determine the length of time required to run the parallel program, the
execution time of each working node had to be determined. This execution time was broken
down into three phases: setup, calculation and breakdown. During the setup phase, the
worker wailted for and received the next input block from the master. The calculation phase
is the time it took IP’PT2 to execute the entire input block. The hreakdown phase was simply
the period in which the worker node packed and sent the results to the gathering node.

Using the variables delined in the [ollowing Table, Stone [3] has obtained expression [or
the selup time {,, of the ¢* processor

ty = I(CYf + (jpssb) + n’b(c-"‘u-pf + C--’yup-ps'-qb) “ (1)
The calculation time, £, 18 given hy
?‘((' =1 ;xpiEJ—qb (2)
and the breakdown time 1, is
Ti = ClppSi « (3)

Thus the total

cxccution time of worker 2 is

The execution times for eight worker nodes, given four input

Bi=tlytltl. (4)

Variable | Definition Value

S total nunber of satellites 4300

L, node process initialization {ine HH06.7T s

Ly time for gathering node to report to the 1300 us
supervisor the process is complete

i numbaer of blocks sent to cach worker 4

Cy fixed communications time for buffer setup 602784 s
and network access for sending records

Cos communications time required to pack 1264.52 ps
send one satellite record

Clapt fixed communications time to unpack 132.98 pus
the input buffer

% — communications time to unpack 5.7 ps
one satellile record

k nuiber ol workiug processors used 8

=, nuinber of satelliles sent o each worker = S/k | 600

S nuinber of satelliles per data block = S,/ 150

i time [or PPT2 (o operate on one satellile record | 1850 us

blocks of data are shown

in figure 3. The processor’s phase times are desceribed by two lines. The setup times are
the lines on the processor number axis, and the execution and hreakdown times are on the

line one half space below the processor number.

The blank space between the worker’s

breakdown phase and the next setup time is idle time. This idle time is clearly the result of

the communication time required by the master to send blocks to all working nodes, taking

longer than the execution tune of PPT2 on each processor.

Civen the fact PPT2 may need to be run several times for accuracy or tracking require-

ments, the calculation time must be scales by some factor A. This variable A is the numher

ol times PPT?2 1s execuled on each salellite, The total execulion {ime of worker ¢ 1s given

by {Stone [3])

Le+ Aly+ b+ (g — L){Edy — Lufmy) , A < (k_I')tbﬂmif+thsnﬁ) (
i‘,s' o n‘h(*’il‘c =+ L’J)t .

(] 3
—

otherwise
The total execution time. Tr, of the parallel algorithm is
/l]};? = tl) + Pf(+ fg'rrz. (6)

where A 1s the number of workers used.

3.1 Comparison

In this scetion we used the above formula to compare the serial program to the parallel
version using a data set of 1800 satellites and 8 workers (see Table 1 for the empirical values
obtained from studying the performance of PVM on our SUN network). The total exeention
time of the serial program was taken to be simply 1,2 multiplied by the total number of
satellites in the input file.

Figure 4 shows the final comparative results. The “theoretical” lines refer to using equa-
tion (6). The “actual” lines represent data obtained from running the serial program and
dsh (utilizing 8 workers) and a value of A between one and ten. A block size of four was
used for the parallel program. It is clear that the parallel program performed better than
the serial program as the number of calls to PPT2 was increased. The theoretical and actual
speedup are plotted in Figure 5. Note thal theoretically a speedup of 6 {when using eight
workers) may be possible. In all the runs, we were unable 10 achieve this theorelical resuli.
One of the reasons is that 1 1s virtually impossible to guarantee that the network is notl used
by others al the same time.

The comparative results using the actual catalog of 6795 satellites are plotted in Figures
6, 7. The actual results are closer to the theoretical ones in this case. A speedup of almaost
6 using 8 processor was achieved.

Conclusion

In this paper we demonstrated the effectiveness in reducing the overall excecution time of
updating the catalog of Karth orbitting objects by using a parallel algorithm. This algorithm
was run using a parallelization software tool, PVM, on a looscly connected network of SUN
workstations instead of a dedicated parallel multicomputer. A variety of data decomposition
schemes were used. A speed up of almost 6 was achieved when using 8 workstations.

References

1. AL Geist, A Buguelin, J. Dongarra, W. Jiang, R. Manchck and V. Sunderam, PVM 3
User’s Guide and Reference Manual, Oak Ridge National Laboratory Technical Repaort

ORNL/TM-12187, Oak Ridge, Tenn., 1993.

2. W.E. Phipps. B. Neta, and 11 AL Danielson, Parallelization of the Naval Space Surveil-
lance Satellite Motion Model. J. of Astronauntical Sciences, 41 {1993), 207-216.

3. L.C. Stone, Parallel Processing of Navy Specific Applications Using a Workstation
Cluster. M.5. Thesis, Naval Postgraduate School. Department of Flectrical and Com-
puter Engineering. Monterey, CA, December, 1993,

1. 8. Ahuja, N. Carricro and D. Gelernter, Linda and Friends, [KKE Computer (August

1986).

6

