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Abstract

In (his reporl, we discuss and compare several
methods for polynomial interpolation of (Global Posi-
tioning System ephemeris data. We show that the use
ol difference tables is more ellicient than the method
currently in use to construct and cvaluate the La-
grange polynouiials,

Introduction

The problem of interpolaling Global Posilioning
System (GPS) precise, post fit cphemeris data is
an impaortant aspect of geodetic work utilizing GPS.
Given that a high accuracy (< 1 m ), high precision
(1 emj orhit can be generated though the use of dense
observalions and special integralions, 1t 1s necessary
to interpolate these ephemeris at high accuracy to
ntilize these orbits.

These high acenracy orbits are produced by several
organizations (DMA, NGS, JPL, several Universities)
and are widely available, An ephemeris Ly pically con-
sists of satellite positions at evenly spaced times over
a week. Most ephemeris are given al 900 sec {15 miu)
time steps althongh the NGS ones arc at 1200 sce (20
min}. The GPS satellites are in 12 hr circular arhits
making 900 sec ephemeris steps 7.5 deg of arc.

The typical geodetic user collects (GI'S data at in-
lervals [rom 1 sec Lo 30 sec and needs o find the
satellite position at the times of that data. The
times needed are really not the evenly spaced received
tirmes, bul the (ransmil times thal are aboul 60 msec
hefore reception. A precise value for this propaga-
tion delay 1s not known until the solulion process is
partially done. Therefore usually one needs to find a
cluster of satellite positions a few msec from a nomi-
nal evenly spaced inlerval,

In the past the typical technigue used by the DMA
[Malys, 1989]. NGS [Remondi, 1991]. JPL [Watkins,
19935] and others is a Lagrange interpolation. The
orders vary from 8" to 11", T'his approach directly
compules the value of the lunclion (the three Carte-
sian Earth centered carth fixed coordinates) from the
nnique polynomial going through the data points.
The coefficients are not found, and finding them may
introduce errors [Press et al, 1992].
lions of the accuracy of this method [Remondi, 1991,
Smith and Curtis, 1983] have been made, Tt is gener-
ally fonund that an 8" arder Lagrangian interpalation
nsing 900 see data with the unknown in the conter of
the points gives values that compare with numerical
wlegration at the 1 cm level,

Several evalua-

The problem addressed here is to find if a more of-
ficient, numerical method that achieves the same ac-
curacy can be used. This 1s motivated by the move-
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Figure 1: 4 day z-coordinate GPS ephemeris data at
900 second intervals

ment of processing from mainframes to PC’s (486’s
and above).

Several aspects unique to the GPS satellites make
this problem of interpolating the data different from
the general problem of interpolation. Though we are
interpolating GPS satellite orbital position data, it
may be that the methods here are applicable to a
broader class of problems. Where possible; we intend
to take full advantage of the special geometry of the
GPS satellite orbits.

A typical precise ephemeris orbit is supplied over
an interval of eight days. Each ephemeris overlaps
1 day at each end with another ephemeris. It con-
sists of position data which is Earth-centered, Earth-
fixed Cartesian coordinates given every 900 seconds
(t,xz,y,2). We will not include velocity data which
may in some cases be available. A plot of the data
shows that 1t is “almost” periodic with a period of 24
hours or 96 intervals of 900-second each. Of course
the data would be periodic in inertial coordinates,
however the data is given in a rotating frame (Earth
centered - Earth fixed). This is done to place sev-
eral subtle effects, such as polar motion, into the
ephemeris generation problem. The user then does
not have to have access to current data for geophys-
ical effects to compute an Earth fixed position solu-
tion. Figure (1) is a plot of z-coordinate data (in
kilometers) over a four day period. Note that the
plot is with respect to the node (point) number which
ranges from 1 to 384. It is convenient to use node
numbers since we may choose to map the interval of
interest into different subintervals. For instance, the

Lagrange interpolation method maps the interval of
interest into the interval [—1, 1) while the trigonomet-
ric polynomial interpolation method maps the inter-
val of interest into the interval [0, 27). Later we will
use the node numbers to compare the residuals for
different methods.

There are two lengths of computation time in which
we are interested for this problem. One time length
is the generation time of the function (interpolant)
which interpolates the evenly-spaced data. The other
i1s the time needed to evaluate the interpolant at a
point. For polynomial interpolation these might be
the calculation of the coefficients of the polynomial
interpolating the data and the time needed to evalu-
ate that polynomial, once generated, at a particular
point. As we shall see, however, there are clever ways
in which to minimize the amount of work done in
generating the desired data, and the two times might
not be easily distinguished in these cases. In recom-
mending a particular technique for interpolation it is
important to know whether the interpolant will be
evaluated once (or just a few times) on an interval
or if it will be evaluated many times throughout the
interval. With a cluster of times to be interpolated
on an interval, the cost of generating the interpolant
should be amortized over the set of times. This means
that the time needed to generate the interpolant (a
one-time cost) would not be as much a concern as
the time needed to evaluate the interpolant at each
of the desired times (a recurring expense). On the
other hand, if one or a very few points were to be
calculated on a given interval, the time needed to
generate the interpolant would probably be more sig-
nificant a concern than the time needed to evaluate
it at the desired times since in general the generation
of an interpolant is much costlier (in time) than its
evaluation. This is a similar argument as one finds in
deciding whether to use Gaussian elimination or LU
factorization in solving systems of linear equations.

One method of polynomial interpolation involves
performing the interpolation at a point without ac-
tually calculating the coefficients of the interpolating
polynomial. This involves many less operations than
the evaluation of a polynomial of degree n at a par-
ticular point. This is a common technique currently
employed. If we do not explicitly calculate the in-
terpolant, however, we will in general still need to
calculate some quantities prior to interpolation. For
instance, we shall see that divided differences would
need to be available prior to using the nested mul-
tiplication algorithm used in evaluating the Newton
form of the interpolating polynomial.

Since ephemeris data is generated for an eight day



time period, we have the opportunity to “front load”
onr work at the timme of ephemeris receipt. By cal-
culating needed data i advance we should be able
to shorten the real time operation count. Thus we
will be more concerned with the rapid evaluation ol
interpolants for specific times than their rapid gener-
ation. Of course in some cases the times of evaluation
and generation will be closely related, as mentioned
above. In others, they will be guite different and our
hope will be {o shill as much of the work as possi-
ble to the generation of efficient interpolants so as te
allow the rapid evaluation of those interpalants.

In summary, we will describe the lollowing meth-
ods:

e Lagrange polynomial interpolation

e Newton's divided difference interpolation poly-
nomial

o Dillerence Talbles

¢ Cubic Spline interpelation

¢ ‘I'rigonometric palynomial interpolation

¢ ‘I'shehyshev polynomial interpalation
We will describe the advantages and disadvantages
of each of these methods for the prablem of interest,
namely for the ellicient nterpolation at clusters of
points. The actual codes nsed to prepare the Figures

and Table in this report are available on the Inlernet
at URL address http://math nps.navy.mil /~bncta.

Lagrange Polynomial Interpolation

Before we begin our investigation, it i neocessary
to describe the method which is currently being
nsed.  Simply put, given the n + 1 cphemeris
values fito), Ff1),..., f(t.) at the distinet times
fo 1, ... Ly, there exists a unique nterpolatling poly-
nomial p, satisfying
vl = Sl i=0,1,...,n

This polynomial can be written in the form (called
the Lagrauge interpolation polynomial)

poity = 3 £t s(t) (1)
i=0

where
{t —do){t —141) - (t =t}
( =dalte—="t ) o= tin)

(t—tbigs) - (L= tn)
(ti —tis1) o (t — tn)

1i(1)
(2)

The cleventh order Lagrange method uses twelve
dala poinls Lo generale an elevenlh order polynomial
according to equation (1). This polynomial can then
be evaluated at desired times within the interval of
wlerest. The error T2, (¢) 1w using the Lagrange in-
terpolant py, (¢) to cstimate the function f(¢) (having
at least n + 1 derivatives throughont the open inter-
val) at some polnt ¢ can be written [Buchanan and
Turner, 1892):

Lsi(t) 211 (8)
{n—+1}!

Rn[_i) = f[i) _Pn(l] =

where £ is sore polub in the interval [{g, {,] and

T

Loa(t) = [t %)

i=0

One diffienlty in implementing high degree poly-
nomial interpolation routines of any kind 1s the fact
thal the error between the interpolaling polynomial
and the data or functien being interpolated grows
rapidly near the endpoints of the interval over which
the witlerpolation is being perforimed. Tor this reason
the eleventh order Lagrange method is overlapped as
successive lubervals are chosen within e epherneris
(we call this walk-along interpolation). Duc to the
high accuracy requitemnents, only the center subin-
lerval is interpolated lor each Lagrange polynomial
which is generated. Whereas the initial interval spans
points one through twelve, Lthe second inlerval spans
points two throngh thirteen in order to provide the
highest degree of accuracy. ‘The first eleventh arder
Lagrange polynomial would then be used lor Limes
between points six and seven, while the second poly-
nomial would be valid [or times belween polnls seven
ancd cight. The numerical aceuracy of this method
has heen verified to the 1 cm level for the data we are
interpolating [Remondi, 1991].

Difficultics arise in that the process of creating and
evaluating the resnlting eleventh order polynomials
18 computationally expensive. The cost of evalualiug
the Lagrange form at a point is provided by de Boor

[1978]. Tt is

2rn—2)A+{n-2)M+(n-1D



for cach of the n + 1 numbers £;(¢), where A denotes
an acddition or subtraction and A and /) denate mul-
liplication and division, respectively. Forming equa-
tion (1) then takes another

n—1)A4+nM

operations, leaving the total count per companent of
the position veclor al

Bn-=3)A+(2n—-2M+(n—-1D

This 15 the number of operatious per compouent iu
the implementation of Lagrange intcrpolation. A
sitnple modification of the algorithun would reduce
the amount of work to

Zn-DA+nM+nD

operations (scc de Boor [1978]). It consists of first
forming the quantities

LG i=1
[Tz (b =) -

Alierwards, p,{¢) is calculated through

Cén(l] == H [If = fi]
=1

i

Palt) = () 3 Vil —1:)

i=1

= .7 (3)

()

This method is somewhal [aster than using (1)-(2)
and 18 easy to implement. In addition, no loss of
accuracy oceurs in its implementation. If the bime ¢
18 vory close to once of the interpolating points ¢;, one
must be careful in computing p,, (t] because of the
division of ¥; by a very small number.

Newton’s Divided Difference Interpolation
Polynomial

A more ellicient means by which we may [orm the 1n-
terpolating pelynomialis through divided differences.
We [ollow the developrnents given in Buchanau and
Turner [1992] and de Beor [1978]. Suppose we have
n 4+ 1 distinct interpolation points 44,741, ...,%,. De-
line the zeroth divided difference al & by [1G] = F{L;).
The first divided difference at 4,25 is defined by

ap= Jlizdi]= w

and the kth divided difference flto,t1. ..., 1] 18 de-
fined hy

gy = f[tgfl,fk]

— ety teoa]-FlEnts, ts] k0

fo—tg ?

Newton's divided difference interpolation polynomial
15 the interpolation polynomial agreeing with the
tunction f at the points 25,7, ..., ¢, and is given by

Pult) = a4+t —to)ar + ({E —t)(t —ti)as +---

+ (tftﬂ)(tftl)"’(T*Tnfl)(fn

(5)

or, rearranging,
) = e+t —to)le =t ) a4+

n—1 times
——
+ (l_l'n,—2){c\"n—l+(l _ln—l)an }’}}
This form consists of two additions and a multipli-
cation per level in the expression. Since there are n
levels, the operalion count 1s seen Lo be

n(24+ M)

which is more cconornical than the standard Lagrange
farm. This leads us to the so-called nested multipli-
catton or Horner’s algordbumn:

(Given the n + 1 distinet points #5,#1....,1, with
associated coefficients ag, a1, ..., a,, the value of the
interpelating polynomial g, (2) for some ¢ € [to, 5] is
given hy by according to the following iteration:

Sel b, = a,

For k=n— 17100 by -1

by = ap+ (0= L) b

End For

By the unigqueness of the interpolating polynomial
there can be no difference in comparison to Lagrange,
but the gain in speed may be of importance for onr
purposes. Note that the divided dilferences ap can be
caleulated and stored in advanece of the actual inter-
polation so that the operation counts given here re-
fleet the operations needed at interpolation time. A
total operation count would have to include the op-
eralious needed to generale the divided dillerences.
Also, calls from storage may need to be counted, de-
pending on system architecture considerations.

Tle divided dillerence algorithm does not Lake ad-
vantage of the fact that our interval sizes are fixed

we required the nodes Lo be distinct bul made no
restriction on the spacing between nodes. In the next
section we will investigate the special case when the
wterval siges are coustanl,



Difference Tables

The case ol equally-spaced dala poluls 1s a special
case of Newton’s divided differences and leads to
other interpolation formulas. ‘The error and opera-
tion counts [or the methods preseuted liere are essen-
tially identical to those presented above. 'I'he formu-
las are given i thieir simplest form and should not be
nsed for computation. A nested multiplication ap-
proach similar ta the one described in the previons
section should be used [or each of these w1 order Lo
minimize the cost of computation. One important
aspect of this method is the determination ol the dil-
ferences and the method to be uscd to Interpelate at
a given time . It will he necessary to include some
code Lo determine which differences are Lo be used,
though the differences themselves can be calculated
when the given ephemeris becornes available. In ad-
dition, the chosen method will depend on the location
of the interpalation time relative ta the data times.
[Tere we [ollow the descriplion given 1n Buchanan and
Turner [1992]. Our data cccurs at times which can
be expressed as
?‘.k = T@ + Lh

where #g 18 a reference time for the interval of interest
and A is the constant steplength. We normally think
ol k as being a positive integer and {y as beiug the
initial time 1n the interval of interest hut in this case
we will ouly require & Lo be an inleger and fy Lo be
any time corresponding to a data point in the interval.
"T'he sign of k& will depend on the reference time 4 in
relation Lo the time ol interest. There are now several
diffcrences which can be defined, one of which 1s the
Jorward difference.

The gencral forward difference Af(¢;) is given by
Aflti) = Fltip) = Ft) = Fl6 + b) — flt:)

Its powers are calculated recursively according to the
[ollowing

AFft) = AAMTIf)

= AL = AR

3 e
AFE N T (J Fiag
J=a *

where we have introduced the notatiou f; = f(4;).
Additionally, the differences are related to divided
dilferences by

IE J(E) = BLRE Pl b e oobiin]

An application of this last formula to cquation (5) im-
mediately yields a forward difference formula (called
Newlon's forward difference Jormula or the Newlon-
Gregory forward difference formula). Here we assume
thatl the degree of the interpolating polynomial 1s n
while the mumber of data points in our table 13 N

(L — o), {(E—=to){t=11) .
pu(t) = fot b Afo+ 3 2 A e =
t— o)t —ty) o (f —
nl A"

(7)
A simple change of variable 7 = (1 — {p)/h vields the
compact form

i ()

j=0

with the generalized hinomial coefficients

(r) _ 'r('r—l)---"(’r—j-l-l]
J F

We measured actual run times of the methods (3)
and (6) ta construct the interpolating palynomial us-
g 96 points, and thien the time to evaluate (1) and
(7) (using nested multiplication) for 9 and 12 points
around the one requested. The resnlts given in the
tabkle indicate that the use of difference tables may
be slightly faster, if many evaluations are required.

Method Lagrange Dift. Table
Order grh 11" grh 11%R

Construct | 0241 0242 | 0270  .0280
Evaluate 0309 0410 | 0308 0308

I'able 1: Run times in seconds

Cubic Spline Interpolation

Clubic spline iterpolation s computationally ellicient
and has an advantage with respect to walk-along La-
grange because it allows the user to calculate the in-
lerpolating polynomials over thie entire interval al one
time, at the beginning of the interpolation process.
This calculation wvolves solving a tridiagonal system
of cquations. Additionally, the fact that cach subin-
terval is represented by a cubic polynomial means
thal evaluations on those inlervals are much quicker



than their cleventh order polynomial counterparts,
making the cuhic spline method a good choice where
accuracy 1s less important than speed.

[Mere we will skelch the derivation of the cubic
gpline interpolation; thorough treatments of cubic
spline interpolation can by [ound in [Ahlberg, Nil-
son and Walsh, 1967], [Buchanan and Turner, 1992],
[de Boor, 1978]. and [Press, 1992]. Given the n 4 1
epliemneris values f(10), f({1), ..., f(¢,) al the distinct
times a = ty.41,...,%, = b, we construct a piecewise
cubic interpolant p to f as [ollows, On each subinter-
val [£;,t:11] we wish to construet a cubic polynomial
p; in such a way that the resnlting interpolation for-
mula over the entire interval 1s coubinuous 1n ibs frst
and sccond derivatives. The result is

pi(t) = A(f) f{G) + Bilt) flivr) + Gi(8) S (45)
+ f)i(f)ffftf.,;+1): ?T:U,...:Jlfl
(8)
where 2 ;
A = L’
titr —
B = A=l
tigl — 1
Iy 5 R u
;= “ (A7 = A) (Lo — &)7
L e 5
I')i — (— (H{ = H;) (tH-W —fi)*
}

We do nol yel have tie n+ 1 values of [7(4;) needed
for the determination of the selution, but application
of the continuity of the first derivative on the entire
interval leads us o Lthe [ollowing equations lor § =

L2,...,n—1;

t;, —t;_ tirr — i
Bl iy ottt T gl
6 3
tig — 1
+ R () (9)
_ fin) = f) F) = f(e)
tigr — 1 t—tior
Nole thal there are n — 1 equalions lor n + 1

nnknowns, leaving two sccond derivatives undeter-
mined. 'T'he choice of the two houndary conditions
S(a) and f7(b) provides the required unique solu-
tion. In our case it makes sense to nse the period-
icily, ie. apply (8) and (9) lor ¢ = n and enlorce
pol(t) = pult + ty) fortp < t < t;. As a consc-
quence, f(to) = f(t.), flt) = fltae), F'lta)
JG),  and () = (e Therelore il we use

6

cqual step size f, the cubic spline version of equation
(&) can he written as

4 1 0 0 1 (k)

14 1 0 -0 F{ta)

o1 4 1 0 ") )
] 0o 1 4 1 i (t.,,_q)

1 0 0 1 4 L)

where Ry = 24 flti 1. 8,01

If accuracy can be sacrificed for speed then the eu-
bic spline method may be preferred over any of the
methods here, However, the O(A*) accuracy provided
by the euhic spline may he insnfficient for GPS satel-
lite interpolation requirements.

Trigonometric Polynomial Interpolation

The rocts of this method of interpolation can be
traced to the heginning of the nineteenth century.
Briggs and ITeusou [1995] present a briel history of
this method, in particular the Tact thal Ganss nsed
i around 1800 (o interpolale the orbit of the aster-
oid Pallas. The preceding methods are standard in-
terpolation technigues typically used far continuous,
dilferentiable [unctions delined on compact intervals,
No other special infarmation abont the functions bhe-
g interpolated is exploited by these methods. Tt is
at, this point that we cxamine some special proper-
ties of our GPS ephemeris data. As previously men-
tioned, our eplierneris data is supplied over an wterval
of eight days and cansists of Karth-centered, Farth-
lixed Carlesian coordinate posilion dala given every
900 seconds. A plot of the data in Figure (1) shows
that it is very close to periodic, and it is for this rea-
son thal we examine the trigonometric polynomial
interpolation method.

IMie to the fact that the position data has a pe-
riod of twenty-Tour hours, we restricl our allention
to a single twenty-four hour period and generate a
trigonometric polynomial p,, using all the data avail-
able over that period. Again, we must remember that
our satellite orbit is not truly periodic, but very close
to that in inertial coordinates. Since e error in-
curred by assuming the data to be periodic over a j
day period wauld be almost j times as greaf as the
error incurred [rom assuming the orbil Lo be periodic
over a single day, we discourage use of this routine
over lervals exceeding the [undamental period of
the data. In order to minimize the offects of the as-
sumption of periodicity ane shonld interpolate over a
single period.



The idea in generating our interpolant is to as-
sume that the data is from a periodic function of time
defined over the interval [0, 27) which can be repre-
sented by a trigonometric polynomial of the form

pn(t) = ao + Z (ay cos kt + by, sin kt)
k=1

In our problem we simply map the twenty-four hour
interval of interest into the interval [0,27) using a
linear change of variable. In deriving the coefficients
we follow the discussion of interpolating polynomials
and the Fast Fourier Transform found in Buchanan
and Turner [1992]. Clearly, the above equation can
be written as

n
pa) = Y e
k=—n
where the coeffcients are given by

'yk:ak—l—ibk k=—n -1

'yk:ak—ibk k:l,...,n

and, of course, 79 = ag. If we denote the point on
the unit circle corresponding to t € [0, 27) by

g — eit
we may then write
n
pult)y = W&
k=—n
If we denote the points corresponding to nodes by
& = ¢'ti = cos t; + isint;

the interpolation problem is to find the coefficients
satisfying

palty) = Y w&f = f(t;)

k=—n

where f(t;) are the function values for j =
0,1,...,2n. For an odd number of nodes, it can be
shown that

2n

1 _

+1 § fk gk;p p=-—-n,—n+ 1a cee
k=0

Pyp:?n

Unfortunately, as pointed out by Buchanan and
Turner [1992], the operation count for this discrete
Fourier Transform is O(n?) making it too expensive

Trigonometric Polynomial Residuals
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Figure 2: Trigonometric polynomial residuals (cm)

for practical application. Luckily, there is a faster
way to calculate the discrete Fourier coefficients.

Suppose that we have the case where the number of
nodes is of the form n = 2V, The task is then to find
the trigonometric polynomial p, which interpolates
f at the uniformly spaced data set tg,%t1,...,t,_1. In
this case the trigonometric polynomial can be calcu-
lated by using the Fast Fourier Transform, which has
an operation count of O(nlogn). This makes it an
attractive method for our purposes and we will refer
to 1t as the FFT method. Unfortunately, however,
over a twenty-four hour period our data will consist
of ninety-six points separated by intervals of 900 sec-
onds. Though ninety-six is not a power of two, we
nevertheless can use n = 2° = 32 points in the inter-
val to test our trigonometric polynomials. We simply
select every third point in the interval and calculate
the trigonometric polynomial which interpolates at
those thirty-two points. We may then compare the
Lagrange method to the FFT method by choosing
some subinterval having a length of 36 nodes, twelve
of which are used to generate the eleventh order La-
grange interpolating polynomial. These twelve nodes
(equally spaced with 3 times the spacing) should co-
incide with twelve of the thirty-two nodes used in the
FFT method.

The above calculations were performed with the
aid of Maple and a plot of residuals in centimeters 1s
shown in Figures (2) and (3). A linear change of vari-
able was used to map the trigonometric polynomial
defined on the interval [0, 27] into the interval [—1, 1].
Since we have taken every third point, the last one is
at 937/48 rather that 27. This is the reason why the
figures do not show symmetry about 0 which is 7 in
the original domain.



Trigonometric Polynomial Residuals
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Figure 3: Trigonometric polynomial residuals (cm),
(zoomed)

The subinterval chosen for this analysis was located
at the center of the set of nodes in order to show
the location where the trigonometric interpolant is
most accurate. Examination of Figure (3) reveals
that on a single subinterval the trigonometric polyno-
mial method agrees with the Lagrange interpolation
method to within only ten meters.

The effects of error growth near the ends of the
intervals for the FFT method could be handled by
shifting the twenty-four hour period over which the
trigonometric polynomial is derived, placing the data
point squarely in the center for the most accurate
work. A bound on the mean square error incurred
by approximating the periodic function f from which
the data is sampled by the interpolant p is given in
Briggs and Henson [1995] as

I1f = pll < Nl
where N is the number of data points, C' is a con-
stant and the periodic extension of f has (p—1) con-
tinuous derivatives, p > 1. Since continuity of the
periodic extension of f is required for this bound we
cannot use it unless the function 1s truly periodic on
the chosen interval. Briggs and Henson [1995] per-
form a trigonometric interpolation on an arbitrary
polynomial defined on [—1, 1] and comment that it is
not unreasonable to suspect the mean square errors
to decrease as N 1.

Brigham (1988) presents the Cooley-Tukey algo-
rithm for the case when N is not necessarily a power
of 2. Using this idea, we can use all 96 points which
will cut the error by a factor of 3.

Another concern will be the time required to eval-
uate the interpolant, so it 1s of interest to discuss the

rapid calculation of the trigonometric polynomials, in
particular the terms

cos wt, sin7t, cos 2xt, sin 2wt ..., cos nxt, sin nwt.

Using the trigonometric summation formulas one can
write the well-known recursion [Goertzel, 1960]

oy = cos kmt

T, = sin knt

Ok+1 — o1 -7 Ok E=1.9
Th41 T 0 Tk T

which requires only two trigonometric calculations in
order to recover all the needed terms. Of course, the
growth of round-off errors should always be checked
when using a long sequence (i.e. n large).

It is important that we use all the available data in
forming the trigonometric polynomial p, () because
the mean square error involved in using the FFT
method depends so critically on the number of data
points. Since the DFT seems to be computationally
expensive, we must resort to another algorithm.

Tshebyshev Polynomial Interpolation

In order for us to understand Tshebyshev polynomial
interpolation, it is necessary to re-examine the poly-
nomial interpolation of n + 1 data points on a given
interval. Given n+1 points on an interval, the nth de-
gree polynomial which interpolates those points over
the given interval is unique. Of course this does not
prevent us from writing the polynomial in a number
of different ways.

Before we describe what Tshebyshev polynomial
interpolation is; it may be a good idea to say what
it 1s not. Tshebyshev polynomial interpolation is not
the expression in the Tshebyshev polynomial basis of
an nth order polynomial which interpolates n+ 1 ar-
bitrary data points on a given interval. We are free to
choose any suitable polynomial basis for expressing
such a polynomial, but we must remember that the
results of any calculations performed using that poly-
nomial will be the same regardless of how the polyno-
mial is expressed; simply writing a given polynomial
in a different basis does not alter it. Therefore the
residuals which are produced when using these differ-
ent forms of the same polynomial will be the same.

However, another set of n+1 points on the same in-
terval would yield a different polynomial. As it turns
out, polynomial interpolation is sensitive to the dis-
tribution of the points being interpolated. If we were



allowed to choose the points on an interval to be inter-
polated, we would find that certain choices of n + 1
points would vield polynormials which did a beiler
job of interpolating than others. As stated, our data
polnts are evenly spaced throughout the wlerval of
interest, 8o that will not have the lnxury of choosing
a preferred sef of n + 1 points an any interval unless
we are able (o generale more dala, The lollowing dis-
cussion closely follows the treatment given by Press
el al [1992]. The Tshebyshev polynomial of degree n
on [—1, 1] is defineed as

T, (t) = cos(n arccost)

It follows that the "I'shebyshev polynomials satisfy
Lhe three term recurrence relalion
Toa1(t) = 2 Ta(t) — Ty () n=12...

In addition,

P ()

=0, EZn
1 1 —t2 i *

and

LTLOT() (7 k=n=0
Joo i—eg | 7/2 k=n#0

so that the I'shehyshev polynomials are orthogonal

on the interval [—1, 1] with respect Lo the weight [uwe-

tion w(t) = 1/+/1 —1t?. The first fow Tshebyshev

polynomials are given by

Ta(t) = O
() = $t* — 87 1
15(t) = 168° — 200% + B¢

It cau be shown thal the zeros of T,,(1) on [—1, 1] are
given by

i=L2 .. ...n
n

t; = cos [M]

and that the ‘I'shehyshev polynomials satisfy a dis-
crele orthogonalily condition [Press el al, 1992]

" 0 ik
Zﬂ(t.’i)ﬂ(tj)={rt/2 i=k#0
i=1 n i=hk=10

The powers of ¢ can also be cxpressed in the Tsheby-
shey polynomial hasis.

Any lunction f({) can be approximaled by a [inite
lincar combination of Tshebyshev polynomials, i.c.

i
1 : L
fit) = 50(1 + ?E_l a;1; (1)
where

a; = = l/_w H(H.

These cocticients a; can be computed numerically

nsing the A equally spaced data points

ti=—14+5At =01, M—-1

g
M1

via the composite midpoint rule (we have to

At =

e.q.
avoid evaluating the inltegrand at the endpoints, {p
and ty 1)

A —
_ 2 Z P S T (g 199
Z 1— fJ+1/’

where f{#;41,2) can be approximated by a quadratic
or cubic polynomial. Far example to use cubic splines
to approximate the integrand, we get

g M2 M—2

g | pa M2 i M2 B2
= [= Z i + - 5 by + — Z L Z dy
: J=0 " =0 §=0 §=0

where the integrand g(t) i1s approximated on the n-
terval [t;,f;41] by the cuhic polynomial
: 3 2
gty = a; (=107 + 0,08 — 1) + o5t —#;) + d;

We can also use the midpoint rule on the two left-
On
the rest ol the panels we can use the lourth order
Simpson’s % rule. 'Uhis will yield the following ap-
proximatbion [or the coellicients:

most panels and the two rightmost panels only.

At 2
&% = — 4!]3+*t13+ tl4+ Tt
T
ad b
-+ 31— 3+ LA 2+-1f11111}
where -
i &= JUG)TL(L)



If the number of pancls left for Simpson’s 1; rule 13
not even, we can take the trapezoidal rule over ane of
the panels (in here we took thie third [rom last panel).
For cxample, we show below the formula for an odd
number of pauels:

At

T

y

b bl 4
{4!72 + e + S + ﬁﬂﬁ

3

8 3
et simoat M os g2+ 4.%141} :

3
To evaluate f{r) we then use the following recur-
sion:

N2 =D

F= NN 1,20

d_f\; 4l 7)

dj = 2rdjp — djpa +ay,
1
f(T) = d(] = Td1 — dg + 50..;3.

I'he benefit of "I'shebyshev expansion is that the
maxitnuimn deviation on the interval s minimized,
Thus it will not suffor from the disadvantage of higher
order palynomials, that is the error here doesn’t grow
rapidly near the endpoints of the wlerval. Therelore
we eliminate the need for “walking” interpalator.

Conclusions

This has been a preliminary study of various 1n-
terpolation methods for GI'S ephemeris data. The
alternate long-arc methads of interpolation we have
tricd so far yicld much greater than 1 em crror when
compared to the short-arc eleventh order Lagrange
polynomial. Ilowever, more work should be done be-
fore completely ruling out theose alternate methods.

Our study docs indicate that the use of differ-
ence tahles should he more efficient than the direct
method currently used to construct and cvaluate the
lL.agrange polynamials.
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