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Abstract

A limited-area model of nonlinear shallow water equations (SWE) with the Coriolis term in a
rectangular domain is considered. The rectangular domain is extended to include the so-called perfectly
matched layer (PML). Following the proponent of the original method, the PML equations are obtained
by splitting the shallow water equations in the coordinate directions and introducing the damping terms.
The efficacy of the PML boundary treatment is demonstrated in the case where a Gaussian pulse is
initially introduced at the center of the rectangular physical domain. A systematic study is carried out
for different mean convection speeds, and various values of the PML width and the damping coefficients.
For the purpose of comparison, a reference solution is obtained on a fine grid on the extended domain
with the characteristic boundary conditions. The L2 difference in the height field between the solution
with the PML boundary treatment and the reference solution along a line at a downstream position
in the interior domain is computed. The PML boundary treatment is found to yield better accuracy
compared with both the characterisitic boundary conditions and the Engquist-Majda absorbing boundary
conditions on an identical grid.

1Preprint FSU-CSIT-01-41. Submitted to Monthly Weather Review..



1 Introduction

In a limited-area numerical weather prediction model, the lateral boundaries are not physical boundaries, and
they require artificial boundary conditions so that the problem is well-posed and the solution in the limited
area remains uncontaminated and consistent with the global solution. As such the treatment of lateral
boundaries with the nonreflecting or absorbing boundary conditions has been the subject of continuing
interest since the early days of numerical weather prediction.

Several good reviews are available on the topic of both physical and artificial boundary conditions (Givoli
and Harari 1998; Turkel 1983 ; Givoli 1991; Mcdonald 1997; and Tsynkov 1998). Givoli and Harari (1998)
have edited a special issue of Computer Methods in Applied Mechanics and Engineering on the subject
of boundary conditions for exterior wave propagation problems. Turkel (1983) provided an early review
on the outflow boundary conditions in the context of computational aerodynamics. Givoli (1991) reviews
nonreflecting boundary conditions for the wave problems, discusses local and nonlocal boundary conditions
for physical and artificial boundaries in the context of problems from different disciplines. McDonald’s (1997)
review is confined to lateral boundary conditions for operational regional forecast models. Kalnay (2001)
presents the state of art of limited area boundary conditions as used in meteorology. The most comprehensive
survey to date of artificial boundary conditions is due to Tsynkov (1998). He provides a comparative
assessment of the current methods for constructing the artificial boundary conditions and divides them into
two categories – local and global artificial boundary conditions. Local artificial boundary conditions are
algorithmically simple but relatively less accurate than the global ones that are highly accurate and robust
but computationally expensive if not impractical. His difference potential approach although nonlocal is said
to be computationally inexpensive and easy to implement. Any practical algorithm should be a compromise
between these two categories. The sponge-layer approach (that includes the PML methodology) may be
viewed as a compromise between local and nonlocal approaches. Although it involves no global integral
relations along the boundary, a certain amount of nonlocality persists since the computational domain is
artificially enlarged to include the sponge layer wherein the model equations are solved using a numerical
method close or identical to the one employed in the interior domain.

The approaches of Givoli and Keller (l989) typify the global artificial boundary conditions. They seem
to work only in specific geometries and they are obviously not very popular. Typical examples of local
approaches to artificial boundary conditions are those of Gustafson and Sundstrom (1978) and Engquist and
Majda (1977,1979). These methods can be viewed as a generalization of the Sommerfeld radiation condition
and the traditional characteristic boundary conditions. The so-called transparent boundary conditions of
McDonald (2001a, 2001b) and of Holstad and Lie (2001) and Lie (2001) applied to the shallow water equations
belong to this category.

In the buffer/sponge layer approach, the computational domain is abutted on by the artificial layers
in which the waves are either damped or accelerated to supersonic outflow (Perkey and Kreitzberg 1976),
Davies (1976), Israeli and Orszag (1981). The boundary relaxation scheme of Davies (1976,1985) is such an
approach, and it is most frequently used for limited area forecasting using mesoscale model. Typically the
forecast equations at the boundary are modified by the addition of a Newtonian relaxation term that damps
the differences between the mesoscale and host model at inflow boundaries while mitigating the effects of
overspecification at the outflow boundaries.

The perfectly matched layer (PML) method recently introduced by Berenger (1994) in the context of
electromagnetic wave propagation is an improvement on the sponge layer method which has been in vogue
in the atmospheric community for almost two decades. The parameters of the PML are chosen such that
the wave either never reaches the external boundary, or, even if it reaches the boundary and reflects back,
its amplitude is negligibly small by the time it reaches the interface between the sponge layer and interior
domain (Clement 1996; Karni 1996; R. Kosloff and D. Kosloff 1986; Hu 1996; Collino 1996; Hayder et al.
(1999), Hayder and Atkins 1997). The work of Hayder et al. (1999) is the first to demonstrate the viability
of the PML method in the applications to nonlinear Euler equations. A preliminary work of Darblade et al.
(1997) implements the PML method to the linearized shallow water equations model in oceanography.
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Abarbanel and Gottlieb (1997) provide the general mathematical analysis of the PML method while
Abarbanel et al (1999) provide a well posed version of PML for advective acoustics. Abarbanel and Gottlieb
(1998) provide the mathematical framework for use of PML in computational acoustics. The well posedness
of PML for linearized Euler equation and for the Cauchy problem is discussed in Rahmouni (2000) and
Metral and Vacus (1999), respectively. The PML approach has been shown to provide significantly better
accuracy than most other artificial boundary conditions in many applications.

The paper is organized as follows. In section 2, we introduce the PML approach to the linearized two-
dimensional shallow-water equations for the purpose of analysis. The implications of the split shallow-water
model and its weak hyperbolicity are discussed shedding some light on the stability issues of this approach.
Reflection and transmission of waves at the interface between two perfectly matched layers is also discussed.
Numerical implementation of the PML approach for a limited-area nonlinear shallow water equations model
is presented along with the numerical results for the case of a pulse introduced initially at the center of
the interior domain. The results are compared with those obtained by employing Engquist-Majda and
characteristic boundary conditions. Summary and conclusions are presented in section 3. In the interest of
completeness, we provide a brief description of Engquist-Majda approach and the sponge layer approach in
the appendix.

2 The perfectly matched layer methodology

The perfectly matched layer (PML) technique was first introduced by Berenger (1994) for electromagnetic
wave propagation governed by the Maxwell equations. A sponge-layer or medium is introduced in a region
adjacent to the artificial boundary of a computational domain.

It is understood that the sponge or buffer-zone solutions themselves need not be physical and they only
serve to prevent contamination of the solution in the physical domain by the reflection from the computational
boundaries. Usually the absorbing layers are terminated using characteristic boundary conditions. We thus
observe a certain analogy between the PML approach and the sponge boundary conditions used previously
in meteorology.

In a typical implementation of the PML method, the absorption coefficients in the layer vary spatially in
the form:

σ = σm

(
d

D

)λ

where D is the thickness of PML, d is the distance from the interface with the interior domain and λ is a
constant.

In what follows we will develop first the framework of the PML method for the linearized shallow-water
(S-W) equations followed by numerical tests on the nonlinear shallow water equations.

2.1 Application of the split PML to the linearized S-W equations

The two dimensional linearized S-W equation assumes the form

∂

∂t
u+ U

∂

∂x
u+

∂

∂x
φ = 0 (1)

∂

∂t
v + U

∂

∂x
v +

∂

∂y
φ = 0 (2)

∂

∂t
φ+ U

∂

∂x
φ+ c2(

∂u

∂x
+
∂v

∂y
) = 0 (3)

where u and v are horizontal velocities in the x and y directions respectively and φ is the geopotential φ = gh,
where H is the height of free surface from basic state, h is a deviation of height from H , and c is the phase
speed of surface gravity waves, i.e. c =

√
gH.
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Let us define the following splitting of the fields u, v, φ into, (u1, u2), (v1, v2), (φ1, φ2) for the perfectly
matched layer:

∂u1
∂t

+ σxu1 = −∂(φ1 + φ2)
∂x

(4)

∂u2
∂t

+ σxu2 = −U ∂(u1 + u2)
∂x

(5)

∂v1
∂t

+ σyv1 = −∂(φ1 + φ2)
∂y

(6)

∂v2
∂t

+ σxv2 = −U ∂(v1 + v2)
∂x

(7)

∂φ1

∂t
+ σxφ1 = −c2 ∂(u1 + u2)

∂x
− U ∂(φ1 + φ2)

∂x
(8)

∂φ2

∂t
+ σyφ2 = −c2∂(v1 + v2)

∂y
(9)

In the above the coefficients σx and σy have been introduced for the absorption of waves in the PML
layer. We will refer to them as absorption coefficients in this work and they will be assumed to be non
negative. We notice that when

σx = σy = 0 (10)

we are reduced to the original linearized 2-D shallow-water equations with

u = u1 + u2 (11)

v = v1 + v2 (12)

φ = φ1 + φ2 (13)

The spatial derivatives involve only the total fields of u, v and φ which are assumed to be continuous at
the interface between the interior domain and the PML layer.

Two types of interfaces are being created, namely, the interfaces between the interior domain and the
PML domain and those between two adjacent PML domains.

We proceed to calculate the wave propagation and absorption properties within a perfectly matched layer
followed by the derivation of the reflection and transmission coefficients at the interface between two PML
domains for the linearized shallow water equations.

Let a plane wave in the PML domain be expressed as

[u1, u2, v1, v2, φ1, φ2] = [u10, u20, v10, v20, φ10, φ20]ei(kxx+kyy−ωt) (14)

the subscripts being used to denote the amplitude of the components. Substituting (14) into (4)-(9) we
obtain

(ω + iσx)u10 = kx(φ10 + φ20) (15)

(ω + iσx)u20 = kxU(u10 + u20) (16)

(ω + iσy)v10 = ky(φ10 + φ20) (17)

(ω + iσx)v20 = kxU(v10 + v20) (18)

(ω + iσx)φ10 = c2kx(u10 + u20) + kxU(φ10 + φ20) (19)

(ω + iσy)φ20 = c2ky(v10 + v20) (20)

Let us consider the case when
ω − kxU + iσx �= 0 (21)
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Then the components in (14) can be expressed as

u20 =
kxU

ω − kxU + iσx
u10 (22)

v20 =
kxU

ω − kxU + iσx
v10 (23)

φ10 =
c2kx(ω + iσx)

(ω − kxU + iσx)2

(
u10 +

kyU

ω + iσy
v10

)
(24)

φ20 =
c2ky

ω − kxU + iσx

ω + iσx

ω + iσy
v10 (25)

We also obtain
(
ω + iσx

ω + iσy
)
u10
v10

=
kx
ky

(26)

By substituting expressions for φ10 and φ20 into (15) and (17) we obtain

u10 =
k2xc

2(ω + iσy)u10 + c2kxky(ω + iσx)v10
(ω − kxU + iσx)2(ω + iσy)

(27)

(ω + iσy)v10 =
c2kxky(ω + iσy)(ω + iσx)u10 + c2k2y(ω + iσx)2v10

(ω − kxU + iσx)2(ω + iσy)
(28)

The 2-D linearized S-W equations dispersion relation (neglecting the Coriolis force) is:

(ω − Ukx)2 = c2(k2x + k2y) (29)

where an assumption of wave solutions of the form

φ(x, y, t) = φ0 e
i(kxx+kyy−ωt) (30)

is made, i.e.,

kx = ω

{
U ± c[1 + (k2y/ω2)(U2 − c2)]1/2

U2 − c2
}

(31)

(See Durran et al., 1993). A first-order Taylor expansion of the square root yields:

kx =
ω

U ∓ c ±
ck2y
2ω

(32)

Solving (29) for ky yields, after linear approximation of the square root,

ky = ±[
ω − Ukx
c

− ck2x
2(ω − Ukx) ] (33)

For PML we obtain the 2-D shallow-water dispersion relationship in the form:

(ω − kxU + iσx)2(ω + iσy)2 − k2xc2(ω + iσy)2 − k2yc2(ω + iσx)2 = 0 (34)

This reduces, inside the interior domain where σx = σy = 0, to

(ω − kxU)2ω2 = c2ω2(k2x + k2y) (35)

i.e., yielding an identical expression as (29). Collecting u10 terms in (27), dividing by ω + iσy and making
use of (26) we get,
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kx = ±(ω − kxU + iσx)
u10

c
√
u210 + v210

(36)

Substituting this in (26) we get an expression for ky as

ky = ±(ω − kxU + iσy)
ω + iσy

ω + iσx

v10

c
√
u210 + v210

(37)

If u10/v10 is real for solution of the S-W equations then one could express u10 and v10 as

u10 = A cosΦ (38)

v10 = A sinΦ (39)

where A is a complex number and Φ is a real number. If we substitute (38) and (39) into (36) and (37) and
we solve for kx and ky, we obtain (by taking only the + sign)

kx =
(ω + iσx)
c+ U cosΦ

cosΦ (40)

ky =
(ω + iσy)
c+ U cosΦ

sinΦ (41)

Using these expressions we can simplify expressions (22)-(25) so as to get the plane wave solutions to (15)-(20)
to be expressed as



u1
u2
v1
v2
φ1

φ2




= A




cosΦ
U/c cos2 Φ

sinΦ
U/c cosΦ sinΦ
c cos2 Φ + U cosΦ

c sin2 Φ




e
iω

(
cosΦ

c+ U cosΦ
x+

sinΦ
c+ U cosΦ

y − t
)
×

e
(− σx cosΦ
c+ U cosΦ

x− σy sinΦ
c+ U cosΦ

y)

(42)

This expression represents a wave propagating with gravity wave speed relative to the mean flow and making
an angle Φ with the x axis. When both σx and σy �= 0, the magnitude of the wave decreases exponentially
as it propagates in either the x or y directions, respectively.

2.2 Weak hyperbolicity of the split PML

2.2.1 Analysis of the linearized S-W equations

The 2-D linearized shallow water model assumes the form

∂

∂t
u+ U

∂

∂x
u+

∂

∂x
φ− fv = 0 (43)

∂

∂t
v + U

∂

∂x
v +

∂

∂y
φ+ fu = 0 (44)

∂

∂t
φ+ U

∂

∂x
φ+ c2(

∂u

∂x
+
∂v

∂y
) = 0 (45)

We can write the system as
∂W

∂t
+A
∂W

∂x
+B
∂W

∂y
+ CW = 0
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where the vector W is 
 uv

1
cφ




and the matrices A,B and C are

A =


 U 0 c

0 U 0
c 0 U




B =


 0 0 0

0 0 c
0 c 0




C =


 0 −f 0
f 0 0
0 0 0




Since A and B are symmetric and the equation is hyperbolic, the system is strongly well-posed (Gustafson
and Sundstrom, 1978)

2.2.2 Analysis of the split-PML linearized shallow water equations including the Coriolis
factor

The 2-D linearized shallow water model assumes the form (43)-(45). If we include the absorption coefficients
for the PML prior to the splitting we have:

∂

∂t
u+ U

∂

∂x
u+

∂

∂x
φ− fv = −σuu (46)

∂

∂t
v + U

∂

∂x
v +

∂

∂y
φ+ fu = −σvv (47)

∂

∂t
φ+ U

∂

∂x
φ+ c2(

∂u

∂x
+
∂v

∂y
) = −σφφ (48)

The inclusion of the Coriolis factor in the nonlinear shallow-water equations requires the following
modification of the PML split form:

∂u1
∂t

+
∂φ

∂x
= −σxu1

∂u2
∂t

+ U
∂u

∂x
= −σxu2

∂u3
∂t

− fv = 0

∂v1
∂t

+
∂φ

∂y
= −σyv1 (49)

∂v2
∂t

+ U
∂v

∂x
= −σxv2

with φ = φ1 + φ2, u = u1 + u2 + u3 and v = v1 + v2 + v3. A similar approach was used for the linearized
shallow-water equations in oceanography by Darblade et al. (1997).

These equations can be written as

∂W s

∂t
+As ∂W

s

∂x
+Bs ∂W

s

∂y
+ CsW s = 0
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where the vector W s is defined as[
u1 u2 u3 v1 v2 v3

1
c
φ1

1
c
φ2

]T

and the matrices As, Bs and Cs are

As =




0 0 0 0 0 0 c c
U U U 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 U U U 0 0
0 0 0 0 0 0 0 0
c c c 0 0 0 U U
0 0 0 0 0 0 0 0




Bs =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 c c
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 c c c 0 0




Cs =




σx 0 0 0 0 0 0 0
0 σx 0 0 0 0 0 0
0 0 0 −f −f −f 0 0
0 0 0 σy 0 0 c c
0 0 0 0 σx 0 0 0
f f f 0 0 0 0 0
0 0 0 0 0 0 σx 0
0 0 0 0 0 0 0 σy




The matrix S that diagonalizes As is

S =




−1 −1 0 0 0 0 − c
U

1

1 0 0 0 0 0 1
U

c

0 1 0 0 0 0 0 0
0 0 −1 0 −1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0

0 0 0 −1 0 0
c− U
U

c+ U
c

0 0 0 1 0 0 0 0
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The inverse is

S−1 =




U2

c2 − U2

c2

c2 − U2

U2

c2 − U2
0 0 0 − Uc

c2 − U2
− Uc

c2 − U2

0 0 1 0 0 0 0 0
0 0 0 −1 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0

−1
2
U

c− U −1
2
U

c− U −1
2
U

c− U 0 0 0
1
2
U

c− U
1
2
U

c− U
1
2
c

c+ U
1
2
c

c+ U
1
2
c

c+ U
0 0 0

1
2
c

c+ U
1
2
c

c+ U




It is easy to show that

S−1AsS =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 U 0 0
0 0 0 0 0 0 U − c 0
0 0 0 0 0 0 0 U + c




Note that S−1AsS is a diagonal matrix with 5 zero eigenvalues being introduced as a result of the splitting.
It is straightforward to show that these five additional eigenvalues imply that S and S−1 cannot transform
Bs into a matrix that can be made symmetric by multiplication with a positive definite diagonal matrix (see
Hesthaven 1998). The most general diagonalizer of As is S = TR (Abarbanel 1999) where the columns of T
are the eigenvectors of As and R is a matrix such that the columns of S are the most general representation
of the eigenvectors of As.

2.3 Reflection and transmission at an interface between two perfectly matched
layers

Let us consider the wave reflection and transmission at an interface between two PML domains. This includes
the interface between the interior limited area domain and the PML domain. The absorbing coefficients σx

and σy will be chosen such that σy is the same across the interface normal to y.
The linearized S-W equations can be viewed as the split field PML linearized S-W equations with both

absorption coefficients being zero across an interface normal to x and y between an interior domain and a
PML domain. To illustrate this we present in the following diagram the absorption coefficients on a corner
of the computational domain.

PML (0, σy) (σx, σy)
(0, 0) (σx, 0)

interior PML

We will show that reflection coefficient at an interface downstream normal to x is zero for incident gravity
waves, a result that carries over for the interfaces. Let the interface be located downstream at x = 0 and let
absorption coefficients be denoted by σx1 and σy on one side of it and σx2 and σy on the other. We consider
incident, reflected and transmitted waves.
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a. Incident wave


u1
u2
v1
v2
φ1

φ2




= Ai




cosΦi

(U/c) cosΦi

sinΦi

(U/c) cosΦi sinΦi

c cos2 Φi + U cosΦi

c sin2 Φi




e
iω

(
cosΦi

c+ U cosΦi
x+

sinΦi

c+ U cosΦi
y − t

)
×

e
(− σx1 cosΦi

c+ U cosΦi
x− σy sinΦi

c+ U cosΦi
y)

(50)

b. Reflected wave


u1
u2
v1
v2
φ1

φ2




= Ai




− cosΦr

(U/c) cosΦr

sinΦr

−(U/c) cosΦr sinΦr

c cos2 Φr − U cosΦr

c sin2 Φr




e
iω

( − cosΦr

c− U cosΦr
x+

sinΦr

c− U cosΦr
y − t

)
×

e
(
σx1 cosΦr

c− U cosΦr
x− σy sinΦr

c− U cosΦr
y)

(51)

c. Transmitted wave


u1
u2
v1
v2
φ1

φ2




= Ai




cosΦt

(U/c) cosΦt

sinΦt

(U/c) cosΦt sinΦt

c cos2 Φt + U cosΦt

c sin2 Φt




e
iω

(
cosΦt

c+ U cosΦt
x+

sinΦt

c+ U cosΦt
y − t

)
×

e
(− σx2 cosΦt

c+ U cosΦt
x− σy sinΦt

c+ U cosΦt
y)

(52)

The transmitted wave can have another component of

ω − kxU + iσx = 0 (53)

in which case
kx =

ω + iσx

U
(54)

It also follows u10 = v10 = 0 and from (15), (17)

φ10 + φ20 = 0 (55)

One can express u20 and v20 as
u20 = −B sinψ (56)

v20 = B cosψ (57)

For ky one obtains upon dividing (19) by (20) and using (54)-(57)

ky =
ω + iσy

U
tanψ (58)
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So in this case the plane wave solutions will take form


u1
u2
v1
v2
φ1

φ2




=




0
−B sinψ

0
B cosψ

−Bc2 sinψ/U
Bc2 sinψ/U



e
iω

(
1
U
x+

tanψ
U

− t
)
e
(−σx

U
x− σy tanψ

U
y)

(59)

Thus the transmitted wave may have a component


0
−Bt sinψt

0
Bt cosψt

−Btc
2 sinψt/U

Btc
2 sinψt/c



e
iω

(
1
U
x+

tanψt

U
y − t

)
e
(−σx2

U
x− σy tanψt

U
y)

(60)

At the interface we impose continuity conditions, i.e. that u1 + u2, v1 + v2, and φ1 + φ2 be continuous.
Since continuity is valid for all values of y at the interface it follows that the coefficients of y in the

exponents of (a), (b), (c) (incident, reflected and transmitted values), must be the same.
This yields

sinΦr

c− U cosΦr
=

sinΦi

c+ U cosΦi
(61)

sinΦt

c+ U cosΦt
=

sinφi

c+ U cosΦi
(62)

tanψt = tanψi (63)

We assume
tanψi

U
=

sinΦi

c+ U cosψi
. (64)

We then find from the above that

Φr = 2 tan−1

(
1 − U
1 + U

tan
Φi

2

)
(65)

Φt = Φi (66)

ψt = ψi (67)

Using the continuity of u1 + u2, v1 + v2 and φ1 + φ2 we have,

Ai(c+ U cosΦi) cosΦi − Ar(c− U cosΦr) cosΦr −Bi sinψi

= At(c+ U cosΦt) cosΦt −Bt sinψt
(68)

Ai(c+ U cosΦi) sinΦi + Ar(c− U cosΦr) sinΦr +Bi cosψi

= At(c+ U cosΦt) sinΦt +Bt cosψt
(69)

Ai(c+ U cosΦi) +Ar(c− U cosΦr) = At(c+ U cosΦt) (70)

Using (65)-(67), the above 3 equations may be rewritten as a linear system of 3 homogeneous equations for
Ai −At, Ar, and Bi −Bt, provided the coefficient determinant is different from zero. A straightforward but
lenghty calculation shows that the coefficient determinant is not zero for any angle of incidence. Thus the
only solution is the trivial one , i.e. Ar = 0, At = Ai, and Bt = Bi. Thus for the linearized S-W equations at
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the interface between two PML domains downstream normal to the x-axis with PML absorption coefficients
(σx1, σy), (σx2, σy) we get null reflection while transmitted waves will maintain same direction and amplitude
as the incident waves. This result is subject to the restrictions imposed by assumptions of linearity. Since
it has been shown by Hu (1996), Tam et al. (1998), and Abarbanel et al. (1999) that the PML approach is
only weakly stable, a low pass filter of the form

1 − sin10

(
k∆x
2

)
(71)

where k is the wave number and ∆x the grid spacing has been used in the aforementioned references.
In practical applications of the PML method a gradually varying absorption coefficient of the form

σ = σm

(
d

D

)β

(72)

is used where D is the thickness of the PML domain and d is the distance from interface with interior domain.
If we apply at the end of the PML domain a radiation boundary condition, then the wave is reflected and
upon reflection in the domain its total reflection factor is expressed as

e
−2σmD

β + 1
cosΦ

c2 − U2 cos2 Φ (73)

for gravity waves and for Rossby waves it can be estimated as

e
− σmD

U(β + 1) (74)

In experiments with linearized Euler equations a gradual σ variation was used with a value of

σmD

β + 1
≈ 8 (75)

Usually a value of β ≈ 3 is taken , i.e. σmD = 32. We will use these values as guidelines for our numerical
experiments.

2.4 Numerical implementation considerations

A 2-D nonlinear shallow-water equations solver based on the explicit Miller-Pearce finite difference scheme
is used (Miller and Pearce 1974). The scheme has a CFL stability condition

∆t ≤ ∆x
c

where c is the speed of external gravity waves. Spatial differencing of the nonlinear shallow water equations
was carried out on a rectangular domain of 61 × 61 grid points, with a spatial horizontal grid length of
∆x = ∆y = 20km.

To demonstrate the implementation of the PML equations we used a number of variable thickness stencils
of the PML region - thus allowing a gradual variation in the PML domain.

At the outer boundary of the PML domain we apply characteristic boundary conditions.
We compared the results with a control simulation computed on a much larger domain i.e. a domain of

[−240, 240 ]×[−240, 240 ] which is not affected by the boundary conditions for the integration time span. The
interior domain where the unaltered nonlinear shallow-water equations are applied is [−20, 20 ]× [−20, 20 ].

To assess the accuracy of the proposed scheme, we have computed either the maximum error in the height
field along the line x = 18 inside the inner domain as a function of time. This is done both in the infinity
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Figure 1: The evolution of the L2 height error along the line x = 18 for various PML layer thicknesses
for Um = 30m/sec. The error computing only characteristic or second order Engquist-Majda boundary
conditions is given for comparison.

norm as well as in the L2 norm. This allows us to verify the efficiency of the PML absorbing layer as a
function of the width of the layer. Characteristic shallow water boundary conditions are used to terminate
the PML layer domain.

We observe that even for a PML layer of thickness of only 6∆x, the PML scheme outlined above
outperforms the characteristic boundary conditions , while increasing the width of the PML layer leads
to a significant increase in accuracy.

The present results are without the use of filtering, despite the fact that linear analysis of the scheme
points to weak well-posedness (Hesthaven 1998). As expected the height field wave propagates undisturbed
from the computational domain with no visible reflections. The main result obtained is that we solve the
PML split version for the nonlinear shallow water equations and the results show that the split scheme
including the Coriolis factor is stable thus confirming the decaying properties of fields inside the PML layer.

The L2 norm difference between the computed and reference solutions along a line inside the inner
domain two grid points away from the PML boundary namely at x = 18 (in absolute distance) is presented
in Figure 1 as a function of time. This measures the magnitude of the reflected wave at the outflow boundary.
PML domains whose thickness are 6, 10, 12, 14, 16, 20 and 30 grid points have been used in the numerical
experiments described below.

The initial conditions are :
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h = hav + Ae
−
(x− x0)2 + (y − y0)2

L2 , (76)

u = 2
g

f0
A
y − y0
L2

e
−
(x− x0)2 + (y − y0)2

L2 , (77)

v = −2
g

f0
A
x− x0
L2

e
−
(x− x0)2 + (y − y0)2

L2 , (78)

where A is the amplitude, (x0, y0) is the initial center of Gaussian vortex, hav is a reference height, f0 being
the Coriolis parameter at a reference latitude.

2.5 Results

Here we report on the results of our numerical experiments with various values of mean flow speeds and
absorption coefficients for the PML layer. In all experiments we let the center of the Gaussian be at the
origin, i.e. (x0, y0) = (0, 0), the Gaussian amplitude is A = 6 and L = 4. In the first experiment the PML
parameters are β = 2 and σm = 0.0012. The mean flow speed varied from Um = 0m/sec to Um = 100m/sec.

In figures 1–2(c) we take Um = 30m/sec. Figure 1 shows the L2 error in the height field between the PML
layer domain and the reference solution along a line located inside the interior domain, two grid points away
from the PML layer boundary. For comparison we present the results obtained with models having different
values of the thickness of the PML layer (6∆x-30∆x) as well as results arrived at using only characteristic
variables or results obtained using the second order Engquist boundary conditions.

From Figure 1 we note that, during a first stage, the L2 error differences for all the various layer thicknesses
start by growing up quickly, while at the second stage, they display a tendency to flatten out, after about
7000 seconds, while at the third stage, they grow up again attaining a size of the order of 10−2, and
become constant thereafter (this is related to the exit of the Gaussian vortex from the model domain). The
errors computed using only the characteristic boundary conditions and the second order Engquist boundary
conditions are given for comparison. The depth of PML layer obviously impacts on the results, namely the
thicker the PML layer is, the better are the results achieved. In the same figure, it can also be seen that all the
results for the PML layers of various thicknesses are better than those obtained by either the characteristic
boundary condition (highest dashed line) or second order Engquist boundary conditions (second highest
line).

The time history of the Gaussian pulse transported by the mean flow and propagating towards the right
boundary is presented in Figures 2(a) - 2(c) in terms of height contours. Figure 2(a) shows the contour
lines initially, while Figure 2(b) shows the contours when the outer edge of the Gaussian reaches the PML
boundary. Figure 2(c) shows the vortex passing through the PML layer. One notes that the Gaussian vortex
passes without reflection through the PML boundary. In the PML region, the contours are deformed, since
their amplitudes are reduced towards the outer boundary.

In the next experiment we have increased the mean flow speed to Um = 40m/sec. Figure 3 shows the
evolution of the L2 error along the same vertical line inside the interior domain, two grid points away from
the PML layer boundary. The results are similar to those obtained with Um = 30m/sec, however the times
at which the different stages are attained differ, due to faster movement of the Gaussian vortex towards
the right boundary. Again when using the characteristic boundary conditions or the second order Engquist
boundary conditions we get larger L2 errors.

The time history of the Gaussian pulse transported by the mean flow and propagating towards the right
boundary is presented in Figures 4(a) - 4(c) in terms of height contours. Figure 4(a) shows the contour lines
at the initial time, while Figure 4(b) shows the contours when the outer edge of the Gaussian reaches the
PML boundary. Figure 4(c) shows the vortex passing through the PML layer. Again one notes that the
Gaussian vortex passes without reflection through the PML boundary. In the PML region, the contours are
deformed, since their amplitudes are reduced towards the outer boundary.
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(a) Height contours for the Gaus-
sian profile propagating with convective
mean velocity of Um = 30m/sec. The
computed result is given at t = 90sec.
for a PML layer thickness of 6 grid
points.

(b) Same as Fig. 2(a) but the computed
result is at t = 720sec.

(c) Same as Fig. 2(a) but the computed
result is at t = 16200sec.

Figure 2:
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Figure 3: The evolution of the L2 height error along the line x = 18 for various PML layer thicknesses for
Um = 40m/sec. The error computing only characteristic or second order E-M boundary conditions is given
for comparison.

The next experiment takes a high mean flow speed of Um = 100m/sec. Figure 5 show a comparative L2

error norm in the height field. For this high mean flow speed strong oscillations are noticed for the PML
layer model after 15000 seconds, when the vortex has moved out of PML region. Again the errors are largest
when using either the characteristic boundary conditions or the Engquist boundary conditions.

The time history of the Gaussian pulse transported by the high mean flow speed of Um = 100m/sec and
propagating towards the right boundary is presented in Figures 6(a)– 6(c) in terms of height contours.

We also tested the PML method for a non-convective case where Um = 0. Figure 7 represents the
evolution of the L2 error. Again the error computed using only characteristic boundary conditions and
second order Engquist boundary conditions is given for comparison. In this case the three stages come very
early and by 2000 seconds the curves flatten out. As before, the PML performs better than the characteristic
and Engquist boundary conditions. See Figures 8(a)–8(c) for the height contours of the Gaussian at different
times. Note that since this is a non-convective case the center stays at the origin at all times.

We carried out the same numerical experiments with another set of values of the absorption coefficients
for the PML layer, i.e. σm and β. Figures 9–14(c) show the results of an experiment with β = 3 and
σm = 0.006 and various values of mean flow speed. The results obtained for Um = 30m/sec display a better
separation between the different layer thicknesses of the PML domain. As in all previous cases the PML
errors are smaller than those using the characteristic or Engquist boundary conditions. Figures 10(a)–10(c)
show the height contours of the Gaussian at different times for a mean flow velocity of Um = 30m/sec. There
is no difference between the first two figures 10(a)–10(b) and the corresponding ones, figures 2(a)–2(b). The
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(a) Same as Fig. 2(a) but for Um = 40m/sec. (b) Same as Fig. 4(a) but the computed result
is given at t = 5400sec.

(c) Same as Fig. 4(a) but the computed result
is given at t = 9900sec.

Figure 4:
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Figure 5: Same as Fig. 1 but for mean velocity Um = 100m/sec.

effect of the absorption coefficient manifest itself in Figure 10(c) as a wider vortex whose right boundary
closer to the right boundary of the domain.

Figure 11 represents the evolution of the L2 error in the height field for Um = 40m/sec. The error
computed using only characteristic boundary conditions or second order Engquist boundary conditions is
given for comparison. Again these two didn’t perform as well as the PML schemes. Figures 12(a)–12(c) show
the height contours of the Gaussian at different times. As in the previous experiment, we see the same effect
of the absorption coefficients on the height contours at the three times, i.e. only at the last time plotted.

Figure 13 represents the evolution of the L2 error for Um = 100m/sec. The error computed using
only characteristic boundary conditions or second order Engquist boundary conditions are, as in other
experiments, the largest. The case with the smallest (6∆x) thickness of PML layer is giving as large errors
as the second order Engquist boundary condition when the time is between 5000 to 10000 seconds. This is
the only case where the PML layer has a difficulty due to the lower value of σm tested combined with the
high value of the mean flow field. See Figures 14(a)–14(c) for the height contours of the Gaussian at different
times. A numerical analysis of the propagation of fast gravity waves is given in Appendix A.

All the other results obtained show that the PML layer experiments are successful in terms of reduced
reflectivity when compared to either charcteristic well-posed boundary conditions or to the second order
Engquist boundary conditions for the nonlinear shallow-water equations model.

To measure the efficiency of the PML scheme in the inflow layer, we plotted (Figure 15) the L2 error
in the height field along the line x = −18 (in the left layer) for the same case described in Figure 1. The
maximum error is smaller for the characteristic and Engquist second order boundary conditions. As for the
PML, the only difference is at the onset of the third stage when curves flatten out.
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(a) Same as Fig. 2(a) but for Um = 100m/sec. (b) Same as Fig. 6(a) but the computed result
is given at t = 2070sec.

(c) Same as Fig. 6(a) but the computed result
is given at t = 5400sec.

Figure 6:
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Figure 7: Same as Fig. 1 but for the non-convective case whenUm = 0m/sec.
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(a) Same as Fig. 2(a) but for the non-

convective case when Um = 0m/sec. and result
is given at t = 90sec.

(b) Same as Fig. 8(a) but the computed result
is given at time t = 2700sec.

(c) Same as Fig. 8(a) but the computed result
is given at t = 3600sec.

Figure 8:
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Figure 9: The evolution of the L2 height error along the line x = 18 for various PML layer thicknesses
for Um = 30m/sec but for PML layer parameters σN = 0.006 and λ = 3. The error computing only
characteristic or second order Engquist-Majda boundary conditions is given for comparison.
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(a) Same as Fig. 2(a) but for σN = 0.006 and

λ = 3 and Um = 30m/sec.

(b) Same as Fig. 10(a) but the computed result
is given at time t = 7200sec.

(c) Same as Fig. 10(a) but the computed result
is given at t = 16200sec.

Figure 10:
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Figure 11: Same as Fig. 9 but for Um = 40m/sec.
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(a) Same as Fig. 10(a) but for Um = 40m/sec.
and result is given at t = 90sec.

(b) Same as Fig. 12(a) but the computed result
is given at time t = 5400sec.

(c) Same as Fig. 12(a) but the computed result
is given at t = 9900sec.

Figure 12:
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Figure 13: Same as Fig. 9 but for Um = 100m/sec.
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(a) Same as Fig. 12(a) but for Um = 100m/sec.
and result is given at t = 90sec.

(b) Same as Fig. 14(a) but the computed result
is given at time t = 2070sec.

(c) Same as Fig. 14(a) but the computed result
is given at t = 5400sec.

Figure 14:
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Figure 15: Same as Fig. 1, but for the inflow layer case x = −18.
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3 Summary and conclusions

In this paper we have described and implemented the PML split equations approach for the nonlinear shallow
water equations based on an explicit Miller-Pearce scheme finite difference discretization. We have derived
the numerical method and developed the code for a rectangular grid domain. The results obtained without
using any filters show the robustness of the method. Contrary to results obtained by Hu (1996), using a
Shapiro 8-th order filter has negligible effects in our case.

Extensive numerical testing with an advected Gaussian pulse has shown that the PML boundary
conditions radiates out the waves efficiently. Comparison with a set of characteristics well posed boundary
conditions as well as the second order Engquist-Majda absorbing boundary conditions show that the PML
scheme outperforms the characteristic boundary condition as well as the second order Engquist-Majda
absorbing boundary conditions in terms of accuracy, while increasing the width of the PML layer leads
to significant increase in accuracy.

The research carried out here has a natural extension to the formulation of boundary conditions for
advanced mesoscale models, such as the MM5 and the new MRF models, and promises to improve upon the
combination of nudging and sponge layer presently used in such models.

Issues of computational efficiency combined with numerical experience show that sizable benefits are
already obtained with the present split-version of the nonlinear shallow water equations with a PML layer
of a width not exceeding 16 cells, a fact which matches practical experience in mesoscale meteorology.

Work with PML in the framework of mesoscale models will mean that gravity waves can not only leave
the domain but also enter it without hindrance. The fields imposed by the PML must be well balanced -
since while the host fields are well-balanced on their own grid - subsequent interpolation to the guest model
may upset the balance (McDonald 2001b).

Our results are encouraging and constitute a step towards using the PML transparent boundary conditions
for full 3D atmospheric and ocean models. One avenue to achieve this goal is to implement the PML boundary
conditions to a 3D multi-layer shallow water equations model as a way to proceed towards full 3D models.
This can be done for the linearized hydrostatic equations by carrying out a normal mode decomposition
yielding a shallow water equation for each vertical mode.

Development of a non-split version of both the linearized and the nonlinear version of the shallow water
equations based on ideas put forward by Abarbanel and Gottlieb (1998), Abarbanel et al. (1999) and
Hesthaven (1998) is presently also being investigated.
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A Propagation of fast moving gravity waves for the Gaussian
advection equation.

For the sake of simplicity, let us consider the advection equation with c > 0:

ut + cux = 0 for t > 0 (A.1)

where
u = e− ln 2( x

L∆x)
2

(A.2)

We discretize the equation using a simple centered difference :

dul

dt
=
c

2∆x
(−ul+1 + ul−1) (A.3)

where l stands for the grid number. Using

uj = ei(ωt−jα∆x), (A.4)

where
ω =

c

∆x
sinα∆x (A.5)

and where
α∆x ∈ [−π, π] (A.6)

We find that the group velocity of the dispersion relation is given by:

∂ω

∂α
= c cos(α∆x) (A.7)

Let us now consider the range
0 ≤ α∆x ≤ π

2
(A.8)

which implies cos(α∆x) > 0. This means that all wave number components of the initial Gaussian which
satisfy 0 < α∆x ≤ π

2
travel to the right, i.e., in the positive x−direction.

However for
π

2
≤ α∆x ≤ π, cos(α∆x) < 0 (A.9)

i.e.,
∂ω

∂α
< 0. These wave numbers of the initial Gaussian travel to the left, i.e. in the negative x−direction.

The fastest wave propagating to the right is given by

∂ω

∂α
= c cos(0) = c (A.10)

for α∆x = 0 which is the long-wave number limit, whereas the fastest wave propagation speed to the left is
given by:

∂ω

∂α
= −c (A.11)

for α∆x = π that is all the grid to grid waves travel at speed of −c.
Use of either a finer mesh or a higher order differencing method will yield a more accurate solution, with

less short-wave numbers travelling to the left.
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B Engquist-Majda boundary conditions

The approach of Engquist and Majda ( 1977,1979) is based on the theory of pseudodifferential operators
(see Taylor 1981). A sequence of local approximate nonreflecting boundary conditions (NRBC) of increasing
order is obtained.

Consider first the 2-D wave equation in Cartesian coordinates :

1
c2
utt = uxx + uyy (B.1)

Substitute the exponential solution u = Dei(−ωt+k1x+k2y) in (B.1) to obtain the dispersion relation

k2 = k21 + k22 =
ω2

c2
(B.2)

Consider a straight segment of the artificial boundary B with outward normal in the positive x direction.

Denoting s =
k2
k

(with |s| ≤ 1) we have from (B.2)

k1 = ±k
√

1 − s2 on B (B.3)

where ± represent outgoing and incoming waves, respectively. If we wish to obtain an equation on B
admitting only outgoing waves, the branch corresponding to + sign is chosen.

If we consider (B.3) as 1-D dispersion relation of an equation

Pu = 0 on B (B.4)

obtained by applying an inverse Fourier transform to (B.3) which is an exact relation on B. Since k1 = k1(s)
is an irrational function of s, P in (B.4) is not a differential operator but rather a pseudodifferential operator,
which is nonlocal in both time and space.

Engquist and Majda (1977) approximate the nonlocal operator P by a local differential operator E. This
is done by approximating

√
1 − s2 by a rational function (such as Pade approximants). By using rational

approximations of increasing accuracy they obtain local boundary conditions Emu = 0 on B of increasing
order m.

For the case above:

E1u = (
∂

∂x
− 1
c

∂

∂t
)u
∣∣∣∣
x=0

= 0 (B.5)

E2u = (
1
c

∂2

∂x∂t
− 1
c2
∂2

∂t2
+

1
2
∂2

∂y2
)u
∣∣∣∣
x=0

= 0 (B.6)

In terms of the modified expression (B.1) u = ei(
√
ξ2 − ω2x+ ξt+ ωy), we obtain the symbol of the

boundary condition (see Engquist and Majda) as:

d

dx
− iξ

√
1 − ω

2

ξ2

which can be approximated as
√

1 − ω2

ξ2 = 1+O(ω2

ξ2 ) at normal incidence ( i.e. ω = 0) where iξ corresponds

to
1
c

∂

∂t
gives (B.5) - (B.6) .

The next approximation (either Taylor or Pade) to the square root is :√
1 − ω

2

ξ2
= 1 − 1

2
(
ω2

ξ2
) +O(

ω4

ξ4
)
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and multiplying by iξ yields the symbol

iξ
∂

∂x
+ ξ2 − 1

2
ω2

or

(
1
c

∂2

∂x∂t
− 1
c2
∂2

∂t2
+

1
2
∂2

∂y2
)u
∣∣∣∣
x=0

= 0.

B.1 Application to linear shallow-water equations

The linearized shallow water equations assume the form of a system given by:

∂ŵ

∂t
=


 a 0 c

0 a 0
c 0 a


 ∂ŵ
∂x

+


 b 0 0

0 b c
0 c b


 ∂ŵ
∂y

+


 0 f 0

−f 0 0
0 0 0


 ŵ

Physical restrictions on the constants are : c > 0 and 0 < a2+b2 < c2. We assume the matrices are constant.

We diagonalize the normal matrix (multiplying
∂ŵ

∂x
) by multiplying by U−1 where the unitary map U is

U =




1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2




and let w = U−1ŵ to obtain

∂w

∂t
=


 a− c 0 0

0 a 0
0 0 a+ c


 ∂w
∂x

+




b − c√
2

0
− c√

2
b c√

2

0 c√
2

b


 ∂w
∂y

+




0 f√
2

0
− f√

2
0 − f√

2

0 f√
2

0


w

We want to write this equation in the form

∂w

∂x
= A
∂w

∂t
+ E
∂w

∂y
+Bw

We get:

∂w

∂x
=




1
a− c 0 0

0 1
a 0

0 0 1
a+ c



∂w

∂t
+




− b
a− c c

(a− c)
√

2
0

c
a
√

2
− ba − c

a
√

2

0 − c
(a+ c)

√
2

− b
(a+ c)



∂w

∂y

+




0 − f

(a− c)√2
0

f

a
√

2
0 f

a
√

2

0 − f

(a+ c)
√

2
0



w

Boundary conditions will depend upon whether we have linearized about an inflowing state, i.e. a < 0 or
about an outflowing state (with a > 0). For the inflow case Engquist and Majda (1977) obtained a sequence
of increasing order local nonreflecting boundary conditions

0 > Λ1 =
1
a− c
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0 < Λ2 =

(
1
a 0
0 1
a+ c

)

The first absorbing approximation yields (
w1

w2

) ∣∣∣∣
x=0

= 0

and the second approximation
∂w1

∂t
+
a√
2
∂w2

∂y
− a

c
√

2
fw2

∣∣∣∣
x=0

= 0

C Sponge-layer approach

Relatively few studies were carried out for lateral sponge layers (LSL). Davies (1976,1985) has formulated
LSLs that relax interior flows to the external flow at the boundaries making use of spatially varying sponge
coefficients. These coefficients can be either specified empirically or determined optimally in some sense (see
Davies 1985, and Lehmann 1993) by trying to minimize reflections of outgoing gravity-inertia waves.

Following Kar and Turco (1995), one can write the one-dimensional shallow-water equations linearized
around a basic state as

∂u

∂t
+ g
∂h

∂x
= −αu+ β

c

H
h (C.1)

∂h

∂t
+H

∂u

∂x
= β
H

c
u− αh (C.2)

where H is the height of free surface from basic state, h is a deviation of height from H for a perturbed
state, u is velocity perturbation in x-direction, c is the phase speed of surface gravity waves, i.e. c =

√
gH ,

and α ≥ |β| either positive or negative are the sponge layer coefficients. Introducing characteristic variables
C+ and C− defined by

C+ = u+
√
g

H
h

C− = u−
√
g

H
h

yields characteristic equations
∂C+

∂t
+ c
∂C+

∂x
= −(α− β)C+

∂C−

∂t
− c∂C

−

∂x
= −(α+ β)C−

Using normal mode solution of the form

(u, h) = Re
[(
û(x), ĥ(x)

)
e−iνt

]
(C.3)

ν being the angular frequency, and substituting (C.3) in (C.1) - (C.2) we obtain û(x), ĥ(x) which implies
that we get

û(x) = Deik1x + Eeik2x√
g

H
ĥ(x) = Deik1x − Eeik2x

To create a sponge layer (for the non-discretized case) one expands the domain 0 ≤ x ≤ L by an extent
d, i.e. for a right boundary L ≤ x ≤ L+ d using equations (C.1) - (C.2) with |β| ≤ α.
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We define wave reflectivity as the ratio of complex-valued amplitudes of incoming part of the wave to the
outgoing part of wave solution. Using normal mode solutions one obtains at x = L

R = e−2αd/c

In the discrete case we have

∂ui

∂t
+
g

∆
(hi+ 1

2
− hi− 1

2
) = −αiui + βi

c

H

hi+ 1
2
+ hi− 1

2

2
∂hi+ 1

2

∂t
+
H

∆
(ui+1 − ui) = β̃i+ 1

2

H

c

ui + ui+1

2
− α̃i+ 1

2
hi+ 1

2

where α̃, β̃ are sponge-layer coefficients at n points. Using same techniques, where the width of the sponge
layer region L ≤ x ≤ L+ d has n grid intervals, one obtains the reflectivity R in functional form as

R = F (n, α̃, β̃, k̃)

with α̃ = α∆c , and β̃ = β∆c .
Here ∆ is the mesh interval in the x-direction. Numerically, Kar and Turco (1995) obtained a satisfactory

LSL for n = 6, α ≈ 0.5c
∆

and chose empirically a value α∆c ≥ 3
n .

The LSL with selective damping works for gravity waves with horizontal phase speed c greater than
basic-state zonal velocity.

In atmospheric sciences the limited-area model, called also the guest model, uses values supplied to the
lateral boundaries by the host model, which usually has a coarser mesh- while the guest is the finer mesh
limited-area model.

As sharp differences may arise between imposed boundary fields and adjacent mesh points in the limited-
area domain a relaxation towards the host model fields is imposed in a zone close to the boundary, i.e. the
interior fields are relaxed towards host model fields, in a sponge-layer zone close to the boundary.

In the case of the 1-D advection equation the scheme assumes the form:

∂u

∂t
(x, t) + U0

∂φu

∂t
(x, t) = −K(x)(u(x, t) − uE(x, t)) (C.4)

where uE(x, t) is the externally prescribed field by the host and K(x) is a coefficient which is nonzero only in
the sponge-layer close to the boundary varying from a large number on the boundary to zero on the interior
beyond the sponge layer.

For U0 = 0 and K, uE being constants we obtain

u(0)e−Kt + uE [1 − e−Kt] (C.5)

i.e. for large K the solution approaches the external field while for K = 0, at the start of the sponge layer,
the solution is unchanged.

To minimize spurious reflections at the boundary judicious choices of K and the width of the sponge
layer have to be made. As shown in McDonald (1997) time discretization of (C.4) leads to

ui = (1 − αi)uI
i + αiu

E
i

with 0 ≤ αi ≤ 1 , α1 = 0 and αi = 0 for lines beyond the relaxation width or sponge layer zone of n lines in
width. Kallberg (1977) arrived at a value of αi = 1 − tanh( i−1

2 ) for a sponge layer with n = 8 lines.

Other profiles for α were put forward by Jones et al. (1995) using a linear profile of αi = 1− i− 1
n

, with

a value of n = 4. McDonald and Haugen (1992) proposed a cosine profile of the form

αi =
1 + cos

(i− 1)π
n

2
(C.6)
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