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TRAJECTORY PROPAGATION 
USING INFORMATION ON 

PERIODICITY 
Beny Neta* 

Pa.novsky et a.12L22 and Richardson et 
al2",2

'
1 a.re developing and improving Cheby

shev methods for the numerical integration 
of Iirst and second order ordina.ry difforen Li al 
equilt.ions. The met.hods werP constrncted 

primilrily for use in a variety of astrndynilrn
Families of methods to integrate first and ics applications. Richardson et a121 claim 

second order ordinary difforen Li al eq uaLimrn 
>v hose solu Lion known Lo be periodic will be 
discussed. ThP met.hods can lw t.unPd to a 

possibly il-priori knuwlPdge of t.he user on 

the location of the frequencies, that a.re dom
inant in the exact solution. On the basis 
or such extra information the truncation er
ror ca.n considcra.bly be reduced in magni
tude. The pa,per compilres thesP methods t.o 

>veil known int.egrilt.orn and discusses il simple 

mechanism to estimate the frequency during 
the int.cgration process. 

INTRODUCTION 

Iviuch effort has gone into the develop
ment of numerical solution of IirnL and sec
ond order ordinary differPntiill Pquations. 

SeP Kuli rsch ilnd St.oer1 , Kut.chPr2 , lbniPI 

and Ivfoore3 , Gea.r4 •5,6 , Gragg7 , Hull8 , Hull 
et al9

,
10· 11 , Krogh 12 '1", Herrick 11 , Sha.nks 1", 

Lcar 10
, Fox 17

, 1vionLcnbrunk 18 and many 
oLhern. Some of these int.cgra.1.orn were 
applied t.o mbit.al mechanics. SeVPrill re

SPilrchPrs com pared the \VPillt.h of integrators 

available. Hull et al19 used the number of 
function evaluations, overhead cost and reli
ability as criteria. for comparison. Recently 
Der20 prPsent.ed il compilrative study of var

ious trajectory prnpagators using high mder 

numerical integrators. 

* .>iaval Postgraduate School, Department of 
~fathematics, Code ~IA/Nd, Monterey. CA \):3\)4:3 

that "because the solution Lo astrodynam
ics equations of't.en exhibits a periodic or 
quasi-periodic charilctPr, it WilS fPlt that thP 

ilpplicilt.ion of a numerical prncedurP based 

on trigonometric ( Chebyshev) interpolation 
rather than polynomial interpolation would 
be more suitable." Ilowever they didn 'L 
choose to develop or use methods based on 
trigonometric polynomials Pxploiting infor

mation on the pPriodicity oft.he solution. 

Int.he next section \VP formulaJp the prob

lem. Iviethods for first order ordinary differ
ential equations and second order not con
taining the Iirst order dcriva.tivc will be dis
cussed in scpa.raLc sections. \Ve also included 
il discussion of syrn metric methods for sec

ond order initial value problems . The las t 
section will give numerical experiments \vith 
several techniques for periodic and quasi pe
riodic problems. 

PROBLEM FORMULATION 

Let ii( t, r, if) be the total acceleration m 
the equations of motion described by 

d2r 
dt'2 = a(t,f, iJJ (1) 

subject to the given initial conditions 

r(to) = l~, v(to) = vo. (2) 

\VithouL loss or generality, WC assume that 
thP position, velocity and accelPrilt.ion vec

tors are given in ~:ilrt.h centPred inPrtiill 

coordinate system. The total acceleration 
includes central gravity, oblateness, drag, 



thrust, solar radiation pressure, and n-body in cases ·where the exact solution is knO"wn to 
gravity. be approximately of the form 

The second order differential cquaLiom; 

(1)-(2) can be rewrit.1.cn as a. Iir;,;L order ;-:.y;-:.
tPm as follmvs 

( :~ l d·u 
dt 

( 
v ) 

- a(t,f', iJ) 
(:3) 

suhjPct to thP givPn initial conditions 

(4) 

The direct integration of (1)-(2) or 01)-(1) 
is called Cowell met.hod. The compara.-

1.ive study by Dcr20 includes Runge-Kut.1.a
FPhlbPrg ;rnd Ad;uns-H(lshforth Ad(lrnS

fVlou lton prPdictor cor-rpctor int.Pgr(lt.ors for 

the first order initial value problem (:1)-(1) 
and Nystrom and Gauss-Jackson-Fox inte
gral.om for Lhc ;second order (1)-(2). 

METHODS FOR FIRST ORDER 
EQUATIONS 

Cautschi 25 >vas thP first. to dPvPlop n1nnPr

ic(ll intPgrators b(l.SPd on t.rigonomptric poly

nomials for problems ·with oscillatory solu
tions ·whose frequency is knovni. The result
ing met.hod;,; depend on a para.meter J/ = hf.J..', 
>VhPrP h is thP stPp size and w.: is the known 

frpquency. ThPSP rnPthods am of (Pxplicit. 

and implicit) Adams type and reduce to the 
classical ones if 11 ---+ 0. 

To be ;specific, we con;-:.ider the linear mul-

1.ist.cp methods 

p(E)yn - ha(E)fln 0 ( .5) 

for 1.he int.cgra.1.ion or 

y(t) = f (t, y(t))' (6) 

2 

'(fl, 

(t) . + '\""· . iw1t y. ,..._,no Lo::it (7) 
.i=I 

where the frequencies w.:7 are such that the 
;,;olu Lion i;-:. periodic or q ua;,;i periodic 1.ha.1. i;,; 

y(l) ,.._, y(I + 2rr /w0 ) for ;some a priori given 
frpqupncy '"''O· ThP opprator Fis thP forward 

operator, i.e. 

Fy.,, = !In+l · (8) 

ThP first charact.Pristic polynomial p(() dP

pends on the class of methods used. For 
Adams type it is 

p(() (9) 

The second characteristic polynomial O'(() is 
of the same degree k for implicit methods 
and of degree k - 1 for explicit. ones. 

Let 
<h(z) = p(f~) - w(ez), (10) 

thPn thP loc(ll trnncation prrnr (lt, t .n+k is 

given by (cf. e.g. Lambert26) by 

.,. , ·1 d . (. ) I 
n+k = ({JI 1,-)!J t /- t · \ dl · · - 11 

(n) 

Ikcau;,;e of the consistency condition d)(O) = 
0 and from (7) 

?n 

ITn+kl :SL luj l j<)~(iT1j )I, 
:i=l 

(12) 
In Lhc case y(I) i;,; a periodic or a quasi pe

riodic function wiLh frequency w0 , we may 
rPpl(lCP y(t) by t.hP l 1'ouriPr SPriPS 

•)Q 

y(I) = L llft' if'.wot (B) 
f=O 

(lnd obtain t.hP inPCJll(llit.y 

ni 

ITn+kl :SL lii:cl l</{ifl1o)I. (14) 
{=0 



The inequalities (l'.2) and (11) suggest. es
sentially three approaches (van der Homven 
and Somrneijer27

) for adapting linear rnul-
1.i:,'1.ep met.hod to the additional informaJion 
a.vai lab IP on the Pxact sol ut.ion. The first. ap

proach is that of Gaut.schi 25 and Net.a and 

Ford 28
. The resulting met.hod is said to be 

or trigonometric order q a.nd algebraic order 
2q a.ml it. i;,; obtained by exponentially Iit.1.ing 
at thP points iL'o, f = 1, ... , q, i.e. solving 

d{ifwo) = 0, f = L 2, ... , q. (1.5) 

Ga.utschi concluded based on some numer
ical experiments that one can overestimate 
1.he period or undere81.imal.e it. 8omt"-.vha1. and 
81.ill get better re;,;ult.8. This is not encourag
ing, since one doesn't have Pxact value for 

the frequency. 

I\ eta. and Ford 28 considered ~ ystri::im and 
generalized ::Vlilne-Simpson type met.hods for 
first order ordinary differential eq uaLimrn. 
Ikre Lhe Iirnt. characteristic polynomial is 

(Hi) 

Their met.hods a.re restricted to problems 
')f 

>vhosP .Jacobian matrix ~y have purely imag-

ina.ry eigenvalues. In 1.ho8e ca;,;es, it. >vas 
shown numerically that the mPthods a.re not 

SPnsitive to changes in the frequency. 

The second approach assumes there are 
8eventl dominant frequencies Wj. One has 
1.o sea.rt. with a linea.r rnul1.i81.cp method con
ta.i n i ng sufficiently many free para.metPrs in 

ordPr t.o achieve 

for all Wj. 

This approach \va.s taken by Lvche29
, 

13ettis"0
, Stieffcl a.ml 13d1.i8" 1 and 01.hern. 

One of 1.lw di;,;ad vantages of ;such an ap
proach is that. a, ra.thPr det.ailPd knmvledgP 

of the do mi na.nt solution components is re

quired. In nonlinear problems the frequen
cies may vary over one integration step which 

3 

will decrease the accuracy. Therefore Van 
der Houwen and Sommeijer27 took a slightly 
different approach. They have developed a. 
family or linear multistep method8 that min
im i7.P those tPrms in the local trnncation Pr

ror \vhich corrPspond to the oscillatory so

lution components. They have shown that 
if one Lake;,; 1.he q zero8, ,/t), in the int.crval 

l/m ::; I/ ::; l/M a;,; 

f = 1,2, ... ,q. 

(18) 
l . l. 

where l/1 = 2(11m + l/,\.r), and 112 = 2(11,H -

u,n). Then the frep copfficiPnts in the func

tion v~ (equivalently, the coefficients of the 
second characteristic polynomial) can be de
Lerrnined by ;solving Lhe linear 8Y81.cm 

F=1,2, ... ,q. (19) 

They have developed met.hods oft.rigonomet
ric order 3 and algebraic order 6 of Adarrrn
::vioulLon, J'vfilne-Simp;,;on and backward dif
ferPntiat.ion types. ThP latter ones a.re useful 

when the problem is stiff, i.e. some compo
nents of the solution decay very fast. 

METHODS FOR SECOND ORDER 
EQUATIONS 

In this SP.ct.ion, we discuss thP second order 

i nitia.I value problPm 

ii(l) = I(!, y(l)), y(lo) =Yo, fJ(/o) = Yo· 
(20) 

by thP sarnP polynomials p and a. The local 

truncation error is given by (11), but now ¢ 
is defined as 

' ( . . - ) 2 ( ,, . q> z) = p(c - .: a c). 

In the first approach, ta.ken by Gaut.schi25 , 

explicit. and implicit Stormer Cowell type 



met.hods of trigonometric order q were de- SYMMETRIC METHODS FOR 
veloped in such a way that. SECOND ORDER EQUATIONS 

(/>(ihjwu) = 0, j = 0, 1, ... ' q. (22) 

The first char;H:teristic polynomial of such 

met.hods is 

A symmetric method for the solution of 

second order ordinary differential equations 

(missing the first. derivative of the unknown) 
(23) are nect'88arily implicit, have an even step, 

have the modulu8 of all the roots or the 
first characteristic polynomial equal one and 

have a symmetric second characteristic poly

nomial (see e.g. Sommeijer et. al32). There-

l\ote that these rm~thods are not symmetric 

for k z 3 ;uid consequently don't h;we the 

optimal algebraic order. This is true even 
for the slightly more general case 

(. •' ) rk , J.:-1 ·'k -2 P .l, = t, +n1(, +02(, . (24) 

For example, see the met.hod S5 (u) listed in 

the numerical examples section. Sommeijer, 
van der Houwen and ~eta"2 decided to de
velop methods based on this approach but 
have an optimal order as well as Lake the 
third approach mentioned in the previous 

sect.ion, that is t.o replace the fit.ting condi
tion (22) by 

r/>(0) = 0, r/>(ihwUl) = 0, 1 :S j :S q, 
(25) 

\Vhere the wUl are appropriately chosen 

points in the interval Wm :S "'' :S W,\.f· An ad
vantage of this so called minimax approach 
over the Iit.1.ing approach is the increased ac
curacy in cases >vhere no accurate e8timate 
of w 0 is available or when t.he frequency is 

varying in time. In order to facilitate the use 

of these methods they also implemented a 

fore the Stormer type method suggested by 
Gautschi2

" fork= 3 is not of optimal order. 
The above implies that. the first. character

istic polynomial must be of the form 

p(( ) = ((- l)2rr):~2)/2 ((- ~'Bj)(( - t-1e1 ), 

(28) 
where 0 < eJ < 2Ir. The a.i are free parame
ters, rest.riced onlv bv zero st.abilit.v. The sec-

. v ' v ., 

ond characteristic 11olvnomial has -k+ 1 free ' .. '.2 
codiicient8, ,i'.ij . To achieve order p = k + 2, 
we ha.Ve to satisfy !;; + 4 conditions t WO of 
which are zero stability, i.e. p(1) = p' ('l) = 

·1 
0. Thus the trigonometric order i8 2,k + 1, 

exactly as the number of free para.meters. 
Let's rewrite the fo nction ~b(z) in (21) a.'> 

<h( z) 

8imple mechani8m Lo estimaic the frequency or 
during the numerical integration. AL every k 

' ( . 1. j,? ~. b 2· h k .) . step n, \Ve evaluate w(n) using 

:...'(n) = f,.-1 - f ,. 
Yn-l - Yn 

(26) 

and take 

l . . . 
w0 = -(w(n - '.2) + ;,;(n - l) + w(n)). (27) 

3 

For the minimax t.ype methods, we use the 

interval [.9;)(,;,'o, 1.0.)"''o]. 

4 

q) z ) = c 2 •·• L.)ai - jZ ) cos ( ( 2 - J z ) . 
y =U 

(:10) 
The fitting condition 
(since z = ir-hwo) 

('.22) assumes the form 

k 

L 2 k 
(.aJ+b1 (r-hwo) )cos((::--f)rh"''o) = 0, 

. ') . . 

j=O ~ 

1 ::; I' :S q, 



Sommeijer, van der Homven and l\eta32 have spiralling outwards, and the third is an a.1-
shown that fork = t the symmetric Stormer most periodic problem involving Bessel func-
1.ype method i;,: 

-2 ::; 0 < 2 
(:32) 

and the coefficients (/1j ) fort.he second char

act.eristic polynomial are given i 11 terms of 

x = cos 110, Vo = hwo by 

x - l { . J ') 
-~ 2:r (Hfa; + 38:r- + 24:r + 3) 

.16110 

+ o(5;r + 4)} / {:r(;r + 1)(2:r + ·1) 

(fa2 + 2x - l)}, 
(33) 

:r - 1 { - . 
--.-) 2x(20x4 + 60x3 + -10x2 

- :1) 
9u0 

o(18:c::i + 14:c2 
- 3:c - 2)} / 

{:i:(2:r + 1)(4:c2 + 2:c - 1)}, 

;T - l {; (. 5 - • 4 . :J 
-. - 2 2:r 40:r + l 2:r - 56:r 
1Kv0 

-20:r 2 +(fa: - 3)} { 0 (108:1:4+ 
+ 170xJ + -12x2 

- 2!":i;T - -1)} / 

{ x(x + l)(-lx 2 + 2x - 1)}. 
( 35) 

For t.he minimax, the frpquPncies should 

be taken as roots of Chebyshev polynomials 

,).1 ) = 

2 ) v,,, . . 

.2j - 1 
111 + 1.12 cos(-. -)7!, . 2q . ' 

NUMERICAL EXAMPLES 

l:Sj:Sq . 

(36) 
·1 2 
2(11,w -

In t.h is section, we apply several Ii np;u mu 1-
tistP p met.hods for thP solution of threP prnb

lems, the first is the orbit. equation, the sec
ond describes the orbit of an object slowly 

,'_) 

Lions. \Ve will shcnv the benefit of trning the 
knowledge of 1.he frequency, even in alrno;,:1. 
periodic e<1ses. 

The met.hod s t.o be used for fi mt order sys-

tems a.re: 

1. Adam;,: :rvioulion of order 6, Al'vI6 

p(() = (5 - (4 (37) 

a(() -
1
- (473( " + 1427( 1 

11-1() 
- 798(J + 482(2 

- "173( + 27) 

(:38) 

2. :rviilne Simprnn of order 6, 1vIS6 

(:39) 

a ( () 
9

1

0 
( 28( 5 + 129(4 

+ 14(' + 14(2 
- G( + I) 

(10) 

:1. Adams Ivfoulton of order fl, AJ'vir;(11) 

The ;,:arne p(() as in Al'vI6 and a(() is 

detPrmined by (L')) \Vit.h q = :3. 

4. 1\:Iilne Simprnn of order 6, :rvIS6(11) 

The same p (() as in IvISr; and a ( () 1s 
determined by (1.)) with q = :1. 

!":i. Iviinima.x Adams J'vioult.on of order fl, 
AJ'vir;(vm, IJ,u) 

p(( ) = (5 - (4 (41) 

and a(() is determined by (18),(19) with 
q=3 

6. 1\:Iinimax J'viilne Simpson of order 6, 
f\:l S6 ( llm, VM ) 

p(() = (5 - C:i (42) 

and a(( ) is determined by (2!)) with 
q = :1 



The met.hods to be used for second order subject. t.o the init.ia.l condition 
systems a.re: 

-1. Larnlwrt and \Vat.son of order G, l..\V5 

p(() ( 1 
- (2 + n)(l + (2 + 2a)(2 

-(2 + n)( + I (4:3) 

a(() _l_ (Cl 8 + a)(4 
240 -

+ 
+ 

8(26 - :3a)(" + (28 - 194a)(2 

8(2G - 3a)( + (18 +a)) (44) 

The para.meter a i;,; 1.aken as zero. 

2. Stormer of order 5, Sr,(v) 

:3. Syrnrnet.ric (optirnir,ed) St()rrnPr of order 

G, S06 (u) 

p(() is givPn by (:32) and 

a(() = I: ,s}y',~+l-.i 
j =U 

·with /lo = ,85 givPn by (:33), ,81 = ,34 
given by (:34), and ,82 = /33 given by (:35). 

4. Symmetric minima.x Stcirmer or order 6, 

S00(1/m, J/M) 

The ;same p, but need to solve (2.5) with 
hu...,(i) = vCi) given by (:3G). -

The Iir81. example i8 a system or Iirnt. order 
initial value problems 

dy1 
dt !13 

dy2 Y·1 
dt 

dy::, 

dt 

( 4.5) 

(I/2 + I/.2) (J / 2) • 1 • 2 

1-f 
YI (0) 

Y:L(O) 
() 

0 ( 46) 
!13 (O) 

Y1(0) /§ -

where € is the eccentricity of the orbit. \Ve 
will take c = .01 in our experimen1.8. Clearly 
f.J..' = 1. The exact solution Jfc can be written 
in t.errns off and T as follmvs 

Y2 (I) 

!J3 ( t ) 

w h Pre T satisfi PS 

COST - C 

Siil T 

l - €COST 

vh - f2 sin T 

vif=(2co8T 

1 - f COST 

T - € Slll T = t. 

( 47) 

(18) 

Thi8 example i;,; one or tho;,;e used by Ilull 
et. al 19 for their compara.tive studies and also 
usPd by van dPr Houwen and Sorn meijer27. 

The following linear multistep met.hod >vill 
be compared: Ada.ms ::\foulton of order (i (see 
e.g. Gear0

, p. ll3), (denoicd Al'vI0 ), J'vfilne 
Simprnn or order 6 (J'vIS6 ) and the corre
sponding methods using the knmvledgP ofthP 
frequency as discussed in the fi rst approach 
(AI\:Ir,(IJ), IvISc(11)) and the t.hird approach 
( A1v10 (J/m, 11;.,f), J'vIS6 (J/m, 11M)). \Ve will u8e 
the number or ;significant Iigure8 as defined 
by van der Ho1rwen and Sorn rneijPr27 , 

sd = - log10 ( L 2 norm of the error at end) 

( 19) 



The results of integration from t = 0 t.o 
t = 12ri using a fixed step size h = ii / 25 are 
a;,; foll<)'>V8 

Al\:15 A \ :16 (h) A.\•1 6(.9h, ·1 .-lh) 
4.34 7.G8 !) .01 

AM(j A~'10(.9h) A~'10(.8h, 1.h) 
4.:34 3.7:3 4.94 

rv1s6 \:1 S6 (h) l\:1 S6 ( .9h, L 1 h) 
3.09 5.G9 :3.G9 

IvISr; ~1Sr;(.9h) 1.fS0 (.8h, 1.h) 
:3.09 3.06 3.62 

It. is cle(lr that the fi mt approach shuws 

a. dramatic gain in the case w = l, but. no 
gain \Vhen the frequency is underestimated 
(w = .9), exactly as in Gaut8chi2". In the 
third approach, we took an interval around 
w (l,nd find that there is no difference in the 

two cases((}, rnoder(lt.e g(lin over the original 

met.hods). 

The second problem is given bya systemof 

two second order ordinary differential equa

tions and can be \Vrit.t.en also as a system of 
four first. order. This example is taken from 
Stidd a.nd DcUi;,;" 1 and abo 8olvcd in Som
rneijer et. al:.l'.2• The problem is 

d2,, . 
~ "--, ') + z = .OOlc , ( t-

rnbjcct Lo the initial condition 

( 

z(O) ) ( 1 ) 

d:- (0) .9995i 
dt 

( 31) 

·where i = J=I, and the exact solution is 

One can also solve this problem by using 
methods for second order problems. VVe com
pare Lambert-\Va.t8on met.hod (L\\F b) with 
original (Sz,) a.ml optimized (S06 ) Gaut8chi 
(lnd optimized minimax (all but the origin(ll 

C(lutschi's method, which is ofSti-irmer type, 

are of order six) as found in Sommeijer et 
al"2

. The rc8ults for h = rr /12 at final time of 
40rr arc given in the next ta.bk (where in the 
first ruw the frequency or inten'(ll are given 

(lnd in t.he second ruw the progr(lrn adjusts 

the data.) 

L\Vr; S:.(h) S00 (h) S00 (.9h, l.lh) 
4.3 3.4 6.1 8.0 
4 .. ) 3.4 7.3 9.2 

One can sec that the Iirt.h order St.i.inner 
method due to Cautschi couldn't compete 

with [,ambert. and \Vatson (difference in or

der), but the optimized Ga.utschi's method 
obtains more than one digit of accuracy rela.
Li vc to L\V 6 . On 1.lw other hand the minimax 
met.hod;,; due to Sommcijer, va.n der Ilouwcn 
(lnd .\Jet(}J'.2 yield (}bout t.>vice the number of 

d igit8 of accu r(lcy. 

!\eta and l·"ord 28 h(lve corn pared A fv1 6 and 

::\:ISr; for the solution of the first order sys
tem resulting in this example. The results 

7( 

for h = - a.re .).8 for A.Mr; and 8.0 for 
GO 

\ ·1S6 . hren though the 8tep f>ize is finer, 

the result.s are not. better than the minimax 
method SOr;(.9h, l.lh). 

The third example i;,; a. ;second order almo8t 
periodic equation with G.J ,..._, I 0 

.. ( l ) y + 100 + 4£2 y = o, 

The initial conditions a.re chosen so that the 
ex.a.ct 8ol u ti on i;,; given in ternrn ol' Dc;,;;,;cl 
fo n ct ion J0 , (i.e. the coefficient of }(:i term 

z (t) = cost+.000.)tsin t+i(sin t-.000.)tcost) is zero) 

(.12) yf, = Vt.lo(lOt) 

7 



This example was used by Gaut.schi25 , Net.a 
and Ford 28 and Sommeijer et al::i 2 • 

The re;,;ult.8 when 8ol ving 1.he ;second order 

8Y81.cm trning h = 1/.50 arc given (at 1.he Iinal 
time t = 10) in thP nPxt ta.blP: 

L\Vr; S:.(h) S00 (h) S00 (.9h, l.lh) 
6.0 4.9 8.2 11.0 
6.0 4.9 7.9 -11.0 

Of course, the second order equation can 
be >vrit.1.en as a. system of two Iirnt order equa-
1.ion8. The re;,;ult.8 of solution of Lhi8 ;,;y;,;Lcm 
using mPthods for first. order Pqua.tions ;up 
listed behw: 

Al'vI0 

4.37 

:rvIS0 

.).14 

A:'.\'10(h) 
6.89 

:'.\'1So(h) 
6.80 

A:'.\'16 (.9h, l.lh) 
8.60 

:'.\'1S0 (.9h, l.lh) 
8.7:3 

]\" 01.icc 1.he quality or minimax methods rcl

ati ve Lo all others. C sing the information on 
period icit.y can yiPld al most. twicP t hP n 1nn

ber of digits of (}CCU racy rPl(lt.ivP to tradi
tional schemes. 
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