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TRAJECTORY PROPAGATION
USING INFORMATION ON
PERIODICITY
Beny Neta*

Families of methods to integrate first and
zecond order ordinary dillerential equalions
whoze solution known Lo be periodic will be
discussed. T'he methods can be tuned to a
possibly a-priori knowledge of the user on
the location of the frequencies, that are dom-
inant in the exact solution. On the basis
ol such extra inlormation the truncalion cr-
ror can considerably be reduced in magni-
tude. The paper compares these methods to
well known integrators and discusses a simple
mechanism to estimate the frequency during
Lhe inlegralion process.

INTRODUCTION

Much effort has gone into the develop-
ment of numerical solution of lirst and sec-
ond order ordinary differential equations.
See Bulirsch and Stoer', Butcher?, Daniel
and Moore®, Gear®™® Gragg”, Hull®*, Hull

et al®!'% ! Krogh'®'?, Herrick'!, Shanks'?,

Lear'®, Fox'", Montenbrunk'® and many
others.  Some ol these inlegralors were

applied to orbital mechanics. Several re-
searchers compared the wealth of integrators
available. Hull et al'® used the number of
function evaluations, overhead cost and reli-
abilily as criteria [or comparizon. Recently
Der?! presented a comparative study of var-
ious trajectory propagators using high order

numerical integrators,

*Naval Postgraduate School, Department of
Mathematics, Code MA/Nd, Monterey, CA 93943

Panovsky et al?'?? and Richardson et
al?»*! are developing and improving Cheby-
shev methods [or the numerical integration
ol lirst and second order ordinary dillerential
equations.
primarily for use in a variety of astrodynam-
ics applications. Richardson et al?! claim
thal “becanse the solulion Lo astrodynam-

The methods were constructed

ics equations often exhibils a periodic or
quasi-periodic character, it was felt that the
application of a numerical procedure based
on trigonometric (Chebyshev) interpolation
rather than polynomial interpolation would
be more suitable.”  Ilowever they didn’t
chooze 1o develop or nse methods baged on
trigonometric polynomials exploiting infor-
mation on the periodicity of the solution.

In the next section we formulate the prob-
lem. Methods for first order ordinary differ-
ential equations and second order not con-
taining the lirst order derivative will be dis-
cussed in separale zections. We also included
a discussion of svmmetric methods for sec-
ond order initial value problems. The last
section will give numerical experiments with
several technigues [or periodiec and quasi pe-

riadic problems.

PROBLEM FORMULATION

Let @(t, 7, ¥) be the total acceleration in
the equations of motion described by

d*7 .
= ALED &
subject to the given initial conditions
‘i?(t()) = F(], "J(t[)) = ?j[). (2)

Without loss of generalily, we assume thal
the position, velocity and acceleration vec-
tors are given in Earth
coordinate system. The total acceleration
includes central gravity, oblateness, drag,

centered inertial



thrust, solar radiation pressure, and n-body
gravity.

The second order diflerential equations
(1)-{2) can be rewritlen as a lirst order sys-
tem as follows

dr
dt v
| = {3)
dv at, v o)
dt

subject to the given initial conditions

I_“ ’.'T,U
(to) =

— —

i o

(4)

The direct integration of (1)-(2) or (3)-(1)
is called Cowell method.  The compara-
tive sludy by Der? includes Runge-Kulta-
l'ehlberg Adams-Bashforth
Moulton predictor corrector integrators for
the first order initial value problem (3)-(1)
and Nystrom and Gauss-Jackson-Fox inte-
grators [or the second order (1)-(2).

and Adams-

METHODS FOR FIRST ORDER
EQUATIONS

Gautschi®® was the first to develop numer-
ical integratora based on trigonometric poly-
nomials for problems with oscillatory solu-
tions whose frequency is known. The result-
ing methods depend on a parameter v = fee,
where i is the step size and w is the known
frequency. These methods are of {(explicit
and implicit) Adams type and reduce to the
classical ones if » — 0.

To be spedilic, we consider the linear mul-
lizlep moethods

Py — ho ()i, = 0 (5)

[or the integration of

p(t) = fltyt)), (6)

in cages where the exact solution is known to
be approximately of the form

FrE

y(t) ~ ag + ) aye™ (7

J=I

-1
~—

where the frequencies w; are such that the
solulion iz periodic or quasi periodic, thal is
y(t) ~ y(l + 27 fwy) lor some a priori given
frequency wy. The operator £ is the forward
operator, i.e.

flly = Yat1- (R)

The first characteristic polynomial p({) de-
pends on the class of methods used. For
Adams type it is

(9)
The second characteristic polynomial o(() is
of the same degree k for implicit methods

and of degree & — 1 lor explicil ones.

Let

plg) = ¢

(.f)(iz) = [)(fm) — 30’(%':;:_),

(10)

then the local truncation error at f,4; is
given by (cf. e.g. Lambert?®) by

d .
a)?}(t) li=t,,-

Because ol the consistency condition ¢{0) =

(T (1)
0 and from {7)

m

| Toerl £ 3 lellofing)].
=1

i=

v = b,

(12)
In the caze y(l) is a periodic or a quasi pe-
riodic [mnction with [requency wy, we may
replace y(f) by the Fourier series

)

y(t) = D dge’™? (13)
£=D
and obtain the inequality
m
[Tl <3 |6l |p(itey)]. (14)

£=0



The inequalities (12) and (11) suggest es-
sentially three approaches {van der Houwen
and Sommeijer?) [or adapling lincar mul-
lizlep method to the additional inlormalion
availahle on the exact solution. U'he first ap-
proach is that of Cautschi®® and Neta and
Ford®®. The resulting method iz said to be
ol trigonomelric order ¢ and algebraic order
2g and il is obtained by exponentially [itting
at the points tfiwg, £—=1,...,q,i.e. solving

Slitwy) = 0,£=1,2,....q. (15

Gautgchi concluded based on some numer-
ical experiments that one can overestimate
the period or undercsgtimate il somewhal and
slill get better resulls. This is not encourag-
ing, since one doesn™ have exact value for
the frequency.

Neta and Ford®* considered Nystrém and
generalized Milne-Simpson type methods for
[irst. order ordinary diflerential equations.

[Tere the [irsl characteristic polynomial is
(16)
Their methods are restricted to problems

. . df .
whose Jacohian matrix —— have purely imag-
dy
inary cigenvalues.  In those cases, il was
shown numerically that the methods are not
sensitive to changes in the frequency.

The second approach assumes there are
several dominant [requencies w;. One has
Lo start with a lincar mullistep method con-
taining sufficiently many free parameters in

order to achieve

plaw; ) = 0, (17)
This approach was taken by Lyche®,
Bettis™, Stiellel and Bettig?!' and othoers.
One of the disadvantages ol such an ap-
proach is that a rather detailed knowledge
of the dominant solution components is re-
quired. In nonlinear problems the frequen-
cies may vary over one integration step which

[or all w;.

will decrease the accuracy. Therefore Van
der Houwen and Sommeijer®” took a slightly
dillerent approach. They have developed a
[amily ol lincar multistep methods that min-
imize those terms in the local truncation er-
ror which correspond to the oscillatory so-
lution components. They have shown that
il one takes the ¢ zeros, V(”, in the interval
Vi, SV < VAf as

2{ —
: 17:. E= oy oo 4G
e ' ' ’

(18)

1 ‘ ,
E(r/m Far), and vy = S{rar —

r/m = v+ cos

where 1
bt ) »
tion ¢ (equivalently, the coefficients of the
second characteristic polvnomial) can be de-

Lermined by solving the lincar syelem

v I'hen the free coeflicients in the func-

otiv'y = 0, A T
They have developed methods of trigonomet-
ric order 3 and algebraic order 6 of Adams-
Moulton, Milne-Simpson and backward dil-
ferentiation types. T'he latter ones are useful
when the problem is stiff, i.e. some compo-

nents of the solution decay very fast,

METHODS FOR SECOND ORDER
EQUATTIONS

In this section, we discuss the second order
initial value problem
) = JiLy),  wlle) =g, 4l) = o

(20)
The linear multistep method is characterized
by the same polynomials p and ¢. The local
truncation error is given by (11), but now ¢
is defined ae

(21)

In the first approach, taken by Gautschi®®,

explicit and implicit Stormer Cowell type



methods of trigonometric order ¢ were de-
veloped in such a way that

@(thjwg) = 0, i=0,1,...,4. (22)

The first characteristic polynomial of such
methods is

~k /-F. -1

p(C) = ¢ — k2

+4 (23)

Note that these methods are not symmetric
for & > 3 and consequently don’t have the
optimal algebraic order, This iz true even
for the slightly more general case

L) = £F L ogl® a2 (24)

lior example, see the method Ss(v) listed in
the numerical examples section. Sommeijer,
van der Houwen and Neta®® derided to de-
velop methods based on this approach bul
have an oplimal order as well as take the
third approach mentioned in the previous
gecltion, that iz to replace the fitting condi-
tion (22) by

#0) = 0, @ihoV)) =0, 12j<q,
g (25)
where the w) are appropriately chosen

points in the interval w,, < w < wys. An ad-
vantage of this so called minimax approach
over Lhe [itting approach is the increased ac-
curacy in cages where no accurate exlimate
of wy is available or when the frequency is
varying in time. In order to facilitate the use
of these methods they also implemented a
simple mechanizm Lo estimale the [Tequency
during the numerical integration. Al every
step n, we evaluate w(n) using

f?;—l fh
Un—1 — Un

win) = (26)

and take
%(w(n —2)+w(n—1)+w(n)). (27)

l‘or the minimax type methods, we use the
interval [.93wq, 1.05wo].

wn =

SYMMETRIC METHODS FOR
SECOND ORDER EQUATIONS

A symmetric method for the solution of
second order ordinary differential equations
(missing the first derivative of the unknown)
are necessarily implicit, have an even step,
have the modulus of all the roots of the
first characteristic polynomial equal one and
have a symmetric second characteristic poly-
nomial (gee e.g. Sommeijer et al*?). There-
fore the Stérmer type method suggested by
Gaulschi?” [or & = 3 is nol of oplimal order.

The above implies that the first character-
istic polynomial must be of the form
(L (a i),

(28)
where 0 < #; < 27, The #; are free parame-
ters, restriced only by zero stability. The sec-

p(() = — %) (¢ -

o 05 ) | e
ond characteristic polynomial has —£+1 free
coellicients, ;. To achiceve order p = & + 2,
we have 1o satisly & 4+ 4 conditions two of
which are zero stability, i.e. p(1) = p ‘1) =
0. Thus the trigonometric order is —Jl + 1,

exactly as the number of free parameters.
let’s rewrite the function ¢(z) in (21) as

k
olz) = %Z 5= b2y (e 4 05), (29)
or
. Ly & ™ Lk e
B(z) = c2' Z bjz*) cosh((3 — j)2)-

(30)
The fitting condition (22) assumes the form
(since z = irhawy)

k
Z((Lj—l-bj(v'hwu)‘ ) (()H((A——J)I huy) = 0,
J=0

(31)

1<r<y,



Sommeijer, van der Houwen and Neta®? have
shown that for k& = 41, the symmetric Stérmer
Lype method is

— 1)%(¢* — aC + 1),

plE) = & —2 < <2

(32)
and the coefticients (3;) for the second char-
acterigtic polynomial are given in terms of

r = cogig, Yo = hiwg by

- v —1 ‘ 1 6o AR 2 Y :
S0 = _Tyé {2:}:( 1627 + 3822 + 242 + 3)
+ abr+4)}/{xlz+1)(22+1)
(12 + 22 — 1)},
(33]
3 = _354;1 {22(200* + 602° + 1027 - 3)

9ug
{182 + 1de?® — 3w — 2)}/
{a(22 + 1) (de® + 22 — 1)},
(34)

r—1
1813
—200? + 62 — 3) } { (10807 +
+1702% + 424 — 252 — )} /

{;L(T S, l)}

72

{'2:1?(40:1?5 + 122* — 56a*

(35)
For the minimax, the frequencies should
be taken as roots of Chebyshev polynomials

-1

5
\/ vy + vy eos( '}2

Jm, 1<ji<q.
(36)

1, . 1, .
2 g 2
5 (s, + vir) and w = 3 (i —

4

whore 14

V?”) )

NUMERICAL EXAMPLES

In this section, we apply several linear mul-
tistep methods for the solution of three prob-
lems, the first is the orbit equation, the sec-
ond describeg the orbit of an object slowly

fe] |

spiralling outwards, and the third is an al-
mogst periodic problem involving Bessel func-
tons. We will show the benelit of nsing the
kunowledge ol the [requency, even in almost
periodic cases.

T'he methods to be used for first order sys-
tems are:

1. Adams Moullon of order 6, AMg

pQ) = ¢ = (37)

() (4?5@”47142744

[EETIAN |
—TQSCJ+—482C2—-173C—F27)
(38)
2, Milne Simpszon ol order 6, MSg
pQ) == ¢ (39)

1 _
— (28¢° 4+ 129¢*
90 ( ¢ | 9
+14¢ 4+ 14¢2 - 6¢ + 1)
(10)

a(¢)

. Adams Moulton of order 6, AMg(2)
The same p(¢) as in AMg and o(() is
determined by (15} with ¢ = 3.

. Milne Simpson ol order 6, MSg(r)

The same p(¢) as in MSgs and o(¢) is
determined by (15) with ¢ = 3.

. Minimax Adams Moulton of order 6,
AMg (v, ar)

i

~4

pQ) =7 —¢ (41)

aud () is determined by (18).(19) with
q = 3
. Minimax Milne Simpson ol order 6,

M 5‘5 (l"m AT )

pl) = & =¢° (42)

and o{¢) iz determined by (25) with
g=3



The methods to he used for second order
gystems are:

1. Lambert and Watson of order 6, W5

pQ) = =2+ + (24 2a)
~(2+a)+1 (13)
: 1 : <
") = 5 ((;18+a_)g4

+ 826 3a)C" + (28 — 194a)”
The parameter o is laken as zero.

2. Stérmer of order 5, Sy (v)

3. Symmetric (optimized) Stormer of order
6, SOs{v)

p(C) is given by (32) and
a{C) = Zﬁ_:yﬂﬂ—j
j=0

with 3p — J5 given by (33), 31 = 34

given by (34), and 3; = 35 given by (35).
4. Symmelric minimax Stormer ol order 6,

Sob (Vm: Vﬁi)

The same p, bul need Lo solve (25) with

heo = pU) given by (36).

The [irsl example i a system ol [irsl order
initial value problems

din
E Ya
ey Y4
dt
dt
Ha
dt

subject to the initial condition

. 11—«
Y ((])
0
y2(0)
= { (46)
'.?}3(0_)
1 (0) T J_r E

where ¢ is the eccentricity of the orbit. We
will take ¢ = .01 in our experiments. Clearly
w = 1. The exacl solution 7, can be writlen
in terms of ¢ and 7 as follows

COST — (
i (t)
8inT

() 1—ecost

- (47)
ysit) vV1—étsinT
ne Vi0—eZeosT

1—¢cosT
where 7 satisfies
T—¢€ginT = t. (18)

This example is one ol those nsed by IIull
et al'¥ for their comparative studies and also
used by van der Houwen and Sommeijer?”.

The following linear multistep method will
be compared: Adams Moulton of order 6 (see
cg. Gear®, p.o 113), (denoted AMg), Milne
Simpson ol order 6 (MSg) and the corre-
sponding methods using the knowledge of the
frequency ag digcussed in the first approach
(AMg(v), MSs(#)) and the third approach
(AMg (v, var), MSg(v, vag)). We will use
the number ol signilicant figures as delined
hy van der Houwen and Sommeijer??,

sd = — logy,(Le norm of the error at end)

(19)



The results of integration from ¢ = 0 to
t = 127 using a fixed step size h = 7/25 are
as [ollows

AMg [ AMg(h) | AMg(.90, 1.10)
4.34 | 7.68 5.01

AMg | AMg(.0R) | AMg(.8h, 1.4)
4.34 | 3.73 4.94

MSs [ MSs(h) | MSs(.94, 1.14)
3.09 | 5.69 3.69

3.09 | 3.06 3.62

It is clear that the first approach shows
a dramatic gain in the case w = 1, but no
gain when the frequency is underestimated
In the
Lthird approach, we 1ook an interval around
w and find that there is no difference in the

(w = .9), exaclly as in Gautschi®?,

two cases (a moderate gain over the original
methods).

The second problem is given by a system of
two second order ordinary differential equa-
tiong and can be written algo ag a system of
four first order. This example is taken from
Sticlel and Bettis® and also solved in Som-
meijer et al®?. The problem is

4z

iz

+z =001, 0<t<A0m  (50)

subject Lo the initial condilion

(51)
09954

where { = v/ —1, and the exact solution is

z(t) = cost+.0005¢ sin t-+i(sin t—.0005¢ cos t)
(52)

-1

One can also solve this problem by using
methods for second order problems. We com-
pare Lamberl-Walson method (LWg) with
original (S;) and optimized (SOg) Gaulschi
and optimized minimax (all but the original
Gautschi’s method, which is of Stormer type,
are of order six) as found in Sommeijer et
al*. The results for b = 7/12 at [inal time of
407 are given in the next table (where in the
firat row the frequency or interval are given
and in the second row the program adjusts

the data)

4.5 3.4 6.1 5.0
4.5 3.4 7.3 9.2

Omne can see that the [ith order Stormer
method due to Gautschi couldn™ compete
with Lambert and Watson (difference in or-
der), but the optimized Gautschi’s method
obtains more than one digit of accuracy rela-
tive 1o LWg. On the other hand the minimax
melhods due to Sommeijer, van der ITouwen
and Neta®? yield about twice the number of
digits of accuracy.

Neta and Ford®® have compared AMg and
MSg for the golution of the first order sys-
tem resulting in this example. The results
(I_—l are 5.8 for AMg and 8.0 for

i
Fven though the step size iz finer,

for h
M.
the results are not better than the minimax
method SOg(.9h, 1.1A).

The third example is a second order almost
periodic equation with w ~ 10

. 1 .
¥+ (l(][)Jr 4#) y =, 1<t<9 (53)
The initial conditions are chosen so that the
exact solution is given in terms ol Bessel
function Jq, (i.e. the coefficient of Yy term
is zero)

g = VtJo(108) (51)



This example was used by Gautschi®®, Neta,
and Ford®® and Sommeijer et al®,

The resulls when solving Lthe second order
system using i = 1/50 are given (al the linal
time t = 10) in the next table:

6.0 4.9 8.2 11.0
6.0 4.9 7.9 11.0

Of course, the second order equation can
be wrillen ag asystem ol two lirsl order equa-
fiong. The resulls of solution ol this system
using methods for first order equations are
listed below:

AM; | AMg(R) | AMg(.0F, 1.17)
157 | 6.89 8.60
MSs | MSe(h) | MSe(.9h, 1.1%)
5.4 | 6.80 8.73

Notice Lhe quality of minimax methods rel-
ative Lo all others. Using the information on
periodicity can yield almost twice the num-
ber of digits of accuracy relative to tradi-
tional schemes.
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