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1.   Introduction. 

The purpose of this working paper is to give an explicit analytical expression for a Lanches-
ter-type attrition-rate coefficient for direct- fire combat in a heterogeneous-target environment with 
serial acquisition of targets for Bonder and Farrell’s m-period target-acquisition policy1.  It develops 
this result (its main result) from Taylor’s [2001d] new important general result (that does not depend 
on the target-engagement policy of a firer type or even on the particulars of the target-acquisition 
process) for a Lanchester attrition-rate coefficient for serial acquisition by developing explicit ana-
lytical expressions for the two key intermediate quantities on which the coefficient depends: namely, 

(1) expected time to acquire a target that will be engaged, 
(2) next-target-type-to-be-engaged probability. 

An analytical expression for the former quantity (the expect value) was recently developed by one of 
the authors (Taylor [2001e]), while the paper at hand develops such an expression for the latter 
probability.  These two new important intermediate results have allowed us to develop the explicit 
analytical expression for a Lanchester attrition-rate coefficient for Bonder and Farrell’s target-
acquisition policy via Taylor’s general expression for direct-fire combat in a heterogeneous-target 
environment with serial acquisition of targets.  These analytical results are then verified against 
simulation results. 

 Building on earlier work by Bonder [1967], [1970]2, Bonder and Farrell (see Miller et al. 
[1978]; also Bonder and Farrell [1970]) did the pioneering work on Lanchester attrition-rate coeffi-
cients for direct- fire combat in a heterogeneous-target environment.  However, more recent work by 
Taylor [2001d] has completely revised their earlier results3.  Bonder and Farrell also introduced a 
fairly complex target-engagement policy, although they did not use such terminology (nor point the 
dependence of attrition-rate coefficients on such target-engagement policy4).  Significantly, Bonder 
and Farrell did not give any explicit analytical expression for the two key intermediate quantities 
noted above (namely, the expected time to acquire a target that will be engaged and the next-target-
type-to-be-engaged probability) for their target-engagement policy. 

Furthermore, this Bonder-Farrell methodology (irrespective of any shortcomings5) has been 
the theoretical basis for direct- fire ground combat in some computer-based combat models widely 
used by DoD and the U.S. Army (e.g. see CCTC [1979], TRAC-FLVN [1992]).  Therefore, it is of 
considerable theoretical interest to have explicit analytical results available for these two key inter-
mediate quantities.  In particular, the theoretical correctness and practical impact of Bonder and Far-
rell’s general expression for a Lanchester attrition-rate coefficient can now be readily investigated 
(providing that one obtains what expressions are actually used for the two key intermediate quant i-
ties noted above).  Moreover, having such analytical results readily available allows one to imple-
ment simple Lanchester-type models (e.g. for two and three weapon-system types on each side) with 
such coefficients on a spreadsheet (e.g. Excel spreadsheet).  Hence, parametric analyses become 

                                                 
1 See, for example, Miller et al. [1978] or CCTC [1979]. 
2 See also Barfoot [1969]. 
3 For example, compare (2) below with the analogous expression given by Bonder and Farrell (e.g. see Miller et al.; also 
TRAC-FLVN [1992, Section 5.4.2.3]).  Moreover, no explicit expressions were given for the two key intermediate quan-
tities noted above. 
4 Therefore, one would not think to investigate the dependence of kill rates in a heterogeneous-target environment on the 
target engagement policy (or even to try to develop other operationally relevant policies). 
5 Taylor [2000a] has detailed a number of serious flaws in Bonder-Farrell methodology.  Among those germane here are 
the following: (1) incorrect/inconsistent treatment for parallel acquisition of targets, (2) Bonder-Farrell results for paral-
lel acquisition do not apply to cases of preemption by higher-priority target type (see also Taylor [2000c]). 
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readily accessible via a PC, thereby fostering greater understanding of Lanchester-type models (par-
ticularly methodologies for determining numerical values for attrition-rate coefficients). 

Thus, this paper takes another step towards establishing theoretically-sound methodology for 
calculating numerical values for Lanchester attrition-rate coefficients.  In particular, it provides the 
practical means for comparing Taylor’s theory and results for Lanchester attrition-rate coefficients 
with those of Bonder and Farrell.  Such numerical values for attrition-rate coefficients are indispen-
sable for representing ground-combat attrition in joint campaign models such as JWARS, ITEM, etc. 
that are essential for investigating issues concerning issues concerning weapons of mass destruction 
(WMD).  Previously, no theoretically-sound methodology had existed for computing such kill rates 
in a heterogeneous-target environment, especially for Bonder and Farrell’s m-period target-
engagement policy.  

2.  Background. 

Both DoD and DTRA extensively use combat models for analysis of significant issues and 
also development of policy.  Essentially all aggregated-force models (both ITEM [a joint campaign 
model] and others such as CEM and VIC) currently in use for analysis, or planned for the future (e.g. 
JWARS, AWARS), base their attrition calculations on some type of underlying Lanchester-type 
force-on-force model.  The basic Lanchester-type attrition paradigm (see Taylor [1983]) (out of 
which such computer-based complex operational models have been developed by the process of 
model enrichment) is given by (see Fig. 1) 
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where  t = 0  denotes the time at which the battle begins and  x(t)  and  y(t)  denote the numbers of X 
and Y at time t.  Here, for example, a  denotes the rate at which a single typical Y firer kills X tar-
gets and is called a Lanchester attrition-rate coefficient (single-weapon-system-type kill rate (see 
Taylor [1982]). 

  

 

The practical use of such differential-equation models in defense analysis depends (in es-
sence) on one’s ability to obtain realistic values for the Lanchester attrition-rate coefficients.  Two 
general approaches that have been used to develop numerical values for Lanchester attrition-rate co-
efficients (i.e. single-weapon-system-type kill rates) are 

 

Fig. 1.  Combat between two homogeneous forces. 
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(1) the freestanding-analytical-model approach (which generates these values from an ana-
lytical model, independent of any high-resolution model), 

(2) the hierarchy-of-models approach (which estimates parameter values for such an         
attrition-rate coefficient from the output of a high-resolution Monte-Carlo combat simu-
lation).  

The first approach was pioneered by Bonder and Farrell [1970] (see also Bonder [1967], [1970] and 
Barfoot [1969]) and for this reason is frequently called the Bonder-Farrell approach.  It will be the 
approach used in the paper at hand.  It conceptually consists in considering (for the case of homoge-
neous forces depicted in Fig. 1) a single typical firer on a particular side and then computing the rate 
at which this firer type kills enemy targets according to a micro-combat model6.  A mathematical 
formula for such a rate is developed from this micro-combat model. 

Recently, one of the authors (Taylor [2001b]) deve loped a new principle for computing a 
numerical value for a Lanchester attrition-rate coefficient:  namely, computing it as the ratio of the 
expected number of kills for a given firer type against a specific target type per target-engagement 
cycle divided by the expected length of this target-engagement cycle.  Taylor [2001d] then used this 
principle to develop a general expression (not depending on the firer type’s target-engagement pol-
icy) for a Lanchester attrition-rate coefficient for direct- fire combat in a heterogeneous-target envi-
ronment with serial acquisition of targets.  Concrete results for this attrition-rate coefficient were 
then obtained for Taylor’s constant-probability-of-engagement-for-a-given-target-type target-
engagement policy and verified by Monte-Carlo simulation of the target-engagement cycle. 

Taylor’s [2001d] general expression for a Lanchester attrition-rate coefficient for direct- fire 
combat in a heterogeneous-target environment for serial acquisition of targets depends of the two 
key intermediate quantities 

(1) next-target-type-to-be-engaged probability,  
(2) expected time to acquire a target that will be engaged. 

For Taylor’s constant-probability-of-engagement-for-a-given-target-type target-engagement policy, 
these two quantities are easily computed7.  However, this state of affairs is not true for Bonder and 
Farrell’s m-period target-engagement policy.  In fact, the authors know of no other such explicit ana-
lytical results for the Bonder-Farrell policy.  A previous working paper (Taylor [2001e]), however, 
has developed an explicit analytical expression for the expected time to acquire a target that will be 
engaged for this policy.  It remains to develop an explicit analytical result for the next-target-type-to-
be-engaged probability.  Such an explicit analytical result would allow one to use the author’s gen-
eral expression for a Lanchester attrition-rate coefficient to develop explicit analytical attrition-rate-
coefficient results for Bonder and Farrell’s target-engagement policy.  Thus, the paper at hand will 
develop an explicit analytical expression for the next-target-type-to-be-engaged probability for 
Bonder and Farrell’s m-period target-engagement policy. 

3.  Taylor’s New General Expression for a Lanchester Attrition-Rate Coefficient for Serial Ac-
quisition. 

 Recently, Taylor developed8 the following general expression for the rate a which a single 
                                                 
6 Here micro-combat model refers to an entity-level (i.e. single-shooter) model in which all the details of the process by 
which this individual combatant acquires and engages an enemy target are considered. 
7 That is why such a policy was considered in the first place. 
8 Revising earlier work (Taylor [1999], [2000b], [2000f]) that was flawed for the case of direct-fire combat in a hetero-
geneous-target environment.  Equation (2) is based on the principle that such a rate should be computed as the ratio of 
the expected number of kills against a particular target type per target-engagement cycle divided by its expected length 
(see Taylor [2001d] for further details).  Other existing work suffers from even more serious flaws. 
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typical Yj firer type kills Xi target types with direct fire in a heterogeneous-target environment with 
serial acquisition of targets9 
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where α ij  denotes the rate at which an individual Yj firer type kills acquired Xi targets, µ  denotes 

the rate at which LOS is lost between a  Xi-target/Yj-observer pair, E TaY j
 denotes the expected 

time for the Yj firer type to acquire the next target that will be engaged, and PX Y
eng

i j
 denotes the prob-

ability that the next target type to be engaged by the Yj firer type will be an Xi one.  The latter two 
key intermediate quantities carry all the dependence on the target-engagement policy with them.  
Assumptions have been made for only the line-of-sight (LOS) and the attacking-of-an-acquired-
target processes for the development of (2) above (see Taylor [2001d, Section 7.1] for further de-
tails; also Section 7 below). 

4.  Bonder and Farrell’s m-Period Target-Engagement Policy. 

 For serial acquisition of targets in a heterogeneous-target environment (m different target 
types) with stochastic LOS, Bonder and Farrell considered the following m-period target-
engagement policy10 (also referred to as rules of engagement).  In the first such period of time, for a 
particular firer type, only its highest-priority target type will be immediately engaged when acquired, 
although all lower-priority target types are remembered as long as they are visible.  This first period 
lasts from t=0 until t=t1 .  At time t1, any second-priority target that is still visible will be immedi-
ately engaged.   In the second such period of time, either of the top-two-priority target types will be 
immediately engaged when acquired, although all lower-priority target types are remembered as 
long as they are visible.  This second period lasts from t= t1 until t=t2.  At time t2  , any third-priority 
target that is still visible will be immediately engaged, etc.  The last such period of time starts at 
t=tm-1 and does not end at any finite time. At time tm-1, any second- lowest-priority target that is still 
visible will be immediately engaged.   In this last period of time, any target type that is acquired will 
be immediately engaged.  The same type of m-period target-engagement policy holds for each firer 
type.  The situation for 3 periods (and, of course, 3 target types) is depicted below in Fig. 2. 

Bonder and Farrell’s m-period target-engagement policy is an open- loop policy that does not 
involve any feedback about the battlefield state11.  In the case of battlefield feedback (e.g. having 
knowledge about how many enemy targets are available for acquisition) one might want to adopt a 
policy of always waiting for one’s highest-priority target to be acquired (as long as the expected 
waiting time is not too long).  It is well known that such a closed- loop policy is always more effi-
cient than an open- loop one (e.g. see Padulo and Arbib [1974], Luenberger [1979]).   

 
                                                 
9 Serial acquisition (as opposed to parallel acquisition) of targets means that no new target can be acquired while an ac-
quired target is being attacked by a firer (see Taylor [2001d, Section 5] for further details). 
10 See CCTC [1979, pp. 53 and 55] or Miller et al. [1978, pp. 49 and 51]; see also Taylor [1982, p. 113]).   
11 See Luenberger [1979, Section 8.9] for a lucid discussion of the concepts of open-loop and closed-loop control. 
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5.  Notation for Firer and Target Types. 

 It will also be convenient to establish here notation that will be used in the sequel.  Without 
loss of generality, one can assume that (for a particular Yj firer type) the target types have been ar-
ranged in order of decreasing priority with increasing value of the target-type index i.  It will also be 
convenient to suppress the firer-type index j, which by our convention has been the second of the 
double subscripts for a Yj firer type engaging Xi target types.  Then, target type 1 (i.e. X1  ) denotes 
the highest-priority target type, target type 2 the second-priority target type, etc., with target type m 
denoting the lowest-priority target type.  This situation is depicted in Fig. 3 below, which also incor-
porates these conventions.  This figure will be used in the development of the expression for the ex-
pected time to acquire a target that will be engaged. 

 The rules of engagement (i.e. the target-engagement policy) for the generic Y firer type 
against the m different Xi  target types (put in order of decreasing target priority with increasing tar-
get-type index i (i.e. X1 denotes the highest-priority X target type, while Xm denotes the lowest-
priority X target type to the Y firer)) are simply the target-engagement policy for the Y firer.  For 
Bonder and Farrell’s m-period target engagement policy (see Section 8 above, especially Fig. 4), this 
means that m time periods are considered for the rules of engagement.  During the kth such time pe-
riod, which extends from t tk= −1  until t tk=  (with t0 0=  and tm = + ∞  ), any target of the first k 
priorities will be engaged immediately upon acquisition.  Any other lower-priority target type (i.e. 
target types k+1 through m) that is acquired during this kth such time period will not be engaged im-
mediately, but will be held under surveillance as long as LOS exists to it.  At the end of the kth time 
period (that occurs at time t tk=  (which is called the kth transition time12)), any such (k+1)st priority 
target that is under surveillance and still visible will be engaged immediately.  This ability to re-

                                                 
12 Bonder and Farrell (e.g. see Miller et al. [1978] or CCTC [1979]) use the term “search cut-off time.”  See also Taylor 
[2000d], [2000e]. 

 
      Fig. 2.  Bonder and Farrell’s target-engagement policy (3 periods). 
 



 7

member the location of a lower-priority target at the kth transition time will be termed “look-back” 
capability.  For our initial analysis here, however, it will be ignored. 

 

 

 

6.  Assumptions for Target Acquisition. 

 Concerning the target-acquisition process, it is assumed that  
 (I)    all targets of a particular type are identical, 
 (II)   all targets behave independently of each other, 
 (III)  the time required to acquire a particular target type is exponentially distributed with a 
                    rate denoted as λ. 
The rate at which a Yj firer type acquires a particular Xi target (when there is only a single target 
present) will be denoted as λ X Yi j

(single-target-acquisition rate for an individual Yj firer type against 

Xi targets). 

 An important consequence of the above assumptions is that if there are nX i
 targets (an inte-

ger number) of type Xi  present in the field of view of a Yj  observer, then the rate at which this indi-
vidual Yj firer type acquires the next such target is given by nX X Yi i j

λ .  A Lanchester-type model of 

force-on-force attrition, however, does not consider an integer number of combatants of a particular 
type, but uses a real (nonnegative) number (which may be thought of as an approximation to the av-
erage number of combatants (e.g. see Taylor [1983, Section 4.12])).  If we let xi  denote the num-
ber13 of Xi  combatants available to be acquired, then the rate at which an individual Yj firer type ac-
quires the next such target is approximated by x i X Yi j

λ .  Furthermore, under conditions of intermit-

tent LOS modeled by the two-state Markov chain discussed below in Section 7, the rate at which an 

                                                 
13 As just noted, such a (nonnegative real) number may be considered to be an approximation to the average number of 
Xi   combatants. 

 
      Fig. 3.  Bonder-Farrell target-engagement policy (m periods). 
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individual Yj firer type acquires the next such target can be written as P xLOS X Y ii j
λ , where the 

(steady-state) probability of having LOS exist between the observer type Yj and the Xi target type is 
given by (e.g. see Taylor [1982], [2000c], [2000f]) 
 

                                                 PLOS =
+
η

η µ
. ( )3  

In models like VIC, such a probability depends only on the position of observer and target on the 
terrain and depends on the distance (range) between them. 

 Thus, the (net) rate at which an individual Yj firer type acquires Xi targets is given by 
P xLOS X Y ii j

λ .  Suppressing the designation of a specific Y firer type as discussed in Section 5 above, 
one will find it convenient to denote this net rate at which the Y firer acquires the ith X target type 
simply as λ i .  In other words, for i m= 1, ,K  

     λ λi LOS X Y iP x
i j

= . ( )4  

It will also be convenient to introduce the rate of acquiring any for the first i highest-priority X target 
types, denoted as Λ i , which is given by 

                                                            Λ i k
k

i

=
=

∑ λ
1

5. ( )  

7.  Other Assumptions and Summary. 

 For the reader’s convenience, the assumptions that have been made to obtain the results of 
this paper will be summarized and presented here in an organized fashion.  Some of these have al-
ready been noted above.  A more detailed development of the attrition model considered here is to be 
found in Taylor [2001d], where model development is related to analysis of the target-engagement 
cycle. 

 Thus, because of the central role played by the target-engagement cycle in the determination 
of a Lanchester attrition-rate coefficient, it seems only fitting to organize this presentation around the 
elements of the target-engagement cycle.  Accordingly, we consider the following aspects of the 
overall attrition process 

(I)  LOS-between-firer-and-target process, 
(II)  target-acquisition process for a firer type, 
(III)  target priorities for a firer type, 
(IV) target-engagement policy for a firer type, 
(V)  target-attack process (i.e. firing-at-an-acquired-target process) for a firer type against a  

                    given target type, 
(VI) termination conditions for target engagement. 

The assumptions concerning the overall attrition process that have been made to obtain our new re-
sults will now be summarized and presented within the framework of the above attrition-process 
categories (I) through (VI). 

 Concerning the LOS-between-firer-and-target process (I), it is assumed that this process 
functions independently of the other five components of the overall attrition process.  For a given 
firer/observer type and given target type (i.e. firer/target-type pair), it is assumed that the target can 
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be in either one of two states:  (1) invisible to the observer (i.e. LOS does not exist between the target 
and the observer), or (2) visible to the observer (i.e. LOS exists between the target and the observer).  
The time that the target spends in each of these states is exponentially distributed, with η denoting 
the rate at which a particular target becomes visible to the observer and µ denoting the rate at which 
it becomes invisible (i.e. rate of losing LOS) to the observer.  Thus,  (1/η) denotes the expected time 
that the target is invisible, and (1/µ) denotes the expected time that the target is visible (see Taylor 
[2001d,Section 7.1] for further details; also Taylor [2000g]). 

 Concerning the target-acquisition process for a firer type (II), it is assumed that 
(a) all targets of a particular type are identical, 
(b) all targets behave independently of each other, 
(c) the time required to acquire a particular target is exponentially distributed with a 

rate denoted as λ. 
The rate at which a Yj firer type acquires a particular Xi target will be denoted as  λ X Yi j

.  This rate 
can be referred to as the single-target acquisition rate for an individual Yj firer type against Xi tar-
gets, since it is the applicable rate when there is only one Xi target type present (see Section 6 above 
for further details). 

 Concerning the target priorities for a firer type (III), it is assumed that each (and every) firer 
type has its own list of target priorities (see Section 5 above and Taylor [2001d, Section 9] for fur-
ther details).  Concerning the target-engagement policy for a firer type (IV), it is assumed that Bon-
der and Farrell’s m-period target-engagement policy holds (see Sections 4 and 5 above). 

 Concerning the target-attack process (i.e. firing-at-an-acquired-target process) for a firer type 
against a given target type (V), it is assumed that the time to kill an acquired enemy target is expo-
nentially distributed, with αij denoting the rate at which a Yj firer type kills an acquired Xi target type 
and similarly for β ji (see Taylor [2001d, Section 7.1] for further details).  Concerning the termination 
conditions for target engagement (VI), it is assumed that an engagement ends when either one of the 
following two terminal states is reached 

(a) target killed, 
(b) LOS lost. 

See Taylor [2001d, Section 7.1] for further details. 

 Finally, the assumptions made here differ from those made in the original work by Bonder 
and Farrell in the following ways 

(a) conditions for engagement termination,  
(b) target-engagement policy adopted. 

See Taylor [2001d, Section 7] for further details. 

8.  Some Preliminary Mathematical Results. 

The two key mathematical results that are required for the development of the next-target-
type-to-be-engaged probability for Bonder and Farrell’s m-period target-engagement policy are the 
following 

(1) probability that one random variable is less than another for a finite interval of time and 
exponential variates, 

(2) probability of engaging lower-priority target type previously acquired and still visible14. 

                                                 
14 K. Saeger has suggested taking the probability that the target is in the state of being acquired and visible (see, for ex-
ample, Taylor [1982, Section 7], [2000c], [2000f] for a discussion of the system states for a typical firer). 
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The following result has played an essential role in the calculation of PX Y
eng

i j
 for any particular 

target-engagement policy, especially Bonder and Farrell’s m-period target-engagement policy given 
above. 

Theorem 1.  Let S and T denote two independent random variables, exponentially distributed  
with rates denoted as λS and λT , respectively, e.g.  

        P T t F t eT
tT≤ = = − −( ) .1 λ  

It follows that 

      P S T S t eS

S T

tS T≤ ≤ =
+

F
HG

I
KJ − − +

1 1 1λ
λ λ

λ λb g{ }. 

The proof of Theorem 1 is straight forward (cf. Taylor [1983, Appendix B]) and therefore 
omitted.  It should be noted that Theorem 1 holds whether or not t1 is finite.  More general results are 
given in Taylor [1983, Appendix B], but always for an infinite period of time.  The above result for a 
finite interval of time is essential for developing the author’s important new result for PX Y

eng
i j

 for Bon-

der and Farrell’s m-period target-engagement policy given above. 

The following result is the other key result for the calculation of PX Y
eng

i j
 for Bonder and Far-

rell’s m-period target-engagement policy given above. 

Theorem 2.  Consider Bonder and Farrell’s m-period target-engagement policy described in 
Section 3 above.  Assume that Bonder and Farrell’s LOS and target-acquisition processes de-
scribed in Taylor [2000c, Section 5] hold.  Consider a population of size ni of the ith priority X 
target type.  The probability that one or more such Xi targets that have been acquired in the 
interval [0, ti-1  ] are still visible at time ti-1 is given by (for i = 2,…,m) 

            P pi
SVX

i
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− −= − −1 1
11 1 6d i , ( )  
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In the above 
      µ µ λ λi X Y i LOS X Yi j i j

and P= ′ = . ( )8  

 

 To prove the above theorem, one starts by considering a single target of type Xi .  Denoting 
pi

SV
−1

1  simply as pi-1, one easily sees that the probability that such a target that is acquired before time 
ti-1 will still be visible at time ti-1 is given by 

 p ob
no acquisition
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       p e e dti
t

t
t t

i
i
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i i
−
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−

−z1
0

1

1λ µ λb g ,  

whence readily follows the result for pi
SV
−1

1 .  The result for Pi
SVX
−1  follows from consideration of  ni 

independent targets. 

9.  Probability of Next Target Type to Be Engaged (Serial Acquisition). 

In this section the general formula for the probability of the next target type to be engaged, 
denoted as P Pij

eng
X Y
eng

i j
= , for Bonder and Farrell’s m-period target-engagement policy is stated and 

then proved.  For simplicity, it is convenient to suppress the second subscript, here j (see Section 5 
above), since it will always be the same (and using it just makes formulas appear longer without any 
additional real information being provided).  Thus, Pij

eng  becomes simply Pi
eng , and the acquisition 

rate for the ith X target type becomes (see Section 6 above) 

     λ λi LOS X Y iP x for i m
XiY j i j

= = 1, , .K  

Also, denote Pi
SVX
−1  of Theorem 2 simply as Pi-1  .  Furthermore, it is convenient to adopt the follow-

ing conventions 

     b g
k i

j

for i j
=
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Then, one can write the final result for the next-target-type-to-be-engaged probability, de-
noted as Pi

eng , in simplest form as (for 1 ≤ i ≤ m) 
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In the above formula the following conventions have been followed:  t0 = 0,  tm = +∞, and  P0 = 0.  
Equation (9) is the main theoretical result of the paper at hand.  Since Taylor [2001e] has already 
developed an explicit analytical expression for the expected time to acquire the next target to be en-
gaged, it allows one to compute an explicit analytical expression for a Lanchester attrition-rate coef-
ficient for Bonder and Farrell’s m-period target-engagement policy for direct- fire combat in a het-
erogeneous-target environment with serial acquisition of targets. 

 Equation (9) may be developed by straightforward probability arguments.  Obtaining motiva-
tion from Fig. 3 one can write (again adopting the conventions that  t0 = 0 and  tm = +∞) 

        P ob X engaged at t ob X engaged in t ti
eng

i i i k k
k i

m

= +− −
=

∑Pr Pr , . ( )1 1 10  
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It is also necessary to adopt the convention  Prob [X1 engaged at t0 = 0 ] = 0.  The reader should keep 
in mind that in Equation (10) above the probability that Xi is engaged really means the probability 
that Xi is first engaged.  For the development of Equation (9), one begins by considering Prob [Xi 
engaged at ti-1 ]. 

 Thus, one considers 

Prob X first engaged at ti i− =1  

     Pr
arg

Pr . ( )ob
no higher priority t et

engaged before t
ob

some priviously acquired
X still visible at ti i i

−L
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QP− −1 1

11  

But the probability that some previously-acquired Xi target is still visible at ti-1 is simply the prob-
ability that this previously-acquired Xi target will be engaged at ti-1  .  This latter probability is just 
what has been denoted as Pi-1  .  Furthermore, the probability that no higher-priority target will be en-
gaged before ti-1   is given by the product of the probability that no higher-priority target type will be 
engaged at any earlier transition time times the probability that no higher-priority target type will be 
engaged in any earlier time period.  The former probability is simply given by 
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Furthermore, the probability that no higher-priority target will be engaged in any earlier time period 
is given by 
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In particular, in the (i-1)st time period no target type from X1 through Xi-1 can be acquired.  The 
probability of this occurring is given by 
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whence follows Equation (13).  As stated above, the probability that no higher-priority target type 
will be engaged before ti-1 is given by 

Considering the definition of Pi-1 and Equations (11) through (15) above, one consequently finds that 
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One next considers the probability that Xi is engaged in [tk-1  , tk ], i.e. Prob [Xi engaged in [tk-1  , tk ]]. 
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Thus, one considers for k = i,…,m  

Pr ,ob X first engaged in t ti k k− =1  
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Recalling that the time period [tk-1  , tk ] denotes the kth period of Bonder and Farrell’s m-period target 
engagement policy during which target types X1 through Xk are to be engaged immediately upon 
acquisition, one has that the probability that Xi is engaged in [tk-1  , tk ] is given by  

Pr , Pr
arg ,
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Repeatedly applying Theorem 1 for the probability that one random variable is less than another in a 
finite interval of time, one finds that 
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Moreover, the probability that no higher-priority will be engaged before [tk-1  , tk ] is given by the 
product of the probability that no higher-priority target type will be engaged at any earlier transition 
time times the probability that no higher-priority target type will be engaged in any earlier time pe-
riod.  The former probability is simply given by 
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Furthermore, the probability that no higher-priority target type will be engaged in any earlier time 
period is given by 
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As stated above, the probability that no higher-priority target type will be engaged before in [tk-1 , tk ] 
is given by 
 

Combining Equations (17) through (22), one readily finds that for k = 1,…,m  and  i ≤ k 
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Pr ,ob X first engaged in t ti k k− =1  
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Equation (9) now readily follows by substituting Equations (16) and (23) into Equation (10). 

10.  Summation over All Target Types. 

 An important cross check on the theoretical correctness of the probability distribution for the 
next target type to be engaged, denoted as Pi

eng  for i = 1,…,m, given by equation (9) above is to be 
able to show that its sum over all target types is equal to 1.  Thus, we will show that 

            Pi
eng
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=
=
∑ 1 24

1

. ( )  

However, our proof involves summing over different numbers of target types so that it is essential to 
explicitly denote the total number of target types present.  Thus, we will henceforth in this section 
denote Pi

eng  as Pi m,  to make explicit the total number of target types present.  Proving (24) then 
amounts to proving that 

             Pi m
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, . ( )=
=
∑ 1 25
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Furthermore, the complexity of (9) dictates that we express (9) in a more convenient form for prov-
ing (25). 

 Thus, it is now convenient to define for i = 2,…,m 
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It follows that q1 0= , since P0 0=  at t0 0= .  If we recursively define Fn  for n = 0,1,…,m-1  
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with F0 1= , we can then write for n = 2,…,m 
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where we have made use of the notation (5).  Also, define Ti j m, ,  for 1 ≤ i ≤ j ≤ m-1 as 
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and for j = m as (since tm = + ∞  ) 
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It is important to note that 
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From the above definitions, it follows that (9) can be written as 
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 Our approach for proving (25) is motivated by first considering the sum of the first two 
terms.  It is therefore convenient to note that 
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which is readily shown by the above to yield 
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An inductive argument then readily yields that for 2 ≤ n ≤ m-1 

            P F e Ti m
i

n

n
t t

i j m
j n

m

i

n
n n n

, , , . ( )
=

−
−

= +=
∑ ∑∑= − +

RST
UVW

−

1
1

11

1 371Λ b g  

Finally, one finds that for n = m 
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Recalling that the second term on the right-hand side of (40) is equal to Fm−1  by (27), we see that 
(25) has been proven. 

11.  Expected Time to Acquire Target That Will Be Engaged. 

 Recently Taylor [2001e] has shown that the expected time to acquire a target that will be en-
gaged according to Bonder and Farrell’s m-period target-engagement policy, denoted as E TaY

, is 

given by 
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where t0 0=  and tm = + ∞ .  The above expression was developed by considering a piecewise-
constant acquisition rate equal to Λ k  in the kth subinterval of Bonder and Farrell’s m-period target-
engagement policy. 

 For simplicity we have suppressed the firer-type index j in the writing of (41) as discussed 
above in Section 5.  When the firer-type index j is re- introduced into (41), E TaY

  becomes 

E TaY j
, which is then used in equation (2) in the computation of a numerical value for a Lanchester 

attrition-rate coefficient.  However, in the paper at hand it will be more convenient to suppress the 
firer-type designation in the general expression for a Lanchester attrition-rate coefficient like (2) 
above. 

12.  Explicit Analytical Expression for Lanchester Attrition-Rate Coefficient. 

 Because of the complexity of the expressions for the expected time to acquire a target that 
will be engaged and the next-target-type-to-be-engaged probability, it is convenient to suppress the 
firer-type designation in (2) and write the general expression for the rate a which a single typical Yj 
firer type kills Xi target types with direct fire in a heterogeneous-target environment with serial ac-
quisition of targets as follows 

a
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42, ( )  

where α i  denotes the rate at which an individual Y firer type (our generic Y firer type discussed in 
Section 5 above) kills acquired Xi targets.  As stressed by Taylor (e.g. see Taylor [1999], [2000b], 
[2001d]), the two key intermediate quantities 

(1) expected time to acquire a target that will be engaged, 
(2) next-target-type-to-be-engaged probability, 

depend on the target-engagement policy adopted, while all the other quantities in (42) do not depend 
on it.  Our new important explicit analytical results for Bonder and Farrell’s m-period target-
engagement policy are obtained by specifying these two key intermediate quantities.  It will be con-
venient to state again here these quantities given above. 
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 Thus, in the above expression the next-target-type-to-be-engaged probability according to 
Bonder and Farrell’s m-period target-engagement policy is given by (for i = 1,…,m) 

Also, the expect time to acquire a target that will be engaged according to Bonder and Farrell’s tar-
get-engagement policy is given by 
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In both these expressions it has been convenient to use the compound acquisition rate given by (5).  
Also, as above the following conventions apply to these formulas:  t0 = 0,  tm = +∞, and  P0 = 0.   
Equation (42) with the two key intermediate quantities given by (43) and (44) provides an explicit 
analytical expression for a Lanchester attrition-rate coefficient for Bonder and Farrell’s m-period 
target-engagement policy. 

13.  Limiting-Case Analysis of Lanchester-Attrition-Rate-Coefficient Result. 

 A necessary (but by no means sufficient) condition for theoretical correctness of a single-
weapon-system-type kill rate is that the limiting-case behavior of results be consistent with the limit-
ing-case result obtained by other, independent means (Taylor [2000a]).   For example, the author has 
shown that Bonder and Farrell’s (e.g. see Miller et al. [1978]) attrition-rate-coefficient results for 
parallel acquisition do not exhibit appropriate limiting-case behavior (Taylor [2000a]; see also Shu-
bik [1983]). 

 If one sets t t tm1 2 1 0= = = =−K  in Bonder and Farrell’s m-period target-engagement 
policy discussed in Section 4 above, then their complex target-engagement policy reduces to the 
simple engage-any-target-that-is-acquired target-engagement policy (e.g. see Taylor [2001d]).  Sub-
stituting these values into (43) and (44), one finds that (no longer suppressing the firer-type index j) 
equation (42) becomes 
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which is precisely the result given previously for the engage-any-target-that- is-acquired policy by 
Taylor [2001b, Section 16].  Thus, our new result (41) is consistent with a previously developed re-
sult in this particular limiting case15. 

14.  Verification of Analytical Expressions by Simulation. 

 Another cross check that can be made on our new explicit analytical expression for a Lan-
chester attrition-rate coefficient for direct- fire combat in a heterogeneous-target environment with 

                                                 
15 Taylor has stressed the importance of subjecting theoretical results to such limiting-case analysis (e.g. see Taylor 
[2001d, Section 10.4]). 
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serial acquisition of targets for Bonder and Farrell’s m-period target-engagement policy is to verify 
its numerical value computed by (42) with (43) and (44) against Monte-Carlo simulation results.  
Since such a kill rate has been computed as the expected number of kills 16 in the target engagement 
cycle divided by its average length, it seems only appropriate to simulate the target-engagement cy-
cle17 and then estimate kill rates according to this principle from the output of the simulation.  Since 
all event times are assumed to be exponentially distributed, it was particularly simple to develop 
such a simulation.  In fact, the simulation was implemented on an Excel spreadsheet and exercised 
for the case of two target types with no look-back capability (see Section 5 above). 

 The overall flow chart upon which the Monte-Carlo simulation of the target-engagement cy-
cle is shown in Fig. 4.  Moreover, a flow chart showing the details for the determination of the target 
type acquired that will be engaged according to Bonder and Farrell’s target-engagement policy is 
shown in Fig. 5, while a flow chart showing details for the determination of engagement outcome is 
shown in Fig. 6.  This simulation was developed for the case of two target types with no look-back 
capability.  For the determination of the target type acquired depicted in Fig. 5, a net rate of target 
acquisition given by, for example, P xLOS X Y j

λ
1 1  was used.  These flow charts were the basis for de-

veloping an Excel spreadsheet to implement a Monte-Carlo simulation of the target-engagement cy-
cle.  This simulation generated the occurrence of the next casualty and hence a means of verifying 
the analytical expression for the Lanchester attrition-rate coefficient (42) with the two key interme-
diate quantities given by (43) and (44)18.  It did not settle the question, however, of verification of 
the attrition model, i.e. heterogeneous-force Lanchester-type equations analogous to (1) together 
with a model for attrition-rate coefficients yielding (42) with (43) and (44) to be used with these 
equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                                 
16 For the appropriate type of target, of course. 
17 For an explicit look at the target-engagement cycle for serial acquisition of targets, see Taylor [2001d]. 
18 The same research that developed the analytical expression for the expected time to acquire a target that will be en-
gaged (41), equivalently (44), also verified this analytical expression against Monte-Carlo simulation results (Taylor  
[2001e, Section 17]).  Thus, the work at hand did not need to verify (44). 

 

Fig. 4.  Flow chart of simulation of target-engagement cycle. 
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 In practice, however, the authors were able to use a variant of the algorithm depicted in Fig. 5 
for the determination of the time and type of the next target to be engaged for Bonder and Farrell’s 
target-engagement policy.  Although this variant (called the simple method and involving the gen-

 
 

Fig. 5.  Flow chart of determination of next target type to be engaged. 
  

 

Fig. 6.  Flow chart of determination of engagement outcome. 
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eration of m random variables for an m-period Bonder-Farrell target-engagement policy) is ex-
tremely convenient (and for larger numbers of target types even necessary) to use for the simulation 
of the entire target-engagement cycle, earlier work on acquisition of targets that will be engaged by 
Bonder and Farrell’s target-engagement policy (Taylor [2001e]) had simulated the determination of 
the next target type to be engaged with use of an algorithm based on Fig. 5 directly (or its 3-period 
extension).  This method (called the m-period method), unfortunately, involves generation of m!  
random numbers (as opposed to m for the simple method). 

 What is this simple method of simulating the acquisition of the next target that will be en-
gaged by Bonder and Farrell’s target-engagement policy?  For two target types it consists of generat-
ing two samples drawn from exponential distributions with rates19 P xLOS X Y ii

λ  for i = 1, 2.  Denote 

these realizations as ta1
 and ta2

.  One then computes 

           u t and u t ta a1 2 11 2
46= = + ( )  

where  t1   denotes the transition time20 for Bonder and Farrell’s 2-period target-engagement policy.  
If u u1 2≤ , then target type one is determined to have been acquired. 

 Extensive simulation runs revealed that the simple method yielded a satisfactory estimate for 
the expected time to acquire a target that will be engaged by Bonder and Farrell’s target-engagement 
policy.  This was done by comparing the average of this time to acquire generated from the simula-
tion, denoted as $taY

(cf. Taylor [2001e]), with the theoretical value for taY
computed from (44) with 

m = 2, i.e. 
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where λ i is given by (4).  An Excel spreadsheet was developed to execute the simulation of the time 
to acquire a target that will be engaged according to the simple method described above.  The 
spreadsheet generated 20,000 replications of the simulation (implemented by copying the basic cal-
culation row 20,000 times).  Graphical output from a typical spreadsheet replication is shown in Fig. 
7.  Twenty replications of this spreadsheet yielded 400,000 replications of the time-to-acquire simula-
tion and an estimate $taY

= 1.72429 hours, which compared extremely favorably with the theoretical 
value of 1.72507.  It was therefore concluded that the simple method of simulation would yield satis-
factory results for the simulation of the entire target-engagement cycle for Bonder and Farrell’s tar-
get-engagement policy.  Furthermore, such a simulation using the simple method to generate acquisi-
tion times for targets that will be engaged would be much more efficient than the 2-period method. 

 Thus, an Excel spreadsheet was developed to implement the simulation of the target-engage-
ment cycle described above (using the simple method, however, for simulating the acquisition of a 
target that will be engaged according to Bonder and Farrell’s target-engagement policy).  This 
spreadsheet calculated an estimate of the average time to acquire the next target to be engaged, de-

noted as $taY
, and also an estimate of the average target-engagement-cycle time, denoted as $tcycleY

.  
Results for 20,000 replications of the simulation are shown in Fig. 8 below for the average cycle 

                                                 
19 It is not essential for our purposes here to identify the firer type any more precisely than simply a Y firer. 
20 As pointed out above, Bonder and Farrell (e.g. see Miller et al. [1978] or CCTC [1979]) use the term “search cut-off 
time.” 
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time.  The simulation computed $taY
= 1.744 hours, which corresponded very favorably with the theo-

retical value of 1.725.  Also (as shown in Fig. 8), the simulation computed $tcycleY
= 2.047 hours, 

which again corresponded very favorably with the theoretical value of 2.029. 

 

 

 

 

 

 

Fig. 7.  Graphical simulation results for one replication of spreadsheet simula-
tion for average time to acquire a target that will be engaged for simple method. 

 

Fig. 8.  Simulation results for average target-engagement-cycle time. 
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 The spreadsheet also computed estimates of the kill rates of the Y firer against the two X tar-
get types.  It computed an estimate of the average number of Xi casualties per engagement (i.e. per 
replication of the target-engagement cycle), denoted as  $nk XiY

.  Estimates of the kill rates for an indi-

vidual Y firer against each of the two X target types, denoted as  $a i
ser   for i = 1,2, were computed by 

Taylor’s Principle as the ratio of the expected number of kills against the particular target type per 
target-engagement cycle divided by its expected length, namely 

           $
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Theoretical values for these single-weapon-system-type kill rates were computed by (42) with 
nX = 2 , namely 
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Results for 20,000 replications of the simulation are shown in Fig. 9 below.  The simulation com-
puted $a ser

1  = 0.0830 X1 casualties per hour per Y firer, which corresponded extremely favorably with 
a theoretical value of 0.0850.  Also, it computed $a ser

2  = 0.2561 X2 casualties per hour per Y firer, 
which again corresponded extremely favorably with a theoretical value of 0.2583. 

 

 

 

Fig. 9.  Simulation results for Y kill rates against Xi target types. 
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15.  Final Comments. 

 This working paper has developed an explicit analytical expression (42) for a Lanchester at-
trition-rate coefficient for direct- fire combat in a heterogeneous-target environment with serial ac-
quisition of targets with the two key intermediate quantities (namely, the next-target-type-to-be-
engaged probability and the expected time to acquire a target that will be engaged according to Bon-
der and Farrell’s m-period target-engagement policy) given by (43) and (44).  The contribution of 
this paper and its companion (Taylor [2001e]) has been to provide explicit analytical expressions for 
these two key intermediate quantities for Bonder and Farrell’s m-period target-engagement policy, 
while previous work by Taylor [2001d] had developed the general expression for a Lanchester attri-
tion-rate coefficient for serial acquisition of targets.  Remarkably, the authors do not know of any 
such previously existing explicit analytical results for direct-fire combat for Bonder and Farrell’s 
target-engagement policy, even in the Vector- in-Commander (VIC) documentation (e.g. see TRAC-
FLVN [1992]), which does give a somewhat different general expression for a Lanchester attrition-
rate coefficient (i.e. one at variance with Taylor’s general expression).  Thus, some very interesting 
questions are raised by the work at hand concerning what is actually used for direct- fire attrition in 
VIC. 

 The development of explicit analytical expressions for the two key intermediate quantities for 
Bonder and Farrell’s target-engagement policy was made possible by new mathematical-modeling 
discoveries by Taylor.  In particular, Taylor’s investigation of target acquisition for a target ensem-
ble (Taylor [2001b, Sections 11 and 12]) made possible the development of an expression for the 
expected time to acquire a target that will be engaged according to Bonder and Farrell’s target-
engagement policy.  Moreover, Taylor’s new results for the probability of one random variable being 
less than another for a finite interval of time (see Theorem 1 above in Section 8) made possible the 
development of an expression for the next-target-type-to-be-engaged probability.  Taylor and Neta 
jointly worked out the proof that the sum of this probability over all target types is equal to 1 (see 
Section 10 above). 

 As Taylor has emphasized21, for the purposes of military modeling and analysis it is impor-
tant to understand the dependence of a Lanchester attrition-rate coefficient on a firer type’s target-
engagement policy (equivalently, rules of engagement for enemy target types) in a heterogeneous-
target environment.  He has stressed the importance of expressing a Lanchester attrition-rate coeffi-
cient in a form like (2), which depends explicitly on the two key intermediate quantities 

(a) expected time to acquire target that will be engaged, 
(b) next-target-type-to-be-engaged probability. 

Furthermore, these two key intermediate quantities carry all the dependence on the firer type’s tar-
get-engagement policy, with the rest of the general expression for the Lanchester attrition-rate coef-
ficient [for example (2)] being independent of it.  In other words, the expression (2) gives the general 
form for a Lanchester attrition-rate coefficient for serial acquisition of targets in a heterogeneous-
target environment before any target-engagement policy has been specified for a firer type. 

 Conversely, once one has developed analytical expressions for these two key intermediate 
quantities for a particular target-engagement policy22, one can simply compute with (2) numerical 
values for the corresponding Lanchester attrition-rate coefficients in a heterogeneous-target envi-
ronment.  Moreover, the following are the only such target-engagement policies that have been con-
sidered in military operations research that are known to these authors 

(1) engage-any-target-that-you-acquire target-engagement policy, 
                                                 
21 E.g. see Taylor [1999], [2000b], [2000c], [2001a], [2001b]. 
22 Providing, of course, that all other aspects of the attrition process (cf. Section 7 above) have remained the same. 
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(2) Taylor’s constant-probability-of-engagement-for-a-given-target-type target-engagement 
policy23, 

(3) Bonder and Farrell’s m-period target-engagement policy. 
Remarkably, the only known instances in which explicit analytical expressions for the two key in-
termediate quantities have been developed (and hence explicit Lanchester-attrition-rate-coefficient 
results obtained for a heterogeneous-target environment) are those contained in the work of Taylor 
[2001d] and the paper at hand.  In fact, there has not even previously existed any general principle 
for computing a numerical value for a Lanchester attrition-rate coefficient in a heterogeneous-target 
environment24 before Taylor’s [2001b] recent work (see also Taylor [2001c]). 

 This is a field of study in which some amazing claims exist.  For example, some claim that 
the only theoretically correct results that exist are contained in the VIC documentation25 (e.g. see 
TRAC-FLVN [1992]).  Others claim that it simply does not make any difference for combat models 
whether or not theoretically correct results for attrition are used.  The latter claim can only be scien-
tifically substantiated by computational investigations and these involve having theoretically correct 
results for Lanchester attrition-rate coefficients.  Thus, one is led one way or the other to the follow-
ing important question.  How does one go about verifying that an explicit analytical expression 
for a Lanchester attrition-rate coefficient is theoretically correct? 

 Thus, to these authors there appear to be two general approaches to verifying whether or not 
an explicit analytical expression for a Lanchester attrition-rate coefficient is theoretically correct.  
These are the following: 

(1) further independent theoretical justification, 
(2) simulation of the target-engagement cycle and comparison of statistical estimates com-

puted from such simulation results (i.e. output) with theoretical values. 
Moreover, further independent theoretical justification includes both investigation of limiting-case 
behavior and also theoretical consistency checks that are context dependent.  We will now consider 
further these two sub cases of further independent theoretical justification. 

 In Taylor [2001d] one of the authors investigated the limiting-case behavior of a Lanchester 
attrition-rate coefficient for a heterogeneous-target environment for the special case of homogeneous 
forces, i.e. nX = 1  in equation (19) of Taylor [2001d].  The expression (19) readily passed this lim-
iting-case-analysis test26.  Thus, it is essential that any attrition-rate-coefficient expression for a het-
erogeneous-target environment still hold when there is only a single enemy target type.  Further-
more, the engage-any-target-that-you-acquire target-engagement policy may be considered to be a 
limiting case of Bonder and Farrell’s m-period target-engagement policy (see Section 13 above).  
This observation was used to run a further cross check on our results in Section 13 above (see also 
Taylor [2001e, Section 16]).  Additionally, the pursuit of the work reported here has led to the dis-
covery of several context-dependent checks that could be applied to our analytical results.  For ex-

                                                 
23 See, for example, the references contained in Footnote 21 above. 
24 Or even a homogeneous-target environment with intermittent line of sight (LOS) between groups of firers and targets, 
i.e. with a stochastic model of the LOS process in the homogeneous-target environment. 
25 Interestingly enough, the VIC documentation (which is cloned from Miller et al. [1978], equivalently CCTC [1979]) 
does not contain enough technical details to resolve this issue.  Since no explicit analytical results for the two key inter-
mediate quantities are given in it, the theoretical correctness of its attrition-rate-coefficient results cannot be checked 
against those given in the paper at hand.  Moreover, there are not even any algorithmic results leading to the explicit 
computation of numerical values for attrition-rate coefficients given in it so that the issue cannot even be resolved by 
numerical investigations. 
26 Unfortunately, such limiting-case analysis did not detect the flaw concerning target acquisition for an ensemble of 
targets that was present in the author’s earlier work for a heterogeneous-target environment. 
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ample, since the next-target-type-to-be-engaged probability is actually a component of a probability 
mass function, summing over the target-type index for the full range of target types must yield the 
value 1.0.  This theoretical-cross check was verified in Section 10 above.  Furthermore, since the ex-
pected time to acquire a target that will be engaged was developed by direct computation of an ex-
pected value involving a probability density function, the integral of this probability density function 
over all time must also be equal to 1.0.  This fact was verified (both for the case of no look-back ca-
pability and also for the case of look-back capability) in Taylor [2001e]. 

 A Monte-Carlo simulation of the target-engagement cycle (upon which all our derivations 
have been based) was developed (see Section 14 above) and used to generate stochastic realizations 
of it from which statistical estimates of kill rates and related quantities of interest (e.g. length of the 
target-engagement cycle) were computed and compared with theoretical values.  This computational 
investigation produced a remarkable agreement between kill rates (and some other related quantities) 
computed from the simulation results with theoretical values calculated from analytical formulas (cf. 
Fig. 7 through 9 above).  In other words, this simulation investigation confirmed the theoretical 
soundness of the analytical results developed for Lanchester attrition-rate coefficients by the work at 
hand.  Of course, one must be very careful to use an appropriate Monte-Carlo simulation for such 
work. 

 The reader should bear in mind that all the attrition-rate-coefficient results given in the paper 
at hand have been developed by the so-called freestanding-analytical-model approach27.  Moreover, 
such a relatively simple analytical expression for a Lanchester attrition-rate coefficient for direct-fire 
ground combat in a heterogeneous-target environment (i.e. one applicable to combined-arms or joint 
warfare) has simply not existed before for this independent-analytical-model approach.  Such deve l-
opments should be of particular interest to DTRA because of the importance of having campaign-
analysis tools available for investigating issues concerning weapons of mass destruction (WMD).  In 
particular, data support does not currently exist for the hierarchy-of-models approach (i.e. the so-
called attrition-calibration (ATCAL) approach) for computing such kill rates for the ground-combat 
model in ITEM.  Therefore, one is forced to consider using kill rates developed according to the 
freestanding-analytical-model approach.  Thus, the developments of the paper at hand (and also Tay-
lor [2001b], [2001d], [2001e]) can be used as part of a basis for upgrading the direct- fire ground-
combat attrition algorithms in joint campaign models of interest to DTRA. 

 Finally, after doing the research reported here, the authors have severe concerns about the 
theoretical correctness of the formulas for the direct- fire Lanchester attrition-rate coefficients used in 
VIC (and to be used in AWARS).  In fact, no explicit formulas for such kill rates (or the key inter-
mediate quantities [namely, the next-target-type-to-engaged probability and the expected time for a 
firer type to acquire the next target to be engaged]) could be found in the VIC documentation (e.g. 
see TRAC-FLVN [1992]).  The VIC model (as well as the Vector series of models), of course, uses 
Bonder and Farrell’s m-period target-engagement policy.  It is of great theoretical importance to 
have attrition-rate-coefficient methodology that applies to all target-engagement policies.  The work 
at hand has shown how Taylor’s revolutionary new attrition-rate-coefficient methodology (e.g. see 
Taylor [2001b], [2001d]) can be used to develop Lanchester attrition-rate coefficients for Bonder 
and Farrell’s m-period target-engagement policy.  Moreover, this work has generated theoretical re-
sults that bring into serious question whether any of the attrition-rate-coefficient results reported in 
the VIC documentation are theoretically correct at all. 

 

                                                 
27 See Section 2 above (also Taylor [2000f, Section 2]). 
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