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Abstract

An eighth order method for finding simple zeros of nonlinear functions is developed.
The method requires two function- and three derivative-evaluation per step. If we define
informational efficiency of a method as the order per function evaluation, we find that
our method has informational efficiency of 1.6.

1 Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see
for example Ostrowski [1], Traub [2], Neta [3] and references there. In general, methods for
the solution of polynomial equations are treated differently and will not be discussed here.
The methods can be classified as bracketting or fixed point methods. The first class include
methods that at every step produce an interval containing a root, whereas the other class
produces a point which is hopefully closer to the root than the previous one. Here we develop
a high order fixed point type method consisting of two steps. The first step is the fifth order
method due to Jarratt [4] requiring one function- and three derivative-evaluation and the
second step will only add one function-evaluation. We will show that the method is of order
8. We define informational efficiency, E, of the method (see Traub [2]) as

E =
p

d
(1)

where p is the order of the method and d is the number of function- and derivative-evaluation
per cycle. Another measure of efficiency is the efficiency index I defined as

I = p1/d (2)

In our case, we will show in section 3 that our method is of order p = 8 and it requires two
function- and three derivative-evaluation per (two-step) cycle. Thus d = 5, the informational
efficiency E = 1.6 and the efficiency index I = 1.5156.

2 Jarratt’s Fifth Order Method

Jarratt’s method for the solution of the nonlinear equation

f(x) = 0, (3)

is given by the iteration

xn+1 = xn − f(xn)
1
6
f ′(xn) + 1

6
f ′(yn) + 2

3
f ′(ηn)

(4)
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where

un =
f(xn)

f ′(xn)

yn = xn − un

vn =
f(xn)

f ′(yn)

ηn = xn − 1

8
un − 3

8
vn

(5)

Jarratt has shown that this method is of order 5 ([4]). It requires one function- and three
derivative-evaluation per step. Thus the informational efficiency is 1.25.

3 New Higher Order Scheme

Suppose we create a two step method where the first step is as above, i.e.

zn = xn − f(xn)
1
6
f ′(xn) + 1

6
f ′(yn) + 2

3
f ′(ηn)

(6)

and

xn+1 = zn − f(zn)

f ′(xn)

f ′(xn) + a1f
′(yn) + a2f

′(ηn)

a3f ′(xn) + a4f ′(yn) + a5f ′(ηn)
(7)

We would like to find the parameters a1, . . . , a5 so as to maximize the order of covergence.
Notice that the second step requires only one additional function evaluation.

Let ξ be a simple zero of f(x) and let en, ên be the errors at the nth step, i.e.

en = xn − ξ
ên = zn − ξ

(8)

then

ên = en − f(xn)
1
6
f ′(xn) + 1

6
f ′(yn) + 2

3
f ′(ηn)

(9)

If we expand f(xn), and f ′(xn) in Taylor series (truncated after the N th power) we have

f(xn) = f(xn − ξ + ξ) = f(ξ + en) = f ′(ξ)

(
en +

N∑
i=2

Aie
i
n

)
(10)

f ′(xn) = f ′(ξ)

(
1 +

N∑
i=2

iAie
i−1
n

)
(11)

where

Ai =
f (i)(ξ)

i!f ′(ξ)
(12)
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To expand f ′(yn) and f ′(ηn) we use some symbolic manipulator, such as Maple [10], we find

f ′(yn) = f ′(ξ)
(
1 + 2A2

2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + +c8e

8
n . . .

)
(13)

where

c3 = −4A3
2 + 4A2A3

c4 = 8A4
2 − 11A3A

2
2 + 6A2A4

c5 = 8A2A5 − 16A5
2 + 28A3A

3
2 − 20A4A

2
2

c6 = 12A3
3 − 68A3A

4
2 + 60A4A

3
2 + 10A2A6 − 16A3A2A4 + 32A6

2 − 26A5A
2
2

c7 = 112A4A3A
2
2 + 36A4A

2
3 − 168A4A

4
2 + 72A5A

3
2 − 20A5A2A3 − 64A7

2

+160A3A
5
2 − 32A6A

2
2 − 24A2A

2
4 − 84A2A

3
3 + 12A2A7

c8 = 14A2A8 + 27A2
4A3 − 38A7A

2
2 + 88A6A

3
2 + 110A5A3A

2
2 − 24A6A2A3

−150A4A2A
2
3 − 62A5A2A4 + 128A8

2 + 387A3
3A

2
2 + 48A5A

2
3 − 179A5A

4
2

+448A4A
5
2 − 516A4A3A

3
2 − 368A3A

6
2 + 164A2

4A
2
2 − 72A4

3

(14)

and

f ′(ηn) = f ′(ξ)
(
1 + A2en + d2e

2
n + d3e

3
n + d4e

4
n + d5e

5
n + d6e

6
n + d7e

7
n + d8e

8
n + . . .

)
(15)

where

d2 = 3A3/4 − A2
2/2

d3 = A4/2 − A2A3 + A3
2

d4 = −A4
2/2 − 3A2

3/8 − 3A2A4/4 + 47A3A
2
2/16 + 5A5/16

d5 = 9A2A
2
3/16 + 31A4A

2
2/8 − 2A5

2 − 3A2A5/8 − A3A
3
2/4 − 3A4A3/8 + 3A6/16

d6 = −137A3A
4
2/8 + A2A6/32 − 69A4A

3
2/16 + 189A2

3A
2
2/16 − 141A3

3/64 + 7A6
2

+A3A5/16 + 7A7/64 + A3A2A4 + 143A5A
2
2/32

d7 = 15A5A2A3/32 + 245A3A
5
2/4 − 14A7

2 + 993A2A
3
3/32 + A8/16 + 27A2A7/64

−181A5A
3
2/32 + 157A6A

2
2/32 + 421A4A3A

2
2/32 − 147A2

3A
3
2/2 + 33A3A6/64

−273A4A
2
3/32 − 75A4A

4
2/8 + 3A4A5/8

d8 = 6021A4A2A
2
3/64 + 9A9/256 + 25A2A8/32 − 1293A5A

2
3/128 + 983A5A3A

2
2/64

−421A6A
3
2/64 − 87A2

4A3/8 − 3297A4A3A
3
2/32 − 15A6A2A3/64 + 22A8

2

−7A2
4A

2
2/2 + 881A4A

5
2/16 − 3A5A2A4/2 + 2025A2

3A
4
2/8 − 2257A3A

6
2/16

+123A3A7/128 − 11223A3
3A

2
2/64 + 1361A7A

2
2/256 + 5A2

5/16 + 3A4A6/4
−3643A5A

4
2/256 + 333A4

3/16

(16)

The error at the end of the first substep of the nth iteration is not in Jarratt [4] and thus we
give it here

ên =
(

1

24
A5 − 1

4
A2

3 + A4
2 +

1

8
A3A

2
2 +

1

2
A2A4

)
e5

n

+
(
−5A5

2 −
1

4
A3A4 − 5

4
A2

2A4 +
25

24
A2A5 +

5

8
A2A

2
3 +

35

8
A3A

3
2 +

1

8
A6

)
e6

n + . . .
(17)

Notice that

f(zn) = f ′(ξ) (ên + . . .) = f ′(ξ)
[(

1

24
A5 − 1

4
A2

3 + A4
2 +

1

8
A3A

2
2 +

1

2
A2A4

)
e5

n + . . .
]

(18)
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Now substitute (11), (13), (15) and (18) into (7) and expand the quotient in Taylor series,
we get

en+1 =
M∑
i=0

Bie
i+5
n (19)

where the coefficients Bi depend on the parameters a1, . . . , a5.

B0 = −1 + a1 + a2 − a3 − a4 − a5

a3 + a4 + a5

(20)

By choosing a5 = 1 + a1 + a2 − a3 − a4, we annihilate the first coefficient.

B1 = A2
a5(1 + 3a1 + 2a2) + a4(2a1 + a2) + a3(2 + 4a1 + 3a2)

(a3 + a4 + a5)2
(21)

Upon using the value of a5 above, we get

B1 =
A2(3a1 + 2a2 + a3 − a4 + 1)

1 + a1 + a2

(22)

Choosing a4 = 1+3a1 +2a2 +a3 annihilates the second coefficient. We now substitute these
choices for a5 and a4 in B2

B2 = A3
3(a1 + a2 + a3)

2(1 + a1 + a2)
+ A2

2

2 + a1 + 3a2 + 3a3

1 + a1 + a2

(23)

To ensure that B2 = 0 we have to take a1 = 1, and a3 = −1 − a2. Thus a4 = 3 + a2 and
a5 = a2. Thus we have a one-parameter family of methods of order 8 with error constant

B3 = A3
2

a2 − 7

2 + a2

− A4
3

2 + a2

− A2A3
7a2 + 23

2(2 + a2)
(24)

The method is then

zn = xn − f(xn)
1
6
f ′(xn) + 1

6
f ′(yn) + 2

3
f ′(ηn)

xn+1 = zn − f(zn)

f ′(xn)

f ′(xn) + f ′(yn) + a2f
′(ηn)

(−1 − a2)f ′(xn) + (3 + a2)f ′(yn) + a2f ′(ηn)

(25)

The choice a2 = −2 is not allowed (denominator of B0 will vanish.) There is no way to
annihilate this coefficient, and thus the method is of order 8. The informational efficiency of
the method is then E = 1.6 and the efficiency index (see [2]) is I = p1/d = 1.5156.

4 Numerical Experiments

We have experimented with our method and compared it to the fifth order Jarratt’s method.
In our first experiment we took the function

f(x) = x2 − (1 − x)n, n = 1, 5, 10
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Jarratt Our Method

Function Initial # of Abs. Error # of Abs. Error
Guess Iterations Iterations

x2 − (1 − x) 1 2 1(-18) 2 1(-18)
x2 − (1 − x)5 1 2 1.96(-8) 2 1.11(-16)
x2 − (1 − x)10 1 2 5.18(-6) 2 2.00(-11)

Table 1: Number of iterations and absolute error for Jarratt’s fifth order method and Ours

For n = 1 the problem is easy and both methods perform extremely well. Starting with
x0 = 1 both methods converged and the absolute error in 2 iterations is 10−18. For n = 5, 10
our method gave better accuracy than Jarratt’s after 2 iterations, see Table 1.

For the next examples we took the functions listed in Table 2. As can be seen in this table

Jarratt Our Method

Function Initial # of Abs. Error # of Abs. Error
Guess Iterations Iterations

xex2 − sin2 x + 3 cosx + 5 −1 2 1.89(-18) 2 1(-18)
sin x − 0.5 1 2 1.11(-16) 2 1(-18)
sin2 x − x2 + 1 1 3 1.(-18) 2 1.(-18)
sin2 x − x2 + 1 3 3 1(-18) 2 1(-18)
2xe−1 + 1 − 2e−x 1 2 1(-18) 2 1(-18)
2xe−2 + 1 − 2e−2x 1 3 1.66(-16) 3 1.11(-16)
2xe−3 + 1 − 2e−3x 1 11 5.18(-11) 4 8.33(-16)

Table 2: Number of iterations and absolute error for Jarratt’s fifth order method and Ours

the distinction between the methods in noticeable in the last two cases. For the case shown
on the last row in Table 2 our method requires about a third of the number of iterations for
much smaller absolute error.

We now turn to the last five examples listed in Table 3 along with the initial guess used.
In all these cases our method outperformed Jarratt’s as can be seen in Table 4. In the last
case Jarratt’s method didn’t converge after 51 iterations.
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Number Function Initial Guess x0

1 3x + sin x − e−x 0
2 ex − 4x2 0.75
3 x − 3 lnx 2

4 ex2+7x−30 − 1 3.5

5 x2 sin2 x + ex2 cos x sinx − 28 5

Table 3: List of Experiments with Initial Guesses

Jarratt Our Method

Number # of Abs. Error # of Ietrations Abs. Error
Iterations Iterations

1 1 2.02(-7) 1 1.17(-11)
2 1 1.89(-8) 1 2.37(-12)
3 1 2.21(-5) 1 1.46(-7)
4 4 9.58(-5) 4 2.64(-9)
5 51 .32 5 1.(-18)

Table 4: Number of iterations and absolute error for Jarratt’s fifth order method and Ours
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Conclusions

Here we developed an eighth-order method to obtain simple zeroes of nonlinear equations.
The method requires two function- and three derivative-evaluation per (two-step) cycle.
Numerical experiments demonstrate the efficiency of our method as compared to Jarratt’s
fifth-order scheme.
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