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ARTICLE INFO ABSTRACT
Keywords: Galerkin finite element method for the approximation of a nonlinear integro-differential
Nonlinear integro-differential equations equation associated with the penetration of a magnetic field into a substance is studied.
Finite elements First type initial-boundary value problem is investigated. The convergence of the finite ele-

Galerkin method ment scheme is proved. The rate of convergence is given too. The decay of the numerical

solution is compared with the analytical results.
Published by Elsevier Inc.

1. Introduction

The goal of this paper is a study of Galerkin finite element method for approximation of a nonlinear integro-differential
equation arising in mathematical modeling of the process of a magnetic field penetrating into a substance. If the coefficient
of thermal heat capacity and electroconductivity of the substance highly dependent on temperature, then the Maxwell’s
system [1], that describe above-mentioned process, can be rewritten in the following form [2]:

t
% = —rot [a (/ \rotW\Zdr> rotW}, (1.1)
0

where W= (W;,W,,W3) is a vector of the magnetic field and the function a = a(c) is defined for ¢ € [0,00). Let us consider
magnetic field W, with the form W =(0,0,u), where u = u(x,t) is a scalar function of time and of one spatial variables. Then
rotW = (0, -2 0) and Eq. (1.1) will take the form

ox
u_0 1 /[ (@)zdr u (12)
ot ox o \0x ox| '
Note that (1.2) is complex, but special cases of such type models were investigated, see [2-11]. The existence of global
solutions for initial-boundary value problems of such models have been proven in [2-4,10] by using the Galerkin and
compactness methods [12,13]. The asymptotic behavior of the solutions of (1.2) have been the subject of intensive research
in recent years (see e.g. [10,14-20]).

In [7] some generalization of equations of type (1.1) is proposed. There it was assumed that the temperature of the
considered body is depending on time, but independent of the space coordinates. If the magnetic field again has the form
W=(0,0,u) and u = u(x,t), then the same process of penetration of the magnetic field into the material is modeled by the
following integro-differential equation [7]:
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ou £t ou? ou

c‘)t_a</0 /0 (§> dxdr)axz. (1.3)
The asymptotic behavior of solutions of the initial-boundary value problem for the Eq. (1.3) and the convergence of the finite
difference approximation for the case a(g) =1+ ¢ were studied in [17]. The solvability and uniqueness of the solutions of
(1.3) type model is studied in [10].

Note that in [17,21-24] difference schemes for (1.2), (1.3) type models were investigated. Difference schemes for one
nonlinear parabolic integro-differential model similar to (1.2) were studied in [25] and [26].

The purpose of this study is to develop a Galerkin finite element method to solve (1.3). The rest of the paper is organized
as follows. In the next section the variational formulation of problem is given. In the third section finite element scheme for
(1.3) is described and error estimate is proven. We close with a section on numerical implementation and present numerical
results comparing with the theoretical ones.

2. Variational Formulation

Consider the following initial-boundary value problem:

2
%:(1+G(t))?)73+f(x,t), (x,t) eQ =(0,1) x (0,T), (2.1)
u0,t)=u(1,t)=0, t =0, (2.2)
u(x,0) =up(x), x¢€10,1], (2.3)

where

o(t) = /Ot /0l <g§>2dxdr

and ug(x) is a given function.
One of the ingredients of finite-element method is a variational formulation of the problem. Let us denote by H the linear
space of functions u satisfying (2.2) and
2 1/2
] dx} .

l[u(-, )ll; < oo,
where
The variational formulation of problem (2.1)-(2.3) can be stated as follows: Find a function u(x,t) € H for which

lu(,6)], = { /0 [|u<x7 D+

i=1

d'u(x,t)
oxi

<v7%>+<(1 +a(t))%,%> =(f,v), VveH, (2.4)
and
<Ua U(X, 0)> = <Z)a UO(X)>, VZ) € H7 (25)

where (p(x),q(x)) = f01 p(x)q(x)dx. To approximate the solution of (2.4), (2.5) we require that u lies in a finite-dimensional
subspace S;, of H for each t (see e.g. [27]). The following property concerning approximability in S, can be readily verified
for finite-element spaces (see e.g. [28]).

2.1. Approximation Property
There is an integer r > 2 and numbers Co, C; independent of h such that for any v € H there exists a ¢/' € S, satisfying
|v— 2", < Cgir”[\|v\|j, for 0<¢<1, £<j<r. (2.6)
2.2. Approximate problem

The approximation u" € S, to u is defined by the following variational analog of (2.4), (2.5):
Find a u" € S, such that

, ou' oA
<y’8t + ( (14 on(t)) % Ox ={f, "), VYv'e€S, (2.7)
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and
(V" ul(x,0)) = (V" up(x)), VoI €Sy, (2.8)

where

on(t) = '/Ot /01 (g)zdxdr.

Once a basis has been selected for Sy, (2.7), (2.8) are equivalent to a set of N integro-differential equations, where N is dimen-
sion of Sy. The solution of such a system will be discussed in Section 4.

3. Error estimates

In this section we shall estimate the error in the finite element approximation using the norm

T 1 r
fil=,
I, | 0;

Everywhere in the case r =0 we will omitted the subscript.

i 2
TEX O] .
ox!

Theorem. The error in the finite element approximation u" generated by (2.7), (2.8) satisfies the relation

o 1 . - 2) 1/2
[l — [l < 1C{§h2||uo\|2+Ch2|||uf|\|2+cz 1 120D Pl P + € (R + u)) } ,

Juf = /OT /01 luldxd.

Here and below C and ¢; denote various constants independent of h.

where

Proof. Subtracting (2.7) from (2.4) with ¢/' instead of v we obtain

oul oul ot ou ou ot
n ou” our gv'\ /. ou ou oot )
<v, at>+<(1+0‘h(t)) % 8x> <v,at>+<(1+a(t))ax, 8x>’ Vot € Sy

Let &i" be any function in Sy, then

h _ 5h h sh h
<”h’8(uatu)> n < {(1 +an(t)) 85)’( — (14 Ga(t)) aaﬂ,a;; >

- <vh,M>+<{(1+a(t))m‘(1+6 t)aﬁh} a”h> Vo' € S, 3.1)

H) 5l ax

where

Ga(t) = /Ot /01 (%T)zdxdr.

Let us define the errors as follows:

(3.2)

Since e € S, we can let ' =e and (3.1) becomes

(e +{[0+ a0 - a+ao Be| ) = (e 5) + ([a+om G- +aen ] ). 63

Let us consider the second term on the left of (3.3)

(s ouon G - a+aen ] ooy = (565 + {[onio G - anio 5] o). (3.4
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Denoting

o T
the last term of (3.4) can be rewritten as

([ont0 %~ n(01 5] o)
:<a)/ / wzdxdr—n/t/]ndedTw—’?>
</ / wzdxdr—/ / n*dxdt, o’

-r)>
2/// (2 — ) dxd(0 ndx—%//

7%</t/1dede/t/]nzdxdf,(co—n)z>
([ o | [ )

dxdr/ (w? —nz)dx:ld(p ®)
where

4 dt
t 1
= / / (0* — n?)dxdr.
0 0
Therefore, left hand side of (3.3) can be rewritten as follows
oe our . our oe 1d d(pz(t)
(e5e) + |+ ouenTe -+ o) G| 5o) = 5 el + el +3 2.
Now consider the second term on the right of (3.3)
ou . oM oe OE Oe ou . . ou" oe
(Ja+onF-a+am Gl 5 - (G5 +([o0 G- mw 5] 5o 35)
Substituting for u, from (3.2), the last equality gives
ou oun
a(t) 5 = Gn(0) 5o

h h h
(x u>//<E+au>dd a”//@“)dxdr
0x
h h
:(Ex+ai) / / (E§+2Exi)dxdr+5x / / (%) dxdr.
19)4 0 0 19)4 0 0 ox

Taking this into account in the right hand side of (3.3) we get

t 1 ~hy 2 t 1 ~h t el ~h
(e,Et>+<Ex,ex>+<Ex,ex>/ / (ai> dxdr+<Ex7ex>/ / Eﬁdxdr+<%ix,ex>/ / Eﬁdxdr+<£x+ai,ex>

X

//2GUhEdXdT—<€Ec> (Ev.ex) {H/ /( )dxdr+//£2dxdr+/ / Zahded'c}
+<‘9_”h e>{/ / Ezdxd1+/ / 2—dedr} (&,E) + (Exl, lexl) {1+/ / ( )dxdr

/ / E2dxdt + / / <‘9“h> dxdt + 6, / / Ezdxdr} < |ex>{ /0 t /O E2dxdt
sup(auh> / / IE, \dxdr} (e,E) + E||ex{ / / (a”h) dxdt

+/t/ E,fdxdwrl/t/ <8“h) dxdr + € /0[/0 E,%dxdr}+ Sl:p( )‘/ \ex\dx{ / E2dxdz
sup( >‘/ / IE, \dxdr}

where €; > 0 comes from Schwartz inequality

Now incorporate these estimates into (3.3) to have
1d

», 1dg?()
5 g el + llel +

dt <<eEt>+<|E||eX|>{1+//< )clxdr+//Ezdxdr
t 1 /ahy 2 ~
l/ / (81) dxdr+61/ / Ef(dxdr}—k sup (%) |eX|dx{/ / E2dxdt
h
+2fup (5)| [ [ ot}

oun
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Integrate with respect to t, we have

T T p1
SeCDIE+ [ leslPde+ 21+ < 5let-0)+ [ [ ekidvde
2 0 2 o Jo
T 1 ot 1 1 ot 1 aﬂh 2
+/ / Exexdx{1+(1+e1)/ / Eﬁdxdr+<l+—>/ / (—> dxdr}dt
+/ sup( > |dx{/ / EXdxdt +2 sup< )

Note that the first, third and fourth terms on the left are nonnegative and can be dropped. We also use Schwarz inequality on
the right hand side for these two terms

//eadxar (exlllell? +1/esllIEIP),

//|Eex|dx (IEI? +1/esllled ).

We can estimate the last term on the right by estimating the term in parenthesis and then take it outside the time integral

I—/ / E2dxdt +2 sup (6 ) sup( ) /\E |dxdt
sup (5 B

Therefore, the last term in (3.6) becomes

\dxdr}dt (3.6)

/\E \dxd < |[|Ef||P + 2

= llIEIP +2

T onh a
I/o S?(W) |ex|dxdt \// sup B \// |ex|dx \// sup Il
sup( )dt+ Illex |
Therefore, (3.6) gives

1

el < 5 1,0 + Zlell” + - IEAIP +M1< BN + - mexm) (1 + €Dl IEIP ( B + 5 mexm)
p [ lsup (P2 a4
50 [ Jsup (50 de+ e

where

M1_1+< 61)/ / (auh> dxdr.

Combining terms we have

M 1 1+e M€ 1+€)e
1= 30 = 5= e IEIR el — Z1ellP < et )P + 5 1B + |52+ CE 2% e 2 gy
2€4 ) 2

o5 [ (aNh) o () e

dt(mE I +2

Now we use Poincare’ inequality
llexll = Cplle]|

to show that

[llexlll = Cylllelll
for possibly different constant C,,.
We have
M, 1 1+¢€ 1 M; €3 (1 + 61)63 2
15 =36~ e, B ZCZ}HXH <3 e, 0 + 5 lIEIP +{ 124 I 1E

+% /OT sup <8ﬂh> sup <%€:) ’[]Ex[]>2- (3.7)

e 1B +2
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Note that we can choose €, i=1,...,4 so that the coefficient of the term on the left hand side of (3.7)

My=1—-—+——+— ———
: \ 2 BN -5

is a positive constant. Recall that

1
2 2 2 2
Illellly = TMlell” + [llex/[I” < <1+2>|I€xll :

CP

so using (3.7) we get

1 1 M€ 1+e €
el < c%{5|e(-70>||2+2—€2||a||2+ 252+ L2 B B + 2B +2

sup (50) | u)z},

where

and

_ & [N gup (2
_20 P\ ox

Since E is the interpolation error, from (2.6) we have
HIE[ < Coh’IIIUHL
EI] < Co™"|[Jull],
IIEe|ll < C2hl|||”t|\|
JE) < G [lul],
which yield

Cy df

o 5 ) 2172
Mell < -*er{ h2 ol + el + [es -+ esh e ™+ (el + el | 38)

x‘[p 0X

where

_ Mg c ~(1+6&)6
T2 T2

3=5—C5 G C3, c;=C. (3.9)

262

Using the triangle inequality we get
hi2 =h o =h g hyp)2 2 2
fu = ully = [[Ju—u® +u" —u[[ly < [[[EJI[} + llle]]];.

Therefore,

=1} < Gh*Vful +h2“*”c%{§h2||uou2 o+ csh?juel|? + [ca + esh? ) ulleal lull P + ez (e 1ull +ceuuu)2},
or

| — |} < hz““”cf{%hznuonz o+ | uel 1+ [es + esh®ull P el ull P -+ ez (e jull +c5nun)2}, (3.10)
where cg = ¢4 + From (3.10), by denoting C = ,max {c,} we complete proof of theorem.

4. Numerical Solution

For the numerical solution of (2.7), (2.8) we let ¢(x),....¢n(x) be a basis for S;. Therefore u" €S, can be represented by

N
) = ui(t)¢i(x). (4.1)
j=1
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Since (2.7), (2.8) are valid for all /' € Sp,, one can let ¢/' = ¢. This yields the following system for the weights u(t):

Mu + K(u)u =F, (4.2)

Mu(0) = U, (4.3)
where

Miic = (v, b)), (4.4)

K@)y = (1 4 an(t)) by, 67), (4.5)

F = (¢;.f)., Uj= (¢, u0). (4.6)

Now we can evaluate agy(t) as follows

:Kfm

The time integral can be approximated by the trapezoidal rule (0 =tg<t; <ty <---<t,=t) as follows
t n
/ U(T) U (T)AT =Y AL U (tp) U (£p), (4.8)
0 p=0

where {,=1/2forp=0,nand {,=1forp=1,...,n — 1. Combining (4.8) and (4.7) with (4.5), we get

N N N N n .
1<(u)j,<_<<1+2 > Kim Athu[(tp)um(tp))qSk, . _( +y ZKMZMCPW t,,)um(tp)>1<j,<

=1 m=1 p=0 /=1 m=1

= (1 + AthV(tp) Rﬂﬁ (49)
p

where v(t) = u’(t)Ku(t). To solve the system (4.2) and (4.3), we use Taylor’s series. Let

u(t + At) = u(t) + (AD)u(t) + % (ADZu(t) + o((At)3). (4.10)
Differentiating (4.2) with respect to t, one has

Mii + K(u)a + Ku = F, (4.11)
where

) 1/ N 2 N N L B

Kij = (Gndj, 1) = </0 (H uz(t)¢2> dxd;, ¢?<> = ; mz;uz (KK = u" (OKu(t)Kyy = 2(6)Kyg. (4.12)

Now multiply (4.10) by M and using (4.2), (4.11) and (4.12), we have after dropping terms of order higher than second
1 1

M(u(t + At) - u(r)) = (ADM(t) + 5 (A t)>Mia(t) = (At)[F — K(u)u] + 5 (At)? {F — K(u)yu — 1'<u]
= (AD)[F — K(u)u] + %(At) [F ~ K@M (F - K(u)u) — Ku}
= (At) [F + % (At)F — % (At)K(u)M‘lF} — (ADK(u) {u - %AtM‘]K(u)u} - % (At)*Ku. (4.13)

If we take t = t, as in (4.8) and we denote u" = u(t,) then substituting for K and K from (4.9) and (4.12), we get

1

M(u™! —u') = (Af) |F" 4 5 (AOF" % (At) (1 - Z Atgp v(tp)> I?M']F”}
p=0

t) <1 + Z AthZ/(tp)) K {u” - %AtM’1 (1+§n: Atcpv(rp)) kun} — % (A’ v(t)Ku". (4.14)
p=0

p=0
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Time t =0.5

0 20 40 60 80 100 120
Fig. 1. The solution at t = 0.5. The exact solution is solid line and the numerical solution is marked by *.
Time t =1
o
v ! ! ! ! e
0 20 40 60 80 100 120

Fig. 2. The solution at t = 1.0. The exact solution is solid line and the numerical solution is marked by *.
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Table 1
The errors for various values of the grid spacing and the approximate rate of
convergence.
h Error Rate
2 .0071411 964499
.04 .0015122 978861
.02 .00076726 .988986
.01 .00038657 994375
.005 .00019404
Now let us denote
n
Yr=1+> At0P, (4.15)
p=0
then
n+1 n N | 4qn 1 —1 1 N77qqn 1 2 N7 qqh n 1 n 1 npng-1gn
Mu™' = Mu" — (Ay"K |u" — S AM 'y Ku" | — 5 (ADoK + (A1) [F' + 5 (ADF" - 5 (Ay"KM'F'|. (4.16)

In our first numerical experiment we have chosen the right hand side so that the exact solution is given by
u(x,t) =x(1 —x) sin(x + t).
In this case the right hand side is

60 8 8 8
x (=2sin(x +t) + 2(1 — x) cos(x + t) — 2xcos(x + t) — x(1 — x) sin(x + t)).

fx,t) =x(1 —x)cos(x +t) — (1 + Et 1 cos(t) sin(t) — 1 cos(1 + t)sin(1 +¢) +1 cos(1) sin(l))

The parameters used are M = 100 which dictates h = 0.01. In the next two figures we plotted the numerical solution (marked
with *) and the exact solution at t = 0.5 (Fig. 1) and t = 1.0 (Fig. 2) and it is clear that the two solutions are almost identical.

We have ran the same example with various values of h and measured the error |||u — up||;. The results are given in Table
1

We have experimented with several other initial solutions, and in all cases we noticed the agreement with the exact
solution.

Remark. Clearly, in general, the finite element approximation requires larger storage. In this case, the nonlinear system was
solved using Taylor series approximation and one has to solve a banded system at each time step. No iteration is required. On
the other hand, in the finite difference case, we have solved the nonlinear system using Newton’s method which required
iterating with dense matrices. Both methods yield comparable numerical results.
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