
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1999-09

The SAAM architecture : enabling integrated services

Vrable, Dean J.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/39420

- ' •

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

THE SAAM ARCHITECTURE:
ENABLING INTEGRATED SERVICES

Thesis Advisor:
Second Reader:

by

Dean J. Vrable
John W. Yarger

September 1999

Geoffrey Xie
Debra Hensgen

Approved for public release; distribution is unlimited .

. l>TIC QUALITY lllamarED 8

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of infonnation is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC
20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DA TES COVERED
September 1999 Master's Thesis

4. TITLE AND SUBTITLE THE SAAM ARCIIlTECTURE: ENABLING 5. FUNDING NUMBERS

INTEGRATED SERVICES

5. AUTHOR(S)
Vrable, Dean J., Yarger John W.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Computer networks of today are based predominantly on the TCP/IP protocol suite that provides best effort
service. The current IP protocol excels in its simplicity and network fault tolerance. The way it implements this
simplicity and fault tolerance, however, limits the protocol's ability to provide a guaranteed Quality of Service (QoS).
A first step in providing this QoS is to incorporate the concept of flow based routing. This thesis describes an
implementation of the Server and Agent based Active network Management (SAAM) system architecture that
incorporates flow-based routing. The architecture contains servers that maintain a database that is used for assigning
each flow to a path that will provide the needed QoS.

14. SUBJECT TERMS Next Generation Internet, Integrated Services, Quality of Service, 15. NUMBER OF

Flows, Networks, Routing

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19.
CATION OF REPORT CATION OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

PAGES A?Q

16. PRICE CODE

SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF ABSTRACT ABSTRACT
Unclassified UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

------~-----------------------------------~

ii

Approved for public release; distribution is unlimited.

THE SAAM ARCIDTECTURE: ENABLING INTEGRATED SERVICES

Author:

Approved by:

Dean J. Vrable

Captain, United States Marine Corps

B.S. University of Michigan, 1992

John W. Yarger

Captain, United States Marine Corps

B.S., United States Naval Academy, 1993

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1999

Dan Boger, rman

Department of Computer Science

iii

iv

ABSTRACT

Computer networks of today are based predominantly on the TCP/IP

protocol suite that provides best effort service. The current IP protocol excels in its

simplicity and network fault tolerance. The way it implements this simplicity and

fault tolerance, however, limits the protocol's ability to provide a guaranteed

Quality of Service (QoS). A first step in providing this QoS is to incorporate the

concept of flow-based routing. This thesis describes an implementation of the

Server and Agent based Active network Management (SAAM) system architecture

that incorporates flow-based routing. The architecture contains servers that

maintain a database that is used for assigning each flow to a path that will provide

the needed QoS.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND .. l

1. Packaging Data for Transport in Flows .. 2
2. Requirements for Delivering Voice and Video ... 2
3. Managing Congestion with Queues .. 3

B. GOAL OF THE SAAM PROJECT .. 3
C. SCOPE OF TIDS THESIS ... 3
D. MAJOR CONTRIBUTIONS OF TIDS THESIS ... 4
E. ORGANIZATION .. 5

II. RELATEDWORK ... : .. 7
A. ASYNCHRONOUS TRANSFER MODE (ATM) .. 7

1. System Initialization ... 8
2. Scalability ... 8
3. Admission Control ... 9

B. RESOURCE RESERVATION PROTOCOL (RSVP) ... 9
C. DIFFERENTIATED SERVICES (DIFFSERV) .. 11
D. TCPRATECONTROL ... 11

ill. OVERVIEW OF THE SAAM ARCIIlTECTURE ... 13
A. DESIGN ISSUES ... 13

1. Responsiveness ... 13
2. Scalability ... 13
3. Fault-Tolerance ... : 14

B. SAAM ROUTERS AND SERVERS ... 14
C. IDERARCIDAL ORGANIZATION OF SERVERS ... 15
D. THE SERVER'S PATH INFORMATION BASE ... 17

1. Service Level Pipe Parameters ... 18
2. Path Parameters .. 19
3. Flow Parameters ... 20
4. Building the Path Information Base ... 20

IV. MODELING .. 23
A. REQUIREMENTS ANALYSIS ... 23

1. Customers ... 24
2. Goals ... 24
3. System Functions ... 24
4. System Attributes ... 25

B. COMMUNICATIONS BETWEEN SAAM COMPONENTS 26
1. Hello Message .. 27
2. Link State Advertisement Message .. 27
3. Flow Request Message ... 27

vii

4. Flow Routing Table Entry Message ... 28
5. Flow Response Message .. 28

C. SERVER MODEL ... 28
I. Entity-Relationship Model of the Path Information Base 30
2. Class Object Model of the Path Information Base 33

D. ROUTER MODEL ... 35
I. Dynamic Configuration Support .. 37
2. Packet Formats ... 3 7
3. Packet Flows ... 41

V. PROTOTYPIN'G .. 53
A. SERVER PROTOTYPE .. 53

1. Server Class .. 54
2. PathlnformationBase Abstract Class .. 58
3. DatabaseStructure Class ... 63
4. ClassObjectStructure Class .. 64
5. SLP Class ... 64
6. SLPSequence Class .. 64

B. ROUTER PROTOTYPE .. 64
I. Emulation-Specific Messages .. 65
2. Message Processors .. 66
3. The Event Model .. 72
4. Emulated Protocol Stack Components ... 78
5. The PacketFactory .. 90

VI. IN'TEGRA TION ... 93
A. PLACIN'G AN APPLICATION ON TOP OF THE PROTOCOL STACK 93

I. Creating a Resident Agent.. .. 93
2. Creating a Resident Agent to Call an Application 96
3. Creating a Resident Agent to Act as an Application 97

B. UTILIZING THE PROTOCOL STACK ... 97
I. Passing the Control Executive to An Application .. 97
2. Sending Traffic .. 97
3. Receiving Traffic .. 99

VII. RESULTS .. 101
A. TEST BED ... 101

1. Demo Station .. 102
2. Server ... 103
3. Willow's Router ... 105
4. Peach's Router .. 107
5. Bonsai's Router .. 109

B. SERVERPERFORMANCE .. 110
1. Database Structured PIB ... 112
2. Class Object Structured PIB ... 113

viii

3. Performance Comparison ... 115

VIII. CONCLUSIONS .. 117
A. IBSSONS IBARNED ... 117

1. SERVERDESIGN ... 117
2. ROU1ER DESIGN .. 119
3. NETWORK ISSUES .. 120

B. FlJTURE WORK ... 121
1. FAULT MANAGEMENT ... 121
2. NETWORK CHANGE MANAGEMENT .. 123
3. SERVER HEIRARCHY MANAGEMENT .. 124
4. FI.,OW MANAGEMENT ... 125
5. SECURITY MANAGEMENT ... 126
6. RESIDENT AGENT MANAGEMENT .. 126
7. POLICYMANAGEMENT .. 127
8. IMPROVEMENTS TO EXISTING CODE ... 127

APPENDIX A. SAAM PACKAGE SOURCE CODE ... 131

APPENDIX B. CONTROL PACKAGE SOURCE CODE .. 145

APPENDIX C. DEMO PACKAGE SOURCE CODE ... 187

APPENDIX D. EVENT PACKAGE SOURCE CODE .. 199

APPENDIX E. MESSAGE PACKAGE SOURCE CODE ... 219

APPENDIX F. NET PACKAGE SOURCE CODE .. 249

APPENDIX G. RESIDENT AGENT PACKAGE SOURCE CODE 267

APPENDIX H. ROUTER PACKAGE SOURCE CODE ... 287

APPENDIX I. SERVER PACKAGE SOURCE CODE ... 309

APPENDIX J. UTIL PACKAGE SOURCE CODE ... 393

REFERENCES .. 409

INITIAL DISTRIBUTION LIST ... 411

ix

x

LIST OF FIGURES

Figure 1. Logical Model of SAAM ... 14
Figure 2. Hierarchical Organization of SAAM Servers .. 16
Figure 3. Links Shared by Service Level Pipes ... 18
Figure 4. Messages Communicated Between Routers and Servers 26
Figure 5. SAAM Server Architecture Design ... 29
Figure 6. Entity-Relationship Model of the PIB .. 30
Figure 7. The Nodes Class Object.. ... 33
Figure 8. The Paths Class Object .. 34
Figure 9. The Links Class Object.. .. 35
Figure 10. SAAM Router.Model With Protocol Layers ... 36
Figure 11. Demo Packet Structure .. 38
Figure 12. Emulation Packet Structure .. 39
Figure 13. SAAM Packet Structure ... 40
Figure 14. SAAM Router Model With Directional Traffic Flows 42
Figure 15. Translator Flow .. 44
Figure 16. Interface Flow (Inbound Traffic) ... 45
Figure 17. Routing Algorithm Flow .. 46
Figure 18. Interface Flow (Outbound Traffic) ... 48
Figure 19. Transport Interface Flow .. 49
Figure 20. Packet Factory Flow ... 50
Figure 21. Control Executive Flow ... 51
Figure 22. Messages Originating Only From the Demo Station 65
Figure 23. saam.message.MessageProcessor .. 67
Figure 24. saam.EmulationTable" 69
Figure 25. saam.residentagent.router.ARPCache .. 70
Figure 26. saam.residentagent.router.FlowRoutingTable ... 71
Figure 27. The Java Delegation Event Model. .. 73
Figure 28. The Channel Concept.. ... 75
Figure 29. The Saam Router Event Model (Channel Management) 76
Figure 30. Event Adapter .. 77
Figure 31. Emulated Protocol Stack .. 78
Figure 32. saam.Translator .. 79
Figure 33. saam.router.lnterface .. 80
Figure 34. saam.router.NetworklnterfaceCard .. 82
Figure 35. saam.router.RoutingAlgorithm .. 84
Figure 36. saam.residentagent.router.Scheduler .. 87
Figure 37. saam.router.Transportlnterface .. 88
Figure 38. saam.control.PacketFactory ... 91
Figure 39. The ResidentAgent Interface .. 93
Figure 40. SAAM Testbed .. 102
Figure 41. The Server's Emulation Table ... 104
Figure 42. The Server's ARP Cache ... 104

xi

Figure 43. The Server's Flow Routing Table .. 105
Figure 44. The Emulation Table For Willow's Router ... 106
Figure 45. The ARP Cache For Willow's Router ... 106
Figure 46. The Flow Routing Table For RouterOne ("Willow") ; 107
Figure 47. The Emulation Table For Peach's Router .. 108
Figure 48. The ARP Cache For Peach's Router. ... 108
Figure 49. The Flow Routing Table For Peach's Router .. 108
Figure 50. The Emulation Table For Bonsai's Router .. 109
Figure 51. The ARP Cache For Bonsai's Router .. 110
Figure 52. The Flow Routing Table For Bonsai's Router ... 110
Figure 53. Server Performance Measurements .. 112
Figure 54. Performance of the Database Structured PIB During Initialization 113
Figure 55. Performance of the Class Object Structured PIB During Initialization 114
Figure 56. Performance of the Class Object Structure PIB With User Flows 115

xii

LIST OF TABLES

Table 1. Parameters of a Service Level Pipe ... 19
Table 2. Parameters of a Path .. 19
Table 3. Parameters of a Flow ... 20
Table 4. System Functions .. ············.·········· 25
Table 5. System Attributes .. 26
Table 6. The Interfaces of Willow's Router .. 105
Table 7. The Interfaces On Peach's Router. .. 107
Table 8. The Interfaces On Bonsai's Router : .. 109
Table 9. Performance of the Database Structured PIB During Initialization 112
Table 10. Performance of the Class Object Structured PIB During Initialization 113
Table 11. Performance of the Class Object Structure PIB With User Flows 114

xiii

xiv

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support of the Defense

Advanced Research Projects Agency and the National Aeronautics and Space Agency for

the purchase of the equipment used in this thesis.

We want to thank Dr. Geoffrey Xie for his constant willingness to assist us with

our research. His guidance and enthusiasm helped us to carry this project to completion.

His efforts in arranging for DARPA and NASA funding for this project allowed us to

have the resources that were needed to effectively carry out this thesis.

We also want to thank Dr. Debra Hensgen, whose knowledge of distributed

systems helped to ensure that this project was a success. Her great demeanor and openess

to discussing some of the difficult aspects of this effort are greatly appreciated.

We would also be remise if we failed to acknowledge the immense contribution of

Mr. Cary Colwell. His extensive background, depth of knowledge, and willingness to

help us contributed greatly to the success of this thesis. He also developed the

demonstration station code that was used in the testing and integration.

We also are grateful to our wives, Paulette Vrable and Sarah Yarger, whose love

and support were essential during our development of this model and the writing of this

thesis. Their help and patience throughout our two years of study are truly appreciated.

We would also like to thank our parents, Jim and Ellie Vrable and Tom and

Dianne Yarger, without whose love and sacrifice neither of us would have the

opportunities that we are both enjoying today.

xv

xvi

I. INTRODUCTION

It appears as though the magic of the Internet has touched just about every

segment of our population. Both old and young are now enjoying access to the wealth of

knowledge that has been built over the years. As computer networks are increasingly

used, one frustrating factor shows through. When people try to communicate using voice

and/or video, they often find themselves frustrated by the poor quality of reception. A

person's voice is understandable for a while and then stops for a few seconds and then

picks up later in the conversation. Conditions like these are caused by a lack of network

Quality of Service (QoS).

This thesis takes some well established principles of computer science to suggest

an original method to provide the QoS that is needed. Specifically, we propose that a

service be implemented within each region of the network that will collect basic topology

information and network performance characteristics. With this database of collected

information, the service is able to assign a flow that requests a particular QoS to a path.

By simply using this type of architecture, numerous enhanced capabilities become

possible, such as:

• load balancing

• rapid flow rerouting, as necessary

• display of current network conditions

This chapter begins with a summary of the problem in more detail in order to

provide the background that will help one to understand the principles being dealt with.

The goal, scope and major contributions of the thesis are described after this background

material. Finally, we describe the organization of the entire thesis.

A. BACKGROUND

The desire of people to communicate has been the key to the explosive growth of

the Internet. Originally, this information primarily took the form of text and pictures. In

many situations, it is more effective to communicate using voice and video. As broadband

1

communications become more available, the desire to use these is increasing and ability

to provide them are becoming more realistic [1,2].

1. Packaging Data for Transport in Flows

The way in which data is packaged depends on what type of network the data is

crossing. In the Internet, the data is packaged into a variable length packet format. This

packet format consists of a header and payload. A packet header contains delivery

information, while the payload contains the actual data.

When passing a large amount of data on the Internet, most applications will utilize

TCP, a transport layer protocol. TCP provides reliability by negotiating a session between

the source and destination host. A flow is an extension of this idea of a session. In this

thesis, a flow is used to describe the sequence of packets from a long duration video or

voice session.

2. Requirements for Delivering Voice and Video

The key considerations for transporting voice and video over a network are

latency and delay jitter. Latency is the end-to-end delay that data experiences as it moves

across the network. Jitter is the variability (in effect, the standard deviation) of the latency

in the network.

An uncongested network with wire speed switching and routing nodes will

demonstrate no significant latency other than that resulting from the propagation speed of

data, which is generally a large fraction of the speed of light. Such a network would

display almost no jitter. The obvious downside to allocating each user their own

uncongested network is that so~e fraction of the network's throughput capacity is

wasted. Network engineers will often attempt to avoid congestion by provisioning at least

twice as much capacity as the expected traffic will demand. This type of over

provisioning "wastes" 50 percent or more of the channel capacity.

2

3. Managing Congestion with Queues

Switches and routers use buffering to alleviate congestion in a network. Excess

traffic is held in queues until the congestion subsides. By creating multiple queues, a

switch or router can support different traffic types, each with their own priority. If these

queues are not managed carefully, unpredictable latencies can occur. Unpredictable

latencies, by definition, cause severe jitter. Additionally packets be dropped when buffer

space allocated to a queue is exhausted.

B. GOAL OF THE SAAM PROJECT

The goal of the Server and Agent Active network Management (SAAM) project,

under which this research is conducted, is to find a solution that will provide a guaranteed

QoS while still maintaining the simplicity and robustness of the underlying TCP/IP

architecture. SAAM seeks to provide this QoS by introducing an additional network

service that, when requested, can assist applications by reserving the necessary network

resources. The SAAM architecture is designed to allow network engineers to

incrementally replace existing internal infrastructure. Incremental introduction requires

that the SAAM cooperate with this existing internal infrastructure in terms of protocols.

C. SCOPE OF TIDS THESIS

The primary goal of this thesis is to refine SAAM' s architectural design which

previously only existed in a high-level form. This refinement is being accomplished by

building and testing a working prototype of that architecture. The implementation of the

two major components was divided up between the authors. Dean Vrable implemented

the router while John Yarger implemented the server. The entire SAAM team aided the

authors in the goal of architectural refinement.

With the addition of a flow identification field, 1Pv6 is well positioned to support

a protocol that provides QoS on a per-flow basis. Countering this advantage, however, is

the current difficulty of gaining access to the router source code. To address both of these

3

issues, an emulated router was constructed. The emulated router routes 1Pv6 packets on

our existing 1Pv4 network. This emulated router was designed to maintain a per-flow

routing table as well as an ARP cache table. Furthermore, the router was implemented to

permit the use of resident agents. Resident agents allow components of the router to be

upgraded dynamically over the network. Software interfaces that allow for the creation of

network applications that reside on top of the router's transport services were also

defined. The router manages the communication of these network applications using the

standard concept of transport layer (layer 4) port numbers.

The SAAM server was designed to act as one of these network applications. This

server implements the two primary tasks of the SAAM.architecture. The first task is the

maintenance of a relatively accurate status of the current network load. This status is

placed in the Path Information Base (PIB) using both hello messages and link state

advertisement (LSA) messages. The server's second task is to respond to flow requests.

This response is accomplished by searching the PIB in order to identify a good path for

the flow. If a supportable path can be found, then the routers that are in the path are sent

information so they can update their flow routing tables. Finally the requesting

application is notified of its assigned flow id, if the flow can be supported.

Fault tolerance and security are beyond the scope of this thesis and will be

addressed elsewhere. Additionally, this thesis concentrated on the design,

implementation, and testing of individual SAAM routers and servers. SAAM's

hierachical nature will be addressed in future work that wi.ll likely leverage other existing

work, such as CORBA and/or DCOM.

D. MAJOR CONTRIBUTIONS OF TIDS THESIS

The research conducted to produce this thesis has the potential to be integrated

into a system that will benefit every user of the Internet. By developing a supportable

model for delivering a guaranteed level of QoS over TCP/IP networks, the delivery of

voice and video will become reliable. This benefit is particularly important when

considering the combat environments of the future. For the foreseeable future, raw

4

network bandwidth will be less than the demand in many areas, just as today's ·highways,

in certain areas, are often congested. Ensuring that high priority communications can be

supported will be essential to success.

E. ORGANIZATION

This thesis is divided into several chapters.

• Chapter II describes other areas of ongoing research that are also designed to

provide QoS.

• Chapter III provides an overview of the SAAM architecture. It explains the

goals of the SAAM Project as well as how the general SAAM architecture is

designed.

• Chapter IV is devoted to the refinement of the SAAM components that are

being implemented in this thesis. This refinement was performed using the

Unified Modeling Language developed by Grady Booch, James Rumbuagh,

and Ivar Jacobson[3].

• Chapter V describes the prototype of the SAAM router and server.

• Chapter VI describes the steps involved in the integration of the router and

server.

• Chapter VII summarizes some quantitative measurements made using the

integrated router and server.

• Chapter VIII outlines the lessons that we learned from the development of this

architecture and outlines the work that remains to be done in the SAAM

Project.

5

6

II. RELATED WORK

The need for providing a guaranteed QoS has widely acknowledged, as evidenced

by the diverse solutions that are being offered to deliver it. In this chapter, we look at

these significant efforts and relate them to the SAAM architecture. First, the ATM

architecture is described. Next, those technologies that are designed to evolve the current

IP network to provide QoS is examined. These technologies include the Resource

Reservation Protocol, Differentiated Services, and TCP Rate Control.

A. ASYNCHRONOUS TRANSFER MODE (ATM)

The basic idea behind A TM is to transmit all information in small, fixed-size

packets called cells. ATM networks are entirely connection-oriented. No data is delivered

in an ATM network without first establishing a Switched Virtual Circuit (SVC). An ATM

network will not establish a virtual circuit for a requested flow unless it can ensure a

guaranteed QoS from end to end. When a new flow is not admitted, customers receive a

type of "busy signal" indicating that ATM network is too congested. However, if a virtual

circuit is assigned to a flow, the same latency and jitter bounds which have traditionally

been provided to voice and video traffic in legacy Time Division Multiplexing (TDM)

circuits can also be provided in ATM.

ATM promises to provide many of the properties that are needed to guarantee

QoS. It also carries with it the baggage of requiring the replacement of existing

equipment along the path upon which the QoS is to be guaranteed. While LAN Emulation

allows for the connecting of an existing IP network to an A TM network, A TM provides

no solution for providing QoS over the IP network part of the path.

In spite of this shortcoming, the A TM forum has designed and analyzed some

useful ways of providing guaranteed QoS. One such analysis has produced the Private

Network Node Interface (PNNI) protocol. PNNI is a switch-to-switch protocol that is

designed to support efficient, dynamic, and scalable routing of SVC requests in a

multi vendor private A TM environment. PNNI phase I consists of two protocols: routing

7

and signaling. PNNI routing uses a hierarchial topology protocol to disseminate topology

and resource information among participating switches or groups of switches. PNNI

signaling uses the topology and resource information available at each switch to construct

a designated transit list which determines a path that to meet the requested QoS

objectives. PNNI signaling is also used to complete the connection.[4]

1. System Initialization

Each ATM switch exchanges updates with its neighboring switches concerning

the status of the links, the resources and the status of these resources, and the identity of

each other's neighboring switches. This information is used to build a topological

database of the entire network. Each A TM switch in the group will have an identical copy

of the topological database. If a change in topology occurs (e.g., link is broken), then only

that change is propagated to all of the switches. [4]

The SAAM Project proposes to utilize a similar initialization method. In our

model, currently available best effort routing protocols (e.g., IP) will allow the sending of

a hello message to a SAAM server. This server may or may not reside on a SAAM router.

This server then builds a Path Information Base from these hello messages. If a change in

topology occurs, only one message is sent to the server.

2. Scalability

PNNI is designed to be scalable. It achieves this scalability by using a

hierarchical routing structure. Information about the topology of a group of nodes is

aggregated and presented as a single node in the next level up in the hierarchy. A single

node is elected to represent a particular group to that next higher level. By only presenting

a summary, this node limits the amount of information about a group of nodes that is

advertised. This is a key factor, since ATM networks deals with a huge volume of

information about connections. This reduction of complexity is called topology

8

aggregation. Topology aggregation necessitates that some degree of accuracy be

sacrificed. [4]

The SAAM architecture will use a similar mechanism to achieve scalability. At

the lowest level, a SAAM server will be placed within an autonomous region. The servers

at this level will provide services for each router in the region. Each of these servers

identifies their adjacent regions and determines the currently available QoS between the

two regions. These servers then function as routers themselves to the next higher level

server by providing a summary of its physical connections to the adjacent regions as well

as the QoS parameters to describe the level of congestion at different service levels.

3. Admission Control

PNNI utilizes source routing to actually reserve a path through a network. The

first switch in the SVC request path computes the entire path according to its topological

database. During this computation it performs a Generic Connection Admission Control

(GCAC) procedure, which provides the originating node with an estimate of whether each

switch's local Connection Admission Control (CAC) process will accept the connection.

The QoS metric values stored in the topological database allow the first switch to make a

good decision about which path to choose. The other switches along the chosen path then

simply perform the same CAC function. If the current switch grants admission, it will

forward the SVC request to the next switch in the source-route path.[4]

The SAAM architecture calls for the SAAM server to be able to dictate to its

member routers to accept flow assignments. This simplifies the system and isolates the

admission control operations for the region. In a hierarchy of SAAM servers, this would

allow lower level servers to decide the best way to get the flow through its own region.

B. RESOURCE RESERVATION PROTOCOL (RSVP)

In response to the need for a guaranteed bound on latency, the Internet

Engineering Task Force (IETF) began an effort to create layer-3 and layer-4 mechanisms

9

that can be used to ensure QoS for real-time data streams. This Integrated Services effort

focused on the development of RSVP. Applications can use RSVP to obtain QoS

guarantees from routers, thereby reserving a path with the desired characteristics across

an IP network. RSVP accomplishes this by using an admission policy similar to ATM. A

connection will be refused by RSVP if it is determined that the resources of the network

are inadequate to provide the requested service levels. There are two major differences,

however, between RSVP and A TM. First, RSVP records its path across a network to its

destination. After reachin¥ its destination, RSVP works backward to establish the

required reservations. The second major difference is that RSVP can be implemented in

an evolutionary manner, while A TM must be implemented in a revolutionary manner.

ATM requires the replacement of existing data network devices to deliver QoS, while

RSVP is implemented as a software option within router software.

Although RSVP has been successfully implemented within a single region, it has

had problems scaling to the larger Internet backbone. Scalability of the current Internet

results from the statelessness of IP routers. RSVP, however, requires routers to maintain

state. While this overhead can be easily accommodated on a private network, it becomes

a practical impossibility on the Internet core, where traffic volumes are ern;>rmous.

Therefore it is not surprising that no ISPs have stepped forward to support RSVP on their

public networks.

SAAM is similar to RSVP in that it is an evolutionary technology. SAAM is

designed as an added service for IP networks that can be implemented gradually through

software upgrades. What makes SAAM different from RSVP is that SAAM does not rely

on the limited knowledge available at each router to make a local decision as to the best

direction on which to forward the RSVP initialization packet. Rather, the SAAM

architecture relies on more global knowledge available from a hierarchically structured

group of servers that maintain a picture of the current status of the network and make

wise assignments for each flow request.

10

C. DIFFERENTIATED SERVICES (DIFFSERV)

Some members of the IETF recognized that RSVP did not meet the needs of

network providers. As a result, a subgroup from the Integrated Services Architecture

group was created to propose Differentiated Services (DiffServ) standards. While

DiffServ does not guarantee resource availability on a per flow basis; it does establish

mechanisms to support QoS for aggregated data. ·

Routers can only affect service quality at layer 3 through variable queuing. No

packet, regardless of priority, however, can traverse a router any faster than at wire speed.

All that priority queuing can provide, in the presence of congestion, is the assurance that

high priority packets will pass through a router faster than a low-priority packet. Priority

queuing alone cannot guarantee low latency or absence of jitter to individual flows.

D. TCP RA TE CONTROL

TCP rate control is another way to restrict traffic on IP networks. TCP rate control

adjusts end-point TCP window sizes explicitly, rather than permitting them to grow as

large as possible as quickly as possible.

Together priority queuing and TCP rate control are able to ensure that a stream of

packets does not monpolize the network, but neither can ensure congestion-free traffic

flow. These are valuable techniques for operating within a congested network and for

prioritizing classes of traffic. By using these techniques, bandwidth availability, latency,

and jitter for a particular flow may be restricted to specific limits. These techniques can

only restrict congestion under certain congestion levels and traffic mixes. Furthermore,

these techniques do not guarantee specific service levels.

11

12

III. OVERVIEW OF THE SAAM ARCIDTECTURE

The SAAM architecture is designed to support applications requiring a long

duration, constant bit-rate flow between two hosts on a TCP/IP network. Before

describing the SAAM architecture in detail, however, we present a list of issues that have

a direct impact on the feasibility of a server based network architecture. Many of our

design choices are based on the understanding of these issues. After these design issues,

the two main SAAM components, the router and server, are described. We then shift our

focus over to the server's hierarchical structure. Finally, we look at the server's database

of path information.

A. DESIGN ISSUES

In this section, we describe how the design issues of responsiveness, scalability,

and fault-tolerance have impacted the overall SAAM architecture.

1. Responsiveness

To support integrated services, the network must be able to detect and react to

changing conditions, especially QoS degradation along a path, within a short time frame.

Therefore, SAAM uses a proactive approach in data collection. Moreover, similar to

PNNI' s topology aggregation, SAAM should aggregate the data about individual links

into "ready to use" path performance information.

2. Scalability

SAAM must be able to scale to provide a complete solution for global networks

that consist of hundreds of routers. On one hand, it is desirable to have a small number of

servers. On the other hand, there is an upper limit on the number of routers that a server

can support. The scalability issue is also very important when determining how frequently

a server should update its PJB. More frequent updates will result in more accurate

13

information. However, they also cause more (computation and communication) overhead

on the network and servers.

3. Fault-Tolerance

If not carefully designed, the failure of one SAAM server could have a devastating

effect on the performance of the entire network. Therefore, servers must be deployed in

such a way that the failure of one server can only affect the performance of a small set of

routers for a short period of time. In addition, it should be possible to deploy redundant

servers.

B. SAAM ROUTERS AND SERVERS

SAAM consists of light-weight routers and a small set of heavy-weight servers.

Logically, each router is a client of a single SAAM server process (see Figure 1).

DJ.
routing table

flow-id next-hop

SAAM server

Figure 1. Logical Model of SAAM

PIB
path

path-id parameters

Next, we describe how a particular router and the SAAM server process interact

in this model. For brevity, we will focus on those aspects related to QoS routing.

14

SAAM requires (preferably dedicated and real-time) duplex communication

channels between each router and its server. We assume that these channels are

established when the router joins the network. The router does not participate in QoS

routing; it updates its flow-based routing table with route data that is passed down from

the server. Note that the router will, however, still participate in conventional routing of

non-real-time traffic for backward compatibility.

The SAAM server builds a PIB to support QoS routing. Specifically, the server

identifies those paths or subpaths that can potentially be used to route flows, and

maintains up-to-date performance parameters for each of tJ:iem. The server computes path

performance parameters by aggregating link level performance data passed up from each

router.

C. HIERARCIIlAL ORGANIZATION OF SERVERS

If the Next Generation Internet is going to provide any guarantee of QoS, a

solution must be found to manage the large number of flows that are expected. More

specifically, the SAAM architecture must address how this scalability issue is going to be

handled, particularly since it needs to maintain per-flow state1
•

To address the scalability issue, SAAM organizes its servers in a hierarchy. (See

Figure 2.) Specifically, at the first level, SAAM partitions the network into regions, and

sets up one server for each region. The current approach to network partitioning using

Autonomous Systems [5] can easily be extended to perform this task. Once established,

the SAAM server can provide path analysis and flow-assignment services on behalf of the

routers in its region.

Each server communicates only with its immediate children, which may be routers

or servers. A server summarizes the QoS of its region for the next higher level. This

summary will allow the server to present itself as a router to the next higher level of

servers. These parent servers will simply see that it has a network of routers that may

have higher than normal delay and loss rate. Just as an actual router is responsible for

15

forwarding a flow through its internal switching fabric, a lower level server is responsible

for determining how to forward a flow through its internal network.

BJ router 8 SAAM server ~example data path

Figure 2. Hierarchical Organization of SAAM Servers

Each server only needs to deal with flows in or across its own region.

Additionally, the SAAM architecture is designed to only facilitate resource reservations

by real-time, long-duration flows (carrying video, audio, or large data sets). SAAM will

not change how, current routers handle best-effort traffic. Thus, the number of flow

requests that a SAAM server needs to process will only include flows that pass through

its region.

Similar to today's architecture, each SAAM region has a subset of routers, called

border gateways, through which data can enter and leave the region. SAAM uses a parent

server at the top level to enable the establishment of flows between two regions.

Unlike the telephone network, the Internet consists of many independently

operated Internet Service Providers (ISPs). One must recognize that there must be

1 In this thesis, we focus on QoS routing on a per flow basis. SAAM will be extended to support per class

16

concrete incentives for these ISPs to introduce an architecture like SAAM to their

networks. Perhaps the most important incentive for adding the SAAM system to an

existing network is the ability to provide more predictable performance for their flows,

which should attract more customers. Another major incentive is that by using SAAM's

efficient resource allocation methods, an ISP may accommodate more traffic and

therefore increase revenues. By coexisting with its existing routing protocols, an ISP may

use SAAM without jeopardizing its operations.

This incremental deployment of SAAM servers can also integrate nicely with the

Differentiate Services model. The SAAM architecture can help ISPs that support different

Per Hop Behaviors (PHBs) to achieve end-to-end QoS. This type of coordination is

needed to handle dynamic network load and link failures.

The main advantage of the above architecture is that it allows SAAM to build a

scalable PIB. The hierarchical architecture also permits SAAM to be gradually deployed

into today's networks. Specifically, SAAM can be implemented initially in one part of a

network. The top-level SAAM server will function as a speaker for all routers in the

SAAM part of the network, i.e., it will become the sole participant in the information

exchange with routers in the other (non-SAAM) part of the network.

D. THE SERVER'S PATH INFORMATION BASE

So far, we have looked at how the server and router interact with each other and

how servers form a hierarchical structure to achieve scalability. Next, we will look at how

information is managed within the server. As discussed earlier, an essential component of

the SAAM architecture is the PIB. When designing a PIB, performance and cost are key

issues to consider.

. The SAAM server will be able to perform a wide range of network functions such

as routing, resource reservation and network management. For the server to perform these

functions well, the PIB needs to maintain sufficient information, and to keep this

information up to date.

routing (required by DiffServ) and even semi-permanent routing.

17

The cost, or overhead, of building and maintaining the PIB should be carefully

analyzed and controlled. In particular, the PIB must scale well as the number of routers in

the region grows.

For the remainder of this section, we describe how the server's PIB is designed to

take advantage of the SAAM architecture to achieve high performance and to control

cost. To illustrate the benefits of this PIB design, we also explain how SAAM can make

use of the PIB to perform efficient QoS routing and re-routing.

First, we describe the system model for our PIB design. Specifically, we define a

path in the context of an integrated services network, and .identify a set of important path

parameters that will be managed by the PIB.

1. Service Level Pipe Parameters ·

In an integrated service network, each network link is shared by a set of logical

service level pipes [6, 7, 8], each of which provides a particular level of network

performance measured by packet delay and packet loss rate. (See Figure 3.)

Senrice Level Pti es
/I

l:"iOW!I .

limn ~ ' ,:)i •.) Lfnk

Fluwv ~-)/
~ w.,__rl _____ _

Figure 3. Links Shared by Service Level Pipes

A path is an ordered sequence of service level pipes. Specifically, an arbitrary path

(denoted by 1t) is represented by 1t =<s1, s 2, ... , sK> where sk is the kth service pipe in

the path, k = 1, 2 , ... , K. Each service pipe is characterized by the parameters listed

in Table 1.

18

s. D target upper bound on the total packet delay (in seconds); includes

queuing delay, transmission delay and propagation delay

s . E target upper bound on the percentage of packets that incur a delay greater

than s .D

s . B amount of pre-allocated link bandwidth; in bits per second

s . R bandwidth available for new flows; initially set to B

Table 1. Parameters of a Service Level Pipe

2. Path Parameters

The set of parameters that characterize the QoS that a path can provide is listed in

Table 2. Most of these parameters are generalizations of what have been defined for a

service pipe.

Note that when a rate based packet service discipline (e.g. Weighted Fair

Queuing) is used at each service pipe, the target end-to-end delay upper bound of a path

can be much smaller than the sum of the target per-hop delay bounds. In such a case, we

redefine s . D to be a target delay upper bound based on the expected packet arrival time;

hence the definition will continue to hold [9,10].

n. D target upper bound on the total packet delay, expressed by n. D = .L: s. D.

n. E target upper bound on the percentage of packets that incur a delay greater than

n. D and thus considered to be lost.

n . B total effective bandwidth, which is expressed by n . B = min { s . B} .

n. R currently available effective bandwidth, expressed by n. R = min { s . R}.

n . F set of flows that are currently using n.

Table 2. Parameters of a Path

19

3. Flow Parameters

A flow is a network connection established by an application requiring a certain

type and level of network QoS. The flow traverses a path composed of a sequence of

service level pipes whose composite QoS meets the specified requirement. The two QoS

parameters associated with a flow, f, are listed in Table 3. The objective of QoS routing

and re-routing is to allocate, and re-allocate if necessary, a statistical path to connect the

source and the destination of the flow while satisfying: n. D ::::; f. D and n. E ::::; f. E.

f . D the delay bound requirement of a flow

f.E loss bound requirement of a flow

Table 3. Parameters of a Flow

4. Building the Path Information Base

The cost of building and managing the PIB is controlled by leveraging the

hierarchical architecture of SAAM. It suffices for the SAAM server of each region to

build and manage a relatively small PIB that contains information for only local paths in

the region. Specifically, information for a long-distance path (i.e., one that crosses

multiple regions) is built and managed jointly by three SAAM servers. A first-level server

is responsible for the source segment (from the source to an outgoing border gateway).

Another first-level server is responsible for the destination segment (from an incoming

border gateway to the destination). The parent server is responsible for the middle

segment between the border gateways. In the remainder of this section, we will focus on

how to build a regional PIB.

We also identify and exclude undesirable paths from each regional PIB to reduce

the size of the PIB. Specifically, those paths that contain a loop or have a regional hop

count greater than a predetermined value Hmax are deemed invalid. We define a path as

valid if and only if it has a hop count less than or equal to H=, and all the routers in the

path are distinct.

20

--------------------------------~------------

Next, we describe the content of a PIB and the steps that a SAAM server takes to

build its regional PIB. Consider a particular SAAM region and its SAAM server. Assume

that there are M routers in the region.

The server takes two major steps to build the PIB. First at network boot-up time,

the server assigns a unique index i between 1 and M to each router; and for each router i,

it computes and stores the set of directly connected routers:

Parents(i) = {j

there is a service pipe from router j to router i}

Afterwards, the server uses a recursive algorithm[l 1,12) to build its list of

possible paths in its regional PIB. The algorithm searches for new source routers from a

final destination to find new paths of increasing length. The Par en ts (i) array

provides the listing of routers that are directly connected to the router, i. The algorithm

has an average complexity of o (M * g11max) , where g is the average size of the

Parents set for a router. Typically, g does not exceed 3.

21

22

IV. MODELING

Modeling is a central part of all of the activities that lead up to the development of

good software. As such, the SAAM Project first developed models to communicate the

desired structure and behavior of our system. These models helped us to more fully

understand the components of the system's architecture and their interaction. Modeling

did indeed expose opportunities for simplification and reuse.

This chapter starts off with a requirements analysis of the SAAM Project. We then

describe the communications that occur between the router and server. We finish up the

chapter by looking individually at the details of the server and router models.

A. REQUIREMENTS ANALYSIS

The SAAM Project has two main components: the router and the server. The

router receives packets and then forwards them along the appropriate path based upon the

content of the packet's IP header and the router's routing table. The server builds a view

of the network from messages sent from the routers and then performs the function of

admission control for applications desiring a guaranteed QoS.

We chose to develop our model within the context of a network built on 1Pv6,

which provides a flow identification field. While this field is provided by the 1Pv6

standard, other than the DiffServ standard, there is no standard way of using it to obtain

QoS for flows. This is where SAAM, or a system similar to SAAM, will be needed.

In the subsections that follow, we examine the key requirements of the SAAM

architecture. Specifically, we define who the customer is for this development effort and

the what the goals of the SAAM architecture are. Finally, we describe the system

functions and attributes.

23

1. Customers

The customers for this product are the Defense Advanced Research and Project

Agency and the National Aeronatics and Space Agency who are both funding this basic

research to investigate the ideas needed to support integrated services, and to develop

proofs of concept and demonstrations. This research will be utilized later by integrators

who will eventually develop the ideas derived from this research into actual products.

2. Goals

Our goal in developing this software is to accurately model the proposed SAAM

architecture. SAAM's.goals include:

• Minimize the overhead of maintaining flow status at each router

• Minimize the overhead of collecting network status

• Determe good paths quickly for assignment to flows

• Reconfigure flows quickly when a path is disrupted

3. System Functions

System functions are what a system is supposed to do. See Table 4 for a list of the

basic functions that describe what the SAAM architecture should do. Evident functions

are those functions that the user should be congnizant of when they are performed.

Hidden functions are those functions that are not visable to users. Primary types of

functions are those that are critical to the system's primary function and will be addressed

in this thesis. Secondary functions would provide enhanced capabilities to the system.[13]

24

Ref# Function Category Type

1 Pass topology information to servers Hidden Primary

2 Maintain collected topology information Hidden Primary

3 Analyze traffic patterns Hidden Secondary

4 Respond to queries for a path meeting specified QoS Hidden Primary

5 Disseminate resource reservations/routing tables Hidden Primary

6 Authenticate administrator/providers of information Hidden Secondary

7 Display configuration forms Evident Secondary

8 Display network status Evident Secondary

Table 4. System Functions

4. System Attributes

System attributes are nonfunctional system qualities. Attributes are distinct from

with system functions. They are characteristics or dimensions of the system. System

attributes are described with either details or boundary constraints. Attribute details tend

to be discrete, fuzzy, symbolic values of the attribute, while attribute boundary constraints

are mandatory boundary conditions which is usually expressed on a numeric range of

values of an attribute. See Table 5 for a list of the basic system attributes that characterize

the SAAM architecture.[13]

25

Attribute Details and Constraints

Design (detail) modular, object oriented

Response Time (boundary constraint) when notified of significant changes,

the flows assigned should be reassigned within 3 seconds.

Interlace Metaphor (detail) forms-metaphor windows and dialog boxes

Fault Tolerance (boundary constraint) must continue to provide service within

30 seconds in case of pow.er or device failure

Operating System (detail) any platform supporting a Java Virtual Machine or a

Platforms native Java compiler

Ease of Use (detail) an administrator can configure the system for the first

time in under 30 minutes

Table 5. System Attributes

B. COMMUNICATIONS BETWEEN SAAM COMPONENTS

The SAAM router and server must exchange information in order to provide the

services of this architecture. Effort was made to minimize the amount of information

exchanged in order to cause as little overhead within the network as possible. The

information to be exchanged between these components can be viewed either as

individual message objects or as physical packets (see Figure 4).

Seriref.1--------1 1----------1 Router
'----:ir::ir&11WO~~

Link:StateAdvertisement

Flow Request

Figure 4. Messages Communicated Between Routers and Savers

26

1. Hello Message

For the server to be able to construct a view of the network, it must receive certain

information from each router that is connected to the network. This topology information

is placed within the hello message. This message identifies the IPv6 address and

bandwidth of each of its interfaces. The server uses these collected hello messages to

determine all of the possible paths through the network from each source to each

destination.

2. Link State Advertisement Message

Knowing the paths described above would be of little use, if this knowledge did

not also include QoS information. In SAAM' s initial implementation, we concentrate on

two key parameters: the average delay and loss rate experienced by packets in the

different outgoing queues, although our design is flexible so as to be able to easily

incorporate many additional QoS attributes. The QoS parameters are calculated for each

service level pipe of each interface of each router. Each router then communicates this

information to the server using link state advertisement (LSA) messages. After receiving

these LSA messages, the server develops a more accurate view of the effective QoS of

those paths that cross the service level pipes described by the LSA.

3. Flow Request Message

While the server is enhancing its understanding of the effective QoS of these

paths, it is also capable of responding to requests for the establishment of flows. These

requests are sent by applications in the form of flow request messages. A flow request

message contains a requested delay and loss rate, as well as the amount of bandwidth the

application expects to consume.

27

4. Flow Routing Table Entry Message

If the server determines that the request can be supported, it assigns a flow

identifier to the new flow and allocates a good path to it. Before responding to the

application, however, the server identifies each of the intervening routers in the path. To

each of these routers, it sends a flow routing table entry (FRTE) message that indicates

what each router should do if it receives a packet with this new flow id. Specifically, a

FR.TE message contains a flow id and the appropriate next hop and the service level upon

which to send the message on.

5. Flow Response Message

After these messages are sent, the server sends a flow response message to the

requesting application. The flow response simply indicates to the application what flow id

should be assigned. If there is no path that can support the flow request, the server simply

constructs a flow response that assigns the flow an id that indicates that this QoS cannot

currently be supported. The flow would be assigned a flow id of zero, which, by the IPv6

protocol standard, indicates non-flow based (i.e. best-effort) traffic.

C. SERVER MODEL

The server is an application that could reside on a router or on a dedicated host. Its

primary function is to develop an accurate picture of the network and then to respond to

flow requests. By processing hello messages and LSA messages, it populates a Path

Information Base (PIB) (see Figure 5).

28

SAAM Server
Architecture Design
Logic.al View
Class Diagram - perform all calculations need to maintain accurate PIB

- communicate with SAAM routers

allow admin to: ~
- configure server ····-· Console i----t_s_erv_e_r-il
- view PIB contents : :

- perform all functions that access the data stored
in the PIB class object structure

........

- perform all JDBC interaction with database

ClassOb · ectStructure DatabaseStructure

Maintain the relational structure of path data.

Figure 5. SAAM Server Architecture Design

The core of the PIB is a representation of the physical network. From this

representation, the server is able to calculate every.physical path through the network.

These paths are initialized to have the full bandwidth of the service level pipe with the

smallest bandwidth in the path. Initially, these paths are also assumed to have no effective

delay or loss. On top of this utopian view of the network, the server will begin to build a

more accurate picture of the network by processing LSA messages. As the server gets

more up-to-date information from these LSA messages, it recalculates the effective QoS

of those paths that cross over these service level pipes.

29

1. Entity-Relationship Model of the Path Information Base

The PIB is a body of knowledge describing the state of a network. It provides

methods that present specific information about the network. It also provides methods for

updating and maintaining the status of the network. The server is responsible to ensure

that it maintains the integrity of the PIB by passing correct information to it. The data

within the PIB can be divided into two basic types of entities: physical and logical (see

Figure 6).

OBSERVED _UTILIZATIO

G0
I

(1,P)

ADDRESS

(1,1)

FFECTJVE_THROUGHP!,JT_REMAININ

~(!,!)

I

Figure 6. Entity-Relationship Model of the PJB

a) Physical Entities

The physical characteristics of the network that must be collected are

grouped according to the two entities that they describe. These entities are the routers and

the links. The relationship between these two entities is referred to as an interface. The

30

attributes of these physical entities can be communicated to a server during its

initialization of the router or server in the form of hello messages.

(1) Router. A router connects two or more links and performs

layer 3 functions. A router is characterized by a node identification number that is

assigned by the server. The time that the last LSA message was sent from this router is

also stored in the PIB. This time stamp is needed to determine whether a node is still able

to communicate its current status to the server.

(2) Link. A link is a physical media that connects two or more

nodes together. A link is characterized by a network address. This network address is

derived from the assigned IP addresses of its router interfaces. A link is also characterized

by the maximum bandwidth of its physical media and lower level protocol.

(3) Interface. An interface is the connection of a router to a

link. The combination of an IP address, the node id of the router, and the network address

of the link characterize an interface.

b) Logical Entities

To allow for the assignment of flows, the SAAM server must take the

physical representation to determine the possible paths that could be assigned to a flow.

Since routers manage congestion and enable prioritization through the use of outgoing

queues, SAAM must also take into account the delay and packet loss experienced at the

queues that make up the path, if that particular attribute is part of a QoS request. Using an

entity-relationship model, we have a service level pipe entity that describes the status of

an outgoing queue and a path entity that describes the effective QoS from a source to a

destination. The relationship between these two entities consists of the sequence of

service level pipes that make up the path.

(1) Service Level Pipe. A physical link is divided into multiple

logical service levels. When a service level is combined with an interface, it forms a

service level pipe. A service level id and the IP address of an interface can be used to

characterize a service level pipe. QoS parameters are monitored through the use of these

31

service level pipes. It is important to emphasize that routers manage congestion through

the use of outgoing queues. Delay and packet-loss occur predominantly at these outgoing

queues. This is also where the resultant bandwidth utilization is monitored. In a SAAM

router, a unique service level pipe is associated with each outgoing queue. The target QoS

and the observed QoS must both be maintained within the PIB for each service level pipe.

(2) Path. A path can be defined as a sequence of service level

pipes from a source router to a destination router. By defining a path in this way, SAAM

can calculate the effective QoS for the path by summing up the delays and loss rates of

the service level pipes that make up the path. SAAM can also determine the effective

throughput remaining for each path. The server assigns each path a unique path

identification number.

(3) Service Level Pipe Sequence. The relationship between the

service level pipe entity and the path entity is the sequence number of a particular service

level pipe in a particular path. The primary keys of the service level pipe and the path can

be combined to serve as the primary key of the SLP sequence relationship.

These three logical elements (service level pipes, service level pipe

sequence number, and paths) are derived from the characteristics of the three physical

elements (routers, interfaces, and links). By maintaining information about these logical

elements, the server can selectively assign delay sensitive flows to paths using high

priority service levels. The queues represented by these service level pipes would be

scheduled to ensure that they guarantee the appropriate bound on delay and loss.

(4) Flow. The final entity that must be maintained within the

PIB is the flow. A unique flow id, a source node's IP address, and a destination node's IP

address characterize the flow entity. The PIB also stores, for each flow, the negotiated

delay~ loss rate and throughput as well as the observed delay, loss rate and throughput.

Finally, the server assigns the flow entity a path id that can provide the requested level of

service.

32

--

2. Class Object Model of the Path Information Base

The development of a class object model of the PIB involved sustantial tradeoff

considerations. Increasing the data retrieval rate increased the amount of memory

required to store the data. The design that follows attempts to minimize the amount of

memory required to store the data. This decision, however, results in a need for more

searches to retrieve some needed data.

a) Nodes

The nodes object is a hash table that uses the assigned node id of the router

as the key (see Figure 7). The elements stored in this hash table are references to other

hashtables that maintain interface information. The interface hash table uses the IPv6

address of the router's interface as a key. The elements stored in this hashtable are vectors

called sips. An sips vector stores objects that describe the characteristics of an interface

within it.

Hashtable: Hashtable:

nodes interfaces
Keys (int): Keys@v6Address):

node id address _.

Elements ffiashtable): Elements (Vector}:

interfaces-+--__, slps

Figure 7. The Nodes Class Object

b) Paths

Vector:

slps
Elements (SLP QoS):
targetDelay
targetLossRate
targetThroughput
observedDelay
observedLossR.ate
observedUtilization

The Paths object is a hash table that uses the assigned path id of the router

as the key (see Figure 8). The elements stored in this hash table are called path objects. A

33

path object contains several attributes. Among these are a hashtable maintaining

information about flows that are assigned to this path. The flow id assigned to a flow is

used as the key for the hashtable. The elements stored in the hashtable are Flow_QoS

objects. A Flow _QoS object contains the negotiated and observed QoS parameters for the

flow. Another attribute of the path object is a vector called SLPSequence. The

SLPSequence vector stores an ordered list of the service level pipes that make up the

path. These ServiceLevelPipe objects store the 1Pv6 address and service level of the

service level pipe.

Hashtable:

naths
Keys (int):

path_id
Elements (Path):
sourceRouter
destinationRouter
effectiveDelay
effectiveL ossRate
effectiveThroughputRemaining
flows
SLPSequence

Hashtahle:

.---:.-flows

Vector:

Keys (intt

flow id
Elements (Flow QoS):
negotiatedD elay
negotiatedL ossRate
negotiatedThroughput
observedDelay ·
observedLossR.ate
observedThroughput

--... SLPSequence
Elements (ServiceLevelPipe):
address
serviceLevel

Figure 8. The Paths Class Object

34

c) Links

The links object is a hash table that uses the derived link id of a network

segment as the key (see Figure 9). The elements stored in this hash table are integers that

describe the bandwidth of the link.

Hashtable: ·

links
Keys (1Pv6Address):

link id

Elements anteger):

bandwidth

Figure 9. The Links Class Object

D. ROUTER MODEL

The router is an application that uses a layered architecture to emulate the routing

of 1Pv6Packets within a SAAM network. Figure 10 illustrates the components of a

SAAM router and the protocol layers they are associated with. The router components

will be explained in detail in the following sections. For now, it is important to

understand that the router model emulates a protocol stack.

35

-- ----- ----------------(. :!U:: J L;.!~~~:a..--~---........ j;.1..;!;:~r!;.!::;.;?!1.t:?!:r!!:!:::w:

Interface
(Inbound)

rsollil~

rs@w@cr

Transport
Iriterfa:ce

--
~ ·.···.· Translator ~
~ (Pbysic31 fo :Emulated) Y

--~~.::i.:::=..=.:====~--~

~Guw~o@@D O::i@W@D'..,....,.,S-AA_,,.M..,.· .,...... _,...... ,,,_,.....Erii,..,_ua,...., tio,...,..il.,......
Port 9001 Any :Pol"t Port 9002

Figure 10. SAAM Router Model With Protocol Layers

The router model has been designed to operate within existing 1Pv4 networks;

and, as such, an emulated protocol stack was necessary to enable the router to act as if it

operates within an IPv6 network. The Physical Layer acts as the bridge between IPv4 and

1Pv6. IPv4 packets arrive on real UDP ports at this layer, whereupon the encapsulated

MAC is examined and the Link Layer is notified. The Link Layer strips the MAC

address, queues the packet and notifies the Network Layer. The Network Layer examines

the 1Pv6 header and routes the packet either back down to the Link Layer or up to the

Transport Layer depending on the destination 1Pv6 address. The Transport Layer strips

the emulated UDP header and forwards the IPv6 packet on the appropriate emulated UDP

port. It is important to keep the distinction between emulated UDP ports and physical

UDP ports in mind when reading the sections that follow. To avoid confusion, UDP

ports referred to in the Transport Layer of the emulation will be preceded with the word

emulated in italics.

36

1. Dynamic Configuration Support

The router is a dynamic component within a SAAM autonomous region. It is

designed to be dynamically and automatically configured by the server through the use of

control traffic. This functionality enables the server to dictate the treatment of data flows

within its region. In a SAAM network, the router should be required to make very few

decisions. Further, for a majority of the decisions the router is required to make, the

server should be capable not only of providing the algorithms required to make them, but

also of replacing those algorithms when necessary. For instance, since traffic levels will

vary from router to router, the server can update the scheduling algorithm of routers

experiencing heavier traffic flows in order to increase the delivery rate of higher priority

traffic through these routers. The routers' support for resident agents is what allows the

server the flexibility to dynamically update them. In the SAAM architecture, a resident

agent is a software component that is deployed to a specific router.

2. · Packet Formats

Two packet structures were designed for passing information in this model. Both

types are encapsulated in an IPv4 packet to enable them to be passed on current IPv4

networks. Figure 18 describes the packet structure used by the demo station to interact

with the routers and servers. Figure 20 describes the packet structure used by the

components within the architecture to interact with one another.

a) The Demo Packet

A demo packet is shown in Figure 11. This packet, which is sent from the

demo station, need only contain a SAAM packet encapsulated within an IPv4 packet. The

Translator listens for these packets on the physical UDP port designated as the emulation

port. When a demo packet arrives on the emulation port, the encapsulated SAAM packet

is extracted and forwarded to the Packet Factory for processing.

37

1Pv4 kt pace
Physical IP varied

I UDP IPv4 9002 Payload

SAAMPacket
varied

Payload

Figure 11. Demo Packet Structure

b) The Emulation Packet

An Emulation packet (Figure 12) is a packet that is sent between

components of the SAAM architecture. Emulation packets are structured to reflect the

layers of the emulated protocol stack. The outer layer of the packet contains the 1Pv4

header and UDP information to enable the packet to travel on existing networks. The

MAC field corresponds to the link layer of the emulated protocol stack. The emulated

NIC strips off this field. The remaining portion of the 1Pv4 payload consists of an 1Pv6

packet. The router uses the 1Pv6 packet to route traffic within SAAM.

38

1Pv4rck•t
varied

Payload

MAC

§
1Pv6Packet

varied

Payload

UDPHeader
8

Emulated
UDPHdr

SAAMPacket

Figure 12. Emulation Packet Structure

c) The SAAM Packet

varied

Payload

The SAAM packet (Figure 13) is the means by which control traffic is

passed between hosts within the SAAM architecture. A SAAM packet may contain

several different control traffic updates. A server, for example, sending several flow

routing table entries to a router in its region would encapsulate those entries within a

single SAAM packet. As indicated by Figures 11 and 12, SAAM packets are included in

both packet structures. A Demo Packet (Figure 11) consists of a SAAM packet

encapsulated within the IPv4 payload, whereas, an Emulation Packet (Figure 12) consists

of a SAAM packet encapsulated within the payload portion of an IPv6 packet. This IPv6

packet is combined with a MAC address and encapsulated within the IPv4 payload.

A SAAM packet consists of a header and a payload.

39

(1) Header. The header contains two fields: the first is an eight-byte time stamp,

which should should indicate the time that the packet was sent from the source. The

second field is one byte and contains an integer representing the number of updates

contained in the payload.

(2) Payload. The payload portion of a SAAM packet could contain one or more

Server-Initiated Functions (SlFs). A SlF can be either a message or a resident agent.

SAAMPacket
varied

Payload

SAAMHeader
8 1
T #of
S Updates

Structure of >ayload portion
1 1 name lell2th

name
Type length name of classfile

ResidentA2ent Example
1 1

0 *36

36

saam.residentagent.
LinkStateMonitor

Message Example
1 1 40

saam.message.
LinkStateAdvertisement

0 *40

*Numbers chosen arbitrarily for these examples.

2

Bytecode
length

2

1024

2

29

Figure 13. SAAM Packet Structure

Bvtecode 1-th

Bytecode

*1024
byte array representing
LinkStateMonitor .class

*29

Parameters for
LlnkStateAdvertisement

constructor

For each SlF, the payload consists of five fields. The first is a one

byte Type field. The following Type fields have been defined thus far:

Type 0 = subclass of saam.residentagent.ResidentAgent

40

Type 1 = subclass of saam.message.Message

The second field in the payload is a one-byte field, which

represents the length (in bytes) of the field that follows. The third field is the name of the

Java class object that will be instantiated by this update. The fourth field contains two

bytes that represent the length (in bytes) of the field that follows. The contents of the fifth

field depends on the value of the preceding Type field.

If an entry in the packet is a resident agent (Type 0), the 'bytecode'

field will contain the byte array representation of the resid~nt agent. The router uses this

byte array to dynamically install resident agents. The Control Executive, receiving a

resident agent update, will use the bytecode provided to instantiate the resident agent.

If the entry in the packet is a Message (Type 1), the 'bytecode'

field will contain the byte array that will be used as a parameter to the constructor of that

Message (i.e. the 'state' of the Message). By passing messages in this way, we enable a

form of serialization of Message objects. 2

3. Packet Flows

Figure 14 depicts the directional flow of traffic between components of the router.

The wide arrows represent the flow of packets through the router, while the thin arrows

represent the passing of messages between components. The three resident agents

depicted at the top of the figure represent applications sent from the server that are

allowed to communicate over the network by utilizing the emulated ports on the router.

The resident agent located between the inbound and outbound Interface represents an

application sent by the server that is allowed to monitor and report on traffic that passes

between components within the protocol stack. The arrows coming out of and circling

back to this agent represent information being gathered from tl:te interfaces. An example

2 The current version of the Java Developer's Kit (JDKI.2.1) offered by Sun Microsystems uses the TCP
protocol to pass serialized objects. Since the current version of the SAAM emulation passes packets via
UDP datagrams, serialization, as it was introduced by Sun, was not an option.

41

of an agent of this type would be a link state monitor whose purpose is to monitor vital

statistics about the router and report them back to the server.

The SAAM Port (9001) exists to support SAAM traffic, that is, traffic that should

normally flow within a SAAM network. The Emulation Port (9002), on the other hand,

only exists to enable the flow of traffic that should not occur within a hardware

implementation of a SAAM network. Emulation table updates and arp cache updates are

examples of such traffic.

A packet entering the router is considered a data packet if it arrives on the SAAM

port and the destination in the 1Pv6 header of that packet is not equal to the 1Pv6 address

of one of the interfaces on that router. In this case, the packet will pass from the

Translator to the inbound Interface, then to the Routing Algorithm where the outbound

Interface and information about the next hop will be determined. The packet will then be

forwarded to the outbound interface and on to the Translator where it will be sent to the

next physical hop on any available UDP port.

Figure 14. SAAM Router Model With Directional Traffic Flows

42

An inbound packet is considered to be an application layer packet if it arrives on

the SAAM port and the destination in the IPv6 header of that packet is equal to the IPv6

address of one of the interfaces on that router. In this case, when the Routing Algorithm

receives the packet, it is forwarded up to the Transport Interface where the emulated UDP

header is stripped off and the destination port is determined. The Transport Interface then

forwards the packet on the appropriate emulated UDP port to the agent(s) listening on

that port.

An inbound packet is considered to be control traffic if it is an application layer

packet that is destined for the emulated UDP port that has been designated the emulated

SAAM Control Port. Additionally, all packets arriving on the physical port designated

for Emulation traffic (port 9002 in this example) are to be considered control traffic.

Control traffic arriving on the SAAM port is passed up to the Transport Interface where

the emulated UDP header is stripped off. The Transport Interface then forwards the

remaining SAAM packet to the Packet Factory (described below) for processing. Control

traffic arriving on the Emulation port is stripped and the remaining SAAM packet is

forwarded to the Packet Factory for processing.

a) The Translator (Inbound Traffic)

The Translator is not a part of the SAAM architecture. Rather, it is an aide

to demonstrate the architecture's proof of concept. The purpose of the translator is to

perform the conversions needed for the SAAM Router to operate in an IPv4 environment.

Figure 15 illustrates the flow of traffic through the Translator.

When a packet arrives on the emulation port, the Translator simply

forwards the packet to the Packet Factory for parsing. When a packet arrives on the

SAAM port, the translator forwards the packet to the emulated network interface cards on

the router.

43

{Jpdate8 F'rom
Demo Station
forwarded to

PacketFactory

Eni1llatiori
Pott9002

. Table
····Updates
· From
Control

IPv6

Packets

Next_Physical_hop

IPv4

Figure 15. Translator Flow

SA.AM
Porf9001

For outbound traffic, the translator has an emulation table, which contains

a mapping between the IPv6 address of the next hop and its associated IPv4 address.

When an outbound packet arrives from the routing algorithm, the Translator performs an

emulation table lookup, and forwards the packet out any local port to the SAAM port of

the next physical hop, based on the IPv4 address retrieved.

The demo station updates the emulation table by appending an emulation

table entry to a SAAM packet and forwarding the packet to the emulation port of that

router. The Control Executive will receive the entry and pass it on to the Translator.

b) The Interface (Inbound Traffic)

A router Interface performs data link layer operations for the emulated

router. An Interface contains an emulated Network Interface Card (NIC), one queue for

inbound traffic, one queue for each service level provided by the router for outbound

traffic, and a Scheduler provided by the server that dequeues packets from the service

level queues and forwards them to the NIC.

44

Figure 16 illustrates the flow of inbound traffic through the router

Interface. When the NIC within the Interface receives notification that a packet has

arrived, the MAC address of the packet is compared to the MAC address of the NIC. If

the MAC addresses are not equal, the NIC disregards the notification, otherwise, the

MAC address is stripped off and the packet is queued until the Routing Algorithm is

ready to process it.

Figure 16. Interface Flow (Inbound Traffic)

c) The Routing Algorithm

The Routing Algorithm performs the network layer operations for the

emulated router. IPv6 packets are routed within this component. The Routing Algorithm

contains a Flow Routing Table resident agent which consists of three fields: A flow ID

used as the lookup key, an IPv6 address of the next hop associated with that flow ID, and

a byte representing the service level associated with that flow ID. The Routing Algorithm

also contains an ARP Cache resident agent, which is a table mapping the IPv6 address of

the next hop found in the flow routing table to the MAC address associated with that

IPv6Address.

45

Figure 17 illustrates the flow of traffic through the Routing Algorithm.

When an Interface places an IPv6 packet into its inbound queue, it notifies the Routing

Algorithm. The Routing Algorithm then wakes up (if it is sleeping), and begins sweeping

the inbound queues of each Interface, on a round-robin basis, looking for packets. When .
it finds a packet in one of the queues, the Routing Algorithm dequeues the packet,

processes it, and moves on to the next inbound queue.

FlowRoutingTable
Resident Agent

Table Updates lnid
Repfacemf.l#tS Ffoill

· ·· colltrornxecutive

ARPCache

Figure 17. Routing Algorithm Flow

To OutbOtind

When a packet is dequeued by the Routing Algorithm, the destination IPv6

address contained in the packet's header is examined. If the destination IPv6 address

matches the IPv6 address of one of the Interfaces on this router, the Routing Algorithm

forwards the packet up to the Transport Layer. If not, the Routing Algorithm uses the

three-byte flow ID contained in the packet's header as a lookup key to determine the next

hop and the service level associated with the packet. Then an ARP cache lookup is

performed using that next hop as a lookup key. This lookup determines the MAC address

associated with the next hop.

46

Once the Routing Algorithm has determined all necessary information

about the next hop, it compares the network portion of the IPv6 address of the next hop to

the network portions of the IPv6 addresses of each Interface on the router. This

comparison will determine which Interface on the router is on the same network as the

next hop. The packet is then forwarded to that Interface.

If the Routing Algorithm makes one pass in which all inbound queues are

empty, the Routing Algorithm goes back to sleep until it receives another notification

from one of the inbound Interfaces.

d) The Interface (Outbound Traffic)

Figure 18 illustrates the flow of outbound traffic through the router

Interface. Once the routing algorithm determines the outbound interface, the packet is

passed to that interface where it is queued into the appropriate service level queue. The

current scheduler for that interface examines the queues according to its scheduling

algorithm. Since the scheduler is a resident agent, the server or demo station could easily

replace this algorithm, if necessary, to improve traffic flow within the autonomous region.

The packet is then passed to the interface's emulated NIC where it is

merely forwarded on to the translator.

47

From•Roufi:11g.·Aigorithrrl.

From

l•Tq• 'I'fanslatc:>r. I

Figure 18. Interface Flow (Outbound Traffic)

e) The Transporl Interface

The Transport Interface performs the transport layer operations for the

emulated router. The transport layer is responsible for delivering packets to the

applications for which they are destined. Figure 19 illustrates how the Transport Interface

as the packet-delivery mechanism within the emulated router.

First, the emulated UDP header is stripped from the packet. The emulated

destination port from that header is used to determine which emulated port the packet is

destined for. If the packet is destined for the emulated port that was designated as the

emulated SAAM control port, the packet is forwarded to the Packet Factory. Otherwise,

the Transport interface delivers the packet on the emulated port whose id was extracted

from the UDP header.

48

Emulated
Portuuuu

Emulated
Port v

Emulated Emulated
Portxxxx

To Routing Algorithm

Figure 19. Transport Interface Flow

Emulated
Port

When the Transport Interface receives an outbound packet, it appends a

UDP header to the packet and forwards it to the Routing Algorithm.

f) The Packet Factory

The Packet Factory is capable of assembling and disassembling SAAM

packets. The router uses a Packet Factory to disassemble incoming packets that are

forwarded from either the Translator or the Transport Interface. Figure 20 illustrates what

happens when an incoming SAAM packet is delivered to the Transport Interface.

When the packet arrives, the Packet Factory strips off the header to

determine the number of updates contained within the packet (see Figures 11 & 12 for

packet structure), then it begins parsing the payload to extract the individual router

updates. As each update is extracted, the Packet Factory forwards that update to the

Control Executive for analysis and processing.

49

To Control Executive

Payload ---

FfomTransiator Frc>tiJ.'l'r(itis}'.>o!t··In.t¢rfa.ce
Figure 20. Packet Factory Flow

/

/
/

/

,

The router uses a Packet Factory to send SAAM packets to other routers or

to the server. The Packet Factory builds a packet by appending the individual updates to

the packet, and then appending a header when the packet is ready to be sent.

g) The Control Executive

The Control Executive is the control authority for the router. Before

resident agents are installed on the router, the Control Executive analyzes them to

determine whether or not they are safe agents. If an agent is determined to be safe, the

Control Executive creates an instance of the agent. Once instantiated, agents must

register with the Control Executive in order to monitor the existing components of the

router or to communicate across the network. Figure 21 illustrates how the Control

Executive processes messages and resident agents.

50

To Transport Interface

Resident Agent
From Packet

Factory

Message From
Packet Factory

Control Executive
could modify the

packet here

Analyzed to
determine

conformance to
policy, then
instantiated

QutbouI1d packet front
~iresident. agent

Delivered to
registered Message

Processors

Figure 21. Control Executive Flow

The Control Executive acts as the portal for applications that wish to

communicate over the network. Applications send flow requests, receive flow responses,

and send outbound traffic through the Control Executive. Inbound packets destined for

applications are forwarded directly from the Transport Interface to the applications on the

emulated port that the applications are listening to without intervention from the Control

Executive.

51

52

V. PROTOTYPING

Prototyping is the implementation of a model, often in a very simplified form. For

this thesis, we chose to focus on the implementation of the critical functions of a SAAM

server and router. In order to allow our prototype to function in the context of an 1Pv6

environment, an emulated environment was created. On top of this emulated

environment, we used a demo station to configure routers. That is, this demo station

passes the parameters needed to define the initial configuration of a router. The demo

station also is used to initialize a server on a specified router. This chapter describes the

organization of the server and router prototype.

A. SERVER PROTOTYPE

The functionality of a server can be divided into a small number of objects. The

Server object itself performs the primary functions. This Server object instantiates a

PathinformationBase object. A PathinformationBase object can be

instantiated in one of two ways. The first, a Da tabaseStructure object, uses a

relational database to store the path information. The second, a

ClassObj ectStructure object, maintains PIB data in volatile memory. The final

major object is the server's console, which is a Java Swing application that provides the

administrator with an interface that can be used to manage the server.

The Server and Pa thinf orma tionBase objects use the other objects

described below to exchange data. The SLP (service level pipe) object describes the QoS

characteristics of a service level pipe. The SLPSequence object describes the sequence

of SLP objects that define a particular path.

53

1. Server Class

The Server is the object within the SAAM architecture that maintains a view of

the network. This view is used to assign flows to paths. The Server object exchanges

messages with the routers assigned to its region. It is instantiated by the Translator

object. The Server contains a number of class variables. First, a

PathinformationBase object, named PIB, is instantiated in the constructor. The

type of the PIB instantiated is based on the value of a string parameter, either "database"

or "classobject". The PIB contains information about the network. Second, a

ControlExecuti ve object, named controlExec, is passed to the Server in the

constructor. The controlExec object enables the Server to receive and send

particular types of messages.

The next two variables described play an important role in determining the

content of the PIB. An integer, Hmax, specifies the maximum number of hops that a

paths may contain. Varying Hmax can greatly change the number of possible paths

through the network. Another integer, numOfServiceLevels, indicates the number

of service level pipes per interface in this server's SAAM region. This variable is

assigned a value within the processHello () function. Each interface in a SAAM

region has the same number of service levels. The string, serverIPv6, contains the

IPv6 address of this server.

Two variables are used to limit the frequency with which paths are built within the

PIB. The first, a long integer named timeOfLastPIBBuild, is initialized by

System. currentTimeMillis ().The next, another long integernamed

timeBetweenPIBBui lds, is currently arbitrarily set to 2 minutes.

a) void Server(String "type, ControlExecutive controlExec)

This method constructs a Server. The string, type, specifies whether

the PIB is structured as a database or a class object. The ControlExecuti ve,

controlExec, manages the interface to the IPv6 protocol stack ensuring messages

flow to and from the network. The final step taken is to reinitialize the data structures

within the PIB.

54

b) void processHello(Hello hello)

This method receives Hello messages from routers and then processes

them. It starts building a vector of IPv6Address objects from the interfaces included in

the Hello message. This vector is passed to the PIB's doesRouterExist () which

determines whether a router with any of these interfaces is already in the PIB. If this is a

new router, a unique node id is assigned to it.

For each of the interfaces identified in the Hello message, if this

interface is not known to the PIB, processHello () checks to see if the

corresponding link is known to the PIB. If the link is not known to the PIB, it is added.

Next, a new interface between the node and link is added. Finally, each service level pipe

that is assigned within this SAAM region is added.

The next step is to build the paths that have now become available across

the network because of the newly identified node and/or interfaces.

Finally, a flow request for communicating back to this node is issued. This

is only possible if the PIB's determineAllPossiblePaths () has been executed

after the processing of this particular hello message, i.e., if this is a new router. After all

paths to each known router are found, this method completes with a call to

determineEffectiveQoSForPaths ().The call to

determineEffectiveQoSForPaths () ensures that if no QoS parameters are

known about these new parts of the network, defualt values will be assigned. This

initialization is required for the new paths since the paths must have effective delay and

loss rate values that are less than the upper bound values contained in a flow request in

order to be assigned. This reason is also why the paths must a bandwidth initialized to a

value that is greater than the bandwidth value requested in the flow request.

c) void processLSA(LinkStateAdvertisement LSA)

This method is invoked when a link state advertisement message is

received from a router. It processes the service level pipe status information contained in

the LSA message. It begins by checking to see whether a router with the interface address

described by this LSA is known to the PIB. If such a router is known to exist, the method

55

then checks to see whether the service level pipe described by this LSA is known to the

PIB. If the service level pipe is known, then its status is updated. Otherwise, it adds a

SLP along with its associated QoS characteristics. Finally, this method updates the

effective QoS for the paths that pass over this service level pipe by calling

deterrnineEffectiveQoSForPaths().

d) void process Flow Request(Flow Request flow Request)

This method receives and processes flow requests from applications. It

begins by finding a source and a destination router. These routers may be where the

applications themselves reside, which is the most commonly expected situation in this

prototype. The application could, however, reside on some host that is not registered with

the PIB as a router. In this case, the appropriate source or destination router would be a

router connected to the same link as the host containing the application.

The PIB is checked to determine whether there is a path that has the

requested QoS available. If a satisfactory path is found, a unique flow id is associated

with this path. Each router in the path 'is determined and a new flow routing table entry is

sent to it. If no path can provide the requested level of QoS, then the flow is assigned an

identifier of zero, which will be interpreted by 1Pv6 as best effort traffic.

Finally, a flow response is sent back to the application to inform the

application of its assigned flow id. If the flow id that is return is zero, it is the

application's responsibility to either lower its QoS expectation or to decide to terminate.

e) void sendFRTEUpdate(int sourceRouter, intflowld, 1Pv6Address
nextHop, int serviceLevel)

This method sends a flow routing table entry update message to a router.

This message provides the router with the information needed to forward packets based

upon flow id. Once a flow routing table entry message is instantiated, the control

executive's send () is called to send the message to the specified sourceRouter.

56

f) void sendFiowResponse(FlowRequestflow_request, intflow_id)

This method is used to send a response to the application that is requesting

a flow id. This method is invoked by the recei veFlowRequest () method described

above. Once a flow response message is instantiated and a source and destination port is

defined, the control executive's send () is called to send itto the destination host.

g) void findAIIPossiblePaths()

This method determines all of the possible paths that exist between any

source and destination router in the network. This method is invoked by the

recei veHello () method described above. The paths that are found are then recorded

in the PIB for fast assignment of flows later.

All node ids are first retrieved from the PIB. For each service level, we

build an array of parents of each node. A parent is node that is directly connected. Those

directly connected nodes would have service level pipes that would need to be passed

through to get to the child node in question.

This parent array is used to populate a path table. Each node id is assigned

as the final destination of path and all of the different paths are then found·by working out

from this destination. For each of these destination nodes, a call is made to processPath()

to find all the valid paths that go to this destination node. We make the call with a

specified height of search of 1.

h) void processPath(Hashtable parent, int[] aPath, int
heightOjSearch, int serviceLevel)

This method processes all valid paths that arrive at the destination node

within some range of hops. For each parent of the node at the distance of heightOfSearch

from the destination, a check is made to ensure that adding this new parent will cause no

cycle. H this checks out, then that parent can be added and a new path can be assigned.

The service level pipes in this new path are identified and their sequence numbers in this

path are recorded to the PIB. Next, a check is made to see if the height of the search is

less than the server's max search height of Hmax. Hit is less, the method recursively calls

itself with an incremented heightOfSearch variable.

57

i) void causeNoCycle(int[J aPath, int heightOfSearch, int
justARouter)

This method checks to ensure that the addition of a specified new node to

a specified path does not result in a cycle being created. This is accomplished by checking

to see if the new node is already a member of the list of nodes in the path.

j) void detennineEffectiveQoSForPaths()

This method determines what the effective QoS on each path in the PIB is.

For each path, the service level pipes that compose it are retrieved. Then, for each of

these service level pipes, we total up the delay and loss rate. The effective throughput

remaining is determined by finding the minimum difference between the observed

throughput and the target throughput of each service level pipe in the path.

k) void detennineEffectiveQoSForPaths(IPv6Address address, int
serviceLevel)

This is an overloaded method that determines the effective QoS for just

those paths that pass over the specified service level pipe. For these paths, the effective

delay and effective loss rate are calculated. The effective throughput remaining is

determined by finding the minimum difference between the observed throughput and the

target throughput of each service level pipe in the path.

2. PathlnformationBase Abstract Class

The PathinformationBase is an abstract class within the SAAM architecture that

dictates what methods need to be implemented by any class that wishes to perform the

retrieval and storage activities involved with maintaining a picture of the network. All of

its methods are declared abstract in order to require this.

a) void deleteAllData()

This method removes all current path data from the database. It is most

commonly used during initialization of a SAAM server for a new network.

58

b) int doesRouterExist(Vector 1Pv6Addresses)

This method determines whether a given router exists yet within the PIB.

It talces in a vector of interface addresses contained within a Hello or LSA message. It

returns the id of the node containing at least one of the interface addresses in the vector

that was passed.

c) int getNewNodeld()

This method finds an unassigned node id and adds it to the PIB. It is

commonly used for assigning a new node_id to a previously unknown router.

d) boolean doeslnterfaceExist(IPv6Address my1Pv6Address)

This method determines whether a given interface exists yet within the

PIB. It talces in an interface address talcen from a hello or LSA message and returns

boolean true if the interface address already exists within the PIB.

e) boolean doesLinkExist(IPv6Address address)

This method determines whether a given link exists yet within the PIB. It

talces in the IPv6 address of an interface and returns boolean true if the link address

already exists within the PIB.

f) void addLink(IPv6Address address, int max_bandwidth)

This method adds a new link to the PIB. It talces in an IPv6 address of an

interface and the maximum bandwidth of this network segment.

g) void addlnterface(int node_id, 1Pv6Address address)

This method adds a new interface to the PIB. It is commonly used when

receiving a hello message. It talces in the id of the router whose interface is being added as

well as the address of this interface.

59

h) boolean doesSLPExist(IPv6Address address, int service_level)

This method determines whether a service level pipe exists yet within the

PIB. It takes in the address of its interface as well as the service level that this logical pipe

is providing. It returns boolean true if this SLP is already in the PIB.

i) void updateSLP(IPv6Address address, int service_level, int delay,
int loss_rate, int throughput)

This meth?d updates the status of a known SLP' s delay, loss rate and

throughput. In addition to these parameters, it also requires the passing of the 1Pv6

address of the interface and the service level of the service level pipe that is being

described.

j) void addSLP(IPv6Address address, int service _level, int
target _delay, int target _loss _rate, int target_throughput)

This method add a previously unknown SLP to the PIB along with its

target QoS characteristics. It takes in the 1Pv6 address of the interface and the service

level of the service level pipe that is being described, as well as the target delay, loss rate

and throughput.

k) intfindARouter0nLink(IPv6Address address)

This method finds a router id that has an interface on the same link as the

host making the flow request. It takes in the 1Pv6 address of the interface of the host

requesting the flow and returns the id of a router on this link.

l) int getPathThatCanSupporlFlowRequest(int source_router, int
destination_router, Flow Request myFlowRequest)

This method determines if there is a path that can support a particular flow

request. It takes in the node ids of the source and destination routers as well as the host's

request for the establishment of a flow. It returns the id of path that can support this

request or else returns zero to indicate that no path can support this QoS.

60

m) int getNewFlowld(int path_id, int sourceJouter, int
destination_router, Flow Request myFlowRequest)

This method finds an unassigned flow id and uses it to assign this new

flow to the specified path. It talces in the path id and the flow request to be assigned as

well as the source and destination router ids. It returns the id that is being assigned to this

flow.

n) VectorgetSLPSequenceOfPath(int path_id)

This method retrieves the sequence of service level pipes that malce up a

given path. It talces in the id of the path in question and returns a vector of service level

pips that compose this path.

o) 1Pv6Address getlnterfaceAddress(int node_id, 1Pv6Address
link_id)

This method retrieves the IPv6 address of an interface. It talces in the id of

the router whose interface is connected as well as the network address of the link that this

interface connects. It returns the address of the interface that connects this node and link.

p) Vector getAllRouterlds()

This method retrieves all of the router ids assigned by the PIB so far. It

returns these router ids in the form of a vector.

q) int findMaxServiceLevel()

This method retrieves the maximum service level of this SAAM region. It

returns the numerically highest service level id assigned.

r) Hashtable getParents(Vector V, int service_level)

This method retrieves an array of parents for each router. A parent is a

directly connected node. It talces in a vector of all router ids and the level of service for

which paths are being searched. It returns a hash table of vectors containing the parents of

each router.

61

s) int getNewPathld(int source_router, int destination_router)

This method assigns an unassigned id to a new path. It takes in a source

router id and a destination router id. It returns the id for this new path.

t) 1Pv6Address getLinkBetween(int source_router, int
destination_router)

This method identifies the network address of the physical link between

two adjacent routers. It takes in the ids of the source and destination router and returns the

network address of the link. If no link exists between a source and destination router, the

default address of all zeros is returned.

u) void assignSLPSequence(int service_level, int source_router,
1Pv6Address link_id, int path_id, int sequence_number)

This method assigns a service level pipe sequence entry in the building of

a path. It takes in the level of service for which paths are being built as well as the node id

and link id that this service level pipe connects. It also requires the id of the path to assign

and the number assigned to specify the sequence of this service level pipe in the path.

v) Vector getAllPathlds()

This method retrieves a vector of all path ids constructed by the PIB. It is

most commonly used when determining the effective QoS for all paths.

w) Vector getSLPsOfPath(int path_id)

This method retrieves the service level pipes that make up a given path. It

takes in the id of the path in question and returns the service level pipes that make up the

path.

x) void setEffectiveQoSOfPath(int path_id, int effectiveDelay, int
effectiveLossRate, int effectiveThroughputRemaining)

This method records the calculated effective quality of service parameters

for a particular path. It takes in the id of the path in question along with the effective

delay, loss rate and throughput remaining.

62

y) Vector getAllPathldsThatTraverseSLP(IPv6Address address, int
service _level)

This method retrieves a vector of all path ids that traverses the specified

service level pipe. It takes in the 1Pv6 address of the interface and the level of service that

this logical pipe is providing.

z) Vector getRouterlnterfaces(int node_id)

This method retrieves a vector of all interface addresses attached to this

router. It takes in the node id of the router in question.

aa) void deleteARouter(int node_id)

This method deletes a specified router from the PIB. It takes in the node id

of the router to be deleted.

bb) Vector getAllLinklds()

This method retrieves a vector of all physical link ids known to the PIB.

cc) Vector findRoutersOnLink(IPv6Address link_id)

This method retrieves a vector of all routers attached to a specified

physical link. It requires the network address of the link in question to be passed to it.

3. DatabaseStructure Class

This class is a Path Information Base object within the SAAM architecture that

performs SQL queries on the database containing the information needed to obtain a

picture of the network for use in assigning flows to paths. Specifically, this class makes a

connection to an Oracle 8i relational database. This connection is made using Sun's

JDBC - ODBC bridge driver. The database is configured with a database named PIB.

This PIB database is configured with tables and columns in accordance with the model.

This class defines each of the methods required of a Path Information Base using SQL

operations.

63

4. ClassObjectStructure Class

This class is a Path Information Base object within the SAAM architecture that

performs operations on class objects containing the information needed to obtain a picture

of the network for use in assigning flows to paths. It instantiates four hash tables objects

to maintain the picture of the network: nodes, links, interfaces, and paths. These hash

tables are populated with objects instantiated by four inner classes: SLP _QoS, Path,

Flow_QoS, and ServiceLevelPipe. This class defines each of the methods listed above for

a Path Information Base by performing searches through the appropriate data structures.

5. SLP Class

The SLP class stores the QoS parameters that describe that status of a service

level pipe. This class is used as a standard way to pass this information back and forth

between the server and the server's path information base.

6. SLPSequence Class

The SLPSequence class stores sequence information to identify the order of

service level pipes that make up a path. This class is used as a standard way to pass this

information back and forth between the server and the server's path information base.

B. ROUTER PROTOTYPE

For the router prototype, our intent was to build a basic platform using the Java

programming language that would enable flow-based delivery of 1Pv6 packets within an

emulated SAAM network. We sought to deliver a product that could be dynamically

updated by messages and algorithms sent to it by its server or, for demonstration and

testing purposes, by a demo station. Finally, we sought to provide a means by which

64

researchers and students could easily modify router characteristics or generate test traffic

by creating lightweight resident agents based on our examples.

1. Emulation-Specific Messages

In additi.on to the server-initiated messages described earlier, it was necessary to

develop several types of messages that would not normally be sent over a SAAM

network. For this emulation, we decided that it would be best to allow the ARP cache

and emulation tables to be populated and dynamically updated from a demo station. This

gave us the flexibility we needed to easily change the network topology to demonstrate

various scenarios.

Figure 22 shows the two types of messages that perform those table updates, along

with a third type of message that provides initialization data necessary for standing up the

interfaces on a router.

•. ~aam.message•Mi!ssage

+getBytes · ·
. +getT'ype
+length·
+toString.

saam~message~ARPCacheEntry

+ARPCac eEntry
+getBytes
+getNextHop
+getNextMAC
+length

1
+toString

+Emu at1onTa eEntry
+getBytes
+getIPv4Address
+getIPv6Address
+length
+to String

saam;message.oemoHello

+DemoHelio
+getBytes
+getlnterfaceIDs
+length
+to string

Figure 22. Messages Originating Only From the Demo Station

65

a) ARPCacheEntry Message

An ARPCacheEntry object contains an 1Pv6 address representing the next

hop and a byte representing the MAC address of the next hop. The entry could be either

an add or a remove depending on which constructor is used. An add is required to have

both fields, whereas a remove only requires the field that is used as the lookup key in the

associated table. Entries can be retrieved as a byte array using the getBytes() method.

b) EmulationTableEntry Message

An EmulationTableEntry Message contains an 1Pv6 address representing

the next hop and an 1Pv4 address that maps to this 1Pv6 address. The entry could be either

an add or a remove depending on which constructor is used. An add is required to have

both fields, whereas a remove only requires the field that is used as the lookup key in the

associated table. Entries can be retrieved as a byte array using the getBytes() method.

c) DemoHello Message

A DemoHello Message is simply a Message that contains a Vector of

InterfaceID messages. This Message is not necessary in order to stand up a router, but it

demonstrates that Message nesting can occur (encapsulating one or more messages within

a single Message). To stand up several Interfaces on a router, the DemoStation can either

send several InterfaceID messages, or one DemoHello Message that contains several

InterfaceID messages.

2. Message Processors

A MessageProcessor is an object that is capable of processing certain types of

messages. In order for a Message to be delivered on a SAAM network, there must be a

MessageProcessor that is registered with the ControlExecutive to process Messages of

that type. Figure 23 illustrates the objects that have implemented the MessageProcessor
I

interface.

66

I
I
I
I

• I
I

6
I
I

I

l
I

I

I

l
I

I

Figure 23. saam.message.MessageProcessor

To become a MessageProcessor that can actually process messages, it is not

enough to simply implement this interface. Objects implementing this interface must also

provide a call to the ControlExecutive's registerMessageProcessor method, passing itself

as a parameter. The ControlExecutive will then make a call back to the registrant to

retrieve the array of Messages this MessageProcessor would like to process. Therefor, an
. -

additional requirement of implementors of this interface is that they must supply a String

array that contains the String names (fully qualified classnames) of the Messages it would

like to process. The ControlExecutive will then know that when a Message of that type

arrives, it should be sent to this processor.

a) ControlExecutive

The ControlExecutive acts as the registrar for all MessageProcessors. As

described above, all MessageProcessors must register with the ControlExecutive to be

eligible to receive messages of the type that MessageProcessor is capable of processing.

67

When a MessageProcessor registers with the ControlExecutive, the ControlExecutive

stores that processor along with the messages the processor has registered to process.

When the ControlExecutive receives a Message, the table of

MessageProcessors is consulted to determine which processor should receive the

Message. Once the processor has been determined, the ControlExecutive then calls the

processMessage method of that MessageProcessor, passing the inbound Message as the

only parameter. The processor then proceeds to process th~ Message.

The ControlExecutive is itself a MessageProcessor capable of processing

four types of messages.

(1) saam.message.InterfaceID. When an InterfaceID Message

arrives, the ControlExecutive uses the information contained in the Message to instantiate

a new Int~rface on the router - providing an Interface with that information has not

already been instantiated.

(2) saam.message.ServerID. When a ServerID Message

arrives, the 1Pv6Address associated with that ServerID will be set as the destination in the

1Pv6Header of packets sent out on flow zero3
, otherwise, the default 1Pv6Address will be

set as the destination.

(3) saam.message.FlowResponse. FlowResponse messages are

simply forwarded by the ControlExecutive to the application that sent the corresponding

Flow Request Message to the server.

(4) saam.message.DemoHello. When the ControlExecutive

receives a DemoHello Message, it merely iterates through the Vector of InterfaceIDs and

processes the individual InterfaceID messages in the same manner as noted in (1) above.

3 Zero is the flow ID that has been designated in this prototype as the flow from all routers to the server.

68

b) Translator

The Translator is capable of processing messages of the type

saam.message.EmulationTableEntry. The Translator has an Emulation Table4 (Figure 24)

that maps the IPv6 next hop of an outbound packet to its associated IPv4 address. When

an EmulationTableEntry Message arrives, the record contained in the

EmulationTableEntry is either added or removed from the EmulationTable.

Figure 24. saam.EmulationTable

c) ARPCache

The ARPCache5 (Figure 25) is a resident agent that, once stood up on a

router, serves as a lookup table for retrieving the MAC address associated with the

IPv6Address of the next hop used as the lookup key. The ARPCache resident agent is

also a MessageProcessor.

4 The EmulationTable is not a resident agent or a MessageProcessor. The Translator instantiates the
EmulationTable and processes all updates to the table.
5 Making the ARPCache a resident agent allows for the possibility of modifying the structure of the table.
This may or may not be desirable. It was done here, just to show that it was possible.

69

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

----..J

Figure 25. saam. resident agent. router.ARPCache

The ARPCache is capable of processing messages of the type

saam.message.ARPCacheEntry. Based on the length of the ARPCacheEntry, the

ARPCache determines whether the entry is a record that is to be added or removed. The

record is then added to the ARPCache or removed from it accordingly.

d) FlowRoutingTable

Like the ARPCache, the FlowRoutingTable (Figure 26) is a resident agent

that serves as a lookup table for the router. The FlowRoutingTable retrieves the service

level and nextHop (IPv6Address) associated with a given flow ID used as the lookup key.

The FlowRoutingTable resident agent is also a MessageProcessor. The

FlowRoutingTable is capable of processing messages of the type saam.message.

FlowRoutingTableEntry.

70

I
I
I
I
I
I
I
I
I
I

'----

Figure 26. saam. residentagent. router.Flow Routing Table

(1) FlowRoutingTableEntry Message Description. A

FlowRoutingTableEntry object contains a three-byte integer representing the flow ID, a

one-byte service level, and an 1Pv6 address representing the next hop. The entry could be

either an add or a remove depending on which constructor is used. An add is required to

have all fields, whereas a remove only requires the field that is used as the lookup key in

the associated table. Entries can be retrieved as a byte array using the getBytes() method.

(2) Processing a FlowRoutingTableEntry. Based on the length

of the FlowRoutingTableEntry, the FlowRoutingTable determines whether the entry is a

record that is to be added or removed. The record is then added to the FlowRoutingTable

or removed from it accordingly.

71

3. The Event Model

Objects within the router must be able to communicate with one another. Further,

new objects that are dynamically introduced to the router must be allowed to

communicate with the router's existing components. To enable this type of dynamically

initiated inter-object communication, some sort of mechanism was necessary that would

allow objects within the router to register to communicate with other objects. The

following section describes the mechanism we developed to accomplish this.

a) Java's Delegation Event Model

Enabling communication between router objects is a simple task in Java.

The Java programming language provides a flexible and scalable event mechanism

known as the Delegation Event Model (Figure 27). In this model, event objects are

passed from event sources to one or more event listeners. [14]

(1) Event Objects. An event object is simply a Java class that

represents information that is to be conveyed from a source object to a destination object.

Event objects can contain attributes and methods like any other Java class. The

convention for naming event objects is to concatenate the desired name for the new event

with the word "Event". For example, an event occurring within the SAAM environment

might be named, "SaamEvent".

72

Event Source
Register/deregister

AddEventListener(EventListener listener)
~

~

removeEventListener(EventListener listener)

For (int I=O;I<numOfListeners;I++){

(listeners Vector.get(!)).receive(eventObject)

}

Event Listener

Event Notification receive(EventObject eo)

: : EventObject
Event Listener

receive(EventObject eo)

Event Listener
~

receive(EventObject eo)

Figure 27. The Java Delegation Event Model

(2) Event Listeners. Event listeners are the destination objects will receive particular

types of events when they occur. In order to receive events, listeners must register

with the object from which those events originate (event source), and they must

contain a method that can be called by the event source when the event occurs.

(3) Event Sources. Event sources are the objects that generate the events of interest to

event listeners. Every event source should contain a private vector of listeners with

accessor methods to allow listeners to be added and removed. This vector provides

the mechanism for listener registration. When an event that is being listened for

occurs within an event source, the event source first creates an event object that

represents the state of the event. The source then iterates through its vector of

73

listeners and calls the method within each listener that is designated to receive the

event object, passing the event object as the only parameter6
•

b) Delegation Event Model Limitations

In developing the router, it became apparent that the Delegation Event

Model does not address certain issues related to inter-object communication that are of

concern to SAAM.

(1) Order of Instantiation. In the Delegation Event Model, the order of instantiation

of objects is important. For Instance, an event listener cannot register with an event

source that has not been instantiated. In our attempts to conform to the model, we

found ourselves designing constructors with many parameters just to accommodate

message passing.

(2) Event Source Replacement. On a similar note, if one event source is to take over

the notification of a certain type of event, listeners for that event must de-register with

the old source and then register with the new source. This process involves a great

deal of object passing and quickly becomes combersome.

c) The Channel

In order to overcome the limitations of the Delegation Event Model noted

above, we developed the concept of a Java communication channel.

(1) Concept Definition. A channel is mechanism for delivering events from one or

more event sources to one or more event listeners (Figure 28). A channel is a Java

class object, and is thus allowed to have attributes and methods that constitute the

state of the channel. A channel contains a vector of listeners and a vector of talkers.

Under this model, event listeners become listeners to a channel. They register with a

channel as they would register with any event source. The key difference here is that

event sources now must register as talkers on the channel. To send an event

6 To ensure that each listener contains this method, it is common to create an interface class that can be
implemented by objects desiring to listen for particular events. For example, objects desiring to listen for
events of type SaamEvent might implement an interface named SaamListener.

74

notification, a registered talker merely calls the talk method of the desired channel.

This wakes up the channel's thread, which notifies all listeners on that channel.

Channel
Register/deregister Register/deregister

Add.Listener (SaamListener listener)
-

removeListener (SaamListener listener)
~

r ~

AddTalker (SaamTalker talker)

removeTalker (Saam Talker talker)

talk(SaamEventse)
• l

Event

Saam Talker Notification SaamListener

channel.talk(saamEvent) receive(SaamEvent se)

I SaamEvent I , '
Saam Talker I SaamEvent ~

SaamListener
• l

channel.talk(saamEvent) receive(SaamEvent se)

Saam Talker SaamListener

channel. talk(saamEvent) receive(SaamEvent se)

Figure 28. The Channel Concept

(2) Overcoming Delegation Model Shortcomings. Channels offer several benefits

over the standard Delegation Event Model described previously. In the channel

registration process, the order in which objects register is not important. Listeners are

allowed to register with a channel that has no talkers and vice versa. If a listener

registers with a channel that has no talkers, the listener will not receive any events on

that channel until a talker registers with, and then talks on the channel. If a talker

registers on a channel that has no listeners, the events sent by the talker will be

dropped.

(3) Additional Benefits Offered by Channels. When we attempted to design a

mechanism by which objects were allowed to communicate with an emulated UDP

75

-- ---

port, we found that the channel concept was perfectly suited for this purpose. Much

like ports, channels deliver information from source to destination in parallel through

event notifications. UDP ports are accessed by a unique 2-byte integer. By assigning

an integer field to the channel that represents the channel's id, we can map channel

ids to UDP port numbers. All that remains is to assign an object to manage the ports.

d) Channel Management

Channels operating independently offer several benefits not previously

realizable, but the true power of this concept lies with the ability to manage a group of

channels. Figure 29 illustrates how an object can harness a group of channels and

provide a means of controlling the important aspects of those channels.

ControlExecutive I Channel I
Event

addTalkerToChannel(SaamTalker t, int channelID) Notification I Channel I .
removeTalkerFromChannel(SaamTalker talker) ~

addListenerToChannel(SaamListener 1, int channellD) . I Channel I
-..

removeListenerFromChannel(SaamListener listener)
Register/ I Channel I

talk(SaamEvent se)

'~ '
de register • '. Register/ I SaamEvent I

deregister +
Saam Talker SaamListener

channel.talk(saamEvent) ... receive(SaamEvent se)

I SaamEvent
Register/ -y

Saam Talker
deregister SaamListener .

channel.talk(saamEvent) receive(SaamEvent se)
Event • Saam Talker Notification SaamListener

channel.talk(saamEvent) receive(SaamEvent se)

Figure 29. The Saam Router Event Model (Channel Management)

(1) The Control Executive as Channel Manager. In this model, a Control Executive

acts as the registrar for a group of channels, the range of UDP ports available to an

application for example. By allowing talkers and listeners to register with the Control

76

Executive to communicate over a channel, we can provide these objects with a means

for identifying and plugging in to channels that are provided for various purposes,

such as for passing packets through a router. Further, by making the channel class

accessible only to objects within the control package, we provide a mechanism for

controlling the monitoring and delivery of traffic on the channels we set up.

The Control Executive in our model plays the role of what Berg

and Fritzinger refer to as an event adapter (Figure 30). According to them,

An event adapter is simply an object that sits between an event
source and an event listener. It interposes between the two by listening for
events from the source and then may modify the event in some manner
before delivering the event to the event listener.

Applications desiring to monitor an emulated port, to monitor

channels within the protocol stack, or to send traffic on either of these must register with

the Control Executive. From this position, the Control Executive can control all traffic

sending and receiving that occurs on the channels.

Figure 30. Event Adapter

77

4. Emulated Protocol Stack Components

In order to demonstrate the functionality of a SAAM router within an IPv6

network, it was necessary to develop an emulated protocol stack. The key components

that make up the emulatedprotocol stack are highlighted in Figure 31 and described

individually in this section.

Figure 31. Emulated Protocol Stack

a) The Translator

The Translator (Figure 32) is not a part of the SAAM architecture. Rather,

it is an aide to demonstrate the architecture's proof of concept. The purpose of the

Translator is to perform the conversions needed for the SAAM Router to operate in an

IPv4 environment.

78

/
/

l~//

/

/
/

,,,
/

/
/

/

,,, ,,,

Figure 32. saam. Translator

(1) Inbound Traffic. When instantiated, the Translator first

stands up a ControlExecutive and then a PortListener. The PortListener is a threaded

inner class used by the Translator to receive and forward Datagram packets on the

Channel designated in its constructor. When packets are received on the emulation port,

the PortListener forwards them to the PacketFactoiy for processing.

Additionally, the Translator registers to listen on the

ROUTER_STATUS_CHANNEL, which is used by the ControlExecutive to notify the

Translator that all elements necessary to stand up a router have been received. Once the

Translator receives this notification from the ControlExecutive, the Translator stands up

another PortListener on the SAAM port (9001). When packets are received on the

SAAM port, the PortListener forwards them to the NetworklnterfaceCard objects on the

f'ROM_TRANSLATOR_TO_NICS_CHANNEL.

(2) Outbound Traffic. The Translator listens for outbound

traffic on the FROM_NICS_TO_TRANSLATOR_CHANNEL. Packets arrive on this

79

channel in the form of a ProtocolStackEvent7• When the Translator receives an outbound

packet, the EmulationTable is consulted to determine the 1Pv4 address of the next hop,

then the packet is forwarded to that location.

b) The Interface

The router Interface (Figure 33) class implements both the SaamTalker

and SaamListener interfaces. In order for packets to pass through the router Interface, the

Interface must listen for packets coming into it, and it must talk on channels to forward

the packets out. When an Interface is instantiated, it regis.ters to communicate on several

channels.

+INBOUND QUEUE
+nul'l'lber0f!nbbu11dOUeue·s
+hurriberdfbl.ieuesOnThisinterface
+nurriberOfServiCeLevels
+SERVICE' LEVEL QUEUE START INDEX
+Interface I
+equals l
+getrn ••.

1

i ..
+getP,:kket
+ge~g~gketp~.ul1t

±isf:rnpty I
+receiVeE:vent · I
±t;ostHng I

f

Figure 33. saam.router.lnteiface

(1) Inbound Traffic.

7 A ProtocolStackEvent is an event that is fired from within the protocol stack. Normally this class is used
as a means of communications between Objects within the protocol stack, such as to pass a packet from a
NetworkinterfaceCard to the Translator.

80

(a) Channels
To receive packets from its NetworklnterfaceCard (Figure

31), the Interface registers to listen on the appropriate Channel by calling the

getFromNICTolnterfaceChannel method in the ProtocolStackEvent class. To notify the

RoutingAlgorithm that a packet is about to be placed in the inbound queue, the Interface

registers to talk on the appropriate Channel by calling the

getEnqueuinglnbound.PacketChannel method in the ProtocolStackEvent class.

(b) Packet Processing

An Interface uses the NetworklnterfaceCard that it

instantiates to strip the MAC address from the packet, then the Interface places the packet

into its inbound queue where it will be extracted by the RoutingAlgorithm.

(2) Outbound Traffic.

(a) Channels
To receive packets from the RoutingAlgorithm, the

Interface registers to listen on the appropriate Channel by calling the

getFromRoutingAlgorithmTolnterfaceChannel method in the ProtocolStackEvent class.

To notify the Scheduler that a packet is about to be placed in a service levei queue, the

Interface registers to talk on the appropriate Channel by calling the

getFromlnterfaceToSLQueueChannel method in the ProtocolStackEvent class.

(b) Packet Processing
When an Interface receives outbound packets from the

RoutingAlgorithm, the service level is determined and the packet is placed into the

appropriate service level queue where it will be extracted by the Scheduler assigned to

that Interface.

c) The NetworklnterfaceCard

Every router Interface instantiates a NetworklnterfaceCard (Figure 34) to

perform link layer processing for incoming packets bound for that Interface. Like the

router Interface, the NetworklnterfaceCard class implements both the SaamTalker and

81

SaamListener interfaces. When a NetworklnterfaceCard is instantiated, it registers to

communicate on several channels.

+reCeiveEvent
+strip,fylAC
+to$tril'lg

Figure 34. saam.router.NetworklnteifaceCard

(1) Inbound Traffic.

(a) Channels
To receive packets from the Translator, the

NetworklnterfaceCard registers to listen on the

FROM_TRANSLATOR_TO_NICS_CHANNEL defined in the ProtocolStackEvent

class.

To forward the packet to the router Interface,

NetworklnterfaceCard registers to talk on the appropriate Channel by calling the

getFromNICTolnterfaceChannel method in the ProtocolStackEvent class.

{b) PacketProcessing
A NetworklnterfaceCard strips the MAC address from the

packet, then forwards the packet to the Interface that instantiated that

NetworklnterfaceCard.

(2) Outbound Traffic.

82

(a) Channels
To receive outbound packets from the Scheduler assigned

to its router Interface, the NetworklnterfaceCard registers to listen on the appropriate

Channel by calling the getFromSchedulerToNICChannel method in the

ProtocolStackEvent class.

To forward outbound packets on to the Translator, the

NetworklnterfaceCard registers to talk on the FROM_NICS_TO _TRANSLATOR

_CHANNEL defined in the ProtocolStackEvent class.

(b) Packet Processing

When an NetworklnterfaceCard receives outbound packets

from the Scheduler, the packet is merely forwarded on to the Translator. No additional

processing is necessary because the RoutingAlgorithm has already aI'pended the

outbound MAC to the packet.

d) The RoutingAlgorithm

There is one RoutingAlgorithm (Figure 35) for every router which

performs the network layer functions for the router. The RoutingAlogrithm contains the

logic that determines where to forward packets when they arrive and when they are being

sent out. In addition to implementing the SaamTalker and SaamListener interfaces, the

RoutingAlgorithm class implements the Runnable and ResidentAgentCustomer

interfaces.

83

+forwardPacket
+getAgentTypes
+receiveEvent
+replaceAgent
+routeinboundPacket

__ .l

Figure 35. saam.router.RoutingAlgorithm

(1) java.lang.Runnable. The Runnable interface is defined in

the standard Java Developer's Kit (JDK) in the package java.lang. This interface requires

its implementors to provide a run method, which allows them to operate on a separate

thread.

(2) saam.residentagent.ResidentAgentCustomer. The

ResidentAgentCustomer interface is intended for use by objects that need access to

resident agents on the router. This interface provides a mechanism by which an

implementer can be notified when a resident agent the implementor needs access to is

replaced. The ResidentAgentCustomer interface provides two methods that must be

implemented: getAgentTypes and replaceAgent.

ResidentAgentCustomers must register with the ControlExecutive

in order to be notified as to when a particular resident agent is replaced. Calling the

registerCustomer method of the ControlExecutive does this. The getAgentTypes method

should provide an array of String names of the types of resident agents the customer is

interested in. The ControlExecutive will call this method during the registration process

84

to build a table of agents and their associated customers. When an agent listed in this

table arrives, the ControlExecutive calls the replaceAgent method for each customer of

that agent, passing it an instance of the new agent.

(3) Inbound Traffic.

(a) Channels

As router Interfaces are instantiated, the RoutingAlgorithm

registers to listen on the Channel designated as the' Channel that passes notifications from

those Interfaces to the RoutingAlgorithm. Adding the number of Interfaces that have

been previously instantiated to the ENQUEUING_INBOUND_PACKET_START_

CHANNEL defined in the ProtocolStackEvent class determines the appropriate Channel.

For example, when a new Interface is instantiated, if the ENQUEUING_INBOUND _

PACKET_START_CHANNEL is defined as 90000 and this is the fourth Interface to be

instantiated, the RoutingAlgorithm would register to listen on Channel 90003 (90000 +

three previous Interface instances).

To forward the packet to the Transportlnterface, the

RoutingAlgorithm registers to talk on the APPLICATION_ CHANNEL defined in the

ProtocolStackEvent class.

(b) Packet Processing

The RoutingAlgorithm is designed to continually sweep

packets from the inbound queues of the Interfaces on the router. If the routing algorithm

finds that all inbound queues are empty, it waits for a notification from an Interface that a

packet is about to be queued, at which time the RoutingAlgorithm wakes up and repeat

the cycle.

When the RoutingAlgorithm dequeues an inbound packet,

it first compares the packet's 1Pv6 destination to the 1Pv6 addresses of the local

Interfaces, if the packet is destined for one of these Interfaces, the packet is forwarded to

the Transportlnterface for processing. Otherwise, the packet is routed to the next hop as

described below.

(4) Outbound Traffic.

85

(a) Channels
In addition to forwarding packets not destined for the router

on to the next hop, the Routing Algorithm is also capable of receiving outbound packets

from the Transportlnterface. To receive packets from the Transportlnterface, the

RoutingAlgorithm registers to listen on the FROM_TRANSPORTINTERFACE_TO

ROUTINGALGORITHM CHANNEL in the ProtocolStackEvent class.

When a router Interface is instantiated, the

RoutingAlgorithm registers to talk on the Channel that is designated as the Channel that

passes notifications from the RoutingAlgorithm to that Interface. Adding the number of

Interfaces that have been previously instantiated to the FROM_ROUTINGALGORITHM

_TO_INTERFACE_START_ CHANNEL defined in the ProtocolSt~ckEvent class

determines the appropriate Channel.

(b) Packet Processing
To route outbound packets, the RoutingAlgorithm consults

the FlowRoutingTable and ARPCache to determine the information necessary to route the

packet to the next hop. The RoutingAlgorithm also determines which local Interface to

forward the packet to by comparing the network portion of the next hop to the network

portions of the IPv6 addresses of each local interface. The packet is then forwarded to the

outbound Interface for queuing.

e) The Scheduler

There is one Scheduler (Figure 36) for every Interface on a router which

performs the link layer functions and scheduling for outbound packets. The Scheduler

only schedules outbound traffic. It contains the logic that determines how to extract

packets from the service level queues assigned to the router Interface associated with that

Scheduler. Like the RoutingAlgorithm, the Scheduler implements the SaamTalker,

SaamListener, and Runnable interfaces.

86

I
\
\
\
I I

/

/

saam .residentagent .router .Scheduler

+install
+query
+receiveEvent
+receiveFlowResponse
+receivestate
+run
+toString
+transferState
+uninstall

Figure 36. saam.residentagent.router.Scheduler

The Scheduler also implements the ResidentAgent interface. This is what

enables dynamic replacement of the scheduling algorithm. At any time, the server or the

demo station can send a saam.residentagent.router.Scheduler object to replace the all

instances of the existing agent with that name on a router.

(1) Channels. When this resident agent is installed, the

Scheduler registers to listen on the Channel that has been designated to pass traffic to the

Scheduler from the router Interface assigned to it. Calling the

getFromlnterfaceToSLQueueChannel method defined in the ProtocolStackEvent class

determines the appropriate Channel.

To forward the packet to the NetworkinterfaceCard, the Scheduler

registers to talk on the appropriate Channel by calling the

getFromlnterfaceToSLQueueChannel method in the ProtocolStackEvent class and

passing the instance number of the Scheduler as the only parameter.

The Scheduler also registers to talk on a Channel designated for

notifying any interested listeners that a packet has been dequeued from a service level

87

queue. There is a series of Channels devoted to this type of traffic. The first of these is

the FROM_SLQUEUE_ TO_SCHEDULER_START_CHANNEL. By adding the

instance number of the Scheduler to this number, an interested listener can determine

which Channel that Scheduler is sending notifications on.

(2) Packet Processing. The algorithm used by the Scheduler to

schedule packets is entirely up to the designer of.the resident agent. We have provided a

simple algorithm that dequeues packets on a round-robin basis, emptying the highest

priority queue first and then proceeding on to the next-highest priority queue. The logic

for this algorithm resides in the run method of the Scheduler.

f) The Transportlnterface

There is one Transportlnterface (Figure 37) for every router which

performs the transport layer functions for that router. The Transportlnterface serves as

the deliver mechanism for applications listening to the router's emulated UDP ports. The

Transportlnterface class implements both the SaamTalker and SaamListener interfaces.

Figure 37. saam.router.Transportlnteiface

(1) Inbound Traffic.

88

(a) Channels

To receive inbound packets from the RoutingAlgorithm,

the Transportlnterface registers to listen on the FROM_ROUTINGALGORITHM_TO

_TRANSPORTINTERFACE_CHANNEL defined in the ProtocolStackEvent class.

Upon instantiation, the Transportlnterface registers to talk

on the PACKETFACTORY_CHANNEL defined in the ProtocolStackEvent class. This

is the Channel designated for traffic destined for the PacketFactory.

For packet delivery on an emulated port, the

Transportlnterface is registered by the ControlExecutive to talk on a port whenever an

application registers to listen on that port. To do this, the Transportlnterface is simply

registered to listen to the Channel with the ID that corresponds to the port number.

(b) Packet Processing
The Transportlnterface strips the UDP Header of inbound

packets and, if there is an application listening on the emulated port, forwards the packets

on the emulated port for which the packet was destined.

When the Transportlnterface receives an inbound packet

that is destined for the SAAM_CONTROL_PORT defined in the ControlExecutive, the

packet is delivered to the PacketFactory for processing.

(2) Outbound Traffic.

(a) Channels

To forward outbound packets to the RoutingAlgorithm, the

Transportlnterface registers to talk on the FROM_ TRANSPORTINTERFACE _TO_

ROUTINGALGORITHM _CHANNEL defined in the ProtocolStackEvent class.

(b) Packet Processing
For outbound packets, the Transportlnterface appends the

UDP Header to the packet and then forwards the packet to the RoutingAlgorithm.

89

5. The PacketFactory

The PacketFactory (Figure 38) is the object that is used to construct SAAM

packets for sending, and to decompose when they are received.

a) Constructing SAAM Packets

The PacketFactory provides a public no-args constructor and three public

methods that can be used by applications to build SAAM packets. The first of these

methods accepts an instance of a Message, extracts the state of the Message in the form of

a byte array, and appends that byte array to the byte array that represents the packet being

built. The second append method accepts a string that represents the fully qualified name

of a classfile that implements the ResidentAgent interface. 8 The PacketFactory uses this

string to determine the location of the class file (<filename>.class) on the local machine.

It then reads in the byte array representation of the classfile and appends it to the packet

being built. The third append method accepts an instance of a class that implements the

ResidentAgent interface, determines the fully qualified name of the agent, and then calls

the second append method to append the agent.

8 "saam.residentagent.router.Scheduler" is an example of a fully qualified classfile name that is passed to
the PacketFactory in order to send the bytecode representing the ResidentAgent.

90

--

saam .control .PacketFactory

+PacketF actory
Packet Factory

+append
____ +getBytes

+length
+processPacket
+receiveEvent
+run
+toString

Figure 38. saam.control.PacketFactory

To extract the byte array representation of the SAAM packet from the

PacketFactory, the getBytes method must be called. This method first appends a SAAM

· header to the packet (Figure 13), then it sets a boolean flag9 indicating that the packet has

been retrieved, and finally, it returns the byte array representation of the SAAM packet.

b) Receiving SAAM Packets

The PacketFactory also provides a constructor that is visible only to

objects in the saam.control package which is used by the ControlExecutive to receive

SAAM packets and decompose them into their individual messages and resident agents.

When instantiated by the ControlExecutive, the PacketFactory registers to monitor the

PACKE1FACTORY_CHANNEL in the ProtocolStackEvent class. The Translator uses

this Channel to forward SAAM packets that arrive on the emulation port; and the

9 This boolean flag is used by the append methods to reinitialize the packet if the getBytes method has been
called. This allows multiple SAAM packets to be created with the same instance of the PacketFactory.

91

Transportlnterface uses it to forward SAAM packets that arrive from the emulated

protocol stack.

The PacketFactory receives inbound packets from its receiveEvent

method. When a packet arrives, the thread used to process inbound packets wakes up and

calls a private method to process the packet. This private method (processPacket) then

determines the number of updates in the arriving packet and proceeds to process each

update individually.

Message objects are instantiated by the PacketFactory directly10 and then

forwarded to the ControlExecutive on the SAAM_CONTROL_PORT which can be

found in the ControlExecutive. Resident agents are not directly instantiated by the

PacketFactory. The PacketFactory merely defines the class and passes the class definition

to the ControlExecutive. This allows the ControlExecutive to first examine the agent to

determine whether or not it violates any policy issues.

10 The process of instantiating Messages should eventually be moved into the ControlExecutive where
Messages could first be analyzed to determine whether or not they violate any policy issues.

92

VI. INTEGRATION

In order to enable nodes within a SAAM network to communicate with one

another, it is important to understand how the components of the architecture fit together.

The emulated protocol stack is the delivery mechanism for SAAM traffic, while resident

agents provide the bond that ties applications utilizing this protocol stack together.

A. PLACING AN APPLICATION ON TOP OF THE PROTOCOL STACK

Applications can utilize the emulated protocol stack in two ways. If the

application includes multiple class files, a resident agent should be created to instantiate

the application. If the application consists of one classfile and is small enough that it

could easily be delivered over the network, the application could implement the

ResidentAgent interface and be passed to the protocol stack.

This section first describes what is required to create a resident agent, then it

provides examples of the two uses of these agents described above.

1. Creating a Resident Agent

Implementing the ResidentAgent interface (Figure 39) is all that is necessary to

create a resident agent that can operate within this prototype. The ResidentAgent

interface prescribes the overriding of six methods to its implementors.

Figure 39. The ResidentAgent Interface

93

a) Install

The install method receives a ControlExecutive instance as its only

parameter. When this method is called, the agent can use the ControlExecutive passed to

it to performs such tasks as registering itself to process messages, registering to listen on

protocol stack channels, registering to monitor emulated ports, or sending traffic across

the network.

The following code sample provides a simple implementation of the install

method. First, it registers with the ControlExecutive as a MessageProcessor. When the

call is made to registerMessageProcessor, the ControlExecutive will first call

the getMessageTypes method within the agent to determine the types of messages

this agent is interested in processsing, then it will determine if this agent is allowed to

process those types of messages, and finally, if the agent is authorized, the

ControlExecutive will add the agent and its message types to the registration table.

public void install(ControlExecutive
controlExec){

this.controlExec=controlExec;

controlExec.registerMessageProcessor(this);

//this channel is used by the first instance
of a router Interface

//to send notifications when it is about to
enque an inbound packet

int channel = ProtocolStackEvent.
ENQUEUING~INBOUND_PACKET_START_CHANNEL;

//here we register to monitor the channel we
just assigned above.

controlExec.addListenerToChannel(this,channel);
}

Once this agent has registered as a MessageProcessor, it identifies the

integer that represents the Channel the agent seeks to monitor by calling a static final int

in the ProtocolStackEvent class. Once the integer is retrieved, the agent passes it

as a parameter to the addListenerToChannel method in the ControlExecutive. The

ControlExecutive will again screen the agent to determine if it is authorized to monitor

the Channel and then place the agent in the Channel's Vector of listeners.

94

b) Query

Some resident agents are accessed by Objects on the router. This method

provides the means for communication between an Object on the router and this

ResidentAgent. The implementations of this method can vary greatly. All that is

required is that the agent receives a Message as its only parameter and that it returns a

Message. The following sample code provides a simple implementation. The comments

provide the narrative.

//this method allows an object to perform a table
//lookup, retrieving
//a message that represents an entry in the table
public Message query(Message message){

//for demo purposes only, we assume the
incoming Message is a
//FlowRoutingTableEntry

int flowID =
((FlowRoutingTableEntry)message) .getFlowID();

//Here, the agent extends java.util.Hashtable,
so it inherits the

//the get method. This call to get returns
an Object that is cast

//to a FlowRoutingTableEntry.
FlowRoutingTableEntry result =

(FlowRoutingTableEntry)
get(new Integer(flowID));

return result;
}

c) Receive Flow Response

When a ResidentAgent requests a flow by calling the requestFlow

method of the ControlExecutive, the agent expects to be assigned a flow and to be

notified when that flow is assigned. This method provides a mechanism for notifying the

ResidentAgent that a FlowResponse has arrived.

d) Receive State

The recei veState method is intended to operate in conjunction with

the transferState method. This method is called one or more times from within the

95

transfers ta te method of an agent that is about to be replaced by this agent. The

purpose of this method is to enable a state transfer from the old agent to the new agent.

This method receives a Message as its only parameter. One of these messages could

contain all information that is intended to be transferred, or it may only contain partial

information (a row in a table, for example).

e) Transfer State

When an agent is about to be replaced, the ControlExecutive calls the

transferState method, passing the old agent a copy of the new agent. The old agent

should then call the receiveState method on the new agent, and pass to the new agent any

messages that should be passed.

f) Uninstall

When an agent is being replaced, the ControlExecutive will remove the

old agent from all channels it is registered to talk on and from all channels or emulated

ports it is monitoring. The uninstall method is called by the ControlExecutive upon

replacement in order to allow the old agent a chance to perform any other ~leanup that

might be necessary, such as disposing of a graphical user interface, for instance.

2. Creating a Resident Agent to Call an Application

. An object that implements the ResidentAgent interface can instantiate other

objects that exist on the host that agent object is destined for. This is the implementation

we used to instantiate the Server prototype. The simple agent we created instantiated the

Server class, registered with the ControlExecutive to process three Message types: Hello,

Flow Response, and LinkStateAdvertisement. Once registered, this agent would receive

those messages and pass them up to the Server by invoking the appropriate method on the

Server. This resident agent is provided in Appendix G. The fully qualified class name is

saarn.residentagent.server.ServerAgent.

96

3. Creating a Resident Agent to Act as an Application

In Appendix G, we have provided several examples of resident agents that

perform various tasks such as: Acting as routing tables, acting as threaded packet

schedulers, acting as applications that generate network traffic, and acting as remotely

deployed packet sniffers.

B. UTILIZING THE PROTOCOL STACK

The Control Executive is the base component (similar to the kernel of an

operating system) of a router. As such, it will make sure only resident agents from a valid

SAAM server are installed and allowed to communicate using the emulated protocol

stack. The Control Executive controls communication over the protocol stack by

providing the only public methods for sending and receiving SAAM network traffic in the

whole SAAM package.

1. Passing the Control Executive to An Application

In order to send or receive traffic over the prototyped SAAM network, an

application must be provided with an instance of the Control Executive. This can be

done in two ways: If an application is a resident agent, the application will receive an

instance of the Control Executive when it is installed on the host it is destined for; or, if

an application is instantiated by a resident agent, the instantiating agent can pass the

application an instance of the Control Executive.

2. Sending Traffic

The Control Executive contains three methods that allow applications to send

traffic over the network. These methods allow applications to send 1Pv6 packets, SAAM

packets, or subclasses of the Message class.

97

a) Sending 1Pv6 Packets

Objects that have been assigned flows can send IPv6 packets with this

method:

public void send(java.lang.Object sender,

IPv6Packet ipv6Packet).

In order to use this method; Objects must first request a flow using the

requestFlow method; and then receive a flow assignment from the server. The

sender parameter represents the Object sending the message, while the ipv6Packet

parameter represents the IPv6Packet to be sent on the flow contained in the header of

the IPv6 packet being sent.

b) Sending Messages

Objects that have been assigned flows can send Messages with this

method:

public void send(java.lang.Object sender, Message

message, int flowID, short sourcePort, IPv6Address destHost,

short destPort).

In order to use this method, Objects must first request a flow using the

requestFlow method; and then receive a flow assignment from the server .. The

sender parameter represents the Object sending the message. The message represents

the subclass of Message to be sent. The f 1 ow ID parameter represents the flow ID that

has been assigned for traffic from sender destined for destHost. The sourcePort is the

port on the local machine that sender is listening on. The destHost is The IPv6

address of the destination. The destPort is the port to which destHost is listening.

c) Sending SAAM Packets

Objects that have been assigned flows can send SAAMPackets with this

method:

public void send(java.lang.Object sender,

SAAMPacket saamPacket, int flowID, short sourcePort,

IPv6Address destHost, short destPort).

98

The only difference between this method and the previous one is that this

method accepts a SAAM packet as a parameter vice a subclass of Message. This is for

applications that desire to send multiple combinations of messages and resident agents in

one packet.

3. Receiving Traffic

The Control Executive contains two methods that allow applications to receive

traffic over the network and one method allowing applications to register as listeners to

channels that are not ports. These methods allow applications to send IPv6 packets,

SAAM

a) Monitoring Ports

Objects implementing the SaamListener interface can use the following

method to receive traffic from a host across the network:

public void monitorPort(SaamListener listener, int

port).

In order to send a flow request or any other type of traffic in a SAAM

network, sending Objects must be listening to a port. The following method assigns

Objects a random port that is higher than the highest well-known port, but no higher than

MAX_PORT:

public int listenToRandomPort(SaamListener

listener)

b) Monitoring Channels

SaamListeners use the addListenerToChannel method to attach

themselves as a listener to a Channel. If this method succeeds, the listener will receive all

events that are sent on this Channel.

99

100

VII. RES UL TS

This results chapter describes the test environment that was used to test the

integration of the emulated routers and server. The first section describes the topology of

the test bed. The second section highlights the type of performance numbers that were

recorded during the operation of the server.

A. TESTBED

We developed a test bed in which to test the basic functionality outlined in

Chapter V. There are five participants in the test: A demo station, an emulated router

with a server on it, and three emulated standalone routers. Using these components, we

were able to demonstrate the following functionality: Control traffic passing between the

routers and the server; Resident agent installation, activation, de-activation,

uninstallation, and replacement; Flow assignments; and Flow usage by applications

residing on different hosts. Figure 40 illustrates the components and the connections

between them.

101

Subnet2

Figure 40. SAAM Testbed

1. Demo Station

The demo station is used to initialize the nodes in the test SAAM testbed.

Translators are first instantiated on the machines that host the server and the routers. The

Translators initially listens on the emulation port (9002) for initialization data from the

demo station. Once this data is received and all core routing components were

instantiated, the ControlExecutive at each router is informed by the Translator that the

router was ready. After this initialization, the Translator began listening on the SAAM

port (9001) for SAAM traffic.

The demo station is located on "Fir" whose IPv4 address 131.120.9.65. The demo

station is hard-coded with all of the information necessary to initialize the server and all

routers. Building and transmitting SAAM packets at the demo station proved to be a

simple task. All that is required in the demo station class file was the appropriate

102

topology configuration, a network socket connection, and an instance of the

PacketFactory.

This topology configuration information is used to instantiate messages which are

then appended to the outbound packet. Resident agents were appended to the packet

using the append method that takes a string as its only parameter.11

2. Server

For this test bed, we decided to instantiate the serv~r as a resident agent on a

router. The router contains one interface. Otherwise, a separate, stripped-down protocol

stack would be needed. As described in Chapter IV, the server should be able to execute

on a router, so this testbed situation enabled us to more fully exercise this functionality.

Our server resides on "Maple" whose 1Pv4 address is 131.120.8.142. The Interface

it received from the demo station has an IPv6 address of 99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.l

and MAC address12 of1.

a) Emulation Table Entries

Figure 41 shows the contents of the server's emulation table upon

initialization from the demo station. Since the server has only one interface, it only needs

to know the routing information about the single interface that it is directly connected to

on "Willow."

11 When appending resident agents, it is necessary to ensure that the classfile representing the resident agent
is located in the proper place on the file system. For example, the classfile for the
agent"saam.residentagent.router.Scheduler" should be saved as saam\residentagent\router\Scheduler.class
on a Windows platform.
12 The current architecture only supports a one-byte MAC address. This is very limiting and should be
expanded to more accurately reflect reality.

103

Figure 41. The Server's Emulation Table

Notice, however, that the emulation table for the server has two entries.

This is a side-effect of placing the server on top of an emulated router. Since every router

sends a Hello Message when it is ready to route, the router upon which the server is built

must be equipped to send the Hello to itself. We found it very convenient to be able to

alter the routing tables, thereby providing the same effect as altering the code within the

router itself. This provided an excellent example of the portability of the router code,

since it allows the demo station to easily relocate the server by merely sending the table

updates to a different host. 13

b) ARP Cache Entries

The server's ARP cache (Figure 42) contains two entries as well. One

entry is used to determine the MAC address of the interface on "Willow" that the server's

interface is directly connected to, while the other is used as a loopback entry.

Figure 42. The Server's ARP Cache

13 The routing code was improved after this writing to enable the ControlExecuti veto recognize when
an outbound packet is destined for a local interface and to forward such a packet directly to the
Transport Interface where it was then treated as an inbound packet and forwarded on the appropnate
destination port.

104

c) Flow Routing Table Entries

The server's flow routing table (see Figure 43) initially contains only the

entry that is used to provide the service level and next hop associated with flow zero.14

Figure 43. The Server's Flow Routing Table

3.. Willow's Router

The first emulated router is instantiated on "Willow" with IPv4 address

131.120.8.133. This router is given three interfaces with the IPv6 and MAC addresses

shown in Table 6. From Figure 41, it is evident that this router is directly attached to

every other node in the topology. This router serves as the server's default gateway and

provides a path between the server and the other two routers.

1Pv6 Address MAC

99.99 .99 .o.o.o.o.o.o.o.o.0.0.o.o.2 2

99 .99 .99 .1.0.0.o.o.o.o.o.o.o.o.o.1 3

99 .99 .99 .2.0.0.0.0.0.0.0.0.0.0.0. l 4

Table 6. The Interfaces of Willow's Router

14 Flow zero was mistakenly used in our design as the flow of all control traffic destined for the server. We
later discovered RFC 1809, which states, ''The zero Flow Label is reserved to say that no Flow Label is
being used."

105

a) Emulation Table Entries

The emulation table for this router is initialized by the demo station with

the three entries listed in Figure 44. Each of the entries represents a direct connection

from one of the local interfaces to an interface on the same subnet as the local interface.

Figure 44. The Emulation Table For Willow's Router

b) ARP Cache Entries

Figure 45 lists the ARP Cache Entries for Willow's router. The first entry

contains the next hop and MAC address of the interface it is connected to on Bonsai's

router. The second contains information for the interface on Peach's router. The final

entry contains the next hop and MAC address of the interface used by the server.

Figure 45. The ARP Cache For Willow's Router

c) Flow Routing Table Entries

Since Willow's router is directly connected to the server via subnet zero,

all control traffic in this autonomous region will pass through it. Figure 46 shows the

initial flow routing table entry for Willow's router.

106

~Currently displaying: FlowR outing Table i!!lliJ m

Figure 46. The Flow Routing Table For RouterOne ("Willow")

4. Peach's Router

The second router was placed on "Peach" whose IPv4 address is 131.120.8.140.

This router was also given three interfaces as shown in Table 7. From Figure 40, it is

evident that this router is directly attached to Willow's router and Bonsai's router. What

is not so evident in Figure 40 is that this router acts as a pass-through router for control

traffic from Bonsai's router. The flow routing table for router three r~veals this subtlety.

1Pv6Address MAC

99 .99 .99 .2.0.0.o.o.o.o.o.o.o.o.o.2 8

99 .99 .99 .3.0.0.0.0.0.0.0.0.0.0.0.2 9

99 .99 .99 .5.0.0.0.0.0.0.0.0.0.0.0.2 10

Table 7. The Interfaces On Peach's Router

a) Emulation Table Entries

The emulation table for this router is initialized by the demo station with

only two entries (Figure 47). This router is directly connected to "Bonsai" and "Willow."

107

Figure 47. The Emulation Table For Peach's Router

b) ARP Cache Entries

Figure 48 lists the ARP Cache Entries for Peach's router. This ARP cache

contains only two entries because this router is only directly connected to two interlaces.

The first entry is for the interface on Bonsai's router and the second is for the interface on

Willow's router.

Figure 48. The ARP Cache For Peach's Router

c) Flow Routing Table Entries

The initial flow routing table entry for Peach's router indicates that control

traffic initiated by, or sent through this router must pass through Willow's router on its

way to the server. Figure 49 shows the initial flow routing table entry for Peach's router.

Figure 49. The Flow Routing Table For Peach's Router

108

5. Bonsai's Router

The third and final router to be instantiated is placed on "Bonsai" with IPv4

address 131.120.8.143. This router is also given three interfaces as shown in Table 8.

Figure 40 shows, however, that only two of the interfaces on this router are used in our

testbed. The flow routing table for this router shows us that "Peach" is the next hop for

control traffic from Bonsai's router.

1Pv6Address MAC

99 .99 .99 .1.0.0.o.o.o.o.o.o.o.o.o.2 5

99 .99 .99 .3.0.0.0.0.0.0.0.0.0.0.0. l 6

99 .99 .99 .4.0.0.0.0.0.0.0.0.0.0.0. l 7

Table 8. The Interfaces On Bonsai's Router

a) Emulation Table Entries

Like the emulation table for Peach's router, the emulation table for

Bonsai's router is also initialized by the demo station with only two entries (Figure 50).

This router is directly connected to "Peach" and "Willow."

Figure 50. The Emulation Table For Bonsai's Router

b) ARP Cache Entries

The ARP Cache (Figure 51) for router three also contains only two entries:

One for the interface on Peach's router, and one for the interface on Willow's router.

109

Figure 51. The ARP Cache For Bonsai's Router

c) Flow Routing Table Entries

The initial flow routing table entry for Bonsai's router indicates that it uses

Peach's router to send control traffic to the server. This means that Peach's router must

route this traffic to Willow's router, where it will then be routed to the server. Figure 52

shows the initial flow routing table entry for Bonsai's router.

Figure 52. The Flow Routing Table For Bonsai's Router

B. SERVER PERFORMANCE

The performance of the server is considered in phases. The first phase is the

initialization phase. This phase is when the physical· architecture of the network is being

communicated to the server. Whenever routers and/or network segments are added to the

network, the server will need to rerun its algorithm for determining all of the possible

paths that are now in the network. When routers and/or network segments are removed

from the network, the server will simply tag all paths that traverse the removed part of the

network as unusable (i.e. no bandwidth, infinite delay and loss rate).

The second phase of server performance is the enhancement of the server's

understanding of the network conditions through the use of Link State Advertisements

110

from the routers. The process of receiving an LSA involves updating service level pipe

information itself and then updating the effective QoS of those paths passing over that

service level pipe.

The third phase of server performance is the management of user flows. This

management of user flows consists of processing of flow requests and the termination of

flows. This assignment process includes a relatively quick search through the

predetermined paths for one that can meet the QoS requirements. This look-up process

combined with the sending of appropriate flow routing table updates and a flow response

are the essential functions that must occur. The termination process consists of the

removal of the appropriate flow routing table entries as well as the removal of the flow

from the PIB.

For this initial iteration, we focused primarily on exercising the activities of the

first phase. Four sets of start and finish times were recorded and displayed to gage1the

performance of the server during this phase. The sequence in which these times were

recorded are shown in Figure 53. After the processHello method processes the message, it

calls the findAllPossiblePaths method and the determineEffectiveQoSForPaths method.

After completing these methods, a flow request from the server to the router that sent the

hello message is made.

The second area that we focused on during this iteration was in the assignment of

user flows. The time required to respond to these user flow requests was significantly less

than that required to establish an initial flow from the server to the newly introduced

router described above. This significant difference may be due to the establishment of a

new TCP connection to the destination router. The underlying router does not need to

establish any new TCP connections to respond to the new user flow request - it simply

looks up the appropriate TCP connection from a hashtable.

These number should be viewed as a worst case scenerio due to the

developmental environment used. The use of Java when combined with need to emulate

an 1Pv6 router on top of general purpose workstations running Windows NT 4.0

obviously produces a slower system than we can expect from optimized equipment.

111

/

processHello processHello

,_

findAllPossiblePaths findA.llPossiblePaths

deterrnineEff ectiveQoSF or Path s determineEff ectiveQoSF or Paths

processFlowRequest prqcessFlowRequest

Figure 53. Server Peiformance Measurements

1. Database Structured PIB

Table 9 and Figure 54 show the performance of the server during the initialization

phase when the server is instantiated with a relational database structured PIB.

nodes
1
2
3
4

findAllPossiblePaths

Time(ms)
140
531
2047
6000

determineEffectiveQoSForPaths

Time(ms)
16

422
2531
4594

processFlowRequest

Time(ms)
141
422
453
703

processHello

Time(ms)
282
235
329
203

Table 9. Peiformance of the Database Structured PIB During Initialization

112

7000

6000

5000

-s 4000 -Cl)

E 3000
~

2000

1000

0
1

Database Structured PIB

2 3

#ofnodes

4

-+-findAllPossiblePaths

-determineEffectiveQ
oSForPci.ths

~ receiveFlowRequest

--*-- receiveHello

Figure 54. Performance of the Database Structured PIB During Initialization

2. Class Object Structured PIB

Table 10 and Figure 55 shows the average performance of the server during

initialization of the test network when the server is instantiated to use a class object

structured PIB. These numbers are the average performance numbers over a four trial test.

nodes
1
2
3
4

findAllPossiblePaths

Time{ms)
46.75
195.25
691.25
1410

deterrnineEffectiveQoSForPaths

Time(ms)
7.75

66.75
105.5

300.75

processFlowRequest

Time(ms)
363.25
343.5
437.5

417.75

process Hello

Time(ms)
43
39

70.25
12

Table 10. Performance of the Class Object Structured PIB During Initialization

113

Class Object Structured PIB

1600....-------------

1400-----------_.-

1200 ------------/.'---

0 1000

i- 800 ---------~--
E
~ 600--------..,,&.-----

400 t--.===~r.:::::::it:=~~
200+----~------~-~

oL-~~~~~~'--"
2 3 4

#ofnodes

--+-findAllPossiblePaths

--determineEffectiveQ
oSForPaths

__.__ receiveFlowRequest

"""'"*""- receiveHello

Figure 55. Peiformance of the Class Object Structured PIB During Initialization

Table 11 and Figure 56 shows the performance of the server during the user flow

management phase when it responds to a flow request from the willow host to the cherry

host. These number are the actual numbers obtained during the four trials; Notice that the

performance during the third trial is a significant outlier that can be safely accredited to

other activity on the host computer.

processFlowRequest

Test# Timelms\
1 78
2 78
3 203
4 78

Table 11. Peiformance of the Class Object Structure PIB With User Flows

114

Class Object Structure PIB

1 2 3

Test#

4

__.__ receiveFlowRequest
(Willow-Cherry)

~~-

Figure 56. Performance of the Class Object Structure PIB With User Flows

3. Performance Comparison

The perlormance of the server during this first phase varied greatly depending on

whether the PIB was instantiated to use a database or class objects. When instantiated to

use a PIB that uses a relational database, the server lagged significantly behind. This

signif~cant lag in perlormance was expected since most relational databases provide

persistence by storing and retrieving data to the physical hard drive. Accessing a hard

drive is a significantly more expensive operation than accessing a data structure that is

completely resident in random assess memory. As the complexity of the network

increasing, the significance of the perlormance differences can be expected to expand

greatly. The database structured PIB was developed primarily as a way to arrive at an

efficient model of the data that needs to be maintained within the PIB.

115

116

---------------------------------- --------- ----- -----

VIII. CONCLUSIONS

The study of the issues involved in providing network QoS, as well as the

development and implementation of the model, has led us to numerous conclusions. It has

also led to a large number of concepts for developing this model further. These lessons

learned and future works items are outlined below.

A. LESSONS LEARNED

Several important facts were learned throughout the conduct of this thesis. These

discoveries centered around the design of the server and router. Additional lessons were

learned relating to networking and Java issues. All of these are described below.

1. SERVER DESIGN

A number of key points came to light during the development and implementation

of the server model. The first was realizing that all server functions are driven by the

receipt of messages from routers. The second deals with the advantages of implementing

the PIB as a class object structure.

a) Server Functions are Driven by the Receipt of Messages

The receipt of different messages drives the entire operation of the server,

as currently defined. The operation of the server that results from the receipt of various

messages is summarized below.

(1) Hello Message.

• processing of the Hello message

• determining all the possible paths across the network

• determining the effective QoS that these paths are providing

117

• assigning of a flow back to the router that sent the hello

message

(2) ~A Message.

• processing of the LSA message

• determining the effective QoS of the paths passing over this

service level pipe

• checking to ensure that the flows assigned to these paths can

still be supported

(3) Flow Request Message.

• processing the Flow Request message

• sending of Flow Routing Table Entry messages to each router

in the path, if supportable

• sending of the Flow Response message

(4) Flow Termination Message.

• processing the Flow Termination message

• sending of Flow Routing Table Entry messages to each router

in the path to remove entry for this flow

b) Implementation of the PIB

Through the development of this thesis, we demonstrated that the method

used to implement the PIB can have an immense impact on the performance of the server

as a whole. For example, implementing the PIB as a relational database resulted in an

increase in the duration of time to find all the possible paths to approximately n *x

milliseconds where n is the number of nodes in the PIB and x is the number of

milliseconds required to do the same operation using a class object structure.

118

2. ROUTER DESIGN

a) Object-Oriented Design

The first major design issue that was brought to light concerning the router

involved protocol encapsulation. It quickly became apparent that, in order to perform

flow-based routing on the networks that were available to us at the time of this printing,

we would need several layers of encapsulation. Java's object-oriented design proved

invaluable in assisting us with the rapid development of the objects necessary to emulate

a protocol stack.

By creating objects that could act autonomously, we were able to re-use

code and quickly and easily perform concept revisions that would be considered major in

other languages. Two examples of such revisions are: Switching the underlying transport·

protocol from UDP to TCP in one day; and, migrating the Graphical User Interface (GUI)

from a multitude of Java A WT frames populating the screen to one menu-driven,

dynamically updated Java Swing GUI in less than two days.

b) Replacement of Class Loaders

Installing a resident agent using Java involves passing a byte array that

represents a class file as a parameter into an object called a class loader. One minor

weakness in the Java language is that its primordial class loader (the class loader that is

built into the language) does not allow a class object with the same name as a previously

loaded class object to be loaded more than once.

This would have all but eliminated the possibility of replacing resident

agents, but for the trick we learned from Jason Hunter on page 55 of his Java Servlet

Programming book. This involves catching the Linkage Error that is thrown when the

class loader attempts to load a duplicate class and instantiating a new class loader to load

the replacement class. [15]

119

c) Primitive Conversions and Dynamically Extensible Arrays

Converting primitive data types to arrays and dynamically building and

parsing arrays quickly became a tedious task without the aid of an object that provided

this functionality. Java provided no obvious solutions to this dilemma, so we developed

two classes that proved invaluable in assisting us in the multitude of array manipulation

and primitive data-type conversions that were necessary throughout this project. The first

was the Array class. The Array class has several versions of three static methods:

concat, getSubArray, and replaceElementAt.

The concat method allows for the combining of two arrays or of one

primitive data type with an array of the same type. This method is called by the

PacketFactory, for example, to build the byte array that constitutes a packet.

The getSubArray method provides a way to extract a sub array from an

array of primitive data types, while the replaceElementAt method returns an array

of primitive types with the primitive value to be added inserted into array at the position

designated in the method parameter. This method automatically expands array if the

current position is greater than the length of array

3. NETWORK ISSUES

The majority of this thesis dealt with network issues. Two of these issues were

particularly important. The first, the benefits of TCP over UDP, dealt with

implementation, while the second, introduction of delay, was learned while studying

networking models that provide QoS.

a) The Benefits of TCP over UDP

This first iteration of the SAAM architecture began with the plan to use

UDP as the transport level protocol. While this was in keeping with the use of UDP by

existing routing protocols, we suffered significant random packet loss on a reasonably

uncongested network. During the integration testing, we observed using tcpdump

120

numerous stub packets that appeared to correspond with our missing packets. At that

time, we chose to convert over to TCP in order to get reliable packet transfers. This

conversion was successfully accomplished and no further packet loss was observed.

b) Introduction of Delay

Developing the understanding that delay in a network is introduced in the

outbound queues of routers and hosts was a significant step. By understanding this, the

modeling of the data that needed to be transmitted to the server was significantly easier

and cleaner.

B. FUTURE WORK

This thesis is the initial development effort to provide a working model of the

proposed SAAM architecture. As such, only the software architecture and core

functionality was developed within the time constraints. There are numerous other·

functions that can now be implemented that will benefit from this general SAAM

architecture. In the sections that follow, these other functions are outlined in order to

outline the possibilities and to motivate future development.

1. FAULT MANAGEMENT

Fault management opportunities present themselves in three areas: network fault

detection, network fault response, and server fault tolerance. Each of these areas is

described below.

a) Network Fault Detection

The question of how the server will become aware of a network fault is not

fully developed. Each router monitors its directly connected segments for performance

and therefore for faults. They communicate their observations to the server via LSA

messages. This system is sufficient if it were not for the complexities of our networks. In

a shared media environment, such as Ethernet, routers do not currently identify the failure

121

of another router on the same network. This added functionality would result in the

addition of certain data structures at the router and in the modification of the LSA

message. The processing of the LSA messages at the server would also need to be

modified slightly.

At the server, detection of a network fault could also be accomplished by

simply routinely checking to see when the last LSA was sent from each known router.

When a router's status update is late, the server could resort to sending a specific LSA

request to that router.

b) Network Fault Response

Once network faults or performance degradations are identified, the server

must take the steps needed to modify the flows that traverse the affected segments of the

network. This response might be as simple as finding another path from the original

source to the final destination of the flow. Another solution would be to identify the edges

of the network that surround the fault for the affected flows and then find an alternate

route around the affected faulty area. This second solution would result in fewer network

messages and a possibly faster resolution for the affected flows, at the price of additional

processing at the server.

c) Server Fault Tolerance

The failure of a region's SAAM server would end its ability to guarantee

any new flows of a particular QoS level. Furthermore, it would also result in existing

flows from ever being deleted from the flow routing tables of routers in the region. There

are a number of possible solutions to prevent this. First, a redundant server could be

implemented on a different host or router. This secondary server would receive PIB

updates as the primary server receives them. Since they receive identical input, these

servers would produce the same results. The failure of the primary would result in the

immediate assumption of primary server functionality by the secondary. Another solution

would be to add the software needed for the routers of the region to elect a new router to

host a new server and for each router to send their current state.

122

2. NETWORK CHANGE MANAGEMENT

The subject of managing the response to changes in the network came to the

forefront at numerous times during the development of the SAAM model. The first issue

in this area occurs at the server. This issue is: as new hello messages arrive, how much

time should pass before the PIB is rebuild? The second issue is in this area occurs at the

router. This issue is: how much change must occur before an LSA is tranmitted to the

server.

a) Frequency Of Physical Network Changes

At network initialization and at times of reconfiguration of the existing

physical network, the frequency of how often to rebuild the PIB must be addressed. In a

controlled environment, one can send all of the hello messages at once and then have the

server take the time to find all of the possible paths across the network in its entirety. In a

real network, however, new hello messages could be sent at different frequencies and

could be intermixed with flow requests. Should the PIB be rebuilt immediately after

receiving a new hello message? Or, should there be some form of dampening of the

frequency of these rebuilds can consider a possibly larger number of physical network

changes before going through the relatively lengthy process for searching this new

network for different paths?

b) Frequency Of LSA Transmissions

The question of how often an LSA message should be sent from a router to

the server is still not clearly defined. An LSA message would need to be sent at a certain

frequency even if there is no change in its previously reported status. This will simply

require the picking of an wise frequency. A more complicated question is how much

change from the previously reported status is significant enough to trigger the sending of

anewLSA.

123

3. SERVER HEIRARCHY MANAGEMENT

The management of the server heirarchy consists of giving each server the ability

to act like a router. This ability to act like a router entails summarizing the topology and

network performance of its region. This process is a scaled up version of what a basic

router does to access the possible paths across its internal switching matrix. Furthermore,

acting like a router also encompasses the management of those data structures that a

router maintains, such as a flow routing table. Both of these issues that are involved in

acting as a router are described below.

a) Regi.onal Summarization

As the hierarchy of the SAAM architecture is extended up beyond a single

region, the region's SAAM server must summarize the status of the region. This

summarization results in the next higher level server simply viewing the region as a

router whose status is presented by the hello and LSA messages sent by the region's

SAAM server. This summarization process still needs to be developed. The development

of the hello message would involve the server identifying its border routers. The

development of LSA messages would requfre the determination of the average QoS

experienced by packet that traverses its region. This determination of QoS characteristics

might simply consist of determining the average of the QoS characteristics that has been

calculated for different paths that connect the border routers.

b) Server Flow Routing Tables

For a server to act as a router; it must also maintain a flow routing table.

This flow routing table would consist of entries for flows crossing to neighboring regions.

If the source application requesting a flow across regions were resident on a router or host

within its region, the higher level server would need to receive a flow request from the

lower level server acting as a router. This lower level router would need to substitute

itself as the source of the flow request. Once it receive the flow response back from the

higher level, the server would be responsible for choosing the best path from the original

124

source router to the border router that is assigned as the source interlace by the higher

level server.

4. FLOW MANAGEMENT

There are many complexities involved in the management of flows. Two of the

more interesting ones include determining with a flow is terminated and responding to

varying need for bandwidth. These two issues are describe in more detail below.15

a) Flow Termination

There is currently no methodology developed for the termination of a flow.

The simple solution would involve the use of known duration flows. The duration of the

flow would be stated during the flow request. The server would then need to remove the

flow routing table entries at the end of reservation period.

A slightly more complex and dynamic solution would be to depend on the

QoS application to notify the server of the termination of a flow. The dependency

introduced by this solution would require active management to ensure that flows are not

terminated without notification. A commonly occurring system lock-up could easily

produce an unterminated flow. If the source machine might not have retained its state

before its lock up, it would have no knowledge of previously assigned flows and would

never send flow termination messages.

b) Flow Expected Bandwidth Utilization

The current assumption that has been used in the development of this

model so far has been that the flows are constant bandwidth flows. This assumption may

not always be true. Accommodations for variability in bandwidth consumption would

provide more flexibility to the system.

15 These issues may not be critical because the SAAM server makes admission critical decisions based on
observed network performance.

125

5. SECURITY MANAGEMENT

As stated in the overview chapter, the issue of ensuring security has yet to be

integrated into this development effort. Areas were security is required include

authenticating the identity of the senders of network status updates, as well as the sender

of flow routing table entries. The integrity of the messages sent between the routers and

servers will also need to be protected. There are numerous possible solutions to these

issues. Some of the solutions are even being made available by Sun in their continuing

development of Java.

6. RESIDENT AGENT MANAGEMENT

While the deployment of resident agents occurred during this development effort,

there are a number of ways that we would encourage others to expand on their use in the

architecture. These ways include deploying resident agents from the server, creating new

resident agents to add functionality to the router, and to extend the resident agent concept

to mobile agents.

a) Server Deployment of Resident Agents

The SAAM architecture is designed to allow the dynamic updating of

router software from the server through the use of the resident agent concept. While the

router is currently composed of objects that are implemented as resident agents, the send

and receiving of these resident agents still needs to be developed further. Specifically, the

server will need to implement the interfaces to allow the loading and sending of these

resident agents out to the routers.

b) Creanng New Resident Agents.

Many new resident agents could be created to operate within this

architecture. For example, a group of Scheduler classes could be developed that would

assist the server in managing network traffic.

126

c) Mobile Agents

Since agents can be instantiated temporarily on a router, and then

transported between hosts on a network, it makes sense that resident agents could be

developed into mobile agents that forward themselves from router to router. A server

mobile monitor agent, for example, could be deployed from the server that visits each hop

assigned to a given flow, and monitors the link state of that hop. It could then either

forward the data to the server, or collects it by forwarding itself to the next hop and then

passing its state in the form of a message to that agent. Minor modifications of the

PacketFactory and ControlExecuti ve classes would be necessary to allow this

type of transfer.

7. POLICY MANAGEMENT

The Control Executive receives all resident agents destined for any of the

interfaces the Control Executive instantiates. Before instantiating these agents, the

Control Executive could be programmed to perform various policy adherence checks

such as disallowing agents whose package name is saam. control for example. A

check such as this would prevent agents from accessing the Channel class directly and

circumventing the Channel registration process.

8. IMPROVEMENTS TO EXISTING CODE

As the implementation of the model progressed and our understanding of the

issues involved matured, we observed that we could have implemented some methods in

a better or more complete way. In this section, we describe these areas where we would

encourage improvements to our existing code.

a) Search For Paths without Considering Service Levels

The Server's findAllPossiblePaths () currently develops a list of

parents for each router at each service level. These lists of parents are identical for each

127

service level for the same router. A significant amount of time could be saved during this

building process if it was reworked to find all possible paths at one service level and then

duplicate these paths as new paths at the other service levels without repeating the same

search process.

b) Find an Algorithm to Reduce the Path Search Process

When one node or a new interface is added to a network, there may be

some sort of algorithm capable of limiting the scope the search that needs to be

conducted. This would be particularly advantageous when the network is already sizeable.

c) Develop a Graphical User Interface for the Server

The server is the perfect place to gain a full understanding of the current

conditions of the network. An improved GUI for the server could take advantage of the

fact. The functions that could be made available to the SAAM system administrator

includes the following:

• Configure
• Hmax, The Maximum Number of Hop in the Paths Described in the

PIB
• Service Level Configuration for the Region

• Operate
• Rebuild the Server's Path Information Base
• Request a Link State Advertisement from a Router

• Display
• All Routers in the Region
• All Links in the Region

I

• All Flows in the Region !.

• Flows Through a Particular Router
• Percentage of Bandwidth Assigned on an Interface or Service

Level Pipe
• Number of Flows Originating or Terminating at a Particular Router
• Where the Maximum Delay or Loss is Occurring in the Network
• The Last Link State Advertisement from a Router
• All Routers Connected to a Particular Link

128

d) Passing Messages vice Events on Channels

Channels are currently written to accept only event objects as parameters.

Since event objects are designed to convey infonnation from one object to another, it

makes sense to craft the Message class in such a way that it can be passed between

objects as well. By passing messages instead of event objects, we could merge most of

the classes within the event package with those in the message package.

e) Empowering the Control Executive

Through the use of the reflection API, that is, the classes in the package

java.lang.reflect, the Control Executive could be empowered to "reflect" into the

bytecode of resident agents and determine many things about them.

f) Naming and Numbering Channels

Some convention should be adopted for naming and numbering Channels.

In our design, the Channels numbered 0-[max port number] were designated as the

Channels used to emulate ports; and the numbers above max port number were

designated as the Channels used for other purposes.

To name our Channels, we would typically use the following format:

FROM_ <object> _TO_ <object> _CHANNEL for objects in which only

one Channel was required for all instances; and

FROM_ <object> _TO_ <object> _START_CHANNEL for objects in which

several Channels were required between instances. This format was always accompanied

by an accessor method which, when supplied with an integer representing the instance

number of the latter object, would return the Channel associated with that instance. The

accessor methods were in the following format:

getFrom<object>To<object>StartChannel(int instanceNumber)

129

130

APPENDIX A. SAAM PACKAGE SOURCE CODE

131

package saarn;

import saam.net.*;
import saarn.util.Array;

/**
* An ErnulationPacket object contains a header
* and a payload. The header contains an eight-byte time stamp
* and a one-byte numberOfUpdates field. The payload should consist
* of a series of entries as follows:<p>
* A one-byte type field identifying a Message
* Followed by a series of bytes representing the entry of
* the type identified.
*/

public class ErnulationPacket

/**
* This variable defines the number of bytes in the
* numberOfUpdates field
*/

//the numberOfUpdates field is defined in this class.
public static final int numberOfUpdatesLength = l;

/**
* The header field for this ErnulationPacket.
*/

private byte numberOfUpdates = l;

/**
* The payload field for this ErnulationPacket.
*/

private byte[] payload;

/**
* The byte array representation of this packet.
*/

private byte[] packet;

/**
,* Constructs an EmulationPacket given appropriately
* defined header (numberOfUpdates) and payload fields.
* @pararn numberOfUpdates The number of updates that are
* included in this packet.
* @pararn payload The payload of this packet.
*/

ErnulationPacket(byte numberOfUpdates, byte[] payload)
this.numberOfUpdates = numberOfUpdates;
this.payload =payload;

}

//populate the packet array
packet Array.concat(packet, numberOfUpdates);
packet= Array.concat(packet, payload);

/**
* Constructs an EmulationPacket from a byte array.
*I

ErnulationPacket(byte[] packet){
this.packet=packet;
this.numberOfUpdates = packet[O];

132

}

payload = Array.getSubArray(packet,nurnberOfUpdatesLength,
packet.length);

!**
* Returns the nurnberOfUpdates in the EmulationPacket header.
* @return The nurnberOfUpdates in the EmulationPacket header.
*!

public byte getNurnberOfUpdates(){
return nurnberOfUpdates;

}

/**
* Returns the payload as a byte array.
* @return The payload as a byte array.
*/

public byte[] getPayload(){
return payload;

/**
* Returns the EmulationPacket as a byte array.
* @return The EmulationPacket as a byte array.
*I

public byte[] getPacket(){
return packet;

133

package saam;

import java.util.Hashtable;
import java.util.Vector;
import java.util.Enumeration;
import java.net.InetAddress;
import java.net.UnknownHostException;
import saam.net.IPv6Address;
import saam.message.*;

import saam.util.TableGui;

/**
* The emulation table stores the IPv4 addresses
* associated with a given IPv6 addresses. This enables the
* <code>Translator<fcode> to pass emulated SAAM traffic
* over an existing IPv4 network.<p>
*I

public class EmulationTable extends Hashtable{

private TableGui gui;
private Vector index=new Vector();
private Vector names= new Vector();
/**

* The constructor creates an emulationTable with initial
* capacity of capacity. Initial capacity should be a
* prime number to help distribute the entries evenly
* among the hash buckets.
*/

public EmulationTable(int capacity){
super(capacity, O.Sf);
names.add("IPv6 Address");
names.add("IPv4 Address");
int[] columnWidths = {260,120};
gui =new TableGui(toString(), names, columnWidths);

}

/**
* Creates a new entry in the emulation table.
* @param entry The EmulationTableEntry to be added to the

EmulationTable.
*/

public void add(EmulationTableEntry entry){
IPv6Address v6Addr = entry.getIPv6Address();
String v6 = v6Addr.toString();
String v4 = entry.getIPv4Address() .getHostAddress();
put (v6, entry) ;
gui.fillTable(getTable());

/**
* Removes an entry from the emulation table.

* @param entry The EmulationTableEntry to be removed from the
EmulationTable.

*I
public void remove(EmulationTableEntry entry){

String v6 = entry.getIPv6Address() .toString();
remove (v6);

gui.fillTable(getTable());
}

134

/**

!**
* Retrieves an EmulationTableEntry from the emulation table.
* @param v6 The IPv6 address to be used as the lookup key.
* @return The EmulationTableEntry associated with v6.
*/

public EmulationTableEntry get(IPv6Address v6){
return (EmulationTableEntry) get(v6.toString());

* Returns the entire contents of this EmulationTable or null
* if this EmulationTable is empty.
* @return An array of all emulation table entries currently
* in the emulation table.
*/

public Vector getTable(){
if(isEmpty()) return null;
Vector table= new Vector(size());
for(Enumeration e =elements();

e.hasMoreElements();){
Vector oneRow =new Vector();
EmulationTableEntry entry= (EmulationTableEntry)e.nextElement();
oneRow.add(entry.getIPv6Address() .toString());
oneRow.add(entry.getIPv4Address() .getHostAddress());
table.add(oneRow);

} I !for
return table;

}//getEmulationTable()

!**
* Returns the String representation of this Object.
* @return The String representation of this Object.
*/

public String toString() {
return "Emulation Table";

} I /toString ()

135

package saam;

import java.net.ServerSocket;
import java.net.SocketException;
import java.net.Socket;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.TooManyListenersException;
import java.util.Vector;
import java.util.Hashtable;
import java.io.IOExcept1on;
import java.io.OutputStream;
import java.io.InputStream;

import saam.message.*;
import saam.router.*;
import saam.util.SAAMRouterGui;
import saam.util.Array;
import saam.residentagent.ResidentAgent;
import saam.message.MessageProcessor;
import saam.event.*;
import saam.net.*;
import saam.control.*;

/**
* The translator is not a part of the SAAM
* architecture. Rather, it is an aide to demonstrate the
* architecture's proof of concept. The purpose of the
* translator is to perform the conversions needed
* for the SAAM Router to operate in an IPv4 environment.
* The translator has an Emulation Table which
* contains the necessary conversion information. This EmulationTable

is
* updated when an EmulationTableEntry Message arrives. Since the

Translator
* is a MessageProcessor, it is allowed to register with the

ControlExecutive to
* receive saam.message.EmulationTableEntry messages.<p>
* When instantiated, the translator first stands up a

ControlExecutive
* and then listens on port 9001 for emulation traffic from the

DemoStation.
* When emulation packets are received on port 9001, they are forwarded

on the
* PacketFactory Channel for processing.
* <p>Additionally, the Translator registers to listen on the

ROUTER_STATUS_CHANNEL .
* which is used by the ControlExecutive to notify the Translator that

all
* elements necessary to stand up a router have been received. Once the

Translator
* receives this notification from the ControlExecutive, the Translator

stands up a
* PortListener on the SAAM port (9002). When packets are received on

the SAAM port,
* they are forwarded to the NetworkinterfaceCard objects on the
* FROM_TRANSLATOR_TO_NICS_CHANNEL.
* @see saam.control.PacketFactory#receiveEvent(SaamEvent se)
* @see saam.control.ControlExecutive#updateRouterStatus()
*/

136

public class Translator extends Thread implements
MessageProcessor, SaamTalker, SaamListener{

//the types of messages to be processed by the Translator
private static final String[] messageTypes

{"saam.message.EmulationTableEntry"};

private ControlExecutive controlExec;

private Hashtable openConnections =new Hashtable();
private PortListener saamPortListener;
private PortListener emulationPortListener;
private EmulationTable emulationTable;
private ServerSocket emulationSocket,saamSocket,outboundSocket;
private SAAMRouterGui gui;
private boolean routerStarted = false;
private int saamPort, emulationPort;
private int maxSAAMPacketSize, maxEmulationPacketSize;
private int actualPacketSize;
private int outboundPacketCount = O;

/**
* Since the Translator is the main class file, we include
* a main method to enable command-line instantiation.
*I

public static void main(String args[]){
try{

Translator t =new Translator(9002,9001);
}catch(IOException ioe){

System.out.println(ioe.toString());
}//try-catch

}//main

/**
* Constructs a new <code>Translator</code> listening on the
* saamPort and emulationPort provided for packets
* no larger than the maxSAAMPacketSize provided.<p>
* Here, the Translator instantiates a ControlExecutive, and then
* registers with that ControlExecutive to talk on the channel that
* passes traffic from the Translator to the NetworkinterfaceCard
* objects. The Translator then registers with the ControlExecutive
* to listen on the Channel that passes traffic in the opposite
* direction; and, on the ROUTER_STATUS_CHANNEL which is used by the
* ControlExecutive to notify the Translator that all elements
* necessary to stand up a router have been received.
* @see saam.control.ControlExecutive#updateRouterStatus()
* @param saamPort The saamPort which this translator will
* listen on.
* @param maxSAAMPacketSize The maximum size of an incoming SAAM packet.
* @param emulationPort The emulationPort which this translator
* will listen on.
* @param maxEmulationPacketSize The maximum size of an incoming
* emulation packet.
*/
public Translator(int emulationPort, int saamPort)

throws IOException{
gui =new SAAMRouterGui(toString());
try{

gui. setTextField ("My IP: "+
InetAddress.getLocalHost() .getHostAddress());

137

}catch(UnknownHostException uhe){}
controlExec =

new ControlExecutive();

//***/
//Enable talking
//***/
int channel = ProtocolStackEvent.FROM_TRANSLATOR_TO_NICS_CHANNEL;
try{

controlExec.addTalkerToChannel(this,
channel);

}catch(ChannelException ce){
}

//**************************~****************************/

//Enable listening
//***/
channel = ProtocolStackEvent.FROM_NICS_TO_TRANSLATOR_CHANNEL;

try{
controlExec.addListenerToChannel(this, channel);

}catch(ChannelException ce){
}//try-catch

channel = controlExec.ROUTER_STATUS_CHANNEL;
try{

controlExec.addListenerToChannel(this, channel);
}catch(ChannelException ce){
}//try-catch

//the emulationTable for this Translator is stood up next
emulationTable =new EmulationTable(1711);

this.saamPort = saamPort;
this.maxSAAMPacketSize = maxSAAMPacketSize;

this.emulationPort = emulationPort;
this.maxEmulationPacketSize = maxEmulationPacketSize;

//the channel on which the emulationPortListener will communicate
channel = ProtocolStackEvent.PACKETFACTORY_CHANNEL;

//the ServerSocket the emulationPortListener will listen to
emulationSocket =new ServerSocket(emulationPort);
emulationPortListener =new PortListener(emulationSocket,channel);
controlExec.registerMessageProcessor(this);
start();

} I /Translator ()
public void run(){
}

/**
* Returns the array of Strings representing the class
* names of the messages this Object will register to process.
* @return The array of Strings representing the class names
* of the messages this Object will register to process.
*/

public String[] getMessageTypes() {
return messageTypes;

}

138

/**
* This method contains the logic needed by the Translator
* to process EmulationTableEntry objects. These table
* entries can be additions to the EmulationTable or deletions
* from it (determined by the length of the EmulationTableEntry) .
*I

public synchronized void processMessage(Message message){
//get the class name of the Message to be sure it's of the type
//the Translator registered for.
String name= message.getClass() .getName();
gui.sendText(11 Got a Message:\n 11 +name);
if(name.equals(messageTypes[O])){

/**

//flowZeroNextHop is the String representation of the IPv6Address
//of the next hop associated with flow zero. We use it here to
//notify the ControlExecutive when the EmulationTableEntry
//containing
//this address arrives.
String f lowZeroNextHop =

controlExec.getFlowZeroNextHop() .toString();
EmulationTableEntry entry = (EmulationTableEntry)message;
if(message.length()==IPv6Address.length+IPv4Address.length){

//add this record
emulationTable.add((EmulationTableEntry)message);

}else {

}

//remove this record
emulationTable.remove((EmulationTableEntry)message);

if(!controlExec.getEmulationTableStatus() &&
!flowZeroNextHop.equals(IPv6Address.DEFAULT_HOST)){

if(emulationTable.containsKey(flowZeroNextHop)){
controlExec.updateCoreServiceStatus(this, true);

}else{
controlExec.updateCoreServiceStatus(this, false);

}

* Receives and processes the SaamEvent notification
* generated by the packet talker to whom this Translator is
* listening.
* @param pe The SaamEvent to be processed.
*I

public synchronized void receiveEvent(SaamEvent se){
int channel= se.getChannel_ID();
if(channel == ControlExecutive.ROUTER_STATUS_CHANNEL){

if (((RouterStatusEvent) se) .getStatus ()==true){.
try{

gui. sendText (11 Standing up SaamPort: 11 +saamPort) ;

//the DatagramSocket the saamPortListener will listen to
saamSocket =new ServerSocket(saamPort);

//the channel on which the saamPortListener will conununicate
int channelToNics =

ProtocolStackEvent.FROM_TRANSLATOR_TO_NICS_CHANNEL;

saamPortListener =
new PortListener(saamSocket, channelToNics);
}catch(IOException ioe){

139

gui.sendText(ioe.toString());
}

}else{
I /future work ...
II shutDownSaamPort();

}
}else{

ProtocolStackEvent pse = (ProtocolStackEvent)se;
if(channel ==

ProtocolStackEvent.FROM_NICS_TO_TRANSLATOR_CHANNEL){
gui.sendText("Got an outbound packet ... ");
byte[] packet= pse.getPacket();

/*

//outbound packet
outboundPacketCount++;

IPv6Address nextHop = null;
try{

nextHop =new IPv6Address(
Array.getSubArray(packet,0,IPv6Address.length));

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString{));

}
gui.sendText(" Next hop:"+ nextHop.toString());

II print more debugging information
IPv6Packet v6Packet = null;
try{

v6Packet = new IPv6Packet{Array.getSubArray(packet,
IPv6Address.length+l, packet.length));

}catch(UnknownHostException uhe){
gui.sendText("Couldn't instantiate IPv6Packet");

}
gui . sendText (" Source: " +

v6Packet.getHeader() .getSource{) .toString());
gui.sendText{" Destin: " +

v6Packet.getHeader() .getDest{) .toString());
gui.sendText(" Payload length " +

v6Packet.getPayload() .length +
"; Flow label = " +

v6Packet.getHeader{).getFlowLabel());
*I

InetAddress nextPhysicalHop = null;
try{

nextPhysicalHop =
((EmulationTableEntry)emulationTable.get{nextHop)).

getIPv4Address();
}catch(NullPointerException exc){

gui.sendText{exc.toString());
}
packet = Array.getSubArray(packet,IPv6Address.length,

packet. length) ;
gui.sendText("Sending outbound packet to: "+
nextPhysicalHop.getHostAddress());
gui.sendText("DestPort: "+saamPort);
try{

Socket sock =

(Socket)openConnections.get(nextPhysicalHop.getHostAddress{));
OutputStream out= sock.getOutputStream();
out.write{packet);
out. flush();

140

out.close();
}catch(NullPointerException npe){

//put the Socket into the Hashtable for outbound
//packets destined for this socket.
try{

Socket sock= new Socket(nextPhysicalHop,saamPort);
openConnections.put(

nextPhysicalHop.getHostAddress(), sock);
OutputStream out= sock.getOutputStream();
out.write(packet);
out. flush() ;
out.close();

}catch(IOException ioe){
gui.sendText(ioe.toString());

}
}catch(IOException ioe){

gui.sendText(ioe.toString());
}

}//if
}//else

}//receiveEvent

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*/

public String toString(){
return "Translator";

/**
* A threaded inner class used by the <code>Translator</code> to
* receive and forward <code>DatagramPackets</code>.
*I

class PortListener implements SaamTalker,Runnable{

private ServerSocket serverSocket;
private int channel;

private String name;
private Socket sock;

/**
* Constructs a new <code>PortListener</code> and a

<code>Thread</code>
* for the listener; and then starts the <code>Thread</code>.

* @param socket The <code>DatagramSocket</code> the PortListener
* will receive packets on.
* @param maxPacketSize The maximum size an inbound packet can

have.
* @param channel The channel on which the inbound packet will be
* communicated.

*/
PortListener(ServerSocket serverSocket, int channel) {

//***************
//Enable talking
//***************/
try{

controlExec.addTalkerToChannel(this,channel);
}catch(ChannelException ce){

gui.sendText(ce.toString());

141

the

name

/**

this.serverSocket=serverSocket;
this.channel=channel;

"portListener("+channel+")";
Thread listenerThread =new Thread(this, name);
listenerThread.start();

* On a separate thread, this method listens for packets.
* When a packet is received, its exact size is determined, then

* listeners are notified of the packets arrival.
*I

public void run(){
long packetCounter = O;

gui.sendText(toString()+": now listening on port: "+
serverSocket.getLocalPort());

II wait for packet
while (true) {

try {
sock serverSocket.accept();
sock.setReceiveBufferSize(65508);

} catch (SocketException se){
gui.sendText(se.toString());

catch (IOException e) {
gui.sendText(e.toString());

}
//here we declare an annonymous inner class that
//listens to the socket on a separate thread.
(new Runnable() {

byte[] buf =new byte[65508];
int c;
int i=O;
public void run(){

I /while (true) {
InputStream is = null;
try{

is= sock.getinputStream();
InetAddress source= sock.getinetAddress();
int j = O;
while ((c=is.read()) > -1) {

//if (c>O)

}

if (i < buf.length)
buf[i++] = (byte)c;

else
i = O;

byte[] packet= Array.getSubArray(buf,0,i);
gui.sendText(">>> Got an inbound packet");
gui.sendText(" Total length = " +

packet. length);
I*

II print more debugging information
IPv6Packet v6Packet = null;
try{

v6Packet = new
IPv6Packet(Array.getSubArray(packet,l,packet.length));

}catch(UnknownHostException uhe){

142

gui.sendText("Couldn't instantiate IPv6Packet");

gui . sendText (" Source: " +
v6Packet.getHeader() .getSource() .toString());

gui.sendText(" Destin: " +
v6Packet.getHeader() .getDest() .toString());

gui.sendText(" Payload length " +
v6Packet.getPayload() .length +

"; Flow label= • +
v6Packet.getHeader() .getFlowLabel());

*/

//now forward the packet on the appropriate
Channel.

forwardPacket(source,packet);
}catch(IOException ioe){

gui.sendText(ioe.toString());
}//try-catch

//}I /while (true)
}//run()

}).run();
} //while ()

}//run()

private synchronized void forwardPacket(InetAddress source,byte[]
packet){

ProtocolStackEvent event =new ProtocolStackEvent(
source.getHostAddress(),
this,
channel,
packet);
try{

gui.sendText("Sending Notification on Channel "+channel);
controlExec.talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*I

public String toString(){
return "Translator$"+name;

}

}//PortListener
}//Translator

143

144

APPENDIXB.CONTROLPACKAGESOURCECODE

145

package saam.control;

import java.util.Vector;
import java.util.TooManyListenersException;
import java.util.Enumeration;

import saam.event.*;

/**
* A Channel is a means for one or more objects within the router
* to communicate with one or more other objects within the router.
* The ControlExecutive controls access to Channels. Objects register
* as talkers or listeners on channels via the ControlExecutive.<p>
* By registering to communicate on a Channel, Objects are able to
* set up communications with other Objects that may or may not be
* instantiated or to Objects that may not yet exist.
*I

class Channel
//extends Thread
{

/**
* The time this Channel was instantiated
*I

private long timeActivated;

/**
* The time this Channel was last used
*/

private long timeLastUsed;

/**
* The integer identifying this Channel
*/

private int channel_ID;

/**
* The Vector of objects registered to talk on this Channel
*/

private Vector talkers= new Vector();

/**
* The Vector of objects registered to listen on this Channel
*/

private Vector listeners= new Vector();

/**
* boolean value used to determine the running status of the
* Thread.
*/

private boolean running=false;
private boolean firstEvent = true;

/**
* The event that will be spoken on this Channel.
*I

II private SaamEvent event;

/**
* A simple counter for the events communicated on this Channel
*/

146

private int eventsSpoken;

/**
* The owner of the current Thread.
*I

private Thread owner;
/**

* This simple run method waits until a talker speaks an
* event on this Channel. Once an event is spoken, the
* notifyListeners method is called.
*/

/* public void run(){

*/

while(tr~e){ ·
try{

if (! running) {
synchronized(this){

while(!running) wait();
running=true;

}//synchronized
}

}catch(InterruptedException ie){
//do something with this
System.out.println("Channel **INTERRUPTED!** "+ie.toString());

}//try-catch
notifyListeners();

}//while(running)
}//run()

/**
* This method is not accessible to Objects outside the saam.control
* package. It is called by the ControlExecutive when an Object that
* is registered to talk on this Channel attempts to do so.
* @param event The event that will be passed to the listeners
* on this Channel.
*/

synchronized void talk(SaamEvent event){

Vector copy = null;
//synchronized(listeners){

copy= (Vector)listeners.clone();
//}
eventsSpoken++;
Enumeration e =copy.elements();
while(e.hasMoreElements()) {

SaamListener listener= (SaamListener)e.nextElement();
II print debugging information
I I System. out. println ("Notifying: "+listener) ;
II System.out.println("Event: "+event);
listener.receiveEvent(event);

}//while

//////////////////////////////l//l/////////I///////
/* if(this.event==null){

this.event=event;
}else{

synchronized(this.event){
this.event = event;

}
}
I /see run ()
if (! firstEvent) {

147

if(!running){
running=true;
notify();

}else{
notifyListeners();

}
}else{

firstEvent=false;
running=true;
start();

event=null;
*I

}//talk()

/**
* This method iterates through the Vector of registered listeners
* and calls the receiveEvent method on each.
*/

/* private void notifyListeners{){
//at this point, we know that the correct PacketTalker thread
II is running
//clone the Vector
Vector copy = null;
//synchronized(listeners){

copy= (Vector)listeners.clone();
//}
eventsSpoken++;
Enumeration e = copy.elements();
while(e.hasMoreElements()) {

SaarnListener listener= (SaarnListener)e.nextElement();
listener.receiveEvent(event);

}//while
running=false;

}//notifyListeners()
*I

/**
* Not accessible to Objects outside the saarn.control package.
* Constructs a Channel with one talker and no listeners.
* @pararn channel_ID The integer identifying this Channel
* @pararn talker The talker that has registered with the

ControlExecutive.
*/

Channel(int channel_ID, SaarnTalker talker){
this.channel_ID = channel_ID;
timeActivated = System.currentTimeMillis();
timeLastUsed = timeActivated;
talkers.add(talker);

II start();
}//Channel()

/**
* Not accessible to Objects outside the saarn.control package.
* Constructs a Channel with one listener and no talkers.
* @pararn channel_ID The integer identifying this Channel
* @pararn listener The listener that has registered with the
* ControlExecutive.
*/

Channel(int channel_ID, SaarnListener listener){
this.channel_ID = channel_ID;
timeActivated = System.currentTimeMillis();

148.

timeLastUsed = timeActivated;
listeners.add(listener);

II start();
} I /Channel()

Vector getChannel(){
Vector channel= new Vector();
int talkerCount=O;
int listenerCount=O;
try{

talkerCount =talkers.size();
}catch(NullPointerException npe){

talkerCount=O;
}
try{

listenerCount =listeners.size();
}catch(NullPointerException npe){

listenerCount=O;
}
int max
int min

(talkerCount>=listenerCount?talkerCount:listenerCount);
(talkerCount<listenerCount?talkerCount:listenerCount);

for(int i=O;i<min;i++){
Vector oneRow =new Vector();
oneRow.add(""+channel_ID);
oneRow.add((SaamTalker)talkers.get(i));
oneRow.add((SaamListener)listeners.get(i));
channel.add(oneRow);

}//for
for(int i=min;i<max;i++){

Vector oneRow =new Vector();
oneRow. add (n II +channel_ID) ;
if(talkerCount==max){

oneRow.add((SaamTalker)talkers.get(i));
}else{

oneRow. add (n ••• II) ;

}
if(listenerCount==max){

oneRow.add((SaamListener)listeners.get(i));
}else{

oneRow.add(" ... ");
}
channel.add(oneRow);

return channel;

/**
* Returns a Vector representing the headers for the columns of a
* table this data might be placed in.
* @return The Vector representing the headers for the columns of a
* table this data might be placed in.
*/

public static Vector getColumnHeaders(){
Vector headers= new Vector();
headers . add (II Channel n) ;

headers . add ("Talkers ") ;
headers .add("Listeners");
return headers;

}

149

public int[] getColurnnWidths{){
int[] widths = {60,200,200};
return widths;

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*!

public String toString{){
return

11 Talkers: "+talkers. toString {) +
, Listeners: 11 +listeners.t0String()+

n I Idle time: II +getidleTime () + .
", Events spoken: "+eventsSpoken;

}//displayState{)

!**
* Not accessible to Objects outside the saam.control package.
* Adds a registered talker to this Channel's Vector of talkers.
* @param talker The registered talker to be added to the Vector.
*/

synchronized void addTalker(SaamTalker talker){
if(!talkers.contains(talker}){

if{talkers.isEmpty()){
timeActivated = System.currentTimeMillis();
timeLastUsed = timeActivated;

}

}
talkers.add(talker);

} I I addTalker ()

!**
* Not accessible to Objects outside the saam.control package.
* Adds a registered listener to this Channel's Vector of listeners.
* @param listener The registered listener to be added to the Vector.
*/

synchronized void addListener(SaainListener listener) {
if(!listeners.contains(listener)){

listeners.add(listener);
}

}//addListener()

!**
* Not accessible to Objects outside the saam.control package.
* Removes a registered talker from this Channel's Vector of talkers.
* @param talker The registered talker to be removed from the Vector.
*!

synchronized void removeTalker(SaamTalker talker){
talkers.remove(talker);

}//removeTalker()

!**
* Not accessible to Objects outside the saam.control package.
* Removes a registered listener from this Channel's Vector of

listeners.
* @param listener The registered listener to be removed from the

Vector.
*/

synchronized void removeListener(SaamListener listener){
listeners.remove{listener);

}//removeListener()

150

/**
* Checks to see if talker is· in the Vector of talkers for this

Channel.
* @param talker The SaamTalker to be used in the query
* @return True if the talker is in the Vector, false otherwise.
*/

synchronized boolean isRegistered(SaamTalker talker) {
return ·talkers.contains(talker);

/**
* Checks to see if listener is in the Vector of listeners for this

Channel.
* @param listener The SaamTalker to be used in the query
* @return True if the listener is in the Vector, false otherwise.
*/

synchronized boolean isRegistered(SaamListener listener){
return talkers.contains(listener);

}

/**
* Returns the Vector of SaamTalkers for this Channel
* @return The Vector of SaamTalkers for this Channel
*/

synchronized Vector getTalkers(){
return talkers;

}//getTalkers()

/**
* Returns the Vector of SaamListeners for this Channel
* @return The Vector of SaamListeners for this Channel
*/

synchronized Vector getListeners(){
return listeners;

}//getListeners()

/**
* returns a long that represents the time this Channel was

instantiated.
* @return A long that represents the time this Channel was

instantiated.
*I

synchronized long getTimeActivated(){
return timeActivated;

}//getTimeActivated()

/**
* returns a long that represents the time this Channel was last used.
* @return A long that represents the time this Channel was last used.
*I

synchronized long getTimeLastUsed(){
return timeLastUsed;

}//getTimeLastUsed()

/**
* Not accessible to Objects outside the saam.control package.
* Sets the time this Channel was last used.
*I

synchronized void setTimeLastUsed(){
timeLastUsed = System.currentTimeMillis();

151

}//setTimeLastUsed()

/**
* Determines and returns the amount of idle time for this Channel.
* @return A long representing the amount of idle time for this

Channel.
*I

synchronized long getidleTime(){
return System.currentTimeMillis() -

getTimeLastUsed();
}//getidleTime()

/**
* Determines and returns the amount of time that has passed since

this
* Channel was instantiated.
* @return A long representing the amount of time that has passed

since this
* Channel was instantiated.
*/

synchronized long getAgeOfLease(){
return System.currentTimeMillis() -

getTimeActivated();
}//getAgeOfLease()

!**
* Returns the integer identifying this Channel
* @return The integer identifying this Channel
*I

synchronized int getChannel_ID(){
return channel_ID;

}//getChannel_ID()

/**
* Returns the number of events communicated over this Channel
*!

synchronized int getEventsSpoken(){
return eventsSpoken;

}//getPacketsSpoken()

/**
* Returns true if this Channel has any SaamTalkers in its Vector of

talkers, otherwise it
* returns false.
*I

synchronized boolean hasTalkers(){
return (!talkers.isEmpty());

}//hasTalkers()

/**
* Returns true if this Channel has any SaamListeners in its Vector of

listeners, otherwise it
* returns false.
*I

synchronized boolean hasListeners(){
return (!listeners.isEmpty());

}//hasTalkers()

}//Channel

152

package saam.control;

import java.net.Unknown.HostException;
import java.net.InetAddress;
import java.util.*;

import saam.Translator;
import saam.router.*;
import saam.net.*;
import saam.message.*;
import saam.residentagent.*;
import saam.residentagent.router.*;
import saam.event.*;
import saam.util.SAAMRouterGui;
import saam.util.Array;

/**
* The ControlExecutive maintains control over· the event handling

mechanism
* within the saam protocol stack by acting as a registrar for Objects

that
* wish to communicate on Channels or emulated ports.<p>
* The ControlExecutive receives all ResidentAgents destined for any of

the
* router interfaces the ControlExecutive instantiates. Before

instantiating these
* agents, the ControlExecutive could be programmed to perform various

policy
* adherence checks such as disallowing agents whose package name is
* saam.control for example. A check such as this would prevent agents

from
* accessing the Channel class directly and circumventing the Channel
* registration process.<p>
* The ControlExecutive passes a copy of itself to each ResidentAgent

that it
* instantiates, thus allowing the agent access to the

ControlExecutive's
* public methods. Through the use of these methods, ResidentAgents can
* register to talk on or listen to SAAM ports or Channels, request

flows,
* send Messages or S~Packets, register as MessageProcessors, or

retrieve
* various types of information from the ControlExecutive.<p>
* The ControlExecutive also receives all Message Objects that are

destined
* for this router. A Hashtable of MessageProcessors is maintained to
* determine which processor to pass an incoming Message to.<p>
*/

public class ControlExecutive
implements MessageProcessor, SaamTalker, SaamListener{

//some well-known UDP ports
public static final int ECHO_PORT 7;
public static final int DISCARD_PORT 9;
public static final int DAYTIME_PORT 13;
public static final int TIME_SERVER_PORT 37;
public static final int DNS_PORT = 53;
public static final int WWW_HTTP_PORT 80;
public static final int CHAT_PORT 531;

//saam ports/channels

153

public static final int HIGHEST_WELL_KNOWN_PORT
public static final int MAX_PORT
public static final int SAAM_CONTROL_PORT

= 8000;
public static final int ROUTER_STATUS_CHANNEL

= 80000;

/**

1023;
65531;

* The ControlExecutive registers with itself as a MessageProcessor
capable of

* processing messages of the following types.
*/

private static final String[] messageTypes
{"saam.message.InterfaceID",

"saam.message.ServerID",
"saam.message.FlowResponse",
"saam.message.DemoHello"};

private static final boolean ROUTER_UP true;
private static final boolean.ROUTER_DOWN =false;

/**
* The initial status of the router is false. As key router

components
* are added, this status is updated to reflect the router's ability
* to route packets.
*I

private boolean routerStatus ROUTER_DOWN;

/*
The following boolean variables represent the status of the elements

necessary
to stand up a router.

*/
private boolean helloMessageReceived;
private boolean arpCacheReady;
private boolean flowRoutingTableReady;
private boolean emulationTableReady;
private boolean outboundinterfaceReady;

private int interfaceCount;
private int numberOfSchedulersPresent;
private int nextinboundinterface;
private IPv6Address flowzeroNextHop =new IPv6Address();
private SAAMRouterGui gui;
private MainGui mainGui;
private PacketFactory packetFactory;
private Transportinterface transportinterface;
private ResidentAgent arpCache;
private RoutingAlgorithm routingAlgorithm;

private Interface currentinterface;

/**
* If a ServerID Message comes from the DemoStation,
* the IPv6Address associated with that ServerID will
* be set as the dest in the IPv6Header of packets sent out
* on flow zero, otherwise, the default IPv6Address
* will be set as the dest.
*I

154

private IPv6Address serverIP new IPv6Address();

/**
* The ServerID will be sent by the DemoStation.
*/

private ServerID serverID;

/**
* The Vector that contains Interfaces that have been instantiated on
* this router. Default size = 4.
*/

private Vector interfaces= new Vector(4);

/**
* The Vector of IDs for each interface that has been instantiated on
* this router. Default size = 4.
*/

private Vector interfaceIDs =new Vector(4);

/**
* The Vector of talkers that have passed the registration process and
* are authorized to talk on channels.
*I

private Vector activeTalkers =new Vector();

/**
* The Hashtable of ResidentAgents that have been instantiated by the
* ControlExecutive.
*/

private Hashtable agents= new Hashtable();

/**
* The Hashtable of ResidentAgentCustomers that have registered to

receive
* ResidentAgent replacements as they arrive.
*/

private Hashtable agentCustomers =new Hashtable();

/**
* The Hashtable of MessageProcessors that have registered with this
* ControlExecutive.
*/

private Hashtable messageProcessors
new Hashtable(};

/**
* The Hashtable of Channels that have been instantiated by this

ControlExecutive.
*I

private Hashtable activeChannels new Hashtable();

/**
* The Hashtable of channels that a given SaamTalker is registered to

talk on.
*I

private Hashtable channelsTalkerHas new Hashtable();

/**
* The Hashtable of channels that a given SaamListener is registered

to listen on.
*I

155

private Hashtable channelsListenerHas new Hashtable();

/**
* The Hashtable of Objects that have requested flows.
*I

private Hashtable flow~equestors =new Hashtable();

/**
* The Hashtable of Objects that have been assigned flows.
*/

private Hashtable assignedFlows =new Hashtable();

/**
* Instantiates and sets up communication with all Objects that are

necessary
* to allow the ControlExecutive to start receiving ResidentAgents and

Messages.
*/

public Con~rolExecutive(){
mainGui =new MainGui(this,"SAAM Router Prototype");
gui =new SAAMRouterGui(toString());

transportinterface =
new Transportinterface(this);

//for receiving inbound packets
packetFactory =new PacketFactory(this);

arpCache =new ARPCache();

//this should eventually become a ResidentAgent
routingAlgorithm =

new RoutingAlgorithm(this, arpCache);

//Here is where the ControlExecutive registers itself as a
MessageProcessor

for

registerMessageProcessor(this);

/* Enable Talking on the channel that the Translator is listening on

router status updates.*/
try{

addTalkerToChannel(this, ROUTER_STATUS_CHANNEL);.
}catch(ChannelException ce){

gui.sendText(ce.toString());
}

try{
//Get ownership of the SAAM_CONTROL_PORT so other applications
//cannot. When the Transportinterface sees a packet destined
//for this port, it will not forward the packet directly on
//the SAAM_CONTROL_PORT, rather, it will forward the packet
//to the PacketFactory on the

ProtocolStackEvent.PACKETFACTORY_CHANNEL
monitorPort(this, SAAM_CONTROL_PORT);
gui.setTextField("Monitoring emulated port "+SAAM_CONTROL_PORT);

}catch(PortAccessDeniedException pade){
gui.sendText(pade.toString());

}
mainGui.updateDisplay();

156

}//ControlExecutive{)

/**
* Returns the IPv6Address of the server controlling this router
* @return The IPv6Address of the server controlling this router.
*I

public IPv6Address getServerIP{){
return serverIP;

/**
* Returns the status of the ARPCache.
* @return The status of the ARPCache ResidentAgent.
* contains an entry that corresponds to the next hop

this
* method returns true) .
*/

public boolean getArpCacheStatus{){
return arpCacheReady;

/**
* Returns the status of the EmulationTable.

{if the ARPCache
for flow zero,

* @return The status of the EmulationTable. {if the EmulationTable
* contains an entry that corresponds to the next hop for flow zero,

this
* method returns true) .
*/

public boolean getEmulationTableStatus{){
return emulationTableReady;

!**
* There are three tables in every SAAM router: The ARPCache, the

EmulationTable,
* and the FlowRoutingTable. Each of these tables notifies the

ControlExecutive
* when it is ready to serve the router. When all of these tables are

ready and
* a few other conditions are met, the ControlExecutive sends a

notification to
* the Translator.
* @param o The Object sending the update.
* @param status The status of o.
*I

public void updateCoreServiceStatus{
Object o, boolean status){

String className = o.getClass{) .getName{);
if{className.equals{

"saam.residentagent.router.ARPCache")){
arpCacheReady = status;
updateRouterStatus{);

}else if {className.equals{"saam.Translator")){
emulationTableReady = status;
updateRouterStatus{);

}
//do nothing if another Object called this method

/**

157

* The FlowRoutingTable uses this method to notify the
ControlExecutive when it

* is ready to serve the router.
* @param o The Object sending the update.
* @param flowzeroNextHop The IPv6Address of the next hop associated

with flow zero.
*I

public void updateCoreServiceStatus(
Object o, IPv6Address flowZeroNextHop){

String className = o.getClass() .getName();
this.flowzeroNextHop=flowzeroNextHop;
boolean status = (flowZeroNextHop.equals(

new IPv6Address()))? false:true;
flowRoutingTableReady = status;
//the following logic does not work for some reason ...
//I.think it's the ArpCache.query method
if{!arpCacheReady){

if{routingAlgorithm.checkARPCache(
new ARPCacheEntry(flowZeroNextHop))){
arpCacheReady=true;

}
}
updateRouterStatus();

}

/**
* Returns

flow zero.
* @return

flow zero.
*I

the IPv6Address

The IPv6Address

representing

representing

public IPv6Address getFlowZeroNextHop(){
return flowZeroNextHop;

}

/**

the next

the next

hop associated

hop associated

with

with

* Performs a series of checks to determine the status of the router
and

* then updates the status accordingly.
*I

private synchronized void updateRouterStatus(){
II displayRouterStatus();

String myAddress = null;
try{

myAddress = InetAddress.getLocalHost() .getHostAddress();
}catch(UnknownHostException uhe){}

//compare local address with the address of the server. If the
//two addresses are the same. and there is at least one interface
//to process traffic, then the outbound interface for this server is

ready.

next

if(myAddress.equals(serverID.getIPv4()) &&
(interfaces.size()>=l)){
outboundinterfaceReady=true;

}else if
//otherwise, compare the network portion of the IPv6Address of the

//hop associated with flow zero to the network portions of the
IPv6Addresses

158

//of the interfaces on this router. If there is a match, the
outbound

//interface is ready.
(routingAlgorithm.determineOutboundinterface(interfaces,

flowZeroNextHop) !=null){
outboundinterfaceReady=true;

//if all the conditions are met, notify the Translator that the
router

II

II
II
II

//is ready.
if(helloMessageReceived && arpCacheReady &&

flowRoutingTableReady && emulationTableReady &&
outboundinterfaceReady){

if(routerStatus==ROUTER_DOWN){
//send Hello Message to server

routerStatus=ROUTER_UP;

}

gui.sendText("\nThe Router is UP! Sending Hello ... ");

//Construct a new Hello Message to send to the Server
Hello hello new Hello(interfaceIDs);

short sourcePort = (short)SAAM_CONTROL_PORT;
RouterStatusEvent event =new RouterStatusEvent(

) ;

toString(),
this,
ROUTER_STATUS_CHANNEL,
routerStatus

//notify the Translator
try{

talk(event);
}catch(ChannelException ce){

gui.sendText(ce.toString());
}
try{

int flowID = 0;
gui. sendText (n FlowID: II +flowID) ;
short destPort = (short)SAAM_CONTROL_PORT;

//send the Hello Message to the server.
try{
send(this, hello, flowID,

sourcePort,serverIP,destPort);
gui.sendText("Hello sent:"+

"flowID: •+flowID+
"sourcePort: "+sourcePort+
"serverIP: •+serverIP.toString()+
"destPort: "+destPort);

}catch(FlowException fe){
gui.sendText(fe.toString());

}
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());

}else{
routerStatus=ROUTER_DOWN;
//bringRouterDown();
gui. sendText ("Router is still down ... •);

159

!**
* Displays the current status of the router.
*/

private void displayRouterStatus(){
gui.sendText("\nCurrent Router Status:");
gui.sendText(" helloMessageReceived: "+helloMessageReceived);
gui. sendText (" arpCacheReady: "+arpCacheReady) ;
gui.sendText(" flowRoutingTableReady: "+

flowRoutingTableReady);
gui.sendText(" emulationTableReady: "+emulationTableReady);
gui.sendText(" outboundinterfaceReady: "+

outboundinterfaceReady+
II \n") j

/**
* In the SAAM architecture, traffic cannot be sent between hosts if

the
* hosts are not assigned flows. This method provides the mechanism

by
* which hosts request flows from the SAAM server. With the

information
* provided in the parameters, this method constructs a

saam.message.FlowRequest.
* It then sends that FlowRequest to the protocol stack for

transmission to
* the SAAM server. Note: If the requester is not listening to a

port, the
* requester should first call the listenToRandomPort method for a

port assignment.
* @param requester The Object requesting the flow.
* @param sourcePort The local port that requester is listening on.
* @param destHost The IPv6Address of the destination.
* @param requestedDelay The amount of delay the requester will

tolerate.
* @param requestedLossRate The rate of loss the requester will

tolerate.
* @param requestedThroughput The amount of throughput the requester

will tolerate.
*I

public synchronized long requestFlow(ResidentAgent requester,
short sourcePort, IPv6Address destHost, int requestedDelay,
int requestedLossRate, int requestedThroughput)

throws FlowException{

long timeStamp = System.currentTimeMillis();
flowRequestors.put(new Long(timeStamp),requestor);
IPv6Address sourceHost =

((InterfaceID)interfaceIDs.get(O)) .getIPv6();
FlowRequest request =new FlowRequest(

sourceHost,
destHost,
timeStamp,
requestedDelay,
requestedLossRate,
requestedThroughput);

//FlowRequests travel on flow zero.

160

int flowID = 0;
short destPort = (short)SAAM_CONTROL_PORT;
try{

send(this, request, flowID, sourcePort,serverIP,destPort);
}catch(FlowException fe){

gui.sendText(fe.toString());

return timeStamp;

/**
* Objects that have been assigned flows can send Messages with this

method.
* In order to use this method, Objects must first request a flow

using the
* requestFlow method; and then receive a flow assignment from the

server
* @param sender The Object sending the message,
* @param message The subclass of saam.message.Message to be sent.
* @param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* @param sourcePort The port on the local machine that sender is

listening on.
* @param destHost The IPv6Address of the destination.
* @param destPort The port to which destHost is listening.
*I

public synchronized void send(Object sender, Message message,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

if(sender.getClass() .getName() .equals(
"saam.residentagent.router.LsaGenera.tor")) {

sender = this;
}
gui.sendText("Sending Message ... ");
PacketFactory packetFactory =new PacketFactory();
packetFactory.append(message);
SAAMPacket saamPacket = null;
try{

saamPacket = new SAAMPacket(
packetFactory.getBytes());

}catch(UnknownHostException uhe){
throw new FlowException(sender+

"Problem building packet "+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportinterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
gui.sendText(">> Message payload size = " +

v6Packet.getPayload() .length);

}

try{
saamPacket =new SAAMPacket(v6Packet.getPayload());

}catch(UnknownHostException uhe){
throw new FlowException(sender+

"Problem building packet "+flowID);
}
send(sender,v6Packet);

161

!**
* Objects that have been assigned flows can send SAAMPackets with

this method.
* In order to use this method, Objects must first request a flow

using the
* requestFlow method; and then receive a flow assignment from the

server
* @param sender The Object sending the message.
* @param saamPacket The SAAMPacket to be sent.
* @param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* @param sourcePort The port on the local machine that sender is

listening on.
* @param destHost The IPv6Address of the destination.
* @param destPort The port to which destHost is listening.
*/

public synchronized void send(Object sender, SAAMPacket saamPacket,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
gui.sendText("Sending SAAM Packet ... ");
IPv6Packet v6Packet = transportinterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
send(sender,v6Packet);

} I /send()

/**
* Objects that have been assigned flows can send IPv6Packets with

this method.
*In order to use,this .method, Objects must first request a flow

using the
* requestFlow method; and then receive a flow assignment from the

server.
* note: If the packet is destined for an Interface that is one this

router,
* the packet will be delivered without flow id verification.
*·@param sender The Object sending the message.
* @param ipv6Packet The IPv6Packet to be sent.
*I

public synchronized void send(Object sender, IPv6Packet ipv6Packet)
throws FlowException{

int flowID = ipv6Packet.getHeader() .getFlowLabel();
//verify that the sender owns the flowID
gui.sendText("Sending IPv6 Packet on flow "+flowID);
if(!routingAlgorithm.isApplicationLayerPacket(ipv6Packet)){

ResidentAgent agent = (ResidentAgent)assignedFlows.get(
new Integer(flowID));

if(sender.getClass() .getName() .equals("saam.server.Server")
I I (agent!=null&&agent.equals(sender)) I I sender.equals(this)){
//Here we forward the packet to an inbound interface
//so it will be processed just as if it were an inbound
//packet.
ProtocolStackEvent event =new ProtocolStackEvent(

sender.toString(),
this,
ProtocolStackEvent.getFromNICTointerfaceChannel(

nextinboundinterface),

162

ipv6Packet.getBytes());
try{

gui.sendText("Enqueuing packet for transmission at channel" +
event.getChannel_ID());

gui.sendText(" >> nextinboundinterface = " +
nextinboundinterface);

talk(event);
}catch(ChannelException ce){

gui.sendText(ce.toString());
}

II routingAlgorithm.routeinboundPacket(ipv6Packet.getBytes());
nextinboundinterface++;
if(nextinboundinterface>=interfaces.size()){

nextinboundinterface=O;
}

}else {
gui.sendText(sender+

}

"doesn't own flow •+flowID);
throw new FlowException(sender+

•doesn't own flow "+flowID);

}else{
//this packet is destined for an Interface on this router,
//so we forward it to the Transportinterface for delivery
//on the proper emulated UDP port.
IPv6Header v6Header = ipv6Packet.getHeader();

if(v6Header.getSource() .toString() .equals(IPv6Address.DEFAULT_HOST)){

v6Header.setSource(((Interface)interfaces.get(0)) .getID() .getIPv6());
ipv6Packet.setHeader(v6Header);

gui.sendText("received app. layer packet from application layer~);
gui.sendText("forwarding to Transportinterface");
SAAMPacket saamPacket = null;
try{

saamPacket =new SAAMPacket(ipv6Packet.getPayload());
}catch(UnknownHostException uhe){

gui.sendText(uhe.toString());
}
ProtocolStackEvent event =new ProtocolStackEvent(

sender.toString(),
//here we trick the Transportinterface into thinking this
//event came from the routingAlgorithm. Also, since the
//routingAlgorithm is already registered to talk on this
//channel, we make it past the security check that ensures
//the talker is registered on the channel.
routingAlgorithm,
ProtocolStackEvent.

FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL,
ipv6Packet.getBytes());

try{
talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}//send()

163

/**
* In order to send a flowRequest or any other type of traffic in a

SAAM network,,
* sending Objects must be listening to a port. This method assigns

Objects a
* random port that is higher than the highest well-known port, but no

higher than
* MAX_PORT.
* @param listener The SaamListener requesting a random port.
*I

public int listenToRandomPort(SaamListener listener){
int port = listenToRandomChannel(

listener, HIGHEST_WELL_KNOWN_PORT+l,MAX_PORT);
try{

//the Transportinterface must be able to talk on the new port in
order

//to deliver traffic to the listener
addTalkerToChannel(transportinterface, port);

}catch(ChannelException ce){
gui.sendText(ce.toString());

return port;
//also register the Transportinterface as a talker on
//this port.

}//listenToRandomPort()

/**
* Ports reside on Channels 0-MAX_PORT; any Channel higher than

MAX_PORT

are
* is a Channel that is not associated with a port. Examples of this

* the communications Channels within the protocol stack.
* @param listener The SaamListener requesting a random channel.
* Note: Since this method is private, only the ControlExecutive can
* assign listeners to a random channel.
* @param lowestChannel The lowest channel in the range to be selected

from.
* @param highestChannel The highest channel in the range to be

selected from.
*/

private int listenToRandomChannel(
SaamListener listener, int lowestChannel,

int highestChannel){
int channelFound = O;
boolean exception = true;
while(exception){

try{
channelFound = (lowestChannel+(

new Random()) .nextint(highestChannel-lowestChannel));
addListenerToChannel(listener, channelFound);
exception = false;

}catch(Exception e){}
}//while ()
return channelFound;

}//listenToRandomChannel()

/**
* Returns the array of Strings representing the class
* names of the messages this Object will register to process.
* @return The array of Strings representing the class names
* of the messages this Object will register to process.

164

*/
public synchronized String() getMessageTypes{}{

return messageTypes;
}//getMessageTypes(}

/**
* This private method 1s used by the ControlExecutive to perform the
* steps necessary to instantiate an Interface.
* @param id The InterfaceID that will be assigned to the interface

being
* instantiated. If an Interface with this id is already up, the

request
* will be ignored.
*I

private void standUpinterface(InterfaceID id}{
boolean alreadyActive = false;
for (int i=O;i<interfaceIDs.size{};i++i{

if(({InterfaceID}interfaceIDs.get(i}} .equals{id}}{
alreadyActive = true;
break;

}

if{!alreadyActive}{
interfaceIDs.add{id);

gui.sendText(" Instantiating interface["+
interfaceCount++ +"]");

gui.sendText{" IPv6Address: •+
id.getIPv6{) .toString{)};

Interface thisinterface =
new Interface(this, id};

interfaces.add(thisinterface};
updateRouterStatus(};
routingAlgorithm.addinterface(thisinterface};
try{

addTalkerToChannel(this,
ProtocolStackEvent.getFromNICTointerfaceChannel(

interfaces.size()-1));
}catch(ChannelException ce}{

gui.sendText{ce.toString(}};
}

}else{
gui.sendText("Interface already active ... "};

}
}//standUpinterface(}

/**
* This method contains the logic needed by the ControlExecutive
* to process the Messages it is registered to process.
* @param message The subclass of saam.message.Message to be

processed.
*I

public void processMessage(Message message){
String name= message.getClass{} .getName(};
if(name.equals(messageTypes[O]}){

InterfaceID id = (InterfaceID)message;
standUpinterface(id);
updateRouterStatus(};

}else if(name.equals(messageTypes[l])}{
try{

165

serverID = ((ServerID)message);
serverIP = serverID.getIPv6();

}catch(Exception e){
gui.sendText("Error processing serverID: "+e.toString());

}
}else if(name.equals(messageTypes[2])){

gui.sendText("Got a FlowResponse .. ");
FlowResponse response = (FlowResponse)message;
long timeStamp = response.getTimeStamp();
gui. sendText ("TimeStamp: "+timeStamp) ; ·
int flowID = response.getFlowid();
gui. sendText ("flowID: "+flowID) ;
ResidentAgent requester =

(ResidentAgent)flowRequestors.get(new Long(timeStamp));
gui.sendText("Forwarding to Requester: "+requester);
if(requestor!=null){

assignedFlows.put(new Integer(flowID),requestor);
/*try{

Thread.sleep(lOOO);
}catch(InterruptedException ie){

gui.sendText("ControlExecutive: "+ie.toString());
}
*/
requestor.receiveFlowResponse(response);

}//else do nothing
}else if(name.equals(messageTypes[3])){

//received a saam.message.DemoHello from the DemoStation
gui.sendText("received message type: "+ messageTypes[3]);
II
Vector hellointerfaces = ((DemoHello)message) .getinterfaceIDs();
for(int i=O;i<hellointerfaces.size();i++){

}

InterfaceID id= (InterfaceID)hellointerfaces.get(i);
standUpinterface(id);

helloMessageReceived = true;
updateRouterStatus();
mainGui.updateDisplay();

}
}//processMessage()

/**
* Returns the number of Interfaces that have been stood up by this

ControlExecutive.
* @return The number of Interfaces that have been stood up by this

ControlExecutive.
*/

public int getNumberOfinterfaces(){
return interfaceCount;

/**
* This is the method MessageProcessors use to register to process

Messages.
* The ControlExecutive retrieves the list of Messages from mp by

calling
* mp.getMessageTypes().
* @param mp The MessageProcessor that is registering with this

ControlExecutive.
*I

public void registerMessageProcessor(MessageProcessor mp){
gui.sendText("Registering MessageProcessor: "+mp);

166

/**

Object[] elementsIProcess = null;
//retrieve the list of Messages
elementsIProcess = mp.getMessageTypes();
for(int i=O;i<elementsIProcess.length;i++){

String element= (String)elementsIProcess[i];
if(!element.equals("saam.message.FlowResponse")) {

MessageProcessor oldProcessor =
(MessageProcessor)messageProcessors.put(element,mp);

II notify old Processor that it will no longer
II receive this type of message.

}else{

}

if(mp.equals(this)){
messageProcessors.put(element,this);

}else{
gui.sendText("DENIED: •+element);

* ResidentAgentCustomers use this method to register to receive
ResidentAgent

* updates from the ControlExecutive when they arrive. If an agent is
replaced

* with a new agent, the ControlExecutive will call the customer's
replaceAgent.

* method.
* @param rac the ResidentAgentCustomer requesting registration.
*/

public void registerCustomer(ResidentAgentCustomer rac){
Object(] agentsIUse =null;

/**

agentsIUse = rac.getAgentTypes();
for(int i=O;i<agentsIUse.length;i++){

}

String agent= (String)agentsIUse[i];
Vector customers = null;
synchronized(agentCustomers){

customers= (Vector)agentCustomers.get(agent);
}
if(customers ==null){

customers= new Vector();
agentCustomers.put(agent,customers);

}
customers.add(rac);

II oldProcessor.

* Replaces an existing ResidentAgent with an incoming ResidentAgent
* of the same class name. If there are multiple instances of the

existing
* agent, the replacement will occur instance for instance.
* @param classObject The Class of the incoming agent.
* @param className The class name of the incoming ResidentAgent

subclass
*/

private void replaceOldAgent(Class classObject, String className){

boolean badAgent = false;
Vector agentinstances =new Vector();

167

int nurnberOfinstancesNeeded = l;
if(className.equals("saam.residentagent.router.Scheduler")){

synchronized(interfaces){
nurnberOfinstancesNeeded =interfaces.size();

}
for (int i=O;i<nurnberOfinstancesNeeded;i++){

try{
II gui.sendText("About to install new agent");

ResidentAgent newAgent = (ResidentAgent)
classObject.newinstance();

newAgent.install(this);
gui.sendText("New agent installed");
agentinstances.add(newAgent);

II gui.sendText("Instances present: "+agentinstances.toString());

"+

}

nurnberOfSchedulersPresent++;
}catch(Exception e){

gui.sendText("ResidentAgent bad: "+e.toString());
badAgent = true;

if (!badAgent) {
gui . send Text ("Agent 11 +

(nurnberOfinstancesNeeded==O? "not instantiated.":"instantiated

(nurnberOfinstancesNeeded==l? "once.": nurnberOfinstancesNeeded+"
times")));

boolean agentAlreadyinstalled = false;
synchronized(agents){

agentAlreadyinstalled=agents.containsKey(className);
}
if(agentAlreadyinstalled){

gui.sendText(className+" already resident");
Vector previousAgents = (Vector)agents.remove(className);
gui.sendText("Uninstalling previous agent: ");
gui.sendText("Removing from channels ... ");
for(int i=O;i<previousAgents.size();i++){

ResidentAgent previousAgent = (ResidentAgent)
previousAgents.get(i);

if(previousAgent instanceof SaamTalker){
removeTalkerFromAllChannels(

(SaamTalker)previousAgent);
}
//every ResidentAgent is a SaamListener
removeListenerFromAllChannels(

previousAgent);
ResidentAgent replacement = (ResidentAgent)

agentinstances.get(i);
if(previousAgent!=null){

gui.sendText("Previous agent uninstalling");
previousAgent.transferState(replacement);
previousAgent.uninstall();
previousAgent = null;

}else{
gui.sendText("No previous agent installed");

for (int i=O;i<nurnberOfinstancesNeeded;i++){
ResidentAgent replacement = (ResidentAgent)

168'

agentinstances.get(i);
notifyAgentCustomers(replacement, className);
gui.sendText("Notifying customers, agent: "+replacement);

}
agents.put(className,agentinstances);

/**
* Here, the ControlExecutive iterates through the Vector of
* ResidentAgentCustomers and calls the replaceAgent method of
* each customer, passing the new agent.
*/

private void notifyAgentCustomers(
ResidentAgent ra, String className) {

Vector custome~sOfThisAgent = (Vector)
agentCustomers.get(className);

if(customersOfThisAgent!=null){
for(int i=O;i<customersOfThisAgent.size();i++){

((ResidentAgentCustomer)
customersOfThisAgent.get(i)).

replaceAgent(ra);
}
gui. sendText ("Agent replaced: "+ra);
gui.sendText("Customers: •+customersOfThisAgent);

/**
* In this method we would reflect into the Class Object and perform
* a series of policy-related checks to determine whether or not the
* agent is safe to instantiate.
*I

private boolean examineAgent(Class classObject){
I /future work ..
return true;

}

/**
* This method is called by the Channels this Object has registered to
* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.
*I •

public synchronized void receiveEvent(SaamEvent se){

and
//the ControlExecutive only listens on the Channel between itself

//the PacketFactory. Two types of traffic are sent on this Channel,
//ResidentAgentEvents and MessageEvents

if(se instanceof ResidentAgentEvent){
Class classObject = ((ResidentAgentEvent)se).

getClassObject();
String className = classObject.getName();
gui.sendText("received: •+className);
if (examineAgent(classObject)){

replaceOldAgent(classObject, className);
}else{

//notify someone that the agent failed the inspection
}

169

}else if {se instanceof ~essageEvent){
MessageEvent me= {MessageEvent)se;
String name =

me. getMessage () . getClass {) . g_etName {) ;
gui. sendText ("\nrecei ved: •+name) ;

//call the appropriate MessageProcessor to handle this Message
MessageProcessor mp ,,;,, (MessageProcessor)

messageProcessors.get(name);
try{

gui.sendText(" Calling Processor: "+mp.getClass() .toString());
mp.processMessage(me.getMessage());

}catch{NullPointerException npe){
//notify the senderthat we do not have a
//processor that is capable of processing this
//Message.
gui. sendText (" No Processor Available for • + name);

}//try-catch
}//not a ResidentAgentEvent or a MessageEvent

mainGui.updateDisplay();
}//receiveEvent()

/**
* Returns the Vector of Interfaces that have been instantiated by

this
* ControlExecutive.
* @return The Vector of Interfaces that have been instantiated by

this
* ControlExecutive.
*I

public Vector getinterfaces(){
return interfaces;

}//getinterfaces

!**
* The order in which Interfaces are instantiated is preserved. Here
* an Object can retrieve a specific Interface by instance number.
* @param interfaceNumber The instance number of the Interface to be
* retrieved.
* @return The nth instance of Interface where n = interfaceNumber.
*I

public Interface getinterface(int interfaceNumber){
return (Interface)interfaces.get{interfaceNumber);

/**
* Returns the Vector of InterfaceIDs assigned to the Interfaces
* instantiated by this ControlExecutive.
* @return The Vector of InterfaceIDs assigned to the Interfaces
* instantiated by this ControlExecutive.
*I

public Vector getinterfaceIDs(){
return interfaceIDs;

}//getinterfaces

/**
* Returns the Enumeration of Channels that have been instantiated
* by this ControlExecutive.
* @return The Enumeration of Channels that have been instantiated
* by this ControlExecutive.
*/

170

public Enumeration getActiveChannels(){
return activeChannels.elements();

}//getActiveChannels()

/**
* Returns true if the Channel has been instantiated by this

ControlExecutive.
* @return True if the Channel has been instantiated by this

ControlExecutive.
*/

public boolean isActiveChannel(int channel_ID){
return activeChannels.containsKey(new Integer(channel_ID));

/**
* To determine whether or not a talker is allowed to talk. If
* this method returns false, the talker wil~ not be able to talk
* on any Channels.
* @param talker The SaamTalker to be verified.
* @return True if the SaamTalker is allowed to talk.
*/

private boolean verifyTalker(SaamTalker talker){
return true;

}//verifyRequestor()

!**
* To determine whether or not a listener has access to a given

Channel.
* This method would be used to implement policy issues related to

access
* control.
* @param listener The listener to be verified.
* @param channel_ID The ID of the Channel.
*I

private boolean verifyChannelAccess(
SaamListener pl, int channel_ID){
//here, we would set the policy for channel ID access.
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners. maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorized.Listeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

/**
* To determine whether or not a talker has access to a given Channel.
* This method would be used to implement policy issues related to

access
* control.
* @param talker The talker to be verified.
* @param channel_ID The ID of the Channel.
*I

private boolean verifyChannelAccess(
SaamTalker talker, int channel_ID) {
//here, we would set the policy for channel ID access.
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners. maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorized.Listeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

171

/**
* As the name implies, this method removes talker from the talker
* Vectors of all Channels it has registered to talk on.
* @param talker The talker to be removed.
*!

public void removeTalkerFromAllChannels(SaamTalker talker){
if(channelsTalkerHas.containsKey(talker)){

}
}

!**

Vector channels = null;
synchronized(channelsTalkerHas){

channels =(Vector)channelsTalkerHas.get(talker);
}
Enumeration e = ((Vector)channelsTalkerHas.get(talker)).

elements();
while(e.hasMoreElements()){

Channel thisGhannel = (Channel)e.nextElement{);
thisChannel.removeTalker(talker);
gui.sendText(talker.toString()+

" removed from channel "+
thisChannel.getChannel_ID());

gui.sendText("The Vector: "+channels.toString{));
}
channelsTalkerHas.remove(talker);

* As the name implies, this method removes listener from the listener
* Vectors of all Channels it has registered to listen on.
* @param listener The listener to be removed.
*/

public void removeListenerFromAllChannels(
SaamListener listener){

if(channelsListenerHas.containsKey(listener)){
Vector channels = null;
synchronized(channelsListenerHas){

}

channels= (Vector)channelsListenerHas.get(listener);
}
Enumeration e =channels.elements();
while(e.hasMoreElements()){

Channel thisChannel = (Channel)e.nextElement();
thisChannel.removeListener(listener);
gui.sendText(listener.toString()+

" removed from channel "+
thisChannel.getChannel_ID());

gui.sendText("The Vector: "+channels.toString());
}
channelsListenerHas.remove(listener);

!**
* SaamTalkers use this method to attach themselves to a Channel. If

this
* method succeeds, the talker will be allowed to transmit events on

this
* Channel.
* @param talker The talker requesti~g permission to talk on a

Channel.
* @param channel_ID The ID of the channel to be utilized.

172

*/
public void addTalkerToChannel(SaamTalker talker, int channel_ID)

throws ChannelException {

if(!verifyTalker(talker)){
throw new ChannelException("Talking Denied");

//now test to see whether this channel_ID is within the
//range of channel_IDs on which this requester is authorized
//to talk (policy issue).
if (!verifyChannelAccess(talker, channel_ID)){

throw new ChannelException (11 Access Denied") ;
}
Channel channel = null;
synchronized(activeChannels){

channel= (Channel)activeChannels.get(new Integer(channel_ID));
}
if(channel==null) {

channel= new Channel(channel_ID,talker);
}
activeChannels.put(new Integer(channel_ID),channel);

channel.addTalker(talker);
mainGui.updateDisplay();

if(channelsTalkerHas.containsKey(talker)){
synchronized(channelsTalkerHas){

((Vector)channelsTalkerHas.get(talker)).
add (channel) ;

}
}else{

}

Vector vectorOfChannels =new Vector();
vectorOfChannels.add(channel);
channelsTalkerHas.put(talker, vectorOfChannels);

II gui.sendText("Talker added:");
II gui.sendText(channel.toString());

}//addTalkerToChannel()

/**
* Allows a SaamListener to monitor an emulated UDP port
* @param listener The listener requesting to monitor a port.
* @param port The port to be monitored.
*I

public void monitorPort(SaamListener listener, int port)
throws PortAccessDeniedException{
//presumably, the listener has already been verified
//by the Control Executive and placed on an access
//list within the EventController. There is no such
//access list at this time.

try{
if(!hasListener(port)){
addTalkerToChannel(transportinterface,port);
addListenerToChannel(listener, port);

II gui.sendText(listener.toString()+
II •listening to port: •+port);

}else {
gui.sendText(listener.toString()+

11 denied access to port: 11 +port) ;
throw new PortAccessDeniedException("Port in use");

}
}catch(ChannelException ce){

173

/**

throw new PortAccessDeniedException("Not authorized");
}//try-catch

* SaaroListeners use this method to attach themselves to a Channel.
If this

* method succeeds, the listener will receive all events that are sent
on this

* Channel.
* @param listener The listener requesting to monitor a Channel.
* @param channel_ID The ID of the channel to be monitored.
*/

public void addListenerToChannel(
SaaroListener listener, int channel_ID)
throws ChannelException{

if (verifyChannelAccess(listener,channel_ID)){

Channel channel = null;
synchronized(activeChannels) {

channel= (Channel)activeChannels.get(new Integer(channel_ID));
}
if(channel==null) {

channel= new Channel(channel_ID,listener);

//no effect if the Channel is already on the active list
activeChannels.put(new Integer(-channel_ID),channel);
channel.addListener(listener);

II gui.sendText("Listener added:");
II gui.sendText(channel.toString());

if(channelsListenerHas.containsKey(listener)){
synchronized(channelsListenerHas){

((Vector)channelsListenerHas.get(listener)).
add(channel);

}
}else{

Vector vectorOfChannels =new Vector();
vectorOfChannels.add(channel);
channelsListenerHas.put(listener, vectorOfChannels);

}//if
}//addListenerToChannel()

!**
* Used to determine if any Objects are registered to listen on the

Channel
* with channel_ID.
* @param channel_ID The ID of the Channel to be queried.
*I

public boolean hasListener(int channel_ID){
try{

Channel channel = null;
synchronized(activeChannels){

channel= (Channel)activeChannels.get(new Integer(channel_ID));

return channel.hasListeners();
}catch(NullPointerException npe) {}

return (false);

174

} I /hasListener ()

/**
* Used to determine if any Objects are registered to talk on the

Channel
* with channel_ID.
* @param channel_ID The ID of the Channel to be queried.
*I

public boolean hasTalker(int channel_ID){
try{

Channel channel = null;
synchronized(activeChannels){

channel= (Channel)activeChannels.get(new Integer(channel_ID));
}
return channel.hasTalkers();

}catch(NullPointerException npe){}
return (false);

} I /hasListener ()

/**
* Once approved to communicate on a channel, a
* SaamTalker calls this method to actually broadcast
* events on the channel. A ChannelException will be
* thrown if the talker is not registered to talk on
* the channel contained in the SaamEvent.
*/

public void talk(SaamEvent event) throws
ChannelException{

SaamTalker talker= event.getTalker();
int channel_ID = event.getChannel_ID();
Channel channel = null;
synchronized(activeChannels){

II Questions to Dean:
II (1) Is the above sufficient?
II (2) Does this support talking to multiple channels?
II (3) Why are more and more">>> Ready to ... " msgs printed out?
II

channel = (Channel)
activeChannels.get(new Integer(event.getChannel_ID()));

}
if(channel.isRegistered(talker)) {

//order the channel to notify its listeners
gui.sendText(" >>>Ready to channel.talk");
channel.talk(event);
channel.setTimeLastUsed();

}else{

}

gui.sendText("ACCESS DENIED! Unregistered talker: 11 +
talker.toString() +"\n"+
"Attempted to talk on channel "+channel_ID);

throw new ChannelException(
talker.toString()+" not Registered on 11 +
"channel "+channel_ID+". 11

);

} I /talk()

/**
* Displays the status of all Channels that have been instantiated by

the

175

* ControlExecutive. Channels are displayed in the ControlExecutive's
gui.

* @param msg The text to appear before the channels are displayed.
*/

public void displayActiveChannels(String msg){

/* gui.sendText("\n"+msg);
gui.sendText("Active channels:");
Enumeration e = activeChannels.keys();
while(e.hasMoreElements()){

Integer key= (Integer) (e.nextElement());
Channel channel =

(Channel)activeChannels.get(key);
gui.sendText(channel.toString());

}//while(e.hasMoreElements())
*/

}//displayActiveChannels()

/**

the
* Removes a SaarnListener from the Vector of listeners associated with

* Channel containing channel_ID
* @param sl The SaarnListener to be removed.
* @param channel_ID The ID of the desired Channel.
*/

public void removeListenerFromChannel(
SaarnListener sl, int channel_ID){

Channel channel = null;
synchronized(activeChannels){

channel = (Channel)
activeChannels.get(new Integer(channel_ID));

}
channel.removeListener(sl);

}//closeChannelConnection()

!**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*/

public String toString(){
return ("Control Executive");

}

176

package saam.control;

import java.util.Hashtable;
import java.io.File;

/**
* A simple ClassLoader used by the ControlExecutive to load
* ResidentAgents.
*/

class Loader extends ClassLoader {

private Hashtable loadedClasses =new Hashtable();
private Hashtable dynamicMessageTypes =new Hashtable();

!**
* Converts an array of bytes into an instance of class Class.
* <p>
*
* @param name The expected name of the class, or null
* if not known, using'.' and not '/'as
* the separator and without a trailing ".class" suffix.
* @param b the bytes that make up the class data. The bytes
* should have the format of a valid class file.
* @return The Class object that was created from b.
*I .
Class defClass (String name, byte[] b)

throws LinkageError{
Class theClass = null;
try{

theClass = defineClass(name, b, 0, b.length);
}catch(LinkageError le){

throw new LinkageError();

return theClass;
}//defClass()

/**
* Stores byte arrays that presumably represent Java
* class Objects.
* @param name The String name of the class Object to be stored.
* @param b The byte array that represents the class Object.
*I

void putByteCode(String name, byte[] b){
dynamicMessageTypes.put(name,b);

!**
* Retrieves the byte array that represents the class Object
* being retrieved by name.
* @param name The String name of the class Object to be stored.
* @return the byte array that represents the class Object.
*I

byte[] getByteCode(String name){
return (byte[])dynamicMessageTypes.get(name);

/**
* Returns the Class Object that has been loaded.
* @param name The String name of the class Object to be loaded.
* @param resolve if true then resolve the class

177

* @return The Class Object that has been loaded.
* @throws ClassNotFoundException if the class could not be found.
*I

public Class loadClass(String name, boolean resolve)
throws ClassNotFoundException

try {
Class newClass = (Class)loadedClasses.get(name);

if (newClass ==null) { // not yet loaded
newClass = findSystemClass(name);
if (neWClass != null) return newClass;

II class not found -- need to load it
newClass = Class.forName(name);
loadedClasses.put(name, neWClass);

return newClass;
catch(ClassNotFoundException e) {

throw new ClassNotFoundException(e.toString());
}//if (neWClass ==null)

}//loadClass()
}//Loader

178

package saam.control;

import java.io.File;
import java.io.FileinputStream;
import java.io.IOException;
import java.util.Hashtable;
import java.util.TooManyListenersException;
import java.util.StringTokenizer;
import java.lang.reflect.Constructor;

import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;
import saam.residentagent.*;

/**
* A PacketFactory can be used to build SaamPackets for sending or
* to receive SaamPackets and extract their atomic elements. These
* atomic elements are currently one of two types: A subclass of
* saam.residentagent.ResidentAgent or a subclass of
* saam.message.Message.<p>
* A sender would instantiate a PacketFactory to build
* Saam Packets. The PacketFactory's append methods receive
* Message Objects, ResidentAgent Objects, or a String that represents
* the class name of a ResidentAgent as parameters and then dynamically
* construct the appropriate header based on the number of elements
* received and the current time. The getBytes method is used to
* retrieve the byte array that represents the SAAMPacket that has been
* constructed by this PacketFactory.<p>
* The ControlExecutive uses the PacketFactory to receive and parse
* SaamPackets.
*I
public class PacketFactory extends Thread

implements SaamTalker, SaamListener{

private final boolean guiActive = true;
private SAAMRouterGui gui;
private ControlExecutive controlExec;
private boolean started = false;
private boolean firstEvent = true;
private boolean bytesRetrieved;
private byte[] packet;
private byte numberOfMessages;
private Loader loader;
private Class message;
private SaamEvent currentEvent;
private Thread owner;
private static int instanceNumber;
private Object theLock =new Object();

/*'*
* Use the no-args constructor to begin constructing packets
* on the sending side.
*I

//no-args constructor doesn't come for free when we have
//another constructor
public PacketFactory(){

instanceNumber++;
gui =new SAAMRouterGui(toString() + "("+

instanceNumber+")");

179

gui.setTextField("I construct outbound packets");

/**
* This constructor is not available to Objects outside the
* saam.control package. The ControlExecutive uses this constructor
* to receive and parse SAAMPackets. The PacketFactory passes the
* atomic elements (either ResidentAgents or Messages) up to the
* ControlExecutive for further processing.
* @param controlExec The ControlExecutive that is to receive
* updates from this PacketFactory.
*/ .

PacketFactory(ControlExecutive controlExec){
this();
gui.setTextField("I Listen for inbound packets");
this.controlExec=controlExec;
loader= new Loader();

//******************************
//**Listen to desired Channels**
//******************************
int channel_ID =

ProtocolStackEvent.PACKETFACTORY_CHANNEL;
try{

controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

//**
//**Register to talk on desired Channels**
//**
channel_ID = ControlExecutive.SAAM_CONTROL_PORT;
try{

controlExec.addTalkerToChannel(this,
channel_ID) ;

gui.sendText("Talking enabled on channel: "+ channel_ID);
}catch(ChannelException ce){
gui.sendText(ce.toString());

}

/**
* When instantiated to receive packets, the PacketFactory
* Thread waits until a SAAMPacket arrives, then it calls
* the processPacket method.
*/

public void run(){
while (true) { ·

try{
if (! started) {

/* synchronized(this){

*/

guL sendText ("Wai ting ... ") ;
while(!started) wait();
started=true;

synchronized(theLock){
gui. sendText ("Wai ting ... ") ;
while(!started) theLock.wait();

180

started=true;

}
}catch(InterruptedException ie){

gui.sendText(ie.toString());

/**

}
gui . sendText (n Resumed II) ;

processPacket();
}//while(started)

* This method is called by the Channels this Object has registered to
* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.

public synchronized void receiveEvent(SaamEvent se){
*I
public void receiveEvent(SaamEvent se){

gui . sendText (11 Got a packet 11
) ;

currentEvent=se;
//check to see if the currentThread has an owner, if it
//does, notify the owner that the event has arrived.
//otherwise, just process the packet.
if (! firstEvent) {

synchronized(theLock){
theLock.notify();

}
if (!started) {

synchronized(theLock){
started=true;
theLock.notify();

}else{
processPacket();

}
}else{

firstEvent=false;
started=true;
start();

se=null;

!**
* This method is used to extract the individual Class
* Objects that are represented in the packet. These Class
* Objects are either of type 0 (ResidentAgent) or 1 (Message) .<p>
* If a ResidentAgent is received, a Class Object is created
* that represents the agent. That Class Object is then sent to
* the ControlExecutive for screening and agent instantiation.<p>
* If a Message is received, that Message is instantiated and sent
* to the ControlExecutive for further processing.
*/

private void processPacket() {
int channel= currentEvent.getChannel_ID();
String eventSource = (String)currentEvent.getSource();

//packet is a byte array

181

packet ((ProtocolStackEvent)currentEvent) .getPacket();

//see saam.util for PrimitiveConversions and Array classes
long timeStamp = PrimitiveConversions.getLong(

Array.getSubArray(packet,0,8));
numberOfMessages=packet[8];
gui.sendText("packet arrived: " +

"\n source: " + eventSource +
"\n channel: " + channel +
11 \n size: n + packet.length +
"\n # of updates: " + numberOfMessages +
"\n timeStamp: " + timeStamp) ;

//now we trim the packet by removing the header.
packet= Array.getSubArray(packet,9,packet.length);

//used to track the current position in the array.
int index = O;

//extract and process each atomic element of the packet
//separately. Here we assume the packet is a properly
//formatted SAAMPacket when it arrives, and that the
//length is less than the max allowed.
for(int i=l;i<=numberOfMessages;i++){

gui.sendText("\nProcessing Element["+i+"] :");
byte type= packet[index++];
gui.sendText(" type: "+type);

//retrieve the number of bytes the class name occupies
byte nameLength = packet[index++];

//extract the name of the class file as a byte array
byte[] elementNameArray = Array.getSubArray(

packet,index, index+nameLength);
index+=nameLength;

//convert the name back into a String
String elementName =new String(elementNameArray);
gui. sendText (" Name: "+elementN~e) ;

//retrieve the length of the Object
short length = PrimitiveConversions.getShort(·

Array.getSubArray(packet,index,index+2));
gui. sendText (" Length: "+length) ;
index+=2;

//retrieve the bytecode of the Object
byte[] bytes = Array.getSubArray(

packet, index, index+ length) ;
index+=length;

switch(type){
case 0:

gui.sendText("This is a ResidentAgent");
//Assume this class is of type ResidentAgent
try{

//Attempt to define the class using the current
//class loader.
loader.defClass(elementName, bytes);

}catch(LinkageError le){

182

//If the loader already has a definition for the class
Ila LinkageError will be thrown. If this happens, we
//need to instantiate a new class loader and use it to
//define the class. A nice little trick we learned from
//page 55 of Jason Hunter's "Java Servlet Programming" book.
gui.sendText(le.toString());
gui.sendText("Class was previously loaded ... ");
gui.sendText("Replacing old ClassLoader ... ");
Loader newLoader =new Loader();
newLoader.defClass(elementName, bytes);

}
try{

//message is of type Class.
message= Class.forName(elementName, true, loader);

}catch(ClassNotFoundException cnfe){
gui.sendText(cnfe.toString());

}
gui.sendText(message.toString());
ResidentAgentEvent rae = new ResidentAgentEvent(

eventSource,
this,
ControlExecutive.SAAM_CONTROL_PORT,
message);

try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(rae);

}catch(ChannelException tde) {
gui.sendText(tde.toString());

break;
case 1:

gui.sendText("This is a Message");
//Assume this class is of type Message.
try{

//message is of type Class.
message= Class.forName(elementName);

}catch(ClassNotFoundException cnfe){
{gui.sendText("Bytecode for: "+elementName+

" not found.");

try{
//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message.getConstructor(

new Class [] {byte [] . class}) ;

//Create the instance of this Message
Message instance =

(Message)cons.newinstance(
new Object[] {bytes});

gui.sendText(instance.toString());
MessageEvent me = new MessageEvent(

eventSource,
this,
ControlExecutive.SAAM_CONTROL_PORT,
instance);

//send this MessageEvent on the Control port.

183

try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){

//need to notify sender that we have no classfile
//with this name
gui.sendText(e.toString());

}//try-catch
break;

default:
gui.sendText("Packet type unrecognized: "+type);
//packet type is unrecognized. Here we could
//extract a channel_ID that could be embedded
//in the packet, and then send the unrecognized
//element on that channel.

}//switch
}//for
started=false;

}//processPacket()

/**
* This method can be used to append a Message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* @param me The Message to be appended.
*I

public void append(Message me){
if(bytesRetrieved){

packet=null;
numberOfMessages=O;
bytesRetrieved = false;

}
byte type= me.getType();
String name= me.getClass() .getName();
byte nameLength = (byte)name.getBytes() .length;
byte[] parameters= me.getBytes();

//here we could check the length of the parameter array supplied
//with the length returned from the length() method call.
short paramLength = (short)parameters.length;
//now append the Message to the packet byte array
packet Array.concat(packet,type);
packet Array.concat(packet,nameLength);
packet Array.concat(packet,name.getBytes());
packet Array.concat(packet,

PrimitiveConversions.getBytes(paramLength));
packet= Array.concat(packet,parameters);
//increment the count of messages in this packet
numberOfMessages++;

gui . send Text ("Appended Mes sage: " +
"\n Type: n + type +
"\n name: " + name +
11 \n param length: " + paramLength +
"\n # of elements: " + numberOfMessages +
"\n packet length: " + packet. length+" \n") ;

184

I**
* This method can be used to append a ResidentAgent to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* @param ra The ResidentAgent to be appended.
*I

public void append(ResidentAgent ra) throws IOException{
String name= ra.getClass() .getName();
append (name) ;

I**
* This method can be used to append a ResidentAgent by name to an
* outgoing SAAMPacket. To later retrieve the entire packet
* (with header) as a byte array, call the getBytes method.
* @param residentAgentClassName The String name of the ResidentAgent
* classfile to be appended.
*I

public void append(String residentAgentClassName)
throws IOException{
if(bytesRetrieved){

packet=null;
numberOfMessages=O;
bytesRetrieved = false;

}
byte type = O;
String name = residentAgentClassName;
String f ileName =

"C:\\WINNT\\Profiles\\administrator\\Desktop\\Java\\saamjuly\\saamxpandl
"+File.separatorChar +
II String fileName = File.separatorChar +

residentAgentClassName.replace('.',File.separatorChar);
fileName+=".class";
gui.sendText("File name: •+fileName);
FileinputStream fis = null;
try{

fis =new FileinputStream(fileName);
}catch(IOException ioe){

throw new IOException(
"Problem reading ResidentAgent: •+fileName);

}
byte nameLength = (byte)name.getBytes() .length;
byte[] byteCode =new byte[fis.available()];
short length= (short)fis.read(byteCode);

packet Array.concat(packet,type);
packet Array.concat(packet,nameLength);
packet Array.concat(packet,name.getBytes());
packet = Array.concat(packet,

PrimitiveConversions.getBytes(length));
packet= Array.concat(packet,byteCode);
numberOfMessages++;

gui.sendText("Appended ResidentAgent:" +
"\n Type: n + type +
"\n name:
"\n byteCode length:
"\n # of elements:
"\n packet length:

n + name +
" + length +
• + numberOfMessages +
n + packet.length+"\n");

185

}

/**
* Appends a header to the byte array. The header conforms
* to the structure of a SAAMHeader.
*I

private void appendHeader(){
byte[] timeStamp = PrimitiveConversions.getBytes(

System.currentTimeMillis());
packet= Array.concat(numberOfMessages,packet);
packet= Array.concat(timeStamp,packet);
gui . sendText ("Appended header: "+

"\n timeStamp: "+PrimitiveConversions.getLong(
Array.getSubArray(packet,0,8))+

"\n # of updates: "+packet[8] +
"\n packet length: "+packet.length+"\n");

/**
* Returns a byte array that conforms to the structure of
* a SAAMPacket.
* @return A byte array that conforms to the structure of
* a SAAMPacket:
*I

public byte[] getBytes(){
appendHeader();
bytesRetrieved = true;
return packet;

/**
* Returns the current length of the packet.
* @return The current length of the packet.
*/

public int length(){
try{

return packet.length;
}catch(NullPointerException npe){

return O;

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*/

public String toString(){
return "Packet Factory•;

}

186

APPENDIX C. DEMO PACKAGE SOURCE CODE

187

package saam.demo;

import java.net.*;
import java.io.IOException;
import java.util.Vector;

import saam.*;
import saam.control.*;
import saam.message.*;
import saam.residentagent.*;
import saam.router.*;
import saam.net.*;
import saam.util.*;

/**
* This is a simple DemoStation used early on in testing the prototype.
* It merely stands up two routers and a server.
*/

public class DemoStation {

public static final int totalNumberOfinterfaces = 10;

private PacketFactory packet= new PacketFactory();
private Object[] IP;
private byte[] macs= new byte[lO];
private vector willowIDs =new Vector(4);
private Vector peachIDs =new Vector(4);
private Vector bonsaiIDs =new Vector(4);
private Vector mapleIDs =new Vector(l);
private Object[] nextHopV6;
private InetAddress peachV4, willowV4, mapleV4, bonsaiV4, localV4;
private byte type;
private int destEmulationPort=9002;
private SAAMRouterGui gui =new SAAMRouterGui("DemoStation");
private IPv6Address v6Zero;
private DatagramSocket socket;
private ServerID serverID;
private String[] coreAgents =

{"saam.residentagent.router.Scheduler",
"saam.residentagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"};

public static void main(String args[]){
DemoStation test= new DemoStation();

}

public DemoStation(){
try{

socket= new DatagramSocket();
gui. setTextField ("My IP: "+

InetAddress.getLocalHost() .getHostAddress());
II dest = InetAddress.getByName("127.0.0.1");

//All of this constructor info could easily reside in
//a database (or flat file, I suppose).

//construct IPs that will reside on Willow's router
110
IP = Array.concat(IP,

IPv6Address.getByName(

188

"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2"));
Ill
IP Array.concat{IP,

IPv6Address.getByName(
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.1"));

//2
IP = Array.concat(IP,

IPv6Address.getByName(
"99.99.99.1.0.0.0.0.0.0.0.0.0.0.0.1"));

//construct IPs that will reside on Peach's router
113
IP = Array.concat(IP,

IPv6Address.getByName(
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.2"));

114
IP= Array.concat(IP,

IPv6Address.getByName(
"99.99.99.3.0.0.0.0.0.0.0.0.0.0.0.2"));

115
IP Array.concat(IP,

IPv6Address.getByName(
"99.99.99.5.0.0.0.0.0.0.0.0.0.0.0.1"));

//server IP
116
IP = Array.concat(IP,

IPv6Address.getByName(
"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1"));

//construct IPs that will reside on Bonsai's router
//7
IP= Array.concat(IP,

IPv6Address.getByName(
"99.99.99.1.0.0.0.0.0.0.0.0.0.0.0.2"));

//8
IP = Array.concat(IP,

IPv6Address.getByName(
"99.99.99.3.0.0.0.0.0.0.0.0.0.0.0.1"));

119
IP= Array.concat(IP,

IPv6Address.getByName(
"99.99.99.4.0.0.0.0.0.0.0.0.0.0.0.1"));

//IPs of the interfaces on the router being instantiated
//on Willow
macs[O) = 2;
willowIDs.add(

new InterfaceID((IPv6Address)IP[O],macs[O]));
macs[l] = 4;
willowIDs.add(

new InterfaceID((IPv6Address)IP[l],macs[l])); .
macs[2] = 3;
willowIDs.add(

new InterfaceID({IPv6Address)IP[2],macs[2]));

//IP of the interface on the router being instantiated
//on Maple
macs[3] = l;
mapleIDs.add(

189

new InterfaceID((IPv6Address)IP[6],macs[3]});

//IPs of the interfaces on the router being instantiated
//on Peach
macs[4] = 8;
peachIDs.add(

new InterfaceID((IPv6Address)IP[3] ,macs[4']));
macs[5] = 9;
peachIDs.add(

new InterfaceID((IPv6Address)IP[4],macs[5]));

macs[6] = 10;
peachIDs.add(

new InterfaceID((IPv6Address)IP[5],macs[6]));

//IPs of the interfaces on the router being instantiated
//on Bonsai
macs[7] = 5;
bonsaiIDs.add(

new InterfaceID((IPv6Address)IP[7],macs[7]));
macs[8] = 6;
bonsaiIDs.add(

new InterfaceID((IPv6Address)IP[8],macs[8]));

macs[9] = 7;
bonsaiIDs.add(

new InterfaceID((IPv6Address)IP[9],macs[9]));

//various IPs of nextHops
for(int i=O;i<totalNumberOfinterfaces;i++){

nextHopV6 =
Array.concat(nextHopV6, (IPv6Address)IP[i]);

} I /for
peachV4 = InetAddress.getByName("l31.120.8.140");
mapleV4 = InetAddress.getByName("l31.120.8.142");
willowV4 = InetAddress.getByName("l31.120.8.133");
bonsaiV4 = InetAddress.getByName("l31.120.8.143");
localV4 = InetAddress.getLocalHost();
serverID =new ServerID((IPv6Address)IP[6],mapleV4);

}catch(Exception uhe){
gui.sendText(uhe.toString());

/* constructMaplePacket();

. *I

I*

*I

}

/**

try{
Thread.sleep(7000);

}catch(InterruptedException ie){}

constructWillowPacket();

try{
Thread.sleep(7000);

}catch(InterruptedException ie){}
sendWillowEmulationTableRemove();

constructPeachPacket();

socket.close();

190

* Constructs a SAAMPacket to stand up a router on the machine
* named Willow.
*/

public void constructWillowPacket(){

packet.append(serverID);

//add Willow's three InterfaceIDs
DemoHello helloMessage =new DemoHello(willowIDs);
packet.append(helloMessage);

try{
//now append some ResidentAgents ...
//first the agents that are necessary for the
//protocol stack
for(int i=O;i<coreAgents.length;i++){
gui.sendText("Appending core agent: "+coreAgents[i]);
packet.append(coreAgents[i]);

}
//then any additional agents for the specific host

}catch(IOException ioe){
gui.sendText(ioe.toString());

//add one entry to the FlowRoutingTable
int flowID = 0;
byte sl = O;
packet.append(new FlowRoutingTableEntry(

flowID,sl, (IPv6Address)nextHopV6[6]));

packet.append(
new EmulationTableEntry(

(IPv6Address)nextHopV6[6],mapleV4));

//this entry is erroneous and can be removed using
//sendWillowEmulationTableRemove()
packet.append(

new EmulationTableEntry(
(IPv6Address)nextHopV6[2],willowV4));

packet.append(
new EmulationTableEntry(

(IPv6Address)nextHopV6[3],peachV4));

packet.append(
new EmulationTableEntry(

(IPv6Address)nextHopV6[7],bonsaiV4));

//add four entries to the ARPCache
byte nextMAC = (byte) (l);
packet.append(

rtew ARPCacheEntry((IPv6Address)nextHopV6[6], nextMAC));

nextMAC = (byte) (8);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[3], nextMAC));

nextMAC = (byte) (5);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[7], nextMAC));

191

}

try{
packet.append(11 saam.residentagent.router.LsaGenerator 11

);

packet.append(11 saam.residentagent.router.TwoWayFlows 11
);

}catch(IOException ioe){
gui.sendText(ioe.toString());

//this is just too darn easy!
//now send the packet
byte[] packetArray = packet.getBytes();
gui.sendText("#of updates: 11 +packetArray[8]);
InetAddress dest = willowV4;
try{

DatagramPacket outboundPacket =
new DatagramPacket(packetArray,packet.length(),

dest,destEmulationPort);
socket.send(outboundPacket);

}catch(Exception e){
gui.sendText(e.toString());

gui.sendText("Packet sent to "+dest.getHostAddress());

public void sendWillowEmulationTableRemove(){
packet.append(

/**

new EmulationTableEntry((IPv6Address)nextHopV6[2]));

byte[] packetArray = packet.getBytes();
gui.sendText("#of updates: "+packetArray[8]);
InetAddress dest = willowV4;
try{

DatagramPacket outboundPacket =
new DatagramPacket(packetArray,packet.length(),

dest,destEmulationPort);
socket.send(outboundPacket);

}catch(Exception e){
gui.sendText(e.toString());

gui.sendText("Packet sent to "+dest.getHostAddress());

* Constructs a SAAMPacket to stand up a router on the machine
* named Peach.
*/

public void constructPeachPacket(){

packet.append(serverID);

//add Peach's three InterfaceIDs
DemoHello helloMessage =new DemoHello(peachIDs);
packet.append(helloMessage);

try{
//now append some ResidentAgents ...
//first the agents that are necessary for the
//protocol stack
for(int i=O;i<coreAgents.length;i++){

packet.append(coreAgents[i]);
}
//then any additional agents for the specific host

}catch(IOException ioe){
gui.sendText(ioe.toString());

192

--

//add one entry to the FlowRoutingTable
int flowID = O;
byte sl = O;
packet.append(new FlowRoutingTableEntry(

flowID,sl, (IPv6Address)nextHopV6[1]));

packet.append(
new EmulationTableEntry(

(IPv6Address)nextHopV6[1],willowV4));

packet.append(
new EmulationTableEntry(

(IPv6Address)nextHopV6[8],bonsaiV4));

//add two entries to the ARPCache
byte nextMAC = (byte) (4);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[1], nextMAC));

nextMAC = (byte) (6);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[8], nextMAC));

try{
packet.append("saam.residentagent.router.LsaGenerator");
packet.append("saam.residentagent.router.TwoWayFlows");

}catch(IOException ioe){
gui.sendText(ioe.toString());

}
//this is just.too darn easy!
//now send the packet
byte[] packetArray = packet.getBytes();
gui.sendText("#of updates: "+packetArray[8]);
try{

DatagramPacket outboundPacket =
new DatagramPacket(packetArray,packet.length(),

· peachV4,destEmulationPort);
socket.send(outboundPacket);

}catch(Exception e){
gui.sendText(e.toString());

}
gui.sendText("Packet sent to "+peachV4.getHostAddress());

}//constructPeachPacket()

/**
* Constructs a SAAMPacket to stand up a server on the machine
* named Maple.
*/

public void constructMaplePacket(){

packet.append(serverID);

//add Maple's InterfaceID
DemoHello helloMessage =new DemoHello(mapleIDs);
packet.append(helloMessage);

try{
//now append some ResidentAgents ...
//first the agents that are necessary for the

193

//protocol stack
for(int i=O;i<coreAgents.length;i++){
packet.append(coreAgents[i]);

}
//then any additional agents for the specific host
packet.append("saam.residentagent.server.ServerAgent");

}catch(IOException ioe){
gui.sendText(ioe.toString());

//add one entry to the FlowRoutingTable
int flowID = 0;
byte sl = O;
packet.append(new FlowRoutingTableEntry(

flowID,sl, (IPv6Address)nextHopV6[6]));

//add one entry to the FlowRoutingTable
flowID = l;
sl = O;
packet.append(new FlowRoutingTableEntry(

flowID,sl, (IPv6Address)nextHopV6[0]));

//add one entry to the EmulationTable
packet.append(

new EmulationTableEntry(
(IPv6Address)nextHopV6[6],mapleV4));

//add one entry to the EmulationTable
packet.append(

new EmulationTableEntry(
(IPv6Address)nextHopV6[0],willowV4));

//add one entry to the ARPCache
byte nextMAC = (byte) (l);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[6], nextMAC));

//add one entry to the ARPCache
nextMAC = (byte) (2);
packet.append(

new ARPCacheEntry((IPv6Address)nextHopV6[0J, nextMAC));

//this is just too darn easy!
//now send the packet
byte[] packetArray = packet.getBytes();
gui.sendText("#of updates: "+packetArray[8]);
try{

Datagram.Packet outboundPacket =
new DatagramPacket(packetArray,packet.length(),

mapleV4,destEmulationPort);
socket.send(outboundPacket);

}catch(Exception e){
gui.sendText(e.toString());

gui.sendText("Packet sent to "+mapleV4.getHostAddress());

//let's send another

194

import java.net.*;
import java.io.IOException;

import saarn.*;
import saarn.net.*;
import saarn.router.*;
import saarn.util.*;
import saarn.event.*;

public class SAAMPacketSender

private static final int packetCount=4;
private PacketFactory packet= new PacketFactory();
private byte[] packetArray;
private InetAddress dest;
private int destErnulationPort=9001;
private SAAMRouterGui gui;

public static void main(String args[]){
SAAMPacketSender test= new SAAMPacketSender();

public SAAMPacketSender(){
gui =new SAAMRouterGui("SAAMPacketSender");
try{

gui. setTextField ("My IP: "+
InetAddress.getLocalHost() .getHostAddress());

dest = InetAddress.getByNarne("131.120.1.87");
//construct the IPv6Header

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}
constructPacket();

public void constructPacket(){
//stuff all this into the packet
packet= new PacketFactory();

//construct and append the MAC
byte MAC = (byte)4;
packet.append(MAC);

//construct and append the IPv6Header
int flowLabel = O;
IPv6Address v6Source null;
IPv6Address v6Dest = null;
try{

v6Source = IPv6Address.getByNarne(
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.2");

v6Dest = IPv6Address.getByNarne(
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.1");

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}
IPv6Header v6Header =new IPv6Header(

flowLabel,v6Source, v6Dest);
packet.append(v6Header.getHeader());

//construct and append the UDPHeader
short sourcePort = 8000;

195

short destPort = ApplicationEvent.SAAM_CONTROL_PORT;
short payloadLength 5000;
short checksum = O;
UDPHeader udpHeader new UDPHeader(sourcePort,

destPort,payloadLength,checksum);
packet.append(udpHeader.getHeader());

//next we construct and append a SAAMPacket that
//contains two FlowRoutingTableAdds and one
//FlowRoutingTableRemove. This process
//involves first constructing the payload which
//will consist of the three updates, and
//then constructing the SAAMHeader, then calling the
//constructor to SAAMPacket, providing the SAAMHeader
//and payload as parameters. Then we append the
//SAAMPacket to the outbound packet.
byte numberOfSaamUpdates=O;
//construct the payload for the SAAMPacket
PacketFactory saamPayload =new PacketFactory();

//////ll/////////l/!////l//////////ll//l//I//
//add two entries to the FlowRoutingTable
byte type = 4;
int[] flowID = {1024,1025};
byte[] sl = {3,3};
FlowRoutingTableAdd[] frtAdd =new FlowRoutingTableAdd[2];
for(int i=O;i<2;i++){

//constructing a FlowRoutingTableAdd and calling the getBytes
//method here is easier than manually converting the int
//flowID to a 3-byte array.
IPv6Address nextHop = null;
try{

nextHop = IPv6Address.getByName(
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.2");

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString{));

}
frtAdd[i) = new FlowRoutingTableAdd(

flowID[i],sl[i],nextHop);
saamPayload.append(type);
saamPayload.append(frtAdd[iJ .getBytes());
numberOfSaamUpdates++;
try{
gui.sendText((new FlowRoutingTableAdd(

frtAdd[i) .getBytes()) .toString()));
}catch(UnknownHostException uhe){}

}//for
//demonstrate how to remove an entry ... here we remove
//the last entry made
type = 5;
saamPayload.append(type);

FlowRoutingTableRemove f rtRemove =
new FlowRoutingTableRemove(flowID[OJ);

saamPayload.append(frtRemove.getBytes());
numberOfSaamUpdates++;
gui.sendText(frtRemove.toString());

//l////////ll////////ll//ll////////////l//I//

//construct the SAAMHeader
SAAMHeader saamHeader = new SAAMHeader(

196

255,numberOfSaamUpdates);
gui.sendText("Saam header:\n "+saamHeader.toString());
gui.sendText("numberOfSaamUpdates: "+numberOfSaamUpdates);

//construct the SAAMPacket by providing the constructor
//the SAAMHeader and saamPayload we just created.
SAAMPacket saamPacket = new SAAMPacket(saarnHeader,

saamPayload.getBytes());

//now append the saamPacket to the outbound packet
packet.append(saamPacket.getBytes());

//convert the entire packet to a byte' array and send it.
packetArray = Array.concat(packetArray,packet.getBytes());
//this is just too darn easy!
//now send the packet
try{

gui.sendText("packetArray.length: "+packetArray.length);
DatagramPacket outboundPacket =

new DatagramPacket(packetArray,packetArray.length,
dest,destEmulationPort);

(new DatagramSocket()) .send(outboundPacket);
}catch(Exception e){

gui.sendText(e.toString());
}
gui.sendText("Packet sent to "+dest.getHostAddress());

}//constructPacket()

197

198

APPENDIX D. EVENT PACKAGE SOURCE CODE

199

package saam.event;

import saam.net.SAAMPacket;

/**
* ApplicationEvents are used by the Transport Interface to
* notify port listeners that a packet has arrived that is
* destined for a specific port.
*/

public class ApplicationEvent extends SaamEvent {

}

/**
* The byte array representing the packet.

* @serial
*/

private byte[] packet;

/**
* Constructs an ApplicationEvent with the associated
* attributes.
* @param eventSource The original source of the event.
* @param talker The SaamTalker that sent the event.
* @param port The port the packet is destined for.
* @param packet The byte array representing the arriving packet.
*/

public ApplicationEvent(String eventSource,
SaamTalker talker, int port, byte[] packet){

super(eventSource,talker,port);
this.packet = packet;

/**
* Returns the port associated with this ApplicationEvent.
* @return The port associated with this ApplicationEvent.
*/

public int getPort(){

/**

return super.getChannel_ID();

* Returns the entire packet as a byte array.
* @return The entire packet as a byte array.
*/

public byte[] getPacket(){
return packet;

}

200

package saam.event;

/**
* ChannelExceptions are thrown for various reasons. For
* example, if a SaamTalker is not authorized to talk on
* a Channel, but requests to do so, this exception is thrown.
*/

public class ChannelException extends Exception{

}

/**
* Constructs a generic ChannelException
*/

public ChannelException()
super();

/**
* Constructs a ChannelException with a descriptive String.
* @param s A String describing the Exception in more detail.
*I

public ChannelException(String s) {
super (s);

}

201

package saam.event;

import saam.message.Message;

/**
* A MessageEvent is a simple SaamEvent that contains a Message
* and a port on which the Message will be sent. The
* PacketFactory constructs and sends MessageEvents to the
* ControlExecutive when Messages are received.
*I

public class MessageEvent extends SaamEvent {

}

/**
* @serial
*I
private Message message;

/**
*Constructs.a MessageEvent with the attributes provided.
* @param eventSource The location from which the Message originated.
* @param talker The Object that instantiated the MessageEvent.
* @param port The port on which the Message is to be passed.
* @param message The Message to be passed.
*I

public MessageEvent(String eventSource,
SaamTalker talker, int port, Message message){

super(eventSource,talker,port);
this.message = message;

/**
* Returns the UDP port associated with this MessageEvent.
* @return The UDP port associated with this MessageEvent.
*/

public int getPort(){
return super.getChannel_ID();

/**
* Returns the Message associated with this MessageEvent.
* @return The Message associated with this MessageEvent.
*/

public Message getMessage(){
return message;

}

202

package saam·. event;

/**
* PortAccessDeniedException are thrown for various reasons. For
* example, if a ResidentAgent is not authorized to talk on
* a particular port, but requests to do so, this exception is thrown.
*I .

public class PortAccessDeniedException extends Exception{

/**
* Constructs a generic PortAccessDeniedException
*/

public PortAccessDeniedException()
super();

!**
* Constructs a PortAccessDeniedException with a descriptive String.
* @param s A String describing the Exception in more detail.
*/

public PortAccessDeniedException(String s) {
super(s);

203

/**
* A container for all methods associated.with event-handling
* within the SAAM architecture.
*I

package saam.event;

import saam.net.IPv6Address;

/**
* A ProtocolStackEvent is an event that is fired from within
* the protocol stack. Normally this class is used as a means
* of communications between Objects within the protocol stack,
* such as to pass a packet from the Interface to the RoutingAlgorithm.
*I

public class ProtocolStackEvent extends SaamEvent

/**
* The ID of the Channel used primarily to pass packets from the
* RoutingAlgorithm to the Transportinterface
*/

public static final int
FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL

= 80001;

/**
* The ID of the Channel used primarily to initiate

LinkStateAdvertisements.
*I

public static final int LSA_CHANNEL 80002;

/**
* The ID of the Channel used primarily to pass packets from the
* Translator to all of the NetworkinterfaceCards simultaneously.
*I

public static final int
FROM_TRANSLATOR_TO_NICS_CHANNEL = 80003;

/**
* The ID of the Channel used primarily to pass packets to the

PacketFactory.
*/

public static final int
PACKETFACTORY_CHANNEL 80004;

!**
* The ID of the Channel used primarily to pass packets from any
* NetworkinterfaceCard to the Translator.
*I

public static final int
FROM_NICS_TO_TRANSLATOR_CHANNEL 80005;

/**
* The ID of the Channel used primarily to pass packets from the
* Transportinterface to the RoutingAlgorithm.
*/

public static final int
FROM_TRANSPORTINTERFACE_TO_ROUTINGALGORITHM_CHANNEL

= 80006;
/**
* The ID of the Channel used primarily to pass packets from the
* first instantiated NetworkinterfaceCard to the first instantiated
* Interface.

204

*I
public static final int

FROM_NIC_TO_INTERFACE_START_CHANNEL

/**

80300;

* The ID of the Channel used primarily to pass packets from the first
* instantiated Interface and destined for the inbound Queue

associated
* with that Interface.
*/

public static final int
ENQUEUING_INBOUND_PACKET_START_CHANNEL 80400;

/**
* The ID of the Channel used primarily to pass packets from the
* RoutingAlgorithm to the first instantiated Interface.
*I

public static final int
FROM_ROUTINGALGORITHM_TO_INTERFACE_START_CHANNEL

= 80500;
/**
* The ID of the Channel used primarily to pass packets from 'the
* first instantiated Interface to a Service Level Queue of that
* Interface
*/

public static final int
FROM_INTERFACE_TO_SLQUEUE_START_CHANNEL 80600;

/**
* The ID of the Channel used primarily to pass packets from a
* Service Level Queue to the Scheduler associated with the Interface
* to which that Queue belongs. ·
*I

public static final int
FROM_SLQUEUE_TO_SCHEDULER_START_CHANNEL 80700;

/**
* The ID of the Channel usedrprimarily to pass packets from the
* first instantiated Scheduler to the NetworkinterfaceCard associated
* with that Scheduler.
*I

public static final int
FROM_SCHEDULER_TO_NIC_START_CHANNEL 80800;

!**
* The byte array representing the packet.

* @serial
*I

private byte[] packet;

public static final int DEFAULT_SERVICE_LEVEL 3;

/**
* Represents
* @serial
*I
private int

!**

the service level associated with this event.

serviceLevel DEFAULT_SERVICE_LEVEL;

205

* Represents the next hop associated with this event.
* @serial
*!
private IPv6Address nextHop;

!**
* Constructs a ProtocolStackEvent with the given attributes.
* @param eventSource The object where the event originated.
* @param talker The SAAMTalker that instantiated this event.
* @param channel_ID The ID of the channel this event occured on.
* @param packet The byte array representing the packet.
*!
public ProtocolStackEvent(String eventSource,

SaamTalker talker, int channel_ID, byte[] packet){
super(eventSource,talker,channel_ID);
this.packet = packet;

}

/**
* Constructs a ProtocolStackEvent with the given attributes.
* @param eventSource The object where the event originated.
* @param talker The SAAMTalker that instantiated this event.
* @param channel~ID The ID of the channel this event occured on.
* @param packet The byte array representing the packet.
* @param serviceLevel The service level associated with this event.
*/
public ProtocolStackEvent(String eventSource,

SaamTalker talker, int channel_ID, byte[] packet,
int serviceLevel){

!**

super(eventSource, talker, channel_ID);
this.packet = packet;
this.serviceLevel = serviceLevel;

* Constructs a ProtocolStackEvent with the given attributes.
* @param eventSource The object where the event originated.
* @param talker The SAAMTalker that instantiated this event.
* @param channel_ID The ID of the channel this event occured on.
* @param packet The byte array representing the packet.
* @param serviceLevel The service level associated with this event.
* @param IPv6Address nextHop The IPv6Address of the next hop.
*!
public ProtocolStackEvent(String eventSource,

SaamTalker talker, int channel_ID, byte[] packet,
int serviceLevel, IPv6Address nextHop){

super(eventSource, talker, channel_ID);

} .

/**

this.packet = packet;
this.serviceLevel = serviceLevel;
this.nextHop = nextHop;

* Returns an int representing the Channel primarily used for traffic
* originating at the NetworkinterfaceCard specified and destined for
* the Interface with the same number as nicNumber.
* @param nicNumber The instance number of the Networkinterf aceCard
* @return An int representing the Channel primarily used for traffic
* originating at the NetworkinterfaceCard specified and destined for
* the Interface with the same number as nicNumber.

206

*!
public static int getFrornNICTointerfaceChannel(

int nicNumber){
return FROM_NIC_TO_INTERFACE_START_CHANNEL+

nicNumber;

/**
* Returns an int representing the Channel primarily used for traffic
* originating at the RoutingAlgorithm and destined for
* the Interface with interfaceNumber.
* @param interfaceNumber The instance number of the Interface
* @return An int representing the Channel primarily used for traffic
* originating at the RoutingAlgorithm and destined for
* the Interface with interfaceNumber.
*/

public static int getFromRoutingAlgorithmTointerfaceChannel(
int interfaceNumber){
return FROM_ROUTINGALGORITHM_TO_INTERFACE_START_CHANNEL+

interfaceNumber;

/**
* Returns an int representing the Channel primarily used for traffic
* originating at the Interface with interfaceNumber and destined
* for the inbound Queue associated with that Interface.
* @param interfaceNumber The instance number of the Interface
* @return An int representing the Channel primarily used for traffic
* originating at the the Interface with interfaceNumber and destined
* for the inbound Queue associated with that Interface.
*/ .

public static int getEnqueuinginboundPacketChannel(
int interfaceNumber){
return ENQUEUING_INBOUND_PACKET_START_CHANNEL+interfaceNumber;

}
!**
* Returns an int representing the Channel primarily used for traffic
* originating at the Interface with interfaceNumber and destined for
* the service level Queue associated with that interface.
* @param interfaceNumber The instance number of the Interface
* @return An int representing the Channel primarily used for traffic
* originating at the Interface with interfaceNumber and destined for
* the service level Queue associated with that interface.
*I

public static int getFrominterfaceToSLQueueChannel(
int interfaceNumber){

}

return FROM_INTERFACE_TO_SLQUEUE_START_CHANNEL+
interfaceNumber;

/**
* Returns an int representing the Channel primarily used for traffic
* originating at the Scheduler specified by interfaceNumber and
* destined for the NetworkinterfaceCard with the same number as
* interfaceNumber.
* @param interfaceNumber The instance number of the Interface.
* @return An int representing the Channel primarily used for traffic
* originating at the Scheduler specified by interfaceNumber and
* destined for the NetworkinterfaceCard with the same number as
* interfaceNumber.
*/

public static int getFromSchedulerToNICChannel(
int interfaceNumber){
return FROM_SCHEDULER_TO_NIC_START_CHANNEL+

207

}

interfaceNurober;

!**
* Returns the entire packet as a byte array.

* @return The entire packet as a byte array.
*/
public byte[] getPacket(){
return packet;

}

/**
* Sets the byte array defined as the packet.
* @param packet The new value for the packet.
*/
public void setPaoket(byte[J packet){
this.packet = packet;

}

/**
* Returns the service level associated with this event.
* @return The service level associated with this event.

*/
public int getServiceLevel(){
return serviceLevel;

}

/**
* Returns the next hop associated with this event.
* @return The next hop associated with this event.

*/
public IPv6Address getNextHop(){
return nextHop;

}

ws

package saam.event;

import saam.residentagent.ResidentAgent;

/**
* A ResidentAgentEvent is a simple SaamEvent that contains a

ResidentAgentEvent
* and a port on which the ResidentAgentEvent will be sent. The
* PacketFactory constructs and sends ResidentAgentEvents to the
* ControlExecutive when ResidentAgents are received.
*I

public class ResidentAgentEvent extends SaamEvent

/**
* @serial
*/
private Class classObject;

/**
* Constructs a ResidentAgentEvent with the attributes provided.
* @param eventSource The location from which the ResidentAgent

originated.
* @param talker The Object that instantiated the ResidentAgentEvent.
* @param port The port on which the ResidentAgent is to· be pas·sed.
* @param classObject The Class Object representing the ResidentAgent

to be
* passed.
*I

public ResidentAgentEvent(String eventSource,
SaamTalker talker, int port, Class classObject){

super(eventSource,talker,port);
this.classObject = classObject;

}

/**
* Returns the UDP port associated with this ResidentAgentEvent.
* @return The UDP port associated with this ResidentAgentEvent.
*/

public int getPort(){
return super.getChannel_ID();

}

/**
* Returns the Class Object associated with this ResidentAgentEvent.
* @return The Class Object associated with this ResidentAgentEvent.
*I

public Class getClassObject(){
return classObject;

}

209

package saam.event;.

import saam.residentagent.ResidentAgent;

/**
* A ResidentAgentEvent is a simple SaamEvent that contains a

ResidentAgentEvent
* and a port on which the ResidentAgentEvent will be sent. The
* PacketFactory constructs and sends ResidentAgentEVents to the
* ControlExecutive when ResidentAgents are received.
*I

public class ResidentAgentEvent extends SaamEvent {

/**
* @serial
*I
private Class classObject;

/**
* Constructs a ResidentAgentEvent with the attributes provided.
* @param eventSource The location from which the ResidentAgent

originated.
* @param talker The Object that instantiated the ResidentAgentEvent.
* @param port The port on which the ResidentAgent is to be passed.
* @param classObject The Class Object representing the ResidentAgent

to be

}

* passed.
*I

public ResidentAgentEvent(String eventSource,
SaamTalker talker, int port, Class classObject){

super(eventSource,talker,port);
this.classObject = classObject;

}

/**
* Returns the UDP port associated with this ResidentAgentEvent.
* @return The UDP port associated with this ResidentAgentEvent.
*I

public int getPort(){
return super.getChannel_ID();

/**
* Returns the Class Object associated with this ResidentAgentEvent.
* @return The Class Object associated with this ResidentAgentEvent.
*I

public Class getClassObject(){
return classObject;

}

210

package saam.event;

/**
* A RouterStatusEvent is a simple SaamEvent that contains a boolean
* and a port on which the RouterStatusEvent will be sent. The
* ControlExecutive constructs and sends RouterStatusEvents to the
* Translator when the status of the router changes.
*I

public class RouterStatusEvent extends SaamEvent {

/**
* The boolean representing the status of the router.

* @serial
*/

private boolean status;

/**
* Constructs a RouterStatusEvent with the attributes provided.
* @param eventSource The location from which the RouterStatusEvent

originated.
* @param talker The Object that instantiated the RouterStatusEvent.
* @param port The port on which the RouterStatusEvent is to be

passed.
* @param status The boolean representing the status of the router.
*/

public RouterStatusEvent(String eventSource,
SaamTalker talker, int port, boolean status){

super(eventSource,talker,port);
this.status = status;

/**
* Returns the UDP port associated with this RouterStatusEvent.
* @return The UDP port associated with this RouterStatusEvent.
*/

public int getPort(){

!**

return super.getChannel_ID();

* Returns true if the router is up.
* @return True if the router is up.
*I

public boolean getStatus(){
return status;

}

211

package saam.event;

import java.util.EventObject;

/**
* This abstract class provides the structure for a basic
* event within the Saam architecture. Every SaamEvent has an event

source,
* a channel_ID, and a SaamTalker.
*!

public abstract class SaamEvent extends EventObject {

!**
* @serial
*!

private int channel_ID;

!**
* @serial
*!

private SaamTalker talker;

!**
* Constructs a SaamEvent with the attributes provided.
* @param eventSource The location from which the event originated.
* @param talker The Object that instantiated the event.
* @param channel_ID The ID of the Channel on which the event is
* to be passed.
*/
public SaamEvent(String eventSource,

SaamTalker talker, int channel_ID) {
super(eventSource);
this.talker=talker;
this.channel_ID = channel_ID;

!**
* Returns the ID of the channel associated with this event.
* @return The ID of the channel associated with this event.
*I
public int getChannel_ID(){
return channel_ID;

}

/**
* Sets the Channel ID for this event.
* @param channel_ID The new Channel ID.
*/

public void setChannel_ID(int channel_ID){
this.channel_ID=channel_ID;

}

/**
* Returns the SaamTalker associated with this event.
* @return The SaamTalker associated with this event.
*/

public SaamTalker getTalker() {
return talker;

}

!**

212

}

* Sets the SaamTalker for this event.
* @param talker The new SaamTalker.
*/

public void setTalker(SaamTalker talker){
this.talker=talker;

}

/**
* Returns a <code>String</code> representation of this event.
* @return The <code>String</code> representation of this event.
*/
public String toString(){

return "Channel_ID"+channel_ID+
"\n EventSource: "+getSource()+
"\n Talker: "+talker;

213

package saam.event;

import java.util.EventListener;

/**
* A SaamListener merely listens for SaamEvents.
*I

public interface SaamListener extends EventListener{

/**
* This method is called by the Channel to pass event notifications
* to the Objects that implement this interface.
*/

public void receiveEvent(SaamEvent se);

214

package saam.event;

import java.util.EventListener;

!**
* A SaarnListener merely _listens for SaarnEvents.
*/

public interface SaarnListener extends EventListener{

!**
* This method is called by the Channel to pass event notifications
* to the ·abjects that implement this interface.
*/

public void receiveEvent(SaamEvent se);

215

package saam.event;

/**
* We have Listeners, why not Talkers? Currently this interface is

merely
* a designator for a category of Objects. There are no methods

required
* for its implementation.
*!

public interface SaamTalker{

}

216

package saam.event;

import saam.net.SAAMPacket;
import saam.net.IPv6Address;
import saam.net.UDPHeader;

/**
* A TransportinterfaceEveht is a simple SaamEvent that is intended to
* be originated by the Transportinterface and destined for the
* RoutingAlgorithm.
*/

public class TransportinterfaceEvent extends SaamEvent {

/**
* @serial

*/
private int flowID;

/**
* @serial
*/
private IPv6Address dest;

/**
* @serial
*I
private UDPHeader udpHeader;

/**
* @serial
*/
private SAAMPacket saamPacket;

/**
* Constructs a TransportinterfaceEvent with the attributes provided.
* @param eventSource The location from which the event originated.
* @param talker The Object that instantiated the event.
* @param sourcePort The port from which the saamPacket originated.
* @param flowID The flow on which this packet is to travel.
* @param dest The IPv6Address o~ the destination for this

saamPacket.
* @param udpHeader The UDPHeader associated with this packet.
* @param saamPacket The SaamPacket that is to be sent.
*I

public TransportinterfaceEvent(String eventSource,
SaamTalker talker, int sourcePort, int flowID,
IPv6Address dest, UDPHeader udpHeader,
SAAMPacket saamPacket){

/**

super(eventSource,talker,sourcePort);
this.flowID = flowID;
this.dest = dest;
this.udpHeader=udpHeader;
this.saamPacket=saamPacket;

* Returns the flow ID associated with this event.
* @return The flow ID associated with this event.
*I
public int getFlowID(){
return flowID;

217

}

/**
* Returns the dest as an IPv6Address.
* @return The dest as an IPv6Address.
*I
public IPv6Address getDest(){
return dest;

}

!**
* Returns the UDPHeader associated with this event.
* @return The UDPHeader associated with this event.
*I
public UDPHeader getUDPHeader(){
return udpHeader;

}

!**
* Returns the SAAMPacket associated with this event.
* @return The SAAMPacket associated with this event.
*/
public SAAMPacket getSaamPacket(){
return saamPacket;

}

218

APPENDIX E. MESSAGE PACKAGE SOURCE CODE

219

package saam.message;

import java.net.UnknownHostException;

import saam.net.IPv6Address;
import saam.util.Array;

/**
* An ARPCacheEntry object contains an IPv6 address representing the
* next hop and a byte representing tqe MAC address of the next hop.
* The entry could be either an add or a remove depending on which
* constructor is used. An add is required to have both fields, whereas
* a remove only requires the field that is used as the lookup key in
* the associated table.
* Entries can be retrieved as a byte array using the getBytes()
* method.
*!

public class ARPCacheEntry extends Message{

/**
* The IPv6Address of the next hop for this Interface.
*/

private IPv6Address nextHop;

/**
* The length of this entry varies depending on whether
* the entry is intended to remove an entry from the associated
* table or to add an entry into the associated table. The default
* length is that of an entry to be added to the table.
*/

private short length = IPv6Address.length+l;

/**
* The MAC address of the NIC card on the next hop.
*I

private byte nextMAC;

/**
* The ARPCacheEntry represented as a byte array.
*I

private byte[] entry;

!**
* Creates a remove entry for the ARP Cache which
* consists of an IPv6Address.
* @param nextHop The IPv6Address of the next hop.
*I

public ARPCacheEntry(IPv6Address nextHop){
this.nextHop=nextHop;
this.length=IPv6Address.length;
entry= nextHop.getAddress();

}

/**
* Creates an add entry for the ARP Cache.
* @param nextHop The IPv6 address of the next hop.
* @param nextMAC The MAC address of the next hop.
* @param outboundMAC The MAC address of the outbound
* interface.
*!

public ARPCacheEntry(IPv6Address nextHop, byte nextMAC) {

220

this.nextHop=nextHop;
this.nextMAC = nextMAC;

//now build the array for this entry
entry= Array.concat(nextHop.getAddress(),nextMAC);

/**
* Creates either an add or a remove entry for the ARP

Cache
* depending on the length of the parameter.
* @param entry The IPv6Address received from the subclass.
*/

public ARPCacheEntry(byte[] entry) {
this.entry = entry;
try{

nextHop = new
IPv6Address(Array.getSubArray(entry,0,IPv6Address.length));

}catch(UnknownHostException uhe) {
//do something with this

}
if(entry.length == IPv6Address.length){

this.length = (short)entry.length;
}else{

nextMAC = entry[IPv6Address.length];

/**
* Returns the IPv6 address of the next hop associated with this

entry.
* @return The IPv6 address of the next hop associated with this

entry.
*I

public IPv6Address getNextHop(){
return nextHop;

/**
* Returns the MAC address of the NIC card on the next hop.
* @return The MAC address of the NIC card on the next hop.
*I

public byte getNextMAC(){
return nextMAC;

}

/**
* Returns The ARPCacheEntry as a byte array with
* the IPv6 address in the lowest order bytes.
* @return The ARPCacheEntry as a byte array with
* the IPv6 address in the lowest order bytes.
*I

public byte[] getBytes(){
return entry;

/**
* Returns the length of this entry.
* @return The length of this entry.
*/

public short length(){

221

}

return length;

/**
* Returns a <code>String</code> representation of this entry.
* @return The <code>String</code> representation of this entry
*I

public String toString() {

}

return ("\nNext Hop: " + nextHop. toString () +
(length==IPv6Address.length? 1111

:
11 \nNext MAC:" + nextMAC));

222

package saam.message;

import java.net.UnknownHostException;
import java.util.Vector;
import java.util.Enumeration;

import saam.net.*;
import saam.util.*;

!**
* The DemoHello Message is intended to
* and received by a ControlExecutive.

·* to transmit a set of InterfaceIDs to
* can stand up an Interface associated
*/

public class DemoHello extends Message
{

private Vector interfaceIDs;
private byte[] bytes;

!**

be sent from the DemoStation
The purpose of this Message is
a router so the ControlExecutive
with each InterfaceID provided.

* Constructs a DemoHello Message with the InterfaceIDs provided.
* @param interfaceIDs The Vector of InterfaceIDs that will be

assigned to

be

* the Interfaces on the destination router.
*/

public DemoHello(Vector interfaceIDs){
this.interfaceIDs = interfaceIDs;
Enumeration e = interfaceIDs.elements();
while(e.hasMoreElements()){

InterfaceID myinterface = (InterfaceID)e.nextElement();

//build the byte array
bytes= Array.concat(bytes,myinterface.getBytes());

/**
* Constructs a DemoHello Message from a byte array that is assumed to

* in the proper format for a DemoHello. Presumably, this constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated ·
*when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*/

public DemoHello(byte[J bytes){
this.bytes = bytes;
interfaceIDs =new Vector();
int i = O;
while(i <bytes.length){

try{
interfaceIDs.addElement(new InterfaceID(

Array.getSubArray(bytes, i, i+InterfaceID.length)));
i+=InterfaceID.length;

}catch(UnknownHostException uhe){}

223

}

!**
* Returns the Vector of InterfaceIDs associated with this Message.
* @return The Vector of InterfaceIDs associated with this Message.
*I

public Vector getinterfaceIDs(){
return interfaceIDs;

!**
* Returns the length of this Message.
* @return The length of this Message.'
*I

public short length(){
try{

return (short)bytes.length;
}catch(NullPointerException npe){

return O;
}

!**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

!**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I

public String toString(){
Enumeration e = interfaceIDs.elements();
while(e.hasMoreElements()){

e.nextElement() .toString();

return("Hello:\n"+interfaceIDs.toString());

224

package saam.message;

import java.net.UnknownHostException;
import java.net.InetAddress;
import saam.net.IPv6Address;
import saam.net.IPv4Address;
import saam.util.Array;

!**
* An EroulationTableEntry object contains an IPv6 address representing
* the next hop and an IPv4 address that maps to this IPv6 address.
* The entry could be either an add or a remove depending on which
* constructor is used. An add is required to have both fields, whereas
* a remove only requires the field that is used as the lookup key in
* the associated table.
* Entries can be retrieved as a byte array using the getBytes{)
* method.
*I

public class EroulationTableEntry extends Message{

//default length
private short length IPv6Address.length + IPv4Address.length;

!**
* The IPv6 address associated with the next hop.
*I

private IPv6Address nextHop;

/**
* The IPv4 address associated with the next hop.
*I

private InetAddress ri;

/**
* The EroulationTableEntry represented as a byte array.
*I

private byte[] entry;

/**
* Creates an entry for the emulation table.
* @pararo nextHop The IPv6 address to be stored in the Emulation

Table.
* @param v4 The IPv4 address to be stored in the Emulation Table.
*I

public EroulationTableEntry(IPv6Address nextHop, InetAddress v4) {
this.nextHop=nextHop;
this.v4 = v4;

//populate the entry array
entry= Array.concat{nextHop.getAddress(),v4.getAddress());

!**
* Creates an entry for the emulation table which
* consists of an IPv6Address.
* @param entry The IPv6Address received from the subclass.
*I

public EroulationTableEntry(IPv6Address nextHop){
this.nextHop=nextHop;
length = IPv6Address.length;
entry= nextHop.getAddress();

225

/**
* Creates an entry for the emulation table which
* consists of an IPv6Address.
* @param entry The IPv6Address received from the subclass.
*/

public EmulationTableEntry(byte[] entry){
this.entry = entry;
try{

nextHop = new
IPv6Address(Array.getSubArray(entry,0,IPv6Address.length));

}catch(UnknownHostException uhe){
//do something with this

}
if (entry. length == IPv6Address. length){

this.length = (short)entry.length;
}else{

byte[] v4Array = Array.getSubArray(
entry,IPv6Address.length,entry.length);

try{
this.v4 =

InetAddress.getByName(IPv4Address.toString(v4Array));
}catch(UnknownHostException uhe){

//do something with this
}//try-catch

}//if-else
}//EmulationTableEntry

/**
* Returns the IPv6 address in this entry.
* @return The IPv6Address used as a key in this entry.
*I

public IPv6Address getIPv6Address(){
return nextHop;

/**
* Returns the IPv4 address in this entry.
* @return The IPv4 address in this entry.
*/

public InetAddress getIPv4Address(){
return v4;

/**
* Returns The EmulationTableEntry as a byte array with
* the IPv6 address in the lowest order bytes.
* @return The EmulationTableEntry as a byte array with
* the IPv6 address in the lowest order bytes.
*/

public byte[] getBytes(){
return entry;

}

/**
* Returns the length of this entry.
* @return The length of this entry.
*I

public short length(){
return length;

226

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I
public String toStririg() {

return ("Next Hop: " + nextHop. toString () +
(length==IPv6Address,length? "":", " +

v4.getHostAddress()));
}

}

227

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;

/**
* An Object desiring to communicate within a SAAM network will call the
* requestFlow method in the ControlExecutive. The ControlExecutive

will
* then construct a FlowRequest Message and send it to the server.
*I

public class FlowRequest extends Message{

private IPv6Address source interface= new IPv6Address();
private IPv6Address destination_interface =new IPv6Address();
private long time_stamp;
private int requested_delay;
private int requested_loss_rate;
private int requested_throughput;

private byte[] bytes;

/**
* No-Args constructor which constructs a FlowRequest using the

default
* values for all fields. <p>
* source_interface IPv6Address.DEFAULT_HOST;
* destination_interface IPv6Address.DEFAULT_HOST;
* time_stamp O;
* requested_delay O;
* requested_loss_rate O;
* requested_throughput = O;
*I

public FlowRequest(){
}

/**
* Constructs a FlowRequest using the parameters supplied.
* @param source_interface The IPv6Address of the source.
* @param destination_interface The IPv6Address of the destination.
* @param time_stamp The 8 byte time stamp.
* @param requested_delay The maximum delay reuested.
* @param requested_loss_rate The maximum loss rate requested.
* @param requested_throughput The maximum throughput requested.
*I

public FlowRequest(IPv6Address source_interface,
IPv6Address destination_interface,
long time_stamp,
int requested_delay,
int requested_loss_rate,
int requested_throughput){

//set all instance variables
this.source_interface = source_interface;
this.destination_interface = destination_interface;
this.time_stamp = time_stamp;
this.requested_delay = requested_delay;
this.requested_loss_rate = requested_loss_rate;
this.requested_throughput ~ requested_throughput;

228

//build the byte array
bytes= Array.concat(source_interface.getAddress(),

destination_interface.getAddress());
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(time_stamp));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_delay));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_loss_rate));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_throughput));

/**
* Construct this Message from a byte array that is presumed to

conform
* to the proper format for this Message. Presumably, this

constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
* when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*I

public FlowRequest(byte[] bytes)
throws UnknownHostException{
this.bytes = bytes;
int pointer=O;
try{

source_interface = new IPv6Address(Array.
getSubArray(bytes,pointer,IPv6Address.length));

pointer += IPv6Address.length;
destination_interface =new IPv6Address(Array.

getSubArray(bytes,pointer,pointer+IPv6Address.length));
pointer += IPv6Address.length;
time_stamp = PrimitiveConversions.getLong(

Array.getSubArray(bytes,pointer, pointer+8));
pointer += 8;
requested_delay = PrimitiveConversions.getint(

Array.getSubArray(bytes,pointer, pointer+4));
pointer += 4;
requested_loss_rate = PrimitiveConversions.getint(

Array.getSubArray(bytes,pointer, pointer+4));
pointer += 4;
requested_throughput = PrimitiveConversions.getint(

Array.getSubArray(bytes,pointer, pointer+4));
}catch(UnknownHostException uhe){

throw new UnknownHostException(uhe.toString());

!**
* Returns the IPv6Address of the source.
* @return The IPv6Address of the source.
*I

public IPv6Address getSourceinterface(){
return source_interface;

}

229

/**
* Returns the network address associated with the source IPv6Address
* @return The network address associated with the source IPv6Address
*!

public IPv6Address getSourceLink(){
return source_interf~ce.getNetworkAddress();

}

/**
* Returns the IPv6Address of the destination.
* @return The IPv6Address of the destination.
*/

public IPv6Address getDestinationinterface(){
return destination_interface;

}

/**
* Returns the network address associated with the destination

IPv6Address
* @return The network address associated with the destination

IPv6Address
*/

public IPv6Address getDestinationLink(){
return destination_interface.getNetworkAddress();

/**
* Returns the 8 byte time stamp associated with this Message.
* @return The 8 byte time stamp associated with this Message.
*!

public long getTimeStamp(){
return time_stamp;

}

/**
* Returns the requested delay associated with this Message.
* @return The requested delay associated with this Message.
*/

public int getRequestedDelay(){
return requested_delay;

!**
* Returns the requested loss rate associated with this Message.
* @return The requested loss rate associated with this Message.
*/

public int getRequestedLossRate(){
return requested_loss_rate;

}

/**
* Returns the requested throughput associated with this Message.
* @return The requested throughput associated with this Message.
*I

public int getRequestedThroughput(){
return requested_throughput;

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.

230

}

*/
public byte[] getBytes(){

return bytes;

!**
* Returns the length of this Message.
* @return The length of this Message.
*!

public short length(){
try{

return (short)bytes.length;
}catch(NullPointerException npe){

return O;

!**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*!

public String toString(){
return("Source: " + source_interface.toString() +

", Destination: 11 + destination_interface. toString () +
II I TS: II + time_stamp + n I D: II +
requested_delay + II I LR: n +
requested_loss_rate + ", T: 11 +
requested_throughput);

231

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;

/**
* A Response to a flow request simply contains the timestamp that was
* sent with the corresponding FlowRequest, and the new flow id that has
* been assigned to the Object requesting the flow.
*/

public class FlowResponse extends Message{

private long time_stamp;
private int flow_id;

private byte[] bytes;

!**
* No-args constructor used by the server.
*I

public FlowResponse(){}

!**
* Constructs a FlowResponse with the parameters supplied.
* @param time_stamp The 8 byte time stamp associated with this

Message.
* @param flow_ID The flow associated with this Message.
*/

public FlowResponse(long time_stamp, int flow_id){

this.time_stamp = time_stamp;
this.flow_id = flow_id;

bytes = Array.concat(
PrimitiveConversions.getBytes(time_stamp),
PrimitiveConversions.getBytes(flow_id));

/**
* Construct this Message from a byte array that is presumed to

conform
* to the proper format for this Message. Presumably, this

constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
*when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*/

public FlowResponse(byte[] bytes)
throws UnknownHostException{
this.bytes = bytes;
int pointer=O;
time_stamp = PrimitiveConversions.getLong(

Array.getSubArray(bytes,pointer, 8));
pointer = pointer + 8;
flow_id = PrimitiveConversions.getint(

Array.getSubArray(bytes,pointer, pointer+4));

232

/**
* Returns the 8 byte time stamp associated with this Message.
* @return The 8 byte time stamp associated with this Message.
*/

public long getTimeStamp(){
return time_stamp;

}

/**
* Returns the flow ID associated with this event.
* @return The flow ID associated with this event.
*I

public int getFlowid(){
return flow_id;

}

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

/**
* Returns the length of this Message.
* @return The length of this Message.
*/

public short length(){
try{

return (short)bytes.length;
}catch(NullPointerException npe){

return O;

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I

public String toString(){
return("TimeStamp: " + time_stamp +

II Flow id: n + flow_id) i

}

233

package saam.message;

import saam.net.IPv6Address;
import saam.util.*;
import java.net.UnknownHostException;

/**
* A FlowRoutingTableEntry object contains a 3 byte integer representing
* the flow ID, a one byte service level, and an IPv6 address

representing
* the next hop.<p>
* The entry could be either an add or a remove depending on which
* constructor is used. An add is required to have all fields, whereas
* a remove only requires the field that is used as the lookup key in
* the associated table.
* Entries can be retrieved as a byte array using the getBytes()
* method.
*/

public class FlowRoutingTableEntry extends Message{

/**
* The number of bytes in a FlowRoutingTableEntry.
*/
private short length= (short) (3+1+IPv6Address.length);

/**
* Only the three lowest-order bytes of this int value
* are used. Be sure to use values lower than
* 2"25 (33,554,432) since only 24 bits are examined ..
*/

private int flowID = O;
private byte sl;
private IPv6Address nextHop;

private byte[] entry= new byte[3];

/**
* Constructs an entry for the Flow Routing Table.
* @param flowID The IPv4 address to be stored.
*I

public FlowRoutingTableEntry(int flowID, byte sl,
IPv6Address nextHop) {

this.flowID = flowID;
this.sl = sl;
this.nextHop = nextHop;

//now build the array for this entry
entry[2] (byte)flowID;
entry[l] = (byte) (flowID>>8);
entry[O] = (byte) (flowID>>l6);
entry= Array.concat(entry,sl);
entry = Array.concat(entry,

Array.getSubArray(nextHop.getAddress(),0,16));

/**
* Constructs an entry for the Flow Routing Table.
* @param v6 The IPv6 address representing the lookup key
* in the Emulation Table.
*I

234

public FlowRoutingTableEntry(int flowID) {
this.flowID = flowID;
entry= PrimitiveConversions.getBytes(flowID,3);
this.length = 3;

}
/**

* Constructs a FlowRoutingTableEntry from a byte array.
* intended to be used by objects that receive routing
* table updates over the network.
* @param entry The byte array containing the properly
* ordered elements of a FlowRoutingTableEntry.
* i.e. flowID, SL, IPv6Address from lowest-
* ordered bits to highest in the entry array.
*/

public FlowRoutingTableEntry(byte[] entry) throws
UnknownHostException{

this.entry = entry;
flowID = PrimitiveConversions.getint(

Array.getSubArray(entry,0,3));
if(entry.length==3){

this.length=3;
}else{

sl = entry[3];
try{

nextHop =new IPv6Address(
Array.getSubArray(entry,4,entry.length));

}catch(UnknownHostException uhe){
throw new UnknownHostException(uhe.toString());

}

/**
* Returns the Service Level as a byte.
* @return The Service Level as a byte.
*I

public byte getSL(){
return sl;

}

!**
* Returns the next hop as an IPv6Address object.
* @return The next hop as an IPv6Address object.
*/

public IPv6Address getNextHop(){
return nextHop;

!**
* Returns the flow ID associated with this Message
* @return The flow ID associated with this Message
*I

public int getFlowID(){
return flowID;

}

!**
* Returns The FlowRoutingTableEntry as a byte array with
* the flow ID in the lowest order bytes.
* @return The FlowRoutingTableEntry as a byte array with

235

* the flow ID in the lowest order bytes.
*/

public byte[] getBytes(){
return entry;

}

/**
* Returns a <code>String</code> representation of this entry
* @return The <code>String</code> representation of this entry
*I

public String toString() {

}

return ("FlowID: " + flowID +
(length==3? ".":
, SL: "+(new Byte(sl)) .toString()+

" , Next Hop: " + nextHop. toString ())) ;

/**
* Returns the length of this entry.
* @return The length of this entry.
*I

public short length(){
return length;

236

package saam.message;

import java.net.UnknownHostException;
import java.util.Vector;
import java.util.Enumeration;

import saam.net.*;
import saam.util.*;

/**
* The Hello Message is intended to be sent from the routers
* and received by the server. The purpose of this Message is
* to transmit the set of InterfaceIDs associated with the interfaces
* that have been instantiated on the sending router.
*I

public class Hello extends Message
{

private Vector interfaceIDs;
private byte[] bytes;

/**
* Constructs a Hello Message with the InterfaceIDs provided.
* @param interfaceIDs The Vector of InterfaceIDs that will be

assigned to
* the Interfaces on the destination router.
*I

public Hello(Vector interfaceIDs){
this.interfaceIDs = interfaceIDs;
Enumeration e = interfaceIDs.elements();
while(e.hasMoreElements()){

}

/**

InterfaceID myinterface = (InterfaceID)e.nextElement();
bytes= Array.concat(bytes,myinterface.getBytes());

* Construct this Message from a byte array that is presumed to
conform

* to the proper format for this Message. Presumably, this
constructor

* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
*when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*/

public Hello(byte[] bytes){
this.bytes = bytes;
interfaceIDs =new Vector();
IPv6Address myinterfaceAddress;
int i = O;
int bandwidth = O;
byte mac = O;
while(i <bytes.length){

try{
myinterfaceAddress =new IPv6Address(

Array.getSubArray(bytes, i, i+IPv6Address.length));
i = i + IPv6Address.length;
bandwidth = PrimitiveConversions.getint(

237

}
}

Array.getSubArray{bytes, i, i+4));
i += 4;
mac = {byte)PrimitiveConversions.getint(

Array.getSubArray(bytes, i, i+l));
i += 1;
interfaceIDs.addElement(new InterfaceID(

myinterfaceAddress,bandwidth,mac));
}catch(UnknownHostException uhe){}

/**
* Returns the Vector of InterfaceIDs associated with this Message.
* @return The Vector of InterfaceIDs associated with this Message.
*I

public Vector getinterfaceIDs(){
return interfaceIDs;

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

/**
* Returns the length of this Message.
* @return The length of this Message.
*/

public short length(){
try{

return (short)bytes.length;
}catch(NullPointerException npe){

return O;
}

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I

public String toString(){
Enumeration e = interfaceIDs.elements();
while(e.hasMoreElements()){

e.nextElement() .toString();
}

return ("Hello: \n" +interfaceIDs. toString ()) ;

238

package saam.message;

import java.net.UnknownHostException;
import java.util.*;
import saam.net.*;
import saam.util.*;

/**
* An InterfaceID provides all necessary information to identify an

Interface.
* Every Interface has an IPv6Address, a MAC address, and an associated
* bandwidth.
*I

public class InterfaceID extends Message
{

public static final short length IPv6Address.length + 1 + 4;

private IPv6Address v6;
private int bandwidth 10000; //10 Mbps ethernet
private byte mac = O;

private byte[] id;

/**
* Constructs an InterfaceID with the IPv6Address and MAC provided and
* the default value for the bandwidth.
* @param v6 The IPv6Address of the interface.
* @param mac The MAC address of the interface.
*I

public InterfaceID(IPv6Address v6, byte mac){
this.v6 = v6;
this.mac = mac;

id =
Array.concat(v6.getAddress(),PrimitiveConversions.getBytes(bandwidth));

id= Array.concat(id,mac);

/**
* Constructs an InterfaceID with the IPv6Address and bandwidth

provided and
* the default value for the MAC.
* @param v6 The IPv6Address of the interface.
* @param bandwidth The bandwidth of the link the interface is

connected to.
*/

public InterfaceID(IPv6Address v6, int bandwidth){
this.v6 = v6;
this.bandwidth = bandwidth;

id =
Array.concat(v6.getAddress(),PrimitiveConversions.getBytes(bandwidth));

id= Array.concat(id,mac);

/**
* Constructs an InterfaceID with the values provided.
* @param v6 The IPv6Address of the interface.
* @param bandwidth The bandwidth of the link the interface is

connected to.

239

* @param mac The MAC address of the interface.
*I

public InterfaceID(IPv6Address v6, int bandwidth, byte mac){
this.v6 = v6;
this.bandwidth = bandwidth;
this.mac = mac;

id =
Array.concat(v6.getAddress(),PrimitiveConversions.getBytes(bandwidth));

id= Array.concat(id,mac);

/**
* Construct this Message from a byte array that is presumed to

conform
* to the proper format for this Message. Presumably, this

constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
* when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*I

public InterfaceID(byte[] id) throws UnknownHostException{
this.id=id;
try{

v6 =new IPv6Address(
Array.getSubArray(id,0,IPv6Address.length));

}catch(UnknownHostException uhe){
throw new UnknownHostException(uhe.toString());

}
bandwidth = PrimitiveConversions.getint(Array.getSubArray(id,

IPv6Address.length,IPv6Address.length+4));

mac = id[IPv6Address.length+4];
}

/**
* Returns the IPv6Address associated with the Interface.
* @return The IPv6Address associated with the Interface.
*I

public IPv6Address getIPv6(){
return y6;

}

/**
* Returns the bandwidth associated with the Interface.
* @return The bandwidth associated with the Interface.
*I

public int getBandwidth(){
return bandwidth;

/**
* Returns the MAC address associated with the Interface.
* @return The MAC address associated with the Interface.
*/

public byte getMAC() {
return mac;

240

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*I

public byte[] getBytes(){
return id;

/**
* Compares interfaceIDs by comparing the IPv6Addresses and the
* MAC addresses.
*/

public boolean eguals(InterfaceID id){
return v6.eguals(id.getIPv6())&&

mac==id.getMAC();

/**
* Returns the length of this Message.
* @return The length of this Message.
*I

public short length(){
return length;

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*/

public String toString(){
return (II IP: II +v6. toString () + n, bandwidth: "+bandwidth+ II, MAC:

"+mac+ 11 \n 11
);

}

241

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;

I**
* LinkStateAdvertisement are sent by the routers in a SAAM network to
* keep the server abreast of their state. The server makes routing

decisions
* and adjustments to the network based on the LinkStateAdvertisements

it
* receives.
*I

public class LinkStateAdvertisement extends Message{

public static final int length = 29;

private IPv6Address myIPv6 =new IPv6Address();
private byte ServiceLevel;
private int Delay= -10; II milliseconds
private int LossRate = -100; II %
private int Utilization= 110; II %*10 (throughput=utilization*(BW

allocated for SLP))

private byte[] payload;

I**
* Used by the Server.
*I

public LinkStateAdvertisement(){}

I**
* Used by the LsaGenerator.
*I

public LinkStateAdvertisement(byte serviceLevel){
ServiceLevel = serviceLevel;

I**
* Constructs a LinkStateAdvertisement with the values provided.
* @param myIPv6 The IPv6Address of the sender.
* @param ServiceLevel The service level being reported on.
* @param Delay The delay associated with the service level.
* @param LossRate The loss rate associated with the service level.
* @param Utilization The bandwidth utilization associated with the

service
* level.
*I

public LinkStateAdvertisement(IPv6Address myIPv6, byte ServiceLevel,
int Delay, int LossRate, int

Utilization){

this.myIPv6 = myIPv6;
this.ServiceLevel = ServiceLevel;
this.Delay = Delay;
this.LossRate = LossRate;
this.Utilization = Utilization;

payload
payload

Array.concat(payload,myIPv6.getAddress());
Array.concat(payload,ServiceLevel);

242

payload Array.concat(payload, (new Integer(Delay)) .byteValue());
payload Array.concat(payload, (new Integer(LossRate)) .byteValue());
payload= Array.concat(payload, (new

Integer(Utilization)) .byteValue());
}

!**
* Construct this Me_ssage from a byte array that is presumed to

conform
* to the proper format for this Message. Presumably, this

constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
*when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*/

public LinkStateAdvertisement(byte[] payload) throws
UnknownHostException{

this.payload = payload;
int pointer=O;
try{

myIPv6 = new IPv6Address(Array.

getSubArray(payload,pointer,IPv6Address.length));
pointer = IPv6Address.length;
ServiceLevel = payload[pointer];
pointer = pointer + 1;
Delay = PrimitiveConversions.getint(

Array.getSubArray(payload,pointer, 4));
pointer = pointer + 4;
LossRate = PrimitiveConversions.getint(

Array.getSubArray(payload,pointer, 4));
pointer = pointer + 4;
Utilization = PrimitiveConversions.getint(

Array.getSubArray(payload,pointer, 4));
}catch(UnknownHostException uhe){

throw new UnknownHostException(uhe.toString());
}

/**
* Returns the IPv6Address of the sender.
* @return The IPv6Address of the sender.
*I

public IPv6Address getMyIPv6(){
return myIPv6;

}

/**
* Returns the service level being reported on.
* @return The service level being reported on.
*I

public byte getServiceLevel() {
return ServiceLevel;

/**
* Returns the delay associated with the service level.
* @return The delay associated with the service level.

243

*I
public int getDelay(}{

return Delay;

/**
* Returns the packet loss rate associated with the service level.
* @return The packet loss rate associated with the service level.
*/

public int getLossRate(){
return LossRate;

!**

* Returns the bandwidth
level.

* @return The bandwidth
level.

*/

utilization

utilization

public int getUtilization(}{
return Utilization;

!**

associated with the

associated with the

* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*I

public byte[] getBytes(}{
return payload;

/**
* Returns the length of this Message.
* @return The length of this Message.
*I

public short length(){
return length;

service

service

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I

public String toString(}{
return("Source: n + myIPv6.toString(} + 11

, SL: II + ServiceLevel
+ I Delay': n + Delay + II I LossRate: II + LossRate
+ 11

, Utilization: 11 +Utilization);
}

244

package saam.message;

/**
* The Message class provides a convenient way for Objects to

communicate
* with one another over a SAAM network. The standard JDK does not

currently
* provide a means to serialize objects over UDP. This class does just

that.
* Subclasses need to be written as follows to enable this

functionality:<p>
* 1. Provide a constructor that accepts a byte array as its only

parameter.
* 2. Override the getBytes method in such a way that it returns a byte

array
* that contains the values of the variables to be transferred.
* 3. Ensure that the constructor mentioned above is set up to properly
* parse the byte array and rebuild the variables as they were

originally.
* 4. Ensure that the length method returns the actual length of the

byte array.
*/

public abstract class Message{

private static byte type = 1;

!**
* Returns the type value.
* @return The type value.
*/

public byte getType(){
return type;

/**
* Returns the length of this Message.
* @return The length of this Message.
*/

public abstract· short length();

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*!

public abstract byte[] getBytes();

/**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*I

public String toString(){
return "Message";

245

package saam.message;

/**
* In order for a Message to be delivered on a SAAM network, there must
* be a MessageProcessor on the router that is registered with the
* ControlExecutive to process Messages of that type. To become a
* MessageProcessor that can actually process messages, it is not enough
* to simply implement this interface. Objects implementing this

interface
* must also provide a call to the ControlExecutive's

registerMessageProcessor
* method, passing itself as a parameter. The ControlExecutive will

then
* make a call back to the registrant to retrieve the array of Messages

this
* MessageProcessor would like to process. Therefor, an additional

requirement
* of implementors of this interface is that they must supply a String

array
* that contains the String names (fully qualified classnames) of the

Messages
* it would like to process. The ControlExecutive will then know that

when a
_ * Message of that type arrives, it should be sent to this processor.

*/
public interface MessageProcessor{

/*
An implementation of this interface would also include an array of
Strings that describe the Messages that implementation desires to
process as follows:

String[] messagesIProcess =
{"saam.message.SomeMessage","saam.message.AnotherMessage"};

The implementation would also include a call to the
ControlExecutive's

*/

registerMessageProcessor method as follows:
controlExec.RegisterMessageProcessor(this);

/**
* This method contains the logic needed by the implementor of this
* interface to process the Messages it is registered to process.
* @param message The subclass of saam.message.Message to be

processed.
*/

}

public void processMessage(Message message);

/**
* Returns the array of Strings representing the class
* names of the messages this Object will register to process.
* @return The array of Strings representing the class names
* of the messages this Object will register to process.
*I

public String[] getMessageTypes();

246

package saam.message;

import java.net.UnknownHostException;
import java.net.InetAddress;
import saam.net.IPv4Address;
import saam.net.IPv6Address;
import saam.util.Array;

/**
* A ServerID provides all necessary information to identify a Server.
* Every Server has an IPv6Address and an associated InetAddress
* (IPv4 address).
*/

public class ServerID extends Message{

/**
* The length of the byte array that contains the state of this

Message.
*/

public static final short length =
IPv6Address.length + IPv4Address.length;

private IPv6Address v6;
private InetAddress v4;

private byte[] id;

/**
* Constructs an ServerID with the values provided.
* @param v6 The IPv6Address of the interface.
* @param v4 The IPv4 address of the interface.
*/

public ServerID(IPv6Address v6, InetAddress v4){
this.v6 = v6;

}

this.v4 = v4;

id Array.concat(id,v6.getAddress());
id Array.concat(id,v4.getAddress());

/**
* Construct this Message from a byte array that is presumed to

conform
* to the proper format for this Message. Presumably, this

constructor
* is called when the receiving PacketFactory gets the byte array that
* represents this Message - a byte array that was presumably

generated
*when the sender of this Message called the getBytes() method after

creating
* this Message and before sending it.
*/

public ServerID(byte[] id) throws UnknownHostException{
this.id=id;
try{

v6 = new IPv6Address(
Array.getSubArray(id,0,IPv6Address.length));

v4 = InetAddress.getByName(IPv4Address.toString(
Array.getSubArray(id,IPv6Address.length,id.length)));

}catch(UnknownHostException uhe}{
throw new UnknownHostException(uhe.toString());

247

}

!**
* Returns the IPv6Address associated with the Server.

· * @return The IPv6Address associated with the Server.
*/

public IPv6Address getIPv6(){
return v6;

!**
* Returns the IPv4 address associated with the Server.
* @return The IPv4 address associated with the Server.
*!

public InetAddress getIPv4(){
return v4;

/**
* Returns The byte array representation of this Message.
* @return The byte array representation of this Message.
*!

public byte[] getBytes(){
return id;

/**
* Returns the length of this Message.
* @return The length of this Message.
*/

public short length(){
return length;

!**
* Returns a <code>String</code> representation of this Message.
* @return The <code>String</code> representation of this Message
*/

public String toString(){
return (n IPv6: n +v6. toString () +II I IPv4: II +v4. getHostAddress ()) ;

248

APPENDIX F. NET PACKAGE SOURCE CODE

249

package saam.net;

import java.util.StringTokenizer;
import java.net.UnknownHostException;

/**
* The java.net.InetAddress class does not allow access to its

constructors,
* nor does it allow subclassing. So, if we have byte array that we

wish to
* use to construct an InetAddress, we must come up with an alternate

method.
* Since InetAddress.getByName() returns an InetAddress if provided with

a
* String representation of the address, we need a static method that

converts
* a byte array into a String representation of an InetAddress. This

class
* provides that method.
*/

public class IPv4Address {

/**
* The number of bytes in an IPv4Address.
*/

public static final int length = 4;

*/

/**
* The String representation of the IPv4Address.
* @param address The IPv4Address represented as a byte array.
* @return the String representation of the IPv4Address.

public static String toString(byte[] address) throws
UnknownHostException{

StringBuffer buf =new StringBuffer();
for(int i=O;i<address.length-l;i++){

//This is where the promotion occurs. address
contains bytes,

operator.

byte.

}

//so we promote them to ints using the bitwise-and

//This enables us to display the value as an unsigned

buf.append((address[i]&OxFF)+".");
}
buf.append(address[address.length-lJ&OxFF);
return new String(buf);

250

package saarn.net;

import java.util.StringTokenizer;
import java.net.UnknownHostException;

/**
* This class is loosely based on the java.net.InetAddress class.
* Methods are designed to recieve parameters of the same types and
* to return the same data types as InetAddress.
*/

public class IPv6Address {

public static final String DEFAULT HOST
"0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0" i

!**
* The number of bytes in an IPv6Address.
*/

public static final int length = 16;

private static final int subnetMask = 4;

*I

!**
* The 16 byte IPv6 address
*!

private byte[] address= new byte[length];

!**
* The no-args constructor sets the address to local host
* This may not be the correct IPv6 localhost address, but
* it looks close.

public IPv6Address()

//set default as localhost
String host=DEFAULT_HOST;

StringTokenizer parser= new StringTokenizer(host,".");
for(int i=O;parser.hasMoreTokens();i++) {

short shortVal = (new Short(
parser.nextToken())) .shortValue();

//casting a short to a byte enables you to store an
//unsigned byte into a Java byte. The trick in

displaying

below.
//this value is promoting it first. See toString()

address[i]= (byte)shortVal;

!**
* Constructs an IPv6 address with address addr
* @pararn addr The 16 byte IPv6 address
*I

public IPv6Address(byte[] addr) throws UnknownHostException{
if(addr.length!=length) {

throw new UnknownHostException("Wrong number of bytes");
}else{

address = addr;

251

/**
* Retrieves the IPv6 address as a 16 byte array.
* @return The IPv6 address
*/

public byte[] getAddress(){
return address;

/**
* This static method allows the creation of an IPv6Address via
* the String representation of the address. It is currently not
* capable of receiving a String representation of the host name.
* @param host A String representation of the IPv6 address.
* @return An IPv6Address with address = host.
*/

public static IPv6Address getByName(String host) throws
UnknownHostException{

byte[] ipv6 =new byte[length];

StringTokenizer parser= new StringTokenizer(host, 11
•

11
);

if (parser.countTokens() !=length){
throw new UnknownHostException("wrong number of octets

in host");
}
for(int i=O;parser.hasMoreTokens();i++){

try{
short shortVal = (new Short(

parser.nextToken())) .shortValue();
if (shortVal>255){
throw new UnknownHostException("value in host

too large: "+shortVal) ;
}else if (shortVal<O){
throw new UnknownHostException("value in host

too small: "+shortVal);
}
ipv6[i]= (byte)shortVal;
}catch(NumberFormatException e){
throw new UnknownHostException("invalid value in

host");

same,

}

IPv6Address addr =new IPv6Address();
addr.address = ipv6;
return addr;

/**
* Determines whether the two IPv6Address objects are equal
* crite~ia: If the byte arrays representing the objects are the

* the objects are equal.
*I

public boolean equals(IPv6Address v6){
byte[] in= v6.getAddress();
try{

for(int i=O; i<address.length; i++){
if(address[i] !=in[i]) return false;

}
return true;

252

}catch(Exception e){
return false;

}

/**
* Returns the network IPv6Address associated with this IPv6Address.
* @return The network IPv6Address associated with this IPv6Address.
*I

public IPv6Address getNetworkAddress(){
byte[] networkAddress =new byte[length];
IPv6Address netAddress = null;

}

for (int index= O;index < subnetMask; index++){
networkAddress[index] = address[index];

}
for (int index= subnetMask;index <length; index++){

networkAddress[index] = O;
}
try {

}

netAddress =new IPv6Address(networkAddress);
catch (UnknownHostException uhe) {
System.err.println("IPv6Address: getNetworkAddress: " + uhe);

return netAddress;

/**
* The String representation of the IPv6Address.
* @return the String representation of the IPv6Address.
*/

public String toString(){
StringBuffer buf =new StringBuffer();
for(int i=O;i<address.length-l;i++){

//This is where the promotion occurs.
//so we promote them to ints using the
//This enables us to display the value
buf.append((address[i]&OxFF)+".");

address contains bytes,
bitwise and operator.
as an unsigned byte.

}
buf.append(address[address.length-l]&OxFF);
return new String(buf);

253

package saam.net;

import java.net.UnknownHostException;
import saam.util.Array;
import saam.util.PrimitiveConversions;

!**
* This class constructs a standard IPv6 header.
* An IPv6 Header is an element within every IPv6 packet that flows
* through the SAAM architecture. Instantiation of this object
* constructs a 40-byte array that can be used for transport.
* The class contains several methods for accessing each element of
* the IPv6 header.
*/

public class IPv6Header {

/**
* The number of bytes in an IPv6Header.
*/

public static final byte length = 40;

/**
* @serial
*/

private byte versionAndPriority;

/**
* @serial
*I

private int flowLabel;

/**
* @serial
*I

private short payloadLength;

!**
* @serial
*I

private byte nextHeader;

/**
* @serial
*/

private byte hopLimit 3;

/**
* @serial
*/

private IPv6Address source, dest;

private byte [] v6Header =new byte[length];

/**
* Constructs an IPv6Header with values set according
* to the params.

* @param versionAndPriority The version and priority field.
* @param flowLabel the 24-bit flow id (be sure this value does
* not exceed the maximum value that 24 bits can contain.

* @param payloadLength The length of the payload associated with this
* header.

254

* @param nextHeader The next header.
* @param hopLimit The maximum number of hops this packet is allowed.

* @param source The IPv6Address of the source.
* @param dest The IPv6Address of the destination.
*!

public IPv6Header(byte versionAndPriority, int flowLabel,
short payloadLength, byte nextHeader, byte hopLimit,
IPv6Address source, IPv6Address dest){

this.versionAndPriority=versionAndPriority;
//since the flowLabel is only 24 bits, we convert the
//32-bit int to a 3-byte array
this.flowLabel = flowLabel;

this.payloadLength=payloadLength;
this.nextHeader=nextHeader;
this.hopLimit=hopLimit;

/**

this.source=source;
this.dest=dest;
setArray();

* Constructs an IPv6Header with version=O, priority=O,
* nextHeader=O, hopLimit=3, and the other values set according
* to the params. This constructor simply speeds the creation
* process by using default values for fields that may not be
* of concern to the user.
* @param flowLabel the 24-bit flow id (be sure this value does
* not exceed the maximum value that 24 bits can contain.
* @param source The IPv6Address of the source.
* @param dest The IPv6Address of the destination.
*I

public IPv6Header(int flowLabel, IPv6Address dest){

//since the flowLabel is only 24 bits, we convert the
//32-bit int to a 3-byte array
this.flowLabel = flowLabel;
this.source=new IPv6Address();
this.dest=dest;
setArray();

/**
* A private method used internally to assign the values to the byte

array
* that represents this header.
*/

private void setArray(){
v6Header = Array.concat(versionAndPriority,

PrimitiveConversions.getBytes(flowLabel,3));
v6Header = Array.concat(

v6Header,PrimitiveConversions.getBytes(payloadLength));
v6Header Array.concat(v6Header,nextHeader);
v6Header Array.concat(v6Header,hopLimit);
v6Header Array.concat(v6Header,source.getAddress());
v6Header Array.concat(v6Header,dest.getAddress());

}

!**
* Sets the source field in this IPv6Header.
* @param The new source address.

255

*/
public void setSource(IPv6Address source){

this.source=source;
setArray();

/**
* This constructor is used to construct an IPv6Header given
* a 40-byte array containing properly ordered fields of a
* standard IPv6 header.
*I

public IPv6Header(byte[] data) throws UnknownHostException{
v6Header=data;

versionAndPriority = data[O];
flowLabel = PrimitiveConversions.getint(

Array.getSubArray(data,1,4));
·payloadLength = PrimitiveConversions.getShort(

Array.getSubArray(data,4,6));
nextHeader = data[6];
hopLimit = data[7];

try{
source= new IPv6Address(Array.getSubArray(

data,8,8+IPv6Address.length));
dest = new IPv6Address(Array.getSubArray(

data,8+IPv6Address.length,8+(2*IPv6Address.length)));
}catch(UnknownHostException uhe){

throw new UnknownHostException(uhe.toString());
}

/**
* Dynamically sets the payload length. Intended to be
* invoked when a packet destined for the SAAM architecture
* is constructed.
* @param length The length of the IPv6 packet's payload.
*/

public void setPayloadLength(short length){
payloadLength = length;

!**

}

/**
* Returns the 40-byte IPv6Header.
* @return The IPv6Header as a byte array of 40 bytes.
*I

public byte[] getHeader(){
return v6Header;

* Returns the flow label of this IPv6Address as an int.
*'@return The flow label of this IPv6Address as an int.
*I

public int getFlowLabel(){
return flowLabel;

/**
* Returns the payload length as a short.
* @return The payload length as a short.
*/

256

}

public short getPayloadLength(){
return payloadLength;

/**

}

/**
* Returns the source as an IPv6Address.
* @return The source as an IPv6Address.
*I

public IPv6Address getSource(){
return source;

/**
* Returns the dest as an IPv6Address.
* @return The dest as an IPv6Address.
*/

public IPv6Address getDest(){
return dest;

* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*/

public String toString(){
return

\nVer/Pri: "+versionAndPriority+
\nFlow: "+flowLabel+
\nPyld ln:"+payloadLength+
\nNextHdr: "+nextHeader+
\nHopLim: "+hopLimit+
\nSource: "+source+
\nDest: "+dest;

257

package saam.net;

import java.net.UnknownHostException;
import saam.util.Array;

/**
* An IPv6Packet contains an IPv6Header and a payload and methods to

access
* both.
*I

public class IPv6Packet {

private IPv6Header v6header;
private byte[] payload;

private UDPHeader udpHeader;

private byte[] packet;

/**
* Constructs an IPv6Packet with the fields supplied.
* @param v6header The properly formatted IPv6Header.
* @param udpHeader The UDPHeader associated with this IPv6Packet.
* @param payload A byte array containing the information the user
* wishes to transmit accross the network.
*/

public IPv6Packet(IPv6Header v6header, UDPHeader udpHeader,
byte[] payload){

this.v6header=v6header;
.this.udpHeader=udpHeader;
this.payload = payload;
packet Array.concat(v6header.getHeader(),udpHeader.getHeader());
packet= Array.concat(packet,payload);

/**
* This constructor is used to construct a packet given
* a properly formatted byte array.
*I

public IPv6Packet(byte[] packet) throws UnknownHostException{

this.packet=packet;
byte[] headerArray

Array.getSubArray(packet,0,IPv6Header.length);
try{

v6header =new IPv6Header(headerArray);
}catch(UnknownHostException uhe){

throw new UnknownHostException(uhe.toString());
}

udpHeader new UDPHeader(Array.getSubArray(
packet,
IPv6Header.length,
IPv6Header.length+UDPHeader.length));

payload =
Array.getSubArray(packet,IPv6Header.length+UDPHeader.length,

packet.length);

/**
* Returns this IPv6Packet as a byte array.
* @return This IPv6Packet as a byte array.
*I

258

public byte[] getBytes(){
return packet;

/**
* Returns the v6header of this IPv6Packet.
* @return The v6header of this IPv6Packet.
*/

public IPv6Header getHeader(}{
return v6header;

/**
* Sets the v6header of this IPv6Packet.
* @param The new v6header for this IPv6Packet.
*/

public void setHeader{IPv6Header v6header}{
this.v6header=v6header;

}

packet Array.concat{v6header.getHeader(),udpHeader.getHeader{));
packet= Array.concat{packet,payload);

/**
* Returns the UDPHeader of this IPv6Packet.
* @return The UDPHeader of this IPv6Packet.
*/

public UDPHeader getUDPHeader{){
return udpHeader;

/**
* Returns the payload of this IPv6Packet.
* @return The payload of this IPv6Packet.
*I

public byte[] getPayload(){
return payload;

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*/

public String toString(}{
return v6header.toString(}+"\n"+udpHeader.toString();

259

package saam.net;

import java.net.UnknownHostException;
import saam.util.Array;
import saam.util.PrimitiveConversions;

/**
* A SAAMHeader contains an eight byte time stamp and a one byte field
* containing the number of updates that are in the payload portion of
* the SAAMPacket to which this header belongs.
*I

public class SAAMHeader {

/**
* This variable defines the number of bytes in the
* time stamp field
*/

public static final int timeStampLength = 8;

/**
* This variable defines the number of bytes in the
* numberOfUpdates field
*/

public static final int numberOfUpdatesLength l;

/**
* The length of this header in bytes.
*/

public static final int length = numberOfUpdatesLength +
timeStampLength;

/**
* Represents the time the SAAM packet leaves the source.
* This value should be set when the packet is sent.
*I

private byte[] timeStamp;

/**
* The numberOfUpdatesLength of SAAM Packet this is.
*I

private byte numberOfUpdates;

/**
* The byte-array representation of this header
*/

private byte[] header = new byte[length];

/**
* Constructs a SAAM header given the values that will
* be contained within the header.
* @param type Which type of SAAM packet this is. Currently,
* this is contained in a single byte.
* @param timeStamp The time associated with this packet.
*/

public SAAMHeader(long timeStamp, byte numberOfUpdates){.

this.timeStamp = PrimitiveConversions.getBytes(timeStamp);
this.numberOfUpdates = numberOfUpdates;

header= Array.concat(this.timeStamp,numberOfUpdates);

260

/**
* Constructs a SAAMHeader from a byte array containing
* the properly formatted SAAMHeader fields.
* @param header A byte array containing the properly
* formatted SAAMHeader fields.
*/

public SAAMHeader(byte[] header) throws UnknownHostException{
this.header=header;
timeStamp = Array.getSubArray(header,0,timeStampLength);
numberOfUpdates = header[timeStampLength];

/**
* Returns this SAAMHeader as a byte array.
* @return This SAAMHeader as a byte array.
*I

public byte[] getHeader(){
return header;

/**
* Returns the time stamp.
* @return The time stamp.
*/

public long getTimeStamp(){
return PrimitiveConversions.getLong(timeStamp);

/**
* Returns the numberOfUpdates in this SAAM packet.
* @return The numberOfUpdates in this SAAM packet.
*/

public byte getNumberOfUpdates(){
return numberOfUpdates;

}

/**
* Returns the String representation of this SAAMHeader.
* @return The String representation of this SAAMHeader.
*I

public String toString(){
return "TimeStamp: "+getTimeStamp()+

11 \nNumber of Updates: "+numberOfUpdates;
} I I to String ()

261

package saam.net;

import java.net.UnknownHostException;
import saam.util.Array;

/**
* This class represents a packet suitable
* transport within the SAAM architecture.
* contains a SAAMHeader and a payload and
* both fields.
*/

public class SAAMPacket {

/**
* The header portion of this packet.
*/

private SAAMHeader header;

/**
* The data portion of this packet.
*/

private byte[] payload;

/**

for
A SAAMPacket

methods for accessing

* The byte array representation of this packet.
*I

private byte[] packet;

/**
* Constructs a SAAM packet given the fields to be
* associated with this packet.
* @param header The SAAMHeader.
* @param payload A byte array representing the payload.

*/
public SAAMPacket(SAAMHeader header, byte[] payload){

this.header = header;
this.payload = payload;
packet Array.concat(packet,header.getHeader());
packet= Array.concat(packet,payload);

}

/**
* Constructs a SAAM packet given a byte array
* containing the properly formatted fields to be
* associated with this packet.
* @param packet The byte representation of a SAAM packet.
*I

public SAAMPacket(byte[] packet) throws UnknownHostException{

this.packet = packet;
header = new SAAMHeader(Array.getSubArray(

packet,0,SAAMHeader.length));
payload = Array.getSubArray(

packet,SAAMHeader.length,packet.length);

/**
* Returns the SAAM header.
* @return The SAAM header as a SAAMHeader object.
*I

262

public SAAMHeader getHeader{){
return header;

/**
* Returns the SAAM packet payload as a byte array.
* @return The SAAM packet payload as a byte array.
*/

public byte[] getPayload{){
return payload;

}
/**
* Returns the SAAM packet as a byte array.
* @return The SAAM packet as a byte array.
*I

public byte[] getBytes(){
return packet;

}
public int length(){

try{
return packet.length;

}catch(NullPointerException npe){
return O;

}

263

package saam.net;

import saam.util.Array;
import saam.util.PrimitiveCo?versions;

!**
* This class constructs a standard UDP header.
* An UDP Header is an element within every packet that flows
* through the SAAM architecture. Instantiation of this object
* constructs a 40-byte array that can be used for transport.
* The class contains several methods for access each element of
* the IPv6 header.
*/

public class UDPHeader {

/**
* The number of bytes in an UDPHeader.
*/

public static final byte length = 8;

/**

private short sourcePort=O;
private short destPort=O;
private short payloadLength=O;
private short checksum=O;

private byte [] header new byte[length];

* This constructor is used to construct an UDPHeader given
* an 8-byte array containing properly ordered fields of a
* standard UDP header.
*I

public UDPHeader(byte[] data){
this.header=data;
sourcePort = PrimitiveConversions.getShort(

Array.getSubArray(data,0,2));
destPort = PrimitiveConversions.getShort(

Array.getSubArray(data,2,4));
payload.Length = PrimitiveConversions.getShort(

Array.getSubArray(data,4,6));
checksum= PrimitiveConversions.getShort(

Array.getSubArray(data,6,8));

/**
* This constructor is used to construct an UDPHeader given
* the values to be contained within the header.
*I

public UDPHeader(short sourcePort, short destPort,
short payload.Length, short checksum){

this.sourcePort = sourcePort;
this.destPort = destPort;
this.payload.Length = payload.Length;
this.checksum = checksum;

header= Array.concat(PrimitiveConversions.getBytes(sourcePort),
PrimitiveConversions. getBytes (destPor_t));

header = Array.concat(header,
PrimitiveConversions.getBytes(payloadLength));

header = Array.concat(header,

264

PrimitiveConversions.getBytes(checksum));
}

/**
* Returns the 8-byte UDPHeader.
* @return The UDPHeader as a byte array of 8 bytes.
*/

public byte[] getHeader(){
return header;

/**
* Returns the source port.
* @return the source port.
*/

public short getSourcePort(){
return sourcePort;

/**
* Returns the destination port.
* @return the destination port.
*I

public short getDestPort(){
return destPort;

}

/**
* Returns the length.
* @return the length.
*/

public short getPayloadLength(){
return payload.Length;

/**
* Returns the checksum.
* @return the checksum.
*/

public short getChecksum(){
return checksum;

}

/**
* The String representation of the UDPHeader.
* @return the String representation of the UDPHeader.
*/

public String toString(){
return
"\nUDPHeader:"+

"\nsource:
"\ndest:

"\nlength:
"\nchecksum:

"+(sourcePort&Oxffff)+
"+(destPort&Oxffff)+

"+(payloadLength&Oxffff)+
"+(checksum&Oxffff);

265

266

APPENDIX G. RESIDENTAGENT PACKAGE SOURCE CODE

267

package saam.residentagent;

import saam.event.SaamListener;
import saam.control.ControlExecutive;
import saam.message.*;

/**
* A ResidentAgent is an Object that can be delivered accross a SAAM
* network to a router, perform some type of processing or monitoring
* on that router, and then be replaced, forward its state to another
* router, or uninstall itself.
*/

public interface ResidentAgent extends SaamListener{

/**
* Within this method, an agent provides the necessary calls to the
* ControlExecutive that perform all necessary registration. For
* example, if. an agent wants to monitor a specific port on the
* router, the agent would call the monitorPort method in the
* ControlExecutive.
* @param controlExec The ControlExecutive on the router this agent
* is being installed on.
*I

public void install(ControlExecutive controlExec);

/**
* When an agent is being replaced, the ControlExecutive will remove
* the old agent from all channels it is allowed to talk on and from
* all channels it is monitoring. The uninstall method is called by
* the ControlExecutive upon replacement in order to allow the old
* agent a chance to perform any other cleanup that might be

necessary,
* such as disposing of a user interface, for instance.
*I

public void uninstall();

!**
* When an agent is about to be replaced, the ControlExecutive calls
* the transferState method, passing the old agent a copy of the new
* agent. The old agent should then call the receiveState method on
* the new agent, and pass to the new agent any messages that should
* be passed.
* @param replacement The agent that is replacing the old agent.
*/

public void transferState(ResidentAgent replacement);

/**
* This method is called one or more times by an agent that is about
* to be replaced by this agent. The purpose of this method is to
* enable a state transfer from the old agent to the new agent.
* @param message The message to be passed from the old agent to the
* new agent.
*/

public void receiveState(Message message);

/**
* When a ResidentAgent requests a flow by calling the requestFlow

method
* of the ControlExecutive, the agent expects to be assigned a flow

and
* to be notified when that flow is assigned. This method provides a

268

}

* mechanism for notifying the ResidentAgent that a FlowResponse has
* arrived.
*/

public void receiveFlowResponse(FlowResponse flowResponse);

/**
* Some resident agents are accessed by Objects on the router. This
* method provides the means for communication between an Object on
* the router and this ResidentAgent.
* @param message The Message the Object sends to this ResidentAgent.
* @return The Message this ResidentAgent sends back to the Object
* performing the query.
*/

public Message query(Message message);

269

package saam.residentagent;

import saam.control.ControlExecutive;
import saam.message.*;

/**
* Occasionally, Objects on the router need access to ResidentAgents
* on that router. By implementing this interface, those objects can
* be sure that when a ResidentAgent is replaced, they receive the new
* agent. ResidentAgentCustomers must register with the

ControlExecutive
* in order to receive agent updates. When a replacement arrives, the
* ControlExecutive calls the replaceAgent method on all customers of
* that ResidentAgent.
*/

public interface ResidentAgentCustomer{

/**
* When the ControlExecutive receives an agent that is to replace
* an existing agent, the ControlExecutive calls the replaceAgent
* method on each of the ResidentAgentCustomers of that ResidentAgent.
* @param replacement The new ResidentAgent. ·
*I

public void replaceAgent(ResidentAgent replacement);

!**
* Returns an array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
* @return An array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
*/

public String[] getAgentTypes();

270

package saam.residentagent.router;

import java.util.*;
import java.net.InetAddress;
import java.net.UnknownHostException;

import saam.control.*;
import saam.residentagent.*;
import saam.router.*;
import saam.event.*;
import saam.net.*;
import saam.message.*;
import saam.util.*;

/**
* The ARPCache is a table for storing the MAC address associated
* with the IPv6Address of the next hop.
*I

public class ARPCache extends Hashtable
implements TableResidentAgent, MessageProcessor{

/**
* @serial
*/

private TableGui gui;

/**
* @serial
*I

private Vector names new Vector();

/**
* @serial
*I

private ControlExecutive controlExec;

/**
* @serial
*/

private String[] messageTypes =
{"saam.message.ARPCacheEntry"};

/**
* Constructs an ARPCache with
*I

public ARPCache(){
super(1711, 0.5f);

public void install(ControlExecutive controlExec){
names.add("Next Hop");

}

names.add("Next MAC");
int[] columnWidths = {250,50};
gui=new TableGui(toString(), names, columnWidths);
this.controlExec=controlExec;
controlExec.registerMessageProcessor(this);

public void uninstall(){
clear();

271

public Message query(Message message){

}

ARPCacheEntry entry= get((ARPCacheEntry)message);
return (Message)entry;

public void transferState(ResidentAgent replacement){
for(Enumeration e =elements();

e.hasMoreElements();){
replacement.receiveState(

(ARPCacheEntry)e.nextElement());
}//for

}
public void receiveState(Message message){

add((ARPCacheEntry)message);
}
public void receiveFlowResponse(FlowResponse flowResponse){
}
public void processMessage(Message message){

try{
String flowZeroNextHop =

controlExec.getFlowzeroNextHop() .toString();
ARPCacheEntry entry = (ARPCacheEntry)message;
if(entry.length()==IPv6Address.length+l){

add(entry);
gui.fillTable(getTable());

}else{

}

remove(entry);
gui.fillTable(getTable());

if(!controlExec.getArpCacheStatus() &&
!flowZeroNextHop.equals(IPv6Address.DEFAULT_HOST)){

if(containsKey(flowZeroNextHop)){
controlExec.updateCoreServiceStatus(this, true);

}else{
controlExec.updateCoreServiceStatus(this, false);

}
}

}catch(Exception e){message =null;}
}
public String[] getMessageTyP,es(){

return messageTypes;
}
public void receiveEvent(SaamEvent event){
}

!**
* If a ARPCacheEntry has already been constructed,
* this method allows it to be entered into the table.
* @param entry The ARPCacheEntry to be entered.
*I

private void add(ARPCacheEntry entry){
put(entry.getNextHop() .toString(), entry);

/**
* Removes an entry from the ARP cache.

* @param nextHop The nextHop as an IPv6Address object.
* Used as the lookup key in the table.

*/
private void remove(ARPCacheEntry entry){
remove(entry.getNextHop() .toString());
}

272

/**
* Returns .the entire contents of this ARPCache or null
* if this ARPCache is empty.
* @return A Vector of all entries currently
* in the ARP cache.
*/

public Vector getTable(){
if(isEmpty()) return null;
Vector table= new Vector(size());

for(Enumeration e =elements();
e.hasMoreElements();){

Vector oneRow =new Vector();
ARPCacheEntry entry= (ARPCacheEntry)e.nextElement();
oneRow.add(entry.getNextHop() .toString());
oneRow.add(1111 +entry.getNextMAC());
table.add(oneRow);

} I /for
return table;

}//getEmulationTable()

/**
* Retrieves an entry from the ARP cache
* without removing it.
* @param nextHop The IPv6Address of the next hop. This
* value is used as the lookup key.
* @return One record of the ARP Cache represented as
* an object.

*I
private ARPCacheEntry get(ARPCacheEntry entry){

IPv6Address nextHop = entry.getNextHop();
return (ARPCacheEntry) get(nextHop.toString());

/**
* Returns the contents of the emulation table
* in the form of a String (useful for displaying the table) .
* @return A String representation of the contents of the
* entire table.
*I

public String toString()
return 11 ARPCache 11

;

} I /toString ()

273

package saam.residentagent.router;

import java.util.*;
import java.net.InetAddress;
import java.net.UnknownHostException;

import saam.control.*;
import saam.residentagent.*;
import saam.router.*;
import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;

/**
* The flow routing table stores the service level
* and nextHop (IPv6Address) associated with a given flowID.
*I

public class FlowRoutingTable extends Hashtable
implements TableResidentAgent, MessageProcessor{

/**
* @serial
*I

private TableGui gui;

!**
* @serial
*/

private Vector names new Vector();

/**
* @serial
*I

private ControlExecutive controlExec;

/**
* @serial
*I

private String[] messageTypes =
{"saam.message.FlowRoutingTableEntry"};

/**
* @serial
*I

private boolean FRT_UP

/**
* @serial
*I

private boolean FRT_DOWN

!**

true;

false;

* Constructs a flowRoutingTable with initial capacity of
* capacity. Initial capacity should be a prime number to
* help distribute the entries evenly among the buckets.
*/

public FlowRoutingTable(){
super(1711, 0.5f);

274

public void install(ControlExecutive controlExec){
narnes.add("Flow ID");

}

names .add ("SL") ;
names . add ("Next Hop") ;
int[] colurnnWidths = {100,50,250};
gui=new TableGui(toString(), names, colurnnWidths);
this.controlExec=controlExec;
controlExec.registerMessageProcessor(this);

public void uninstall(){
clear();

}
public Message query(Message message){

int flowID = ((FlowRoutingTableEntry)message) .getFlowID();
FlowRoutingTableEntry result = (FlowRoutingTableEntry)

get(new Integer(flowID));
return result;

/**
* Returns the entire contents of this FlowRoutingTable or null
* if this FlowRoutingTable is empty.
* @return A Vector of all entries currently
* in the flow routing table.
*/

public Vector getTable(){
if(isEmpty()) return null;
Vector table= new Vector(size());

for(Enurneration e =elements();
e.hasMoreElements();){

Vector oneRow =new Vector();
FlowRoutingTableEntry entry =

(FlowRoutingTableEntry)e.nextElement();
oneRow.add(""+entry.getFlowID());
oneRow.add(""+entry.getSL());
oneRow.add(entry.getNextHop() .toString());
table.add(oneRow);

}//for
return table;

}//getErnulationTable()

public void transferState(ResidentAgent replacement){
for(Enurneration e =elements();

e.hasMoreElements();){
replacement.receiveState(

(FlowRoutingTableEntry)e.nextElement());
} I /for

}
public void receiveState(Message message){

add((FlowRoutingTableEntry)message);
}
public void receiveFlowResponse(FlowResponse flowResponse){
}
public void processMessage(Message message){

FlowRoutingTableEntry entry =
(FlowRoutingTableEntry)message;

if(entry.length()==3){
remove (entry) ;
gui.fillTable(getTable());

275

}

}

if(entry.getFlowID()==O) {
controlExec.updateCoreServiceStatus(this,

new IPv6Address());
}

}else{
add(entry);
gui.fillTable(getTable());
if(entry.getFlowID()==O){

controlExec.updateCoreServiceStatus(this,
entry.getNextHop());

public String[] getMessageTypes() {
return messageTypes;

}
public void receiveEvent(SaamEvent event){
}

/**
* If a FlowRoutingTableEntry has already been constructed,
* this method allows it to be entered into the table.
* @param entry The FlowRoutingTableEntry to be entered.
*I

private void add(FlowRoutingTableEntry entry){
put((new Integer(entry.getFlowID())),entry);

/**
* Removes an entry from the flow routing table.

* @param flowID The flow ID represented as an integer.
*/

private void remove(FlowRoutingTableEntry entry){
remove(new Integer(entry.getFlowID()));

}

!**
* Returns the contents of the emulation table
* in the form of a String (useful for displaying the table) .
* @return A String representation of the contents of the
* entire table.
*I

public String toString() {
return "FlowRoutingTable";

} I /toString ()

276

package saam.residentagent.router;

import java.net.*;
import java.util.Vector;

import saam.residentagent.*;
import saam.router.*; ·
import saam.event.*;
import saam.util.SAAMRouterGui;
import saam.control.*;
import saam.net.*;.
import saam.message.*;

public class LsaGenerator extends Thread
implements ResidentAgent, MessageProcessor{

/**
* @serial
*I

private SAAMRouterGui gui;
/**

* @serial
*/

private ControlExecutive controlExec;
/**

* @serial
*/

private String myAddress;
/**

* @serial
*I

private IPv6Address destHost new IPv6Address();
/**

* @serial
*/

private int assignedFlowID O;
/**

* @serial
*/

private int packetsReceived, packetsSent;
/**

* @serial
*I

private short sourcePort,destPort;
private long[] delayServiceLevelZero =new long[lOJ;
private Vector inChannel =new Vector(4);
private Vector outChannel =new Vector(4);

/**
* @serial
*/

private String[] messageTypes
{} i

public LsaGenerator(){
gui =new SAAMRouterGui("LsaGenerator");

} I I ServerProbe ()

public String[] getMessageTypes(){

277

return messageTypes;

public void install(ControlExecutive controlExec){
start();

}
public void run(){

this.controlExec=controlExec;
controlExec.registerMessageProcessor(this);
try{

myAddress = InetAddress.getLocalHost{) .getHostAddress();
gui.setTextField("I'm on

"+InetAddress.getLocalHost() .getHostName());
}catch(UnknownHostException uhe){

}

gui.sendText("I don't know who I am! "+uhe.toString());

sourcePort = .(short)controlExec.listenToRandomPort(this);
destPort = {short)controlExec.SAAM_CONTROL_PORT;
try{

for(int i=O;i<controlExec.getNumberOfinterfaces{);i++){
int channel = ProtocolStackEvent.

}

FROM_INTERFACE_TO_SLQUEUE_START_CHANNEL+i;
inChannel.add(new Integer(channel));
controlExec.addListenerToChannel(this,channel);
gui.sendText("Monitoring Channel: "+channel);
channel = ProtocolStackEvent.

FROM_SLQUEUE_TO_SCHEDULER_START_CHANNEL+i;
outChannel.add(new Integer(channel));
controlExec.addListenerToChannel(this,channel);
gui. sendText ("Monitoring Channel: "+channel) ;

}catch(ChannelException ce){
gui.sendText(ce.toString());

}

public void transferState(ResidentAgent replacement){
gui.sendText("I'm being replaced ... ");

}
public void receiveState(Message message){

gui.sendText("Replacing old agent");
}
public void receiveFlowResponse(FlowResponse flowResponse){

//this agent is allowed by the ControlExecutive to talk
//on flow zero, so no FlowRequest needs to be submitted.

}
private void sendLSA(LinkStateAdvertisement lsa){

packetsSent++;
IPv6Header ipv6Header =new IPv6Header(assignedFlowID,destHost);
byte[] payload= (new String("Message "+(packetsSent}}) .getBytes();
UDPHeader udpHeader = new UDPHeader(sourcePort,destPort,

(short)payload.length, (short)O);
IPv6Packet packet= new IPv6Packet(ipv6Header,udpHeader,payload);
try{

controlExec.send(this,lsa,assignedFlowID,sourcePort,
controlExec.getServerIP(),destPort);

gui.sendText(new String(payload)+" sent");
gui.sendText(udpHeader.toString());

}catch(FlowException fe){
gui.sendText(fe.toString());

278

public void uninstall(){
}
public Message query(Message message){

return message;
}
public void processMessage(Message message){

gui.sendText("Received Message: "+message.toString());
//here the server has requested that an LSA be sent.
//Based on the parameters contained in the LsaRequest,
//we would construct an LinkStateAdvertisement and·
//send it to the server

}

//LinkStateAdvertisement lsa =
//new LinkStateAdvertisement([parameters]);

//sendLSA(lsa);

public void receiveEvent(SaamEvent se){
ProtocolStackEvent pse = (ProtocolStackEvent)se;
if(inChannel.contains(new Integer(se.getChannel_ID()))){

gui.sendText("Packet going in .. ");
if(pse.getServiceLevel()==O){

packetsReceived++;
}

}else if(outChannel.contains(new Integer(se.getChannel_ID()))){
gui.sendText("Packet just came out .. ");

}
if(packetsReceived%10==0){

gui.sendText("Received "+packetsReceived+" packets .. creating
LSA");

LinkStateAdvertisement lsa =new LinkStateAdvertisement((byte)O);
}
gui.sendText("An LSA Was Just Sent");
//hard code an LSA for now

II IPv6Address source= IPv6Address
II LinkStateAdvertisement lsa =
II new LinkStateAdvertisement();

}//receiveEvent()

public String toString(){
return ("LsaGenerator");

279

package saam.residentagent.router;

import java.net.UnknownHostException;
import java.util.*;

import saam.*;
import saam.control.*;
import saam.router.*;
import saam.residentagent.*;
import saam.message.*;
import saam.util.*;
import saam. ·event . * ;
import saam.net.*;

/**
* This Scheduler looks in the service level queues of the Interface to
* which it is connected and extracts packets based on a round-robin
*algorithm. Dequeued packets are forwarded·to the outbound
* NetworkinterfaceCard.
*I

public class Scheduler
implements SaamTalker, Runnable,

ResidentAgent{

/**
* The number of bytes in a SAAM network address. This
* variable is used in the routePacket() method to determine
* the outbound interface when ARPing.
*/

private static final int bytesToCheck = 5;
private static int instanceNumber = O;

//for the thread
private boolean started;
private int interfaceNumber;
private int populatedQueues;
private int outBoundChannel;
private int inBoundChannel;
private long[] packetCounter

new long[Interface.numberOfServiceLevels];

private IPv6Packet dataPacket;
private SAAMRouterGui gui;
private ControlExecutive controlExec;
private Interface outboundinterface;

private Object theLock= new Object();

public void install(ControlExecutive controlExec){
this.controlExec = controlExec;

interfaceNumber = instanceNumber;
try{

this.outboundinterface =
controlExec.getinterface(interfaceNumber);

}catch(ArrayindexOutOfBoundsException aioobe){
//tried to access an interface with a number that
//was too high .. so start the count over
interfaceNumber = O;
instanceNumber = O;

280

}

started = true;
this.outboundinterface

controlExec.getinterface(interfaceNurnber);

gui =new SAAMRouterGui(11 Scheduler # 11 +interfaceNurnber);
gui.sendText(11 Installing ... ");
instanceNurnber++;

int channel_ID = ProtocolStackEvent.
FROM_SLQUEUE_TO_SCHEDULER_START_CHANNEL+interfaceNurnber;

try{
controlExec.addTalkerToChannel(this,

channel_ID);
gui.sendText("Talking enabled on channel: 11 + channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}

outaoundChannel = ProtocolStackEvent.
getFromSchedulerToNICChannel(interfaceNurnber);

try{
controlExec.addTalkerToChannel(this,

outBoundChannel);
gui.sendText(11 Talking enabled on channel: 11 + outBoundChannel);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
inBoundChannel =

ProtocolStackEvent.getFrominterfaceToSLQueueChannel(
interfaceNurnber);

try{
controlExec.addListenerToChannel(this, inBoundChannel);
gui.sendText(11 Listening to channel: 11 +inBoundChannel};

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

gui.setTextField("I'm alive, but sleeping ... ");

Thread schedulerThread = new Thread(this,
11 Scheduler"+System.currentTimeMillis());

schedulerThread.start();

public void uninstall(){
}
public void transferState(ResidentAgent replacement){}
public void receiveState(Message message){}
public void receiveFlowResponse(FlowResponse flowResponse){
}
public Message query(Message message){

//stubbed out
return message;

/**
* Here the service level queues are visited and packets are
* dequeued round-robin, then sent to the forwardPacket method.
*I

public void run(){

281

gui.sendText("Thread started: "+ Thread.currentThread() .getName());
while (true) {

gui.setTextField("Looking in outbound SL queue's ... ");
searchOutboundQueues();
gui.setTextField(

"All SL qtieues empty, I'm going to sleep");
try{

synchronized(theLock) {
gui. sendText ("Wai ting ... ") ;
whi 1 e (! started) .theLock . wait () ;
gui . sendText ("Resumed") ;

}
}catch(InterruptedException ie){

gui.sendText(ie.toString());
}//try-catch

}//while(started)
}//run()

private synchronized void searchOutboundQueues() {
int slCount = Interface.numberOfServiceLevels;
while(populatedQueues>O){

for(int i=O; i<slCount; i++){
int queueID =

Interface.SERVICE_LEVEL_QUEUE_START_INDEX + i;
if (! (outboundinterface.isEmpty(queueID))){

packetCounter[queueID]++;
gui.sendText("dequeuing packet #"+packetCounter[queueID]+

n from SL [n +queueID+ II] II) ;
forwardPacket(i,outboundinterface.getPacket(queueID));
if (outboundinterface.isEmpty(queueID)){

populatedQueues--;
}//end if

}//end if
}//for

}//while
started=false;

}//searchOutboundQueues()
/**

* Receives and processes the SaamEvent notification
* generated by the packet talker. to whom this Translator is
* listening.
* @param pe The SaamEvent to be processed.
*/
public void receiveEvent(SaamEvent se){

gui.setTextField("Populated Service Levels: "+populatedQueues);
ProtocolStackEvent pse = (ProtocolStackEvent)se;
int channel= pse.getChannel_ID();
int sl = pse.getServiceLevel();
int numP = outboundinterface.getPacketCount(

Interface.SERVICE_LEVEL_QUEUE_START_INDEX+sl);
if (numP == 1){

II if more than one arrives at same time, will miss!!
populatedQueues++;

//this method doesn't actually use the SaamEvent
if (! started) {

gui.sendText("packet arrived: channel:"+
channel+" SL: "+sl);

synchronized(theLock){
started = true;

282

theLock.notify();
}

}else{
gui.sendText("Received event, already active");
I /future work ..

//perform an interrupt if the sl the arriving packet
//is placed into is of higher priority than the service
//level currently being polled.
}//if-else

}//receiveEvent()

/**
* Forwards the packet that was just dequeued from a service level
* queue to the outbound NetworkinterfaceCard.
* @param sl The service level this packet was dequeued from.
* @param packet the byte array representation of this packet.
*/

private void forwardPacket(int sl, byte[] packet){

//send an event to indicate that a packet has been dequeued
//from a service level queue.
int channel_ID = ProtocolStackEvent.

FROM_SLQUEUE_TO_SCHEDULER_START_CHANNEL+
interfaceNumber;

ProtocolStackEvent event = new ProtocolStackEvent(
toString(),
this,
channel_ID,
packet,
sl);

try{
controlExec.talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

//since the nextHop was added to the packet before
//the packet was enqueued into the Service Level Queue,
//we strip it off here.
IPv6Address nextHop = null;
try{

nextHop =new IPv6Address(Array.getSubArray(
packet, 0, IPv6Address.length));

}catch(UnknownHostException uhe){
gui.sendText(toString()+": "+uhe.toString());

}
gui. sendText ("Next Hop: \n" +nextHop. toString ()) ;
IPv6Packet v6Packet = null;
try{

v6Packet =new IPv6Packet(packet);
}catch(UnknownHostException uhe){

gui.sendText("Scheduler: •+uhe.toString());
}
gui.sendText("Forwarding packet to my NIC; Payload length " +

v6Packet.getPayload() .length);
event = new ProtocolStackEvent(

toString(),
this,
outBoundChannel,
packet,
sl,

283

}

nextHop);
try{

controlExec.talk(event);
}catch(ChannelException tde){

gui.sendText(tde.toString());
}

}//forwardPacket()

!**
* Returns the String representation of this Object.
* @return The String representation of this Object.
*!

public String toString(){
return "Scheduler"+interfaceNumber;

284

package saam.residentagent.server;

import saam.control.*;
import saam.residentagent.*;
import saam.server.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;

public class ServerAgent
implements ResidentAgent, MessageProcessor{

private SAAMRouterGui gui;
private ControlExecutive controlExec;
private Server myServer;
private String[] messageTypes =

{"saam.message.Hello",
"saam.message.FlowRequest",
"saam.message.LinkStateAdvertisement"};

public void install{ControlExecutive controlExec){
gui=new SAAMRouterGui{"ServerAgent");
this.controlExec=controlExec;
controlExec.registerMessageProcessor{this);
myServer =new Server{"classObject", controlExec);

II myServer =new Server{"database", controlExec);
}
public void processMessage(Message message){

try{
if{message instanceof Hello){

gui. sendText {"Received Message: "+ { (Hello)message));
gui.sendText("Calling Server method: processHello()");
myServer.processHello((Hello)message);

}else if(message instanceof FlowRequest){
FlowRequest request = {FlowRequest)message;
gui.sendText("Received Message: "+request);
gui.sendText(

"Calling Server method: processFlowRequest()");
myServer.processFlowRequest{(FlowRequest)message);

}else if(message instanceof LinkStateAdvertisement){
gui.sendText("Received Message: "+

((LinkStateAdvertisement)message));
gui.sendText{"Calling Server method: processLSA()");
myServer.processLSA(

(LinkStateAdvertisement)message);
}

}catch(Exception e){message =null;}
}
public String[] getMessageTypes(){

gui.sendText("Server queried my message types");
gui.sendText("Sending: "+messageTypes[O]);
return messageTypes;

}
public String toString()

String it= "ServerAgent listening for: ";
for(int i=O;i<messageTypes.length;i++){

it+= "\n" + messageTypes[i];

return it;
} I ltoString ()

285

//the following methods are stubbed out as they are not used.
public void uninstall(){
}
public Message query(Message message){

return message;
}
public void transferState(ResidentAgent replacement){
}
public void receiveState(Message message){
}
public void receiveFlowResponse(FlowR~sponse flowResponse){
}
public void receiveEvent(SaamEvent event){
}

286

APPENDIX H. ROUTER PACKAGE SOURCE CODE

287

package saam.router;

/**
* FlowException are thrown for various reasons. For
* example, if an Object attempts to send traffic on a flow
* that it does not own, a FlowException will be thrown.
*/

public class FlowException extends Exception{

/**
* Constructs a generic FlowException.
*I

public FlowException()
super();

/**
* Constructs a FlowException with a descriptive String.
* @param s A String describing the Exception in more detail.
*/

public FlowException(String s) {
super(s);

288

package saam.router;

import java.util.Vector;
import java.util.TooManyListenersException;
import java.net.UnknownHostException;

import saam.control.*;
import saam.util.SAAMRouterGui;
import saam.util.Queue;
import saam.util.Array;
import saam.event.*;
import saam.riet.IPv6Packet;
import saam.net.SAAMPacket;
import saam.message.InterfaceID;

/**
* A router Interface contains a network interface card, one
* queue for inbound traffic, and several service level queues for
* outbound traffic.
*/

public class Interface implements SaamTalker, SaamListener{

public static final int numberOfinboundQueues = l;
public static final int numberOfServiceLevels = 4;
public static final int numberOfQueuesOnThisinterface

numberOfinboundQueues+numberOfServiceLevels;
public static final int INBOUND_QUEUE = O;
public static final int SERVICE_LEVEL_QUEUE_START_INDEX

INBOUND_QUEUE + numberOfinboundQueues;

private static byte instanceCounter=O;

private byte interfaceinstance=O;
private ControlExecutive controlExec;
private int enqueueinginboundChannel;
private int enqueueingOutboundChannel;

private InterfaceID interfaceID;
private NetworkinterfaceCard NIC;

/**
* A Vector containing all of the queues in this interface.
*/

private Vector listOfQueues =
new Vector(numberOfQueuesOnThisinterface);

private SAAMRouterGui gui;
private IPv6Packet outboundPacket;
private SAAMPacket sif;
private long inboundPacketCount, outboundPacketCount;

/**
* Constructs a new SAAMRouterinterface with the given interfaceID.
* @param router An instance of the SAAMRouter that instantiated this

* interface. this is to enable the interface to register as a
listener

* with the router.
* @param interfaceID The numerical representation of this interface.
* @param translator An instance of the Translator object instantiated
* by the SAAMRouter.
*I
public Interface(ControlExecutive controlExec,

289

InterfaceID interfaceID){

interfaceinstance=instanceCounter;
instanceCounter++;
this.controlExec = contrqlExec;
this.interfaceID=interfaceID;
gui =new SAAMRouterGui("Interface #"+

interfaceinstance);
gui.setTextFieldFontSize(lO);

//emptyQ() is a static method
listOfQueues.add(INBOUND_QUEUE,Queue.emptyQ());
for(int offset=O;offset<numberOfServiceLevels;offset++){

listOfQueues.add(
SERVICE_LEVEL_QUEUE_START_INDEX+offset,Queue.emptyQ());

}

//**
//**Add yourself the channels you wish to talk on***
//**
enqueueinginboundChannel =

ProtocolStackEvent.getEnqueuinginboundPacketChannel(
interfaceinstance);

addTalkerToChannel(enqueueinginboundChannel);
//**
enqueueingOutboundChannel =

ProtocolStackEvent.getFrominterfaceToSLQueueChannel(
interfaceinstance);

addTalkerToChannel(enqueueingOutboundChannel);
//**

//Instantiates the NIC for this Interface
NIC = new NetworkinterfaceCard(controlExec,

interfaceID.getMAC(),interfaceinstance);

//**
//****Monitor the channels you wish to listen on****
//**
int channel = ProtocolStackEvent.

getFromNICTointerfaceChannel(
interfaceinstance);

addListenerToChannel(channel);
//**
channel = ProtocolStackEvent.

getFromRoutingAlgorithmTointerfaceChannel(
interfaceinstance);

addListenerToChannel(channel);
//**

gui.setTextField("My ID: "+ interfaceID.toString());
gui.sendText("I'm alive and listening");

}//Interface()

private void addTalkerToChannel(int channel_ID){
try{

controlExec.addTalkerToChannel(this,
channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
}//addTalkerToChannel()

290

private void addListenerToChannel(int channel_ID){
try{

controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

. /**
* Gets the IPv6 address for this interface.
* @return The IPv6 address for this interface.
*/

public InterfaceID getID(){
return interfaceID;

/**
* Returns the number of packets in the queue
* of the inbound interface.
* @return The (int) number of packets
* @see saam.util.Queue#getCount()
*I

public synchronized int getPacketCount(int queueID){
return ((Queue)listOfQueues.get(queueID)) .getCount();

/**
* Determines
* is empty.
* @return
* @see
*I

if the queue of the inbound interface

true if the queue is empty
saam.util.Queue#~semptyQ()

public synchronized boolean isEmpty(int queueID){
return ((Queue)listOfQueues.get(queueID)) .isemptyQ();

!**
* Returns the packet at the front of the queue of the
* inbound interface.
*@return A single packet (byte[]) from the front of the queue
*/

public synchronized byte[] getPacket(int queueID){
Queue q = (Queue)listOfQueues.get(queueID);
//retrieve the packet from the queue
byte[] packet= (byte[])q.peek();
//remove the packet from the queue
q = q.dequeue();
return packet;

!**
* Return a reference to the packet at the front of the queue of the
* inbound interface.
*@return A single packet (byte[]) from the front of the queue
* Doesn't dequeue packet. for debug examination only.
*/

public synchronized byte[] peekPacket(int queueID){
Queue q = (Queue)listOfQueues.get(queueID);

291

}

//retrieve the packet from the queue
byte[] packet= (byte[])q.peek();
return packet;

/**
* This method receives <code>ProtocolStackEvent</code> notifications

from
* Talkers. Actions are taken based on the source
* of the <code>ProtocolStackEvent</code>.
* @param pe The ProtocolStackEvent received.
*/

public synchronized void receiveEvent(SaamEvent pe){

ProtocolStackEvent pse = (ProtocolStackEvent)pe;
int channel= pse.getChannel_ID();
byte[] packet= pse.getPacket();

if(channel==ProtocolStackEvent.getFromNICTointerfaceChannel(
interfaceinstance)){

IPv6Packet v6Packet = null;
try{

v6Packet =new IPv6Packet(packet);
}catch(UnknownHostException uhe){

gui.sendText(11 Couln't instantiate IPv6Packet 11
);

}
//inbound packet.
inboundPacketCount++;
gui.sendText(11 Received Packet # 11 +inboundPacketCount+

11 on channel: "+channel);
gui.sendText("Source: " +

v6Packet.getHeader() .getSource() .toString());
gui.sendText("Came from: 11 +pse.getSource());
gui.sendText("Packet length= 11 +packet.length+

card

"; Payload length= 11 + v6Packet.getPayload() .length+
";Flow label= 11 + v6Packet.getHeader() .getFlowLabel());

Queue inQ = (Queue)listOfQueues.get(INBOUND_QUEUE);
inQ.enqueue(packet); ·
gui.sendText(11 Inbound queue count: 11 +

inQ.getCount () +11
•

11
);

ProtocolStackEvent ev~nt new ProtocolStackEvent(
toString(),
this,
enqueueinginboundChannel,
packet);

try{
controlExec.talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}else if(channel==ProtocolStackEvent.
getFromRoutingAlgorithmTointerfaceChannel(

interfaceinstance)){

IPv6Packet v6Packet = null;
try{

II XXX need to be changed when MAC addition is moved to NIC

292

v6Packet = new
IPv6Packet(Array.getSubArray(packet,l,packet.length));

}catch(UnknownHostException uhe){
gui.sendText("Couldn't instantiate IPv6Packet");

}
//outbound packet
outboundPacketCount++;
gui.sendText("Received outbound packet #"+outboundPacketCount+

" on channel: "+channel);
gui.sendText("Packet length = " + packet.length +

"; Payload length="+ v6Packet.getPayload() .length);
gui.sendText("Source: "+v6Packet.getHeader() .getSource());
gui. sendText ("Dest : "+v6Packet. getHeader () . getDest ());
int sl = pse.getServiceLevel();
int outChannel =

ProtocolStackEvent.getFrominterfaceToSLQueueChannel
(interfaceinstance);

Queue outQ = (Queue)listOfQueues.get(
SERVICE_LEVEL_QUEUE_START_INDEX+sl);

//A hack: insert nextHop onto the front of the packet
//so it can be retreived from the scheduler when
//dequeued. This way we ensure that the scheduler
//associates this packet with the appropriate service
//level.
packet= Array.concat(pse.getNextHop() .getAddress(),

packet);

outQ.enqueue(packet);
gui. sendText (II service level [n +sl+ n] count: n +

outQ.getCount());
gui.sendText("Next Hop: •+pse.getNextHop() .toString());
gui.sendText("talking on channel: "+outChannel);

ProtocolStackEvent event = new ProtocolStackEvent(
toString(),
this,
outChannel,
packet,
sl,
pse.getNextHop());

try{
controlExec.talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}//if-else
}//packetReceived
public boolean equals(Interface in){

return this.interfaceID.equals(in.getID());

/**
* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*I

public String toString(){
return "Interface"+interfaceinstance;

293

package saam.router;

import java.net.*;
import java.util.*;
import java.io.*;

import saam.control.*;
import saam.event.*;
import saam.net.*;
import saam.util.Array;

!**
* Used to send/receive IPv6 Packets over an
* IPv6-capable wire (The <code>Translator</code>
* emulates the IPv6-capable wire in this case.
*/

public class NetworkinterfaceCard
implements SaamTalker, SaamListener{

private ControlExecutive controlExec;
/**

* The MAC address assigned to this <code>
* NetworkinterfaceCard</code>.
*/

private byte MAC;
private int thisinstance;

/**
* Constructs a NIC card that will listen to events from
* translator.
* @param MAC The MAC address to be assigned to this NIC card
* @param translator The translator that will talk
* to this NIC card.
*/

public NetworkinterfaceCard(ControlExecutive controlExec,
byte MAC, int thisinstance){

this.thisinstance=thisinstance;
this.controlExec=controlExec;

this.MAC=MAC;

//***/
II Set up talking mechanism
//***/

//acquire the channels you wish to talk on
int channel = ProtocolStackEvent.

getFromNICTointerfaceChannel(thisinstance);
try{

controlExec.addTalkerToChannel(this,channel);
}catch(ChannelException ciue){

System.out.println(ciue.toString());
'}

channel = ProtocolStackEvent.
FROM_NICS_TO_TRANSLATOR_CHANNEL;

try{
controlExec.addTalkerToChannel(this,channel);

}catch(ChannelException ce){
System.out.println(ce.toString());

294

//***/
//Enable listening
//***/

channel = ProtocolStackEvent.FROM_TRANSLATOR_TO_NICS_CHANNEL;
try{

controlExec.addListenerToChannel(this,channel);
}catch(ChannelException ce){
System.out.println(ce.toString());

}//try-catch

channel = ProtocolStackEvent.getFromSchedulerToNICChannel(
thisinstance);

try{
controlExec.addListenerToChannel(this,channel);

}catch(ChannelException ce){
System.out.println(ce.toString());

}//try-catch
}//NetworkinterfaceCard

/**
'*Receives and processes the ProtocolStackEvent notification
* that was sent on a Channel this NetworkinterfaceCard is listening
* to.
* @param pe The ProtocolStackEvent to be processed.
*I

public void receiveEvent(SaamEvent se){
ProtocolStackEvent pse = (ProtocolStackEvent)se;
int channel= pse.getChannel_ID();
byte[] packet= pse.getPacket();
if(channel==

ProtocolStackEvent.FROM_TRANSLATOR_TO_NICS_CHANNEL){

int theMAC = packet[O];
if(theMAC ==MAC){

ProtocolStackEvent event new ProtocolStackEvent(
toString(),
this,
ProtocolStackEvent.getFromNICTointerfaceChannel(

thisinstance),
stripMAC(packet));
try{

controlExec.talk(event);
}catch(ChannelException tde){

System.out.println(tde.toString());
}

}//if(theMAC ==MAC)

}else if(channel==ProtocolStackEvent.
getFromSchedulerToNICChannel(thisinstance))

//the NIC simply forwards the packet on to the
//Translator ... no added value here. This should
//be looked at.
ProtocolStackEvent event = new ProtocolStackEvent(

toString(),
this,
ProtocolStackEvent.FROM_NICS_TO_TRANSLATOR_CHANNEL,
packet);
try{

controlExec.talk(event);
}catch(ChannelException tde){

295

}

System.out.println{tde.toString{));
}

}//if-else
}//packetReceived

/**
* Strips the MAC address field from packet.
* @param packet The packet co·ntaining the MAC address
* and the IPv6Packet to be forwarded.
* @return The IPv6Packet as a byte array.
*I

public byte[] stripMAC{byte[] packet){
return Array.getSubArray{packet,l,packet.length);

}//stripMAC

!**
* Returns the String representation of this
* NetworkinterfaceCard.
* @return The String representation of this
* NetworkinterfaceCard.
*/

public String toString{){
return "NIC"+thisinstance;

296

package saam.router;

import java.net.UnknownHostException;
import java.util.*;

import saam.*;
import saam.control.*;
import saam.residentagent.*;
import saam.residentagent.router.*;
import saam.util.*;
import saam.event.*;
import saam.net.*;
import saam.message.*;

/**
* The RoutingAlgorithm looks in the inbound queues of all Interfaces on
* this router and extracts packets based on a round-robin
* algorithm. Dequeued packets are looked into to determine the

destination.
* If the packet is destined for any Interface on this router, the_

packet
* is forwarded to the application layer; otherwise the packet is

forwarded
* to the outbound interface.
*I

public class RoutingAlgorithm
implements ResidentAgentCustomer,

SaamTalker, SaarnListener, Runnable{

/**
* The number of bytes in a SAAM network address. This
* variable is used in the routePacket() method to determine
* the outbound interface when ARPing.
*I

private static final int bytesToCheck = 5;

/**
* The agentTypes the RoutingAlgorithm registers to process.
*I

private static final String[] agentTypes =
{"saam.residentagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"};

private ResidentAgent arpCache, flowRoutingTable;
private ControlExecutive controlExec;

private SAAMRouterGui gui =
new SAAMRouterGui("RoutingAlgorithm");

private Vector interfaces= new Vector();
private int interfaceCount;
private int populatedQueues;
private Interface outboundinterface;

II private boolean started= true;
private boolean started;
private long packetCounter;

private Thread owner; //not currently used!!!!
private Object theLock= new Object();

/**
* The ControlExecutive instantiates the RoutingAlgorithm, passing it
* a copy of the ControlExecutive so the RoutingAlgorithm can call

297

* methods on that ControlExecutive. The ControlExecutive
instantiates

* the arpCache ResidentAgent and passes it to the RoutingAlgorithrn.
* @pararn controlExec The ControlExecutive this RoutingAlgorithrn will
* use to perform certain operations.
* @pararn arpCache The ARPCache ResidentAgent this RoutingAlgorithrn

will
* use to determine the MAC address of the next hop for outbound

packets.
*I

public RoutingAlgorithrn(ControlExecutive controlExec,
ResidentAgent arpCache){

this.controlExec = controlExec;
flowRoutingTable =new FlowRoutingTable();
this.arpCache = arpCache;

controlExec.registerMessageProcessor((MessageProcessor)flowRoutingTable)

controlExec.registerMessageProcessor((MessageProcessor)arpCache);
controlExec.registerCustomer(this);
//add talker
int channel_ID = ProtocolStackEvent.

FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL;
try{

controlExec.addTalkerToChannel(this,channel_ID);
gui.sendText("Talking enabled on channel: "+ channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
//add listener
channel_ID = ProtocolStackEvent.

FROM_TRANSPORTINTERFACE_TO_ROUTINGALGORITHM_CHANNEL;
try{

controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

Thread algorithrnThread new Thread(this,
"Routing Algorithm");

algorithrnThread.start();
gui.setTextField("I'm sleeping ... ");

}//end RoutingAlgorithrn()

/**
* The ControlExecutive calls this method to allow the

RoutingAlgorithrn
* to set up the means of communication between itself and this new
* Interface.
* @pararn nextinterface The Interface this RoutingAlgorithrn will add
* to the list of Interfaces it monitors.
*/

public void addinterface(Interface nextinterface){
//add talker
gui.sendText("Adding "+nextinterface.toString());
int channel_ID = ProtocolStackEvent.

FROM_ROUTINGALGORITHM_TO_INTERFACE_START_CHANNEL+
interfaceCount;

try{

298

controlExec.addTalkerToChannel(this, channel_ID);
gui. sendText ("Talking enabled on channel: 11 + channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
//add listener
channel_ID = ProtocolStackEvent.

ENQUEUING_INBOUND_PACKET_START_CHANNEL+
interfaceCount;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch
interfaces.add(nextinterface);
gui.sendText("Monitoring "+interfaces.size()+

n interfaces");
gui. sendText ("Wai ting ... ") ;
interfaceCount++;

}//addinterface()

/**
* Returns an array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
* @return An array that contains the class names of the resident
* agents that this Object desires to be a ResidentAgentCustomer of.
*I

public String[] getAgentTypes(){
return agentTypes;

}//getAgentTypes()

/**
* When the ControlExecutive receives an agent that is to replace
* an existing agent, the ControlExecutive calls the replaceAgent
* method on each of the ResidentAgentCustomers of that ResidentAgent.
* @param agent The new ResidentAgent.
*I

public synchronized void replaceAgent(
ResidentAgent agent){
if(agent.getClass() .getName() .equals(agentTypes[O])){

II ARPCache arp = (ARPCache)agent;
gui.sendText("ARPCache is being replaced ... ");
this.arpCache=agent;
gui.sendText("New ARPCache installed ... ");
gui.sendText(arpCache.toString());

}else
if(agent.getClass() .getName() .equals(agentTypes[l])){

gui.sendText("FlowRoutingTable is being replaced ... ");
this.flowRoutingTable=agent;
gui.sendText("New FlowRoutingTable installed ... ");
gui.sendText(flowRoutingTable.toString());

}else{
gui.sendText("RoutingAlgorithm is not a customer "+

"of "+agent. toString ()) ;
}

}//replaceAgent()
/**
* The algorithm for determining which inbound queue to select from
* next is contained here. For this version of the SAAM router, the
* algorithm merely visits the queues in round-robin fashion. When

299

- - ----------~---------------------------------------

* a packet is dequeued, it is sent to the routeinboundPacket ~ethod.
*I

public void run(){

/**

//round-robin scheduler

gui.sendText("Monitoring "+interfaceCount+
n interfaces");

while (true) {
gui.sendText("Looking in inbound queue's ... ");
·searchinboundQueues();
gui.sendText(

"All inbound queues empty, I'm.going to sleep");
try{

synchronized(theLock){

}

gui. sendText ("Wai ting ... ") ;
while (! started)

theLock.wait();
gui. sendText ("Resumed");

}catch(InterruptedException ie){
gui.sendText(ie.toString());

}
}//while(started)

} I /run()

* Searches all inbound queues for a packet. Each queue is searched
* until all packets in the queue have been removed. All queues are
* repeatedly searched until two conditions are met:
* 1) All queues are empty and
* 2) No Interface has enqueued a packet during the search.
*/
private void searchinboundQueues(}{

//Continue sweeping the queues and routing packets until all queues
//are empty and no Interface sends a notification that a packet
//is being enqueued.
int queueID = Interface.INBOUND_QUEUE;
gui.sendText("Searching ... populatedQueues "+populatedQueues);
while (populatedQueues > 0)
{

for (int i=O; i<interfaceCount; i++){
Interface thisinterface = (Interface)interfaces.get(i);
II rotind robin to achieve fairness
if (! (thisinterface.isEmpty(queueID))){

gui. sendText ("Packet count: " +
thisinterface.getPacketCount(queueID));

gui. sendText (n dequeuing packet from II+ .
thisinterface.toString()};

routeinboundPacket(thisinterface.getPacket(
Interface.INBOUND_QUEUE));

if (thisinterface.isEmpty(queueID)
populatedQueues--;

}//end if
}//end for

}//while

started = false;
}//searchinboundQueues()

300

the

/**
* Receives and processes SaarnEvents received on the Channel that
* has been designated as the communication Channel for traffic from

* Transportinterface to the RoutingAlgorithm.
* @param se The SaarnEvent that contains the outbound packet.
*/ .

public void receiveEvent(SaarnEvent se){
//this doesn't actually use the SaamEvent
Interface thisinterface = (Interface)se.getTalker();
int numP = thisinterface.getPacketCount(Interface.INBOUND_QUEUE);
if (numP. == 1) {

II if more than one arrives at same time, will miss!!
populatedQueues++;

II Print out debugging information
IPv6Packet packet = null;
try{

packet = new
IPv6Packet(thisinterface.peekPacket(Interface.INBOUND_QUEUE));

}catch(UnknownHostException uhe){};
gui.sendText("Payload length="+ packet.getPayload() .length);
gui . sendText ("Source: "+

packet.getHeader() .getSource() .toString());
gui . send Text ("Dest : " +

packet.getHeader() .getDest() .toString());

if (!started) {
gui.sendText("packet arrived from

activating");
" + thisinterface+". I'm

synchronized(theLock){
started = true;
theLock.notify();

}
}else{

gui. sendText (•packet arrived from : • + this Interface+". already
active");

gui.sendText("Packet count for this queue="+ numP);
} I !if (!started)

}//packetReceived

/**
* This method answers the question - "Is this packet destined for
*an Interface on this router?".
* @param dataPacket The packet to be tested.
* @return True if the packet is destined for an Interface on this

router.
*I

public boolean isApplicationLayerPacket(IPv6Packet dataPacket){
for(int i=O;i<interfaces.size();i++){

Interface thisinterface = (Interface)interfaces.get(i);
if(dataPacket.getHeader() .getDest() .toString() .equals(

thisinterface.getID() .getIPv6() .toString()))
return true;

return false;
}//isApplicationLayerPacket()

301

/**
* The purpose of this method is to determine which Interface is
* connected to the Interface this packet is travelling to next.
* Compares the network portion of the nextHop provided with the
* network portions of the IPv6Addresses of each of the the Interfaces
* provided in the Vector.
* @param interfaces The Vector of Interfaces on this router.
* @param nextHop The IPv6Address to be compared.
* @return The Interface that is connected to the Interface this

packet
* is travelling to next.
*I

public Interface determineOutboundinterface(Vector interfaces,
IPv6Address nextHop){
byte[] nextHopBytes = nextHop.getAddress();
for(int i=O;i<interfaces.size();i++) {

Interface thisinterface = (Interface)interfaces.get(i);
//cycle through all interfaces
//checking network address against nextHop.
int match = O;
byte[] outboundinterfaceBytes =

thisinterface.getID() .getIPv6() .getAddress();
for(int index=O;index<bytesToCheck;index++){

if((nextHopBytes[index]&OxFF)==
(outboundinterfaceBytes[index]&OxFF)) {
match++;

}//if
}//for
if(match==bytesToCheck) {

return thisinterface;
}//if

}//for
return null;

}//determineOutboundinterface()

/**
* Looks into the packet to determine whether it should be sent to
* the application layer on this router or forwarded on to the next

hop.
* @param whichinterface The inbound Interface the packet was dequeued
* from.
* @param packet The byte array that represents the packet.
*I

public void routeinboundPacket(byte[] packet){
packetCounter++;
IPv6Packet dataPacket = null;
try{

dataPacket =new IPv6Packet(packet);
}catch(UnknownHostException uhe){};
gui.sendText("Packet#: "+packetCounter+", Size " +

packet.length+ "; Payload length= " +
dataPacket.getPayload() .length);

gui. sendText ("Source: "+
dataPacket.getHeader() .getSource() .toString());

gui. sendText ("Dest: "+
dataPacket.getHeader() .getDest() .toString());

if(isApplicationLayerPacket(dataPacket)){
gui.sendText("Application layer packet.");
gui.sendText("Forwarding to Transport Interface.");
ProtocolStackEvent event =new ProtocblStackEvent(

toString () ,

302

this,
ProtocolStackEvent.

FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL,
dataPacket.getBytes());
try{

controlExec.talk(event);
}catch(ChannelException tde){

gui.sendText(tde.toString());

}else{
forwardPacket(dataPacket);

}
}//routeinboundPacket()

/**
* Checks to see whether or not an entry is in the ARPCache.
* @param entry The ARPCacheEntry to be verified.
* @return True if the entry is in the ARPCache.
*/

public boolean checkARPCache(ARPCacheEntry entry){
ARPCacheEntry resultEntry =

(ARPCacheEntry)arpCache.query(entry);
return resultEntry!=null;

}//checkARPCache()

/**
* Forwards the outbound packet to the appropriate Interface
* @param packet A byte array representation of the outbound packet.
*/

public void forwardPacket(IPv6Packet packet){
·rPv6Header v6Header = packet.getHeader();
gui.sendText("Forwarding packet");

i~t flowID = v6Header.getFlowLabel();
gui. sendText ("Flow id: "+flowID);

//to determine the next hop, we consult the FlowRoutingTable by
//calling its query method and passing a FlowRoutingTableEntry
//containing the flowID.
Message message= (Message) (new FlowRoutingTableEntry(flowID));

I /The FlowRoutingTableEntry th.at is· returned here contains the
//next hop and service level we are looking for.
FlowRoutingTableEntry frtEntry = (FlowRoutingTableEntry)

flowRoutingTable.query(message);
try{

IPv6Address nextHop = frtEntry.getNextHop();
gui.sendText("next hop: "+nextHop);
byte sl = frtEntry.getSL();
gui. sendText ("SL: "+sl) ;

//Now ARP to determine the MAC address of the next hop.
message= (Message) (new ARPCacheEntry(nextHop));
ARPCacheEntry entry= (ARPCacheEntry)arpCache.query(message);

try{
byte nextMAC = entry.getNextMAC();
gui . send Text ("nextMAC: "+nextMAC) ;
outboundinterface = determineOutboundinterface(

interfaces, nextHop);
gui.sendText("outboundinterface: "+outboundinterface);

303

if(v6Header.getSource() .toString() .equals(IPv6Address.DEFAULT_HOST)){
gui.sendText("Setting Source");
v6Header.setSource(outboundinterface.getID() .getIPv6());
packet.setHeader(v6Header);

gui.sendText("Source: " + v6Header.getSource());
gui.sendText("Dest: "+ v6Header.getDest());
gui.sendText("Appending next hop MAC address " +

(nextMAC&Oxff));
//"XXX -- needs to be moved to NIC card
byte[] outboundPacket =

Array.concat(nextMAC,packet.getBytes());
gui.sendText("Forwarding packet to: "+

outboundinterface);

//send a SaamEvent to the appropriate outbound interface.
//This SaamEvent contains the service level among other

things.

}

/**

ProtocolStackEvent event = new ProtocolStackEvent(
toString(),
this,
ProtocolStackEvent.

getFromRoutingAlgorithmTointerfaceChannel(
interfaces.indexOf(outboundinterface}},

outboundPacket,
sl,
nextHop);

try{
controlExec.talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(NullPointerException npe) {

}

gui . send Text ("Next Hop: "+nextHop+" is not in the ARPCache") ;
gui.sendText("Packet Dropped\n");

}catch(NullPointerException npe){
gui.sendText("Flow "+flowID+" is not in the FlowRoutingTable");
gui.sendText("Packet Dropped\n");

}
}//forwardPacket()

* Returns a <code>String</code> representation of this object
* @return The <code>String</code> representation of this object
*I

public String toString(){
return "Routing Algorithm";

} I I toString ()

304

package saam.router;

import java.net.*;
import java.util.*;
import java.io.*;

import saam.*;
import saam.message.*;
import saam.net.*;
import saam.util.SAAMRouterGui;
import saam.event.*;
import saam.util.Array;
import saam.control.*;
import saam.residentagent.ResidentAgent;
import saam.message.MessageProcessor;

/**
* The Transportinterface is at the top of the protocol stack. The
* RoutingAlgorithm passes packets destined for an Interface on this
* router up to the Transportinterface. The Transportinterface then
* strips of the UDPHeader, determines which port the packet is destined
* for, and forwards the packet on that port.
*I

public class Transportinterface
implements SaamTalker,SaamListener{

private SAAMRouterGui gui =
new SAAMRouterGui("Transport Interface");

private ControlExecutive controlExec;
private int outChannel = ProtocolStackEvent.

FROM_TRANSPORTINTERFACE_TO_ROUTINGALGORITHM_CHANNEL;

private int packetCount;

/**
* Constructs a Transportinterface that will listen to events from
* the RoutingAlgorithm.
* @param ra The MAC address to be assigned to this NIC card
* @param translator The translator that will talk
* to this NIC card.
*I

public Transportinterface(ControlExecutive controlExec){

//here the Transportinterface registers to listen
//on the control channel of the protocol stack and
//registers to speak on the control channel in the
//application layer
this.controlExec = controlExec;
try{

controlExec.addTalkerToChannel(this, outChannel);
gui.sendText("Talking approved on"+ outChannel);

}catch(ChannelException ce){
gui.sendText(ce.toString());

int channel_ID = ProtocolStackEvent.PACKETFACTORY_CHANNEL;
try{

controlExec.addTalkerToChannel(this, channel_ID);
gui.sendText("Talking approved on "+

(channel_ID<=ControlExecutive.MAX_PORT? "port: ":"channel: ") +

305

channel_ID);
}catch{ChannelException ce){

gui.sendText(ce.toString{));
}

channel_ID = ProtocolStackEvent.
FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to "+

(channel_ID<=ControlExecutive.MAX_PORT? "port: ":"channel: ") +
channel_ID) ;

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch
}//Transportinterface

/**
* Used by the ControlExecutive to send a packet. In this method,
* the UDPHeader is constructed and then a TransportinterfaceEvent
* is sent on the Channel the RoutingAlogorithm is listening to.
* @param sender The Object sending the message.
* @param saamPacket The SAAMPacket that will be wrapped in an
* IPv6Packet.
* @param message The subclass of saam.message.Message to be sent.
* @param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* @param sourcePort The port on the local machine that sender is

listening on.
* @param destHost The IPv6Address of the destination.
* @param destPort The port to which destHost is listening.
*/

public IPv6Packet buildIPv6Packet(Object sender, SAAMPacket
saamPacket,

int flowID, short sourcePort, IPv6Address destHost,
short destPort){

/**

IPv6Header ipv6Header =new IPv6Header(flowID,destHost);
byte[] payload= saamPacket.getBytes();
short payloadLength = (short)payload.length;
//construct the UDP header
UDPHeader udpHeader = new UDPHeader(sourcePort,

destPort, payloadLength, (short)O);

gui.sendText("Building IPv6Packet:");
gui.sendText("Encapsulated SAAMHeader:\n"+

saamPacket.getHeader());
SAAMPacket newSaamPacket = null;

return new IPv6Packet(ipv6Header,udpHeader,payload);

* Receives and processes the SaamEvent notification
* generated by the packet talker to whom this Transportinterface
* is listening.
* @param pe The SaamEvent to be processed.
*/

public void r~ceiveEvent(SaamEvent se){
if(se.getChannel_ID()==ProtocolStackEvent.

306

FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL){
packetCount++;
gui.sendText("Received Event #"+packetCount+

11 on channel: "+se.getChannel_ID());
ProtocolStackEvent pse = (ProtocolStackEvent)se;

processSaarnEvent(pse);

}//packetReceived

/**
* Here, application layer packets are received from the

RoutingAlgorithm.
* This method looks at the UDP port the packet is destined for and

does
* one of three things:<p>
* 1. If the packet is destined for the SAAM_CONTROL_PORT, this method
* forwards the SAAMPacket to the PacketFactory for parsing.
* 2. If the packet is destined for a regular port and there is a

listener
* on that port, the packet is sent to that port.
* 3. If the packet is destined for a regular port but there is no
* listener on that port, the packet is dropped.
*
* Currently, there are no checks to determine whether the packet is
* destined for a port within the allowable range.
* @param pse The ProtocolStackEvent that was sent on a Channel the
* Transportinterface was listening on.
*I

private void processSaarnEvent(ProtocolStackEvent pse){
IPv6Packet v6Packet = null;
try{

v6Packet =new IPv6Packet(pse.getPacket());
}catch(UnknownHostException uhe){

gui.sendText("in processSaamEvent(): "+uhe.toString());
}
byte[] v6Payload = v6Packet.getPayload();
String source= v6Packet.getHeader() .getSource() .toString();
gui . sendText (II Source: n +source) ;
UDPHeader udp = v6Packet.getUDPHeader();
short port= udp.getDestPort();
gui. sendText ("Dest Port: "+port);
if(port == ControlExecutive.SAAM_CONTROL_PORT){

gui.sendText("Passing event to PacketFactory");
pse.setTalker(this);
pse.setChannel_ID(ProtocolStackEvent.PACKETFACTORY_CHANNEL);
pse.setPacket(v6Payload);
gui. sendText (II PayloadLength: n +v6Payload. length) ;
try{

controlExec.talk(pse);
}catch(ChannelException ce){

gui.sendText(ce.toString());
}

}else{
gui.sendText("Sending up to dest port");
gui.sendText(udp.toString());
if(controlExec.hasListener(port)) {

if(port == ControlExecutive.SAAM_CONTROL_PORT){
gui.sendText("SIF received ... ");
gui.sendText("Notifying PacketFactory");
gui.sendText("Packet length: "+v6Payload.length);

307

}

ProtocolStackEvent event = null;
event = new ProtocolStackEvent(

toString(),
this,
ProtocolStackEvent.PACKETFACTORY_CHANNEL,
v6Payload) ;

try{
controlExec.talk(event);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
}else{

gui.sendText("Notifying port "+port+" listeners.");
gui.sendText("Packet length: "+v6Payload.length);
ApplicationEvent event = null;
event = new ApplicationEvent(

toString(),
this,
port,
v6Packet.getBytes());

try{
controlExec.talk(event);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
}

}else{
gui.sendText("Packet dropped. No listeners on port: "+port);
//take actions to dispose of the event

/**
* Returns the String representation of this
* Transportinterface.
* @return The String representation of this
* Transportinterface.
*/

public String toString(){
return "Transportinterface";

}

308

APPENDIX I. SERVER PACKAGE SOURCE CODE

309

package saam.server;

import saam.net.*;
import saam.message.*;
import saam.util.*;
import java.net.*;
import java.sql.*;
import java.util.*;
import java.io.*;

!**
* The ClassObjectStructure is a Path Information Base object

within the
* SAAM architecture that performs operations on class objects

containing the
* information needed to obtain a picture of the network for use in

assigning
* flows to paths.
*/

public class ClassObjectStructure extends PathinformationBase{

/** Contains all of the known router nodes. */
Hashtable nodes;
/** Contains all of the known router interfaces. */
Hashtable interfaces;
/** Contains service level pipes. */
Vector slps;
/** Describes the QoS parameters for a service level pipe. */
SLP_QoS slp_qos;
/** Contains all of the known links. */
Hashtable links;
/** Contains all of the constructed paths. */
Hashtable paths;
/** Describes the characteristics of a path. */
Path path;
/** Contains all of the assigned flows. */
Hashtable flows;
/** Describes the QoS characteristics of an assigned flow. */
Flow_QoS flow_qos;
/** Contains a sequence of service level pipes. */
Vector SLP_Sequence;
/** Describes a service level pipe. */
ServiceLevelPipe slp;
!** A boolean that will allow the showing of comments. */
private boolean showComments = false;
private SAAMRouterGui gui;

/**
* The SLP_QoS defines the QoS charateristics of a service

level pipe.

*I

*I
private class SLP_QoS {

/** The maximum delay expected on this SLP. */
int targetDelay=O;
/** The maximum loss rate expected on this SLP. */
int targetLossRate=O;
/** The amount of bandwidth that this SLP should be able to provide.

int targetThroughput=O;
/** The amount of delay being observed at this SLP. */
int observedDelay=O;

310

!** The loss rate being observed at this SLP. */
int observedLossRate=O;
!** The utilization being observed at this SLP. */
int observedUtilization=O;
public String toString(){

return "SLP_QoS:target D="+targetDelay+", LR="+targetLossRate+",
T="

+targetThroughput+", observed D="+observedDelay+",
LR="+observedLossRate

+", U="+observedUtilization;

!**
* The Path defines the characteristics of a path.
*/

private class Path {
!** The first router in the path. */
int sourceRouter=O;
/** The last router in the path. */
int destinationRouter=O;
/** The total delay a flows traversing this path experiences. */
int effectiveDelay=O;
/** The totoal loss rate a flow traversing this path experiences. */
int effectiveLossRate=O;
/** The amount on bandwidth still available on this path. */
int effectiveThroughputRemaining=O;
/** The flows that are assigned to this path. */
Hashtable flows= new Hashtable();
/** The sequence of service le~el pipes that make up this path. */
Vector SLPSequence =new Vector();
public String toString(){

return "Path: from "+sourceRouter+" to "+destinationRouter+" with
flows:"

+flows;

!**
* The Flow_QoS defines the QoS characteristics of a flow.
*!

private class Flow_QoS {
/** The maximum amount of delay that the flow is expected to

experience. */
int negotiatedDelay=O;
/** The maximum loss rate that the flow is expected to experience.

*!
int negotiatedLossRate=O;
!** The maximum amount of bandwidth that a flow is expected to

consume. */
int negotiatedThroughput=O;
/** The average delay experienced by a flow. */
int observedDelay=O;
!** The loss rate experienced by a flow. */
int observedLossRate=O;
/** The amount of bandwdith being consumed by a flow. */
int observedThroughput=O;

!**

311

* The ServiceLevelPipe defines characteristics of a service
level

*I

* pipe.
*/

private class ServiceLevelPipe {
/** The IPv6 address of the interface. */
IPv6Address address;
/** The level of service that this SLP expects to provide to flows.

int serviceLevel=O;

//**

II These methods are used to initialize the path information base.
//**
******/

/**
* Constructs a ClassObjectStructure object that will be used to

manipulate
* the class objects of this path information base.
*/

public ClassObjectStructure(){
gui =new SAAMRouterGui("PIB");
//if (showComments){

gui.sendText("PIB: ClassObjectStructure: Constructor executed.");
//}

!**
*Removes all current path data from the database .. Its most commonly

used
* during initialization of a SAAM server for a new network.
*/

public void deleteAllData() {
nodes new Hashtable();
links= new Hashtable();
paths= new Hashtable();
interfaces= new Hashtable();
if (showComments){

gui.sendText("PIB: deleteAllData: All data deleted.");
}

}

//**

II These methods are used to process link state advertisements from
routers
//**
******/

/**
* Determines whether a given router exists yet within the PIB.
* @param IPv6Addresses A vector of interface addresses contained

within
* a Hello or an LSA message.
* @returns node_id The id of the node containing at least one of the
* interface addresses in the vector that was passed.
*/

312

public int doesRouterExist(Vector IPv6Addresses){
Integer myNodeid;
int node_id = O;
IPv6Address myIPv6Address;
II for each of the interface IPv6 addresses that were passed in
for (inti= O; i < IPv6Addresses.size(); i++) {

}

myIPv6Address = (IPv6Address)IPv6Addresses.elementAt(i);
Enumeration e =nodes.keys();
II for each of the node ids in the PIB
while(e.hasMoreElements()){·

myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if any of its address equals the address that was passed in
if (myNode.containsKey(myIPv6Address.toString())){

node_id = myNodeid.intValue();

if (showComments){
if (node_id != 0)

gui.sendText("PIB: doesRouterExist: Router 11 +node_id+ 11

exists.");
else

gui.sendText(11 PIB: doesRouterExist: Router is not in
database.");

}
return node_id;

}

I**
* Finds an unassigned node id and adds it to the PIB. It is commonly

used
* for assigning a new node id to a previously unknown router.
* @returns max_node_id An unassigned router id.
*I

public int getNewNodeid(){

}

int max_node_id = O;
Enumeration e =nodes.keys();
II for each of the node ids in the PIB
while(e.hasMoreElements()){

Integer myNodeid = (Integer)e.nextElement();
II if the id is greater than the max
if (max_node_id < myNodeid.intValue())

II then assign it as the max
max_node_id = myNodeid.intValue();

}
II increment the max to get a new max
max_node_id++;
II enter this node id into the PIB
nodes.put(new Integer(max_node_id), new Hashtable());
if (showComments){

gui.sendText(11 PIB: assignNewNodeid: Router's id assigned: 11

+ max_node_id);

return max_node_id;

I**
* Determines whether a given interface exists yet within the PIB.
* @param myIPv6Address The interface address contained within a hello

or LSA

313

* message.
* @returns found True if the interface address already exists within

the PIB.
*I

public boolean doesinterfaceExist(IPv6Address myIPv6Address){
boolean found = false;

}

Integer myNodeid;
Enumeration e =nodes.keys();
II for each node in the PIB
while(e.hasMoreElements()){

}

myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if any of its interface addresses equal LSA interface address
if (myNode.containsKey(myIPv6Address.toString()))

found = true;

if (showComments){
if (found)

}

gui.sendText("PIB: doesinterfaceExist: Interface "
+ myIPv6Address.toString() +"is found.");

else
gui.sendText("PIB: doesinterfaceExist: Interface "

+ myIPv6Address.toString() +"is not found.");

return found;

I**
* Determines whether a given link exists yet within the PIB.
* @param address The IPv6 address of an interface.
* @returns found True if the link address already exists within the

PIB.
*I

public boolean doesLinkExist(IPv6Address address){
boolean found = false;
II if the links known to the PIB contains this address
if (links.containsKey(address.getNetworkAddress() .toString()))

found = true;
if (showComments){
if (found)

}

gui.sendText("PIB: doesLinkExist: Link "
+ address.getNetworkAddress() +"is found.");

else
gui.sendText("PIB: doesLinkExist: Link "

+ address.getNetworkAddress() +"is not found.");

return found;

I**
* Adds a new link to the PIB.
* @param address The IPv6 address of an interface.
* @param max_bandwidth The max transmission rate over this network

segment.
*I

public void addLink(IPv6Address address, int max_bandwidth){
II add the link entry to the hash table
links.put(address.getNetworkAddress() .toString(),new

Integer(max_bandwidth));
if (showComments){

gui.sendText("PIB: addLink: Link " + address.getNetworkAddress()

314

+ n is added.");
}

I**
* Adds a new interface to the PIB.
* @param node_id The id of the router whose interface is being added.
* @param address The IPv6 address of an interface.
*I

public void addinterface(int node_id, IPv6Address address) {
II get the node assigned to this node id
Hashtable myNode = (Hashtable)nodes.get(new Integer(node_id));
II add this new interface to the node
myNode.put{address.toString(), new Vector());
if (showComments){

gui.sendText("PIB: addinterface: Interface •+ address +" is
added.");

}
}

I**
* Determines whether a service level pipe exists yet within the PIB.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns found True if this SLP is already in the PIB.
*I

public boolean doesSLPExist(IPv6Address myIPv6Address, int
se:tvice_level){

boolean found = false;
Integer myNodeid =new Integer{O);
Enumeration e_node_ids =nodes.keys();
II for each of the node ids in the PIB
while(e_node_ids.hasMoreElements()) {

myNodeid = (Integer)e_node_ids.nextElement();
Hashtable Interfaces= (Hashtable)nodes.get(myNodeid);
II if this interface's address equals the interface address of

this slp
if {Interfaces.containsKey(myIPv6Address.toString())){

Vector slps = (Vector)Interfaces.get(myIPv6Address.toString());
II if this interface has more service levels than this service

level

}

}

if (slps.size{) >= service_level) {
found = true;

}

if (showComments){
if (found)

}

gui.sendText("PIB: doesSLPExist: SLP from router "
+ myNodeid + " is found.");

else
gui.sendText("PIB: doesSLPExist: SLP from router "

+ myNodeid +"is not found.");

return found;

I**
* Updates the status of a known SLP's delay, loss_rate, and

throughput.

315

the

* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @param delay The average delay experienced by a packet's stay in

* particular SLP outbound queue.
* @param loss_rate The average loss_rate experienced by packets in a
* particular SLP.
* @param throughput The average throughput provided by a particular

SLP.
*I

public void updateSLP(IPv6Address address, int service_level, int
delay,

int loss_rate, int throughput){
Integer myNodeid =new Integer(O);
Enumeration e =nodes.keys();
II for each of the nodes in the PIB
while(e.hasMoreElements()){

myNodeid = (Integer)e.n'extElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if this node contains an interface with the address passed in
if (myNode.containsKey(address.toString())) {

Vector myinterface = (Vector)myNode.get(address.toString());
II if this interface has more service levels than this service

level

}

if (myinterface.size() >= service_level) {
slp_qos = (SLP_QoS)myinterface.elementAt(service_level);
II update it with these new values
slp_qos.observedDelay delay;
slp_qos.observedDelay = loss_rate;
slp_qos.observedDelay = throughput;
myinterface.insertElementAt(slp_qos,service_level);
if (showComments){

gui.sendText(11 PIB: updateSLP: SLP 11 + service_level
+ 11 is assigned delay= 11 +delay+ 11 ,loss_rate= 11 +loss_rate
+ 11 ,throughput= 11 +throughput);

if (showComments){
gui.sendText(11 PIB: updateSLP: SLP " + service_level + 11 is

updated. n);
}

I**
* Adds a previously unknown SLP to the PIB along with its targeted

QoS.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @param target_delay The average delay experienced by a packet's

stay in the
* particular SLP outbound queue.
* @param target_loss_rate The average loss_rate experienced by

packets in a
* particular SLP.
* @param target_throughput The average throughput provided by a

particular SLP.
*I

316

public void addSLP(IPv6Address address, int service_level, int
target_delay,

int target_loss_rate, int target_throughput){
int delay = 0, loss_rate = 0, throughput = O;
Integer myNodeid =new Integer(O);
Enumeration e =nodes.keys();
II for each node in the PIB
while(e.hasMoreElements()){

}

myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if any interface has this same IPv6 address
if (myNode.containsKey(address.toString())){

Vector myinterface = (Vector)myNode.get(address.toString());
SLP_QoS slp_qos = new SLP_QoS();
slp_qos.targetDelay = target_delay;
slp_qos.targetLossRate = target_loss_rate;
slp_qos.targetThroughput = target_throughput;
slp_qos.observedDelay = delay;
slp_qos.observedLossRate = loss_rate;
slp_qos.observedUtilization = throughput;
II add this new slp to this interface
myinterface.insertElementAt(slp_qos,service_level);

if (shoWComments){

}

gui.sendText(11 PIB: addSLP: SLP 11 + service_level + 11 is added to 11

+address);

II**

II These methods are used to process a flow request from a host
II**
******I

I**
* Finds a router id that has an interface to on the same link as the

host
* making a flow request.
* @param address The IPv6 address of the interface of the host

requesting
* the flow.
* @returns ARouter The router id of the first router found on this

link.
*I

public int findARouterOnLink(IPv6Address address){
int ARouter = O;
Integer myNodeid = null;
II check to see if requesting host is a router itself

Enumeration e =nodes.keys();
II for each of the node ids in the PIB
while(e.hasMoreElements()){

}

myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if any of its address equals the address that was passed in
if(myNode.containsKey(address.toString())){

ARouter = myNodeid.~ntValue();

II otherwise, find any other router on the same subnet

317

if (ARouter == 0){
e =nodes.keys();
II for each of the node ids in the PIB
while(e.hasMoreElements()){

myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
Enumeration addresses= myNode.keys();
II for each of these interfaces
while (addresses.hasMoreElements()){

String nextAddress = (String)addresses.nextElement();
try{

II if this interface's network address equals that of the
link

if
(IPv6Address.getByName(nextAddress) .getNetworkAddress() .toString() .equal
s(

address.getNetworkAddress() .toString())){
ARouter = myNodeid.intValue();

}

}

}
}catch(UnknownHostException uhe){

gui.sendText(1111 +uhe);
}

if (showComments){
gui.sendText(11 PIB: findARouterOnLink: Router 11

+ ARouter + 11 is found on same link 11 +
address.getNetworkAddress()

+ 11 as host 11 +address);

return ARouter;
}

I**
* Determines if there is a path that can support a particular flow

request.
* A value of zero is returned if no path can support this QoS.
* @param source_router The node ~d of. a router on the same physical

link as
* the source host.
* @param destination_router The node id of a router on the same

physical
* link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns path_id The id of a path that can support this request.
*I

public int getPathThatCanSupportFlowRequest(int source_router,
int destination_router, FlowRequest

myFlowRequest){
int path_id = O;
II for each path in the PIB
Enumeration e_path_ids =paths.keys();
while (e_path_ids.hasMoreElements()){

Integer nextPathid = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)paths.get(nextPathid);
II if it has the same source and destination router
II and its effective delay and loss rate is less than this

request

318

II and its throughput remaining is more than the requested
throughput

&&

if (nextPath.sourceRouter == source_router &&
nextPath.destinationRouter == destination_router &&
nextPath.effectiveDelay <= myFlowRequest.getRequestedDelay()

nextPath.effectiveLossRate <=
myFlowRequest.getRequestedLossRate() &&

nextPath.effectiveThroughputRemaining
>=

myFlowRequest.getRequestedThroughput()){
path_id = nextPathid.intValue();

}
if (showCornrnents){

if (path_id != 0){
gui.sendText("PIB: getPathThatCanSupportFlowRequest: "

+ "Flow request from "+source_router+" to "+destination_router
+"with delay<="+myFlowRequest.getRequestedDelay()+", LR<="
+myFlowRequest.getRequestedLossRate()+", RT>="
+myFlowRequest.getRequestedThroughput()+"can be supported on

path: n

+ path_id);
}
else{

gui.sendText("PIB: getPathThatCanSupportFlowRequest: "
+"Flow request cannot be supported.");

return path_id;

I**
* Finds an unassigned flow id and assigns this new flow to a path.
* @param path_id The id of a path that can support this request.
* @param source_router The node id of a router on the same physical

link as
* the source host.
* @param destination_router The node id of a router on the same

physical
* link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns max_flow_id The id that is being assigned to this flow.
*I

public int getNewFlowid(int path_id, int source_router,
int destination_router, FlowRequest

myFlowRequest){
int max_flow_id = O;
Enumeration e_path_ids =paths.keys();
II for each path in the PIB
while (e_path_ids.hasMoreElements()){

Integer nextPathid = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)paths.get(nextPathid);

Enumeration e_flow_ids = nextPath.flows.keys();
II for each of the flows on this path
while (e_flow_ids.hasMoreElements()){

Integer nextFlowid = (Integer)e_flow_ids.nextElement();
II if this flow id is greater than the current max flow id
if (nextFlowid.intValue() > max_flow_id){

max_flow_id = nextFlowid.intValue();

319

}

}
II now increment to get an unassigned flow id
max_flow_id++;

II now assign this flow to this path
Path myPath = (Path)paths.get(new Integer(path_id)).;
Flow_QoS myFlowQoS = new Flow_QoS();
myFlowQoS.negotiatedDelay myFlowRequest.getRequestedDelay();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedLossRate();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedThroughput();
myPath.flows.put(new Integer(max_flow_id),myFlowQoS);
if (shoWComments){

gui.sendText("PIB: assignNewFlowid: Flow "
+ max_flow_id. + n is assigned to path "+path_id);

}
return max_flow_id;

/**
* Retrieves the sequence of SLP that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path A vector of SLPs that compose this path.
*I

public Vector getSLPSequenceOfPath(int path_id){
int sequenceNumber = O;
IPv6Address link_id = null;
Vector slps_in_path =new Vector();
II get the sequence of slps that compose the path
Path path= (Path)paths.get(new Integer(path_id));
II for each slp
for (int index= O; index< path.SLPSequence.size(); index++){

ServiceLevelPipe nextSLP =
(ServiceLevelPipe)path.SLPSequence.elementAt(index);

II instantiate a slp sequence object
SLPSequence SLP_Sequence =new SLPSequence();
II set the slp sequence values
SLP_Sequence.setServiceLevel(nextSLP.serviceLevel);
II find what node this slp is attached to ...
Enumeration e =nodes.keys();
int node_id = O;
II for each of the node ids in the PIB
while(e.hasMoreElements()){

}
}

Integer myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
if (myNode.containsKey(nextSLP.address.toString())){

node_id myNodeid.intValue();
link_id = nextSLP.address.getNetworkAddress();

SLP_Sequence.setSourceRouter(node_id);
SLP_Sequence.setPathid(path_id);
SLP_Sequence.setLinkid(link_id);
SLP_Sequence.setSequenceNumber(sequenceNumber);
if (showComments){

gui.sendText("PIB: getSLPSequenceOfPath: adding "+SLP_Sequence);
}
II add it to the vector
slps_in_path.addElement(SLP_Sequence);

320

}

II increment for the next slp
sequenceNumber++;

if (showComments){
gui.sendText("PIB: getSLPSequenceOfPath: SLP sequence of path

"+path_id
+ 11 has 11 +path.SLPSequence.size()+" hops.");

}
return slps_in_path;

I**
* Retrieves the IPv6 address of an interface.
* @param node_id The id of the router.whose interface is being

queried.
* @param link_id The network portion of the IPv6 address of an

interface.
* @returns address The address of the interface that connects this

node and
* link.
*I

public IPv6Address getinterfaceAddress(int node_id, IPv6Address
link_id) {

IPv6Address address= new IPv6Address();
IPv6Address tempAddress = null;
String nextAddress;
Hashtable node_interfaces = (Hashtable)nodes.get(new

Integer(node_id));
Enumeration e_addresses = node_interfaces.keys();
II for each of these interfaces
while (e_addresses.hasMoreElements()){

nextAddress = (String)e_addresses.nextElement();
try{

tempAddress = IPv6Address.getByName(nextAddress);
}catch(UnknownHostException uhe){

gui.sendText(""+uhe);
}
II if this interface's network address equals that of the link
if

(tempAddress.getNetworkAddress() .toString() .equals(link_id.toString())){
address = tempAddress;

}
if (showComments){

gui.sendText("PIB: getinterfaceAddress: Interface 11 + address
+ n connects II+ node_id + n to link II+ link_id);

return address;

II**

II These methods are used to determine all possible paths across the
network
II**
******I

I**
* Retrieve all of the router ids assigned by the PIB so far.
* @returns VA vector of all assigned router ids.
*I

321

public Vector getAllRouterids(){
Vector V =new Vector();
Integer myNodeid;
Enumeration e =nodes.keys();
II for each node id in the PIB
while(e.hasMoreElements()){

}

myNodeid = (Integer) e.nextElement ();
II add it to the vector
V.addElement(myNodeid);

if (showComments){

}

gui.sendText("PIB: getAllRouterids: All router ids returned:");
gui.sendText(""+V);

return V;
}

I**
* Retrieves the maximum service level of this SAAM region.
* @returns max_slp_id The numerically highest service level id

assigned.
*I

public int findMaxServiceLevel(){
int max_slp_id = O;
Hashtable myNode =new Hashtable();
Enumeration e1,e2;
el= nodes.elements();
II for each node in the PIB
while(el.hasMoreElements()){

}

myNode = (Hashtable)el.nextElement();
e2 = myNode.elements();
II for each interface of this node
if (e2.hasMoreElements()){

Vector myinterface = (Vector)e2.nextElement();
II determine the maximum number of service levels
if (max_slp_id < myinterface.size())

max_slp_id = myinterface.size()-1;

if (showComments){
gui.sendText("PIB: findMaxServiceLevel: The max service level is "

+ max_slp_id) ;

return max_slp_id;

/,* *
* Retrieves an array of parents for each router. A parent is a

directly
* connected node.
* @param VA vector of all router ids.
* @param service_level The level of service for which paths are being

built
* for.
* @returns parent A hashtable of vectors containing the parents of

each router.
*I

public Hashtable getParents(Vector V, int service_level){
Hashtable nodel new Hashtable();
Hashtable node2 =new Hashtable();

322

Vector myVector =new Vector();
Enumeration el_interface_ids,e2_nodes, e2_node_ids,e3_interface_ids;
IPv6Address link_id = null;
Integer node_id;
String adqress;
Hashtable parent= new Hashtable();
II for each "destination" node in vector V
for (int index= O; index< V.size(); index++){

myVector =new Vector();
II get this destination node's interfaces in order to know
II all of its directly connected links
nodel = (Hashtable)nodes.get(V.elementAt(index));
el_interface_ids = nodel.keys();
II for each interface (or directly connected link ...)
while (el_interface_ids.hasMoreElements()){

try{
link_id = IPv6Address.getByName(

((String)el_interface_ids.nextElement())) .getNetworkAddress();
}catch(UnknownHostException uhe){

gui.sendText(""+uhe);
}
//get all nodes that that are also connected to the link
e2_nodes =nodes.elements();
e2_node_ids =nodes.keys();
II for each node in the PIB
while (e2_nodes.hasMoreElements()){

node2 = (Hashtable)e2_nodes.nextElement();
node_i~ = (Integer)e2_node_ids.nextElement();
e3_interface_ids = node2.keys();

II for each interface on this node
while(e3_interface_ids.hasMoreElements()){

address= (String)e3_interface_ids.nextElement(};
try{

IPv6Address tempAddress =
IPv6Address.getByName(address) .getNetworkAddress();

II if this interface is also connected to this link
II and this node is not the "destination" node
if ((link_id.toString() .equals(tempAddress.toString()))

&&
!node_id.equals(V.elementAt(index))){

node
II add it to t):ie parent vector of this "destination"

myVector.addElement(node_id);
} //end if

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}
} // end while e3_interface_ids

} // end while e2_nodes
} // end while el_interfaces
parent.put(V.elementAt(index),myVector);

} // end for
if (showComments){

gui.sendText("PIB: getParents: Parent hashtable returned:");
gui.sendText(""+parent);

return parent;

/**

323

* Assigns a path from a source and to a destination.
* @param source_router The node_id of the source of the path.
* @param destination_router The node_id of the destination of the

path.
* @returns max_path_id The id to be assigned to this new path.
*I

public int getNewPathid(int source_router,int destination_router){
int max_path_id = O;
Integer path_id;
Enumeration e_path_ids =paths.keys();
II for each path in the PIB
while (e_path_ids.hasMoreElements()){

path_id = (Integer)e_path_ids.nextElement();
II if this path id is greater than. the max so far
if (max_path_id < path_id.intValue())

max_path_id path_id.intValue();
}
II increment to get unassigned path id
max_path_id++;
Path path= new Path();
path.sourceRouter = source_router;
path.destinationRouter = destination_router;
II add this new path to the PIB
paths.put(new Integer(max_path_id),path);
if (showComrnents){

gui.sendText("PIB: getNewPathid: Path " + max_path_id + " from "
+source_router+" to "+destination_router+• is inserted.");

}
return max_path_id;

I**
* Identifies the id of the physical link between two adjacent

routers. If no
* link exists between a source and destination router, the default

address
* of all zeros is returned.
* @param source_router The node~id of a router.
* @param destination_router The node_id of an adjacent router.
* @returns subnet The link id between this source and destination.
*I

public IPv6Address getLinkBetween(int source_router, int
destination_router){

IPv6Address subnet= new IPv6Address();
String source_address, destination_address;
Hashtable source_node. = (Hashtable)nodes.get(new

Integer(source_router));
Hashtable destination_node =

(Hashtable)nodes.get(new
Integer(destination_router));

Enumeration e_source_interfaces = source_node.keys();
II for each interface assigned to this source node in the PIB
while (e_source_interfaces.hasMoreElements()){

source_address = (String)e_source_interfaces.nextElement();
Enumeration e_destination_interfaces = destination_node.keys();
II for each interface assigned to this destination node in the PIB
while (e_destination_interfaces.hasMoreElements()){

destination_address =

(String)e_destination_interfaces.nextElement();
try{

324

II if this destination interface equals this source interface
if

(IPv6Address.getByName(source_address) .getNetworkAddress() .toString() .eq
uals(

IPv6Address.getByName(destination_address) .getNetworkAddress() .toString(
))){

II get the network address
subnet =

IPv6Address.getByName(source_address) .getNetworkAddress();
}

}
}

}catch (UnknownHostException uhe) {
gui.sendText(" 11 +uhe);

}

if (showCornments){

}

gui.sendText("PIB: getLinkBetween: Link between 11 + source_router
+ II and II '+ destination_router + n is II + Subnet) i

return subnet;

I**
* Assigns a service level pipe sequence entry in the building of a

path.
* @param service_level The level of service for which paths are being

built
* for.
* @param source_router The node_id of the source of the SLP.
* @param link_id The subnet that this SLP goes over.
* @param path_id The id assigned to the path.
* @param sequence_number The number assigned to specify the sequence

of this
* SLP in the path.
*I

public void assignSLPSequence(int service_level, int source_router,
IPv6Address link_id, int path_id, int sequence_number){
II get this path object
Path myPath = (Path)paths.get(new Integer(path_id));
ServiceLevelPipe slp =new ServiceLevelPipe();
slp.address = getinterfaceAddress(source_router, link_id);
slp.serviceLevel = service_level;
II add this slp to the sequence of slps in this path
myPath.SLPSequence.insertElementAt(slp, sequence_number);
if (shoWCornments){

gui.sendText("PIB: assignSLPSequence: SLP# 11 +service_level+ 11 from 11

+ SOUrCe_router + n to link n + link_id + n On path II + path_id
+ 11 is assigned sequence number"+ sequence_number);

II**

II These methods are used to determine the effective QoS of paths
II**
******I

I**
* Retrieves a vector of all path ids constructed by the PIB.
* @returns path_ids All of the path ids known to the PIB.

325

*I
public Vector getAllPathids(){

Vector path_ids =new Vector();
Enumeration e_path_ids =paths.keys();
II for each path
while (e_path_ids.hasMoreElements()){

}

II add it to vector
path_ids.addElement(e_path_ids.nextElement());

if (showComments){

}

gui.sendText("PIB: getAllPathids: paths in PIB:");
gui.sendText(""+path_ids);

return path_ids;

I**
* Retrieves the SLPs that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path The SLPs that make up the path.
*I

public Vector getSLPsOfPath(int path_id){
Vector slps_in_path =new Vector();
SLP mySLP =new SLP();
int node_id = O;
Path path= (Path)paths.get(new Integer(path_id));
II for each of the slps in this path
for (int index= O; index< path.SLPSequence.size(); index++){

ServiceLevelPipe slp =
(ServiceLevelPipe)path.SLPSequence.elementAt(index);

II set the values for delivery ~o the server
mySLP.setServiceLevel(slp.serviceLevel);
mySLP.setAddress(slp.address);
Enumeration e =nodes.keys();
II for each of the nodes in the PIB
while(e.hasMoreElements()){

Integer myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
II if this node contains this interface IPv6 address
if (myNode.containsKey(slp.address.toString()))

node_id = myNodeid.intValue();
}
II with this node's id, get its interfaces
Hashtable interfaces= (Hashtable)nodes.get(new Integer(node_id));
II get vector of slp_qos
Vector slps = (Vector)interfaces.get(slp.address.toString());
II get slp_qos for this particular slp
SLP_QoS slp_qos = (SLP_QoS)slps.elementAt(slp.serviceLevel);
II set QoS of this slp for delivery to the server
mySLP.setTargetThroughput(slp_qos.targetThroughput);
mySLP.setDelay(slp_qos.observedDelay);
mySLP.setLossRate(slp_qos.observedLossRate);
int observedThroughput = slp_qos.observedUtilization I 100

slp_qos.targetThroughput 110;
mySLP.setThroughput(observedThroughput);
if (showComments){

*

gui.sendText("PIB:getSLPsOfPath: path II + path_id + ": address n

+slp.address+", service_level "+slp.serviceLevel+" observed
values:");

gui.sendText("PIB:getSLPsOfPath: D = "+slp_qos.observedDelay

326

a

}

}

+"ms, LR = " +slp_qos.observedLossRate+"%, U =
+ slp_qos.observedUtilization I 10
+ "%, T = "+observedThroughput+"kbps");

II add this slp to the vector for delivery to the server
slps_in__path.addEl~ment(mySLP);

if (showComments){

}

gui.sendText("PIB: getSLPsOfPath: SLP in path"+ path_id +":");
gui.sendText(""+slps_in__path);

return s·lps_in__path;

I**
* Records the calculated effective quality of service parameters for

* particular path.
* @param path_id The id of the path in question.
* @param effectiveDelay The effective delay that can be expected when
* transmiting a flow over this path.
* @param effectiveLossRate The effective loss rate that can be

expected when
* transmiting a flow over this path.
* @param effectiveThroughputRemaining The effective throughput

capacity that
* was not being used at last observation.
*I

public void setEffectiveQoSOfPath(int path_id, int effectiveDelay,
int effectiveLossRate, int effectiveThroughputRemaining){
II get this path
Path path= (Path)paths.get(new Integer(path_id));
II set its effective QoS
path.effectiveDelay = effectiveDelay;
path.effectiveLossRate = effectiveLossRate;
path.effectiveThroughputRemaining = effectiveThroughputRemaining;
if (showComments){

I**

gui.sendText("PIB: setEffectiveQoSOfPath: path "+path_id
+" effectively has D = " + effectiveDelay
+ "ms, LR = " + effectiveLossRate
+ "%, remaining T =" + effectiveThroughputRemaining+"kbps");

* Retrieves a vector of all path ids that travses the specified SLP.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns path_ids All of the path ids that traverse this SLP.
*I

public Vector getA11PathidsThatTraverseSLP(IPv6Address address,
int

service_level){
Vector path_ids =new Vector();
Enumeration e__paths =paths.elements();
Enumeration e__path~ids =paths.keys();
II for each path
while (e__paths.hasMoreElements(}){

Path path= (Path)e__path_ids.nextElement();

327

}

Integer path_id = (Integer)e__path_ids.nextElement();
II get the sequence of slps that make up this path
Vector slps = path.SLPSequence;
II for each of each of these slps
for (int index= O; index< slps.size(); index++){

ServiceLevelPipe slp = (ServiceLevelPipe)slps.elementAt(index);
II if this slp's interface address equals this address

}

if (slp.address.equals(address)){

}

II add it to the vector
path_ids.addElement(path_id);

if (showComrnents){
gui.sendText("PIB: getAllPathidsThatTravseSLP: paths over

"+address

}

+"'s service level#"+ service_level);
gui.sendText(""+path_ids);

return path_ids;

II**

II These methods are used to retrieve various other info
II**
******I

I**
* Retrieves a vector of all interface addresses attached to this

router.
* @param node_id The node id of the router in question.
* @returns IPv6Addresses The interface addresses of this node.
*I

public Vector getRouterinterfaces(int node_id){
Vector IPv6Addresses =new Vector();
Hashtable myNode = (Hashtable)nodes.get(new Integer(node_id));
Enumeration e = myNode.keys();
II for each interface on this node
while(e.hasMoreElements()){

}

String myAddress = (String)e.nextElement();
try{

II add it to the vector
IPv6Addresses.addElement(IPv6Address.getByName(myAddress));

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

if (showComrnents){

}

gui.sendText("PIB: getRouterinterfaces: interfaces of node "
+node_id+" returned:");

gui.sendText(""+IPv6Addresses);

return IPv6Addresses;

I**
* Deletes a specified router from the PIB.
* @param node_id The node_id of the router to be deleted.
*I

public void deleteARouter(int node_id){

328

nodes.remove(new Integer(node_id));
if (showComments){

gui.sendText("PIB: deleteARouter: node "+node_id+" deleted.");

I**
* Retrieves a vector of all physical link ids known to the PIB.
* @returns v_links All of the known links in the network.
*I

public Vector getAllLinkids(){
Vector v_links =new Vector();
Enumeration e =links.keys();
II for each interface on this node
while(e.hasMoreElements()){

}

String myAddress = (String)e.nextElement();
try{

II add it to the vector
v_links.addElement(IPv6Address.getByName(myAddress));

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}

if (showComments){
gui.sendText("PIB: getAllLinkids: all link ids:");
gui.sendText(""+v_links);

return v_links;

I**
* Retrieves a vector of all routers attached to a specific phyical

link.
* @param link_id The IPv6 address of the link in question.
* @returns routerids The ids of routers that are directly attached to

this
* link.
*I

public Vector findRoutersOnLink(IPv6Address link_id) {
Vector routerids =new Vector();
Enumeration e =nodes.keys();
II for each of the node ids in the PIB
while(e.hasMoreElements()){

Integer myNodeid = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeid);
Enumeration addresses= myNode.keys();
II for each of these interfaces
while (addresses.hasMoreElements()){

String nextAddress = (String)addresses.nextElement();
try{

II if this interface's network address equals that of the link
if

(IPv6Address.getByName(nextAddress) .getNetworkAddress() .toString()

.equals(link_id.toString())){
routerids.addElement(myNodeid);

}

}

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}

329

/

}
if (showComments){

gui.sendText("PIB: findRoutersOnLink:routers on
link"+link_id+":");

gui.sendText(""+routerids);

return routerids;

330

331

package saam.server;

import saam.*;
import saam.event.*;
import saam.net.*;
import saam.message.*;
import java.net.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

!**
* The Console is an object within the SAAM architecture that
* provides a display of the inner status of the SAMM server and of the network
* in general.
*/

public class Console extends HttpServlet {

/** The object which the Console displays the status of. */
Server myServer =new Server("database");

/** The number of interfaces that the user defines a router as having. */
int NumOfinterfacesToAdd = O;

/**
* The servlet engine calls the init method exactly once on a
* servlet, after the servlet is instantiated but before it is placed into
* service. The init method must exit successfully before you can call the
* service method.
* @ param config Supplies servlet with initialization parameters.
*/

public void init(ServletConfig config) throws ServletException {
super.init(config);
try{

Translator t =new Translator(9001,65508,9002,65508);
}catch(SocketException se){

System.out.println(se.toString());
}//try-catch

/**
* The web server invokes this method each time it receives a GET request for
* this servlet.
* @param req Represents the client's request.
* @param res Represents the servlet's response.
*/

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

if (t"eq.getMethod() .equals("HEAD")) return;

String action= req.getParameter("action");
String numberOfinterfaces;
int intNumOfinterfaces = O;
try{
if (action.equals("defineRouter")) {

defineRouter(res);
}
else {

332

}

if (action.equals("defineNumOfinterfaces")) {

}

nurnberOfinterfaces = req.getParameter("numOfinterfaces");
NumOfinterfacesToAdd = (new Integer(nurnberOfinterfaces)) .intValue();
defineNumOfinterfaces(NumOfinterfacesToAdd, res);

else {
if (action.equals("defineinterfaces")) {

defineinterfaces(NumOfinterfacesToAdd, req, res);
}
else {
if (action.equals ("displayRouters"))

displayRouters(res);
}
else {
if (action.equals("selectRouterForDeletion"))

selectRouterForDeletion(res);
}
else {
if (action. equals ("deleteARouter"))

deleteARouter(req,res);
}
else {
if (action. equals ("selectALink"))

selectALink(res);
}
else {
if (action.equals("findRoutersOnLink")) {

findRoutersOnLink(req, res);
}
else {

displayConsole(res);
}}}}}}}}
}catch (NullPointerException npe){

displayConsole(res);

/**
* Displays the main console page from which a user selects what activity to
* perform.
* @param res Represents the servlet's response.
*/

public void displayConsole(HttpServletResponse res){
res.setContentType("text/html");
try{

PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>SAAM Server Console</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/core-styles.css\">"
+ "</HEAD>");

out.println("<BODY><Hl>Welcome to the SAAM Server Console</Hl>");
out.println("<H2>What would you like to do? </H2>");
out.println("<FORM METHOD=GET ACTION=\"/servlet/saam.server.Console\">"

+ "<P class=\"component\">"
+ "<INPUT TYPE=RADIO NAME=\"action\" VALUE=\"defineRouter\ 11 > 11

+ "Define a router</P>"
+ "<P class=\"component\">"
+ "<INPUT TYPE=RADIO NAME=\"action\" VALUE=\"displayRouters\">"
+ "Display all routers</P>"
+ "<P class=\"component\">"
+ "<INPUT TYPE=RADIO NAME=\"action\" VALUE=\"selectALink\ 11 > 11

+ "Find all routers on a subnet</P>"

333

+ "<P class=\"component\ 11 > 11

+"<INPUT TYPE=RADIO NAME=\"action\" VALUE=\"selectRouterForDeletion\ 11 > 11

+ "Delete a router</P>"
+ "<P class=\"component\"><INPUT TYPE=SUBMIT VALUE=Enter><P>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);
}

/**
* Queries a user to begin defining a router by specifying how many
* interfaces are present on the router.
* @param res Represents the servlet's response.
*/

public void defineRouter(HttpServletResponse res){
res.setContentType("text/html");

}

try{
PrintWriter out = res.getWriter();
out.println("<HTML><HEAD><TITLE>Define A Router</TITLE>"

+ "<LINK REL=STYLESHEET .TYPE=\"text/css\" HREF=\ 11 /core-styles.css\ 11 > 11

+ 0 </HEAD>");
out.println("<BODY><Hl>Define a router: </Hl>");
out.println("<FORM METHOD=GET ACTION=\"/servlet/saam.server.Console\">"

+ "<INPUT TYPE=HIDDEN NAME=\"action\" VALUE=\"defineNumOfinterfaces\">"
+ "<P>"
+ "<P class=\"component\">How many interfaces are on this router?"
+ "<INPUT TYPE=TEXT NAME=\"numOfinterfaces\"></P>"
+"<INPUT TYPE=SUBMIT VALUE=Enter><P>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);
}

/**
* After the user defines the number of interfaces on a router, this method
* solicits the actual IPv6 addresses of those interfaces.
* @param numberOfinterfaces The number of interfaces on a particular router.
* @param res Represents the servlet's response.
*/

public void defineNumOfinterfaces(int numberOfinterfaces,
HttpServletResponse res){

Calendar myCalendar;
Date myDate;
int host_part;
String address;

·res. setContentType (n text/html II) ;

try{
PrintWriter out = res.getWriter();
out.println("<HTML><HEAD><TITLE>Define a router's interfaces</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/core-styles.css\ 11 > 11

+ "</HEAD>");
out.println("<BODY><Hl>Define a router's interfaces</Hl>");
out.println("<H2>Enter the IPv6 addresses of these " + numberOfinterfaces

+ 0 interfaces: </H2>");
out.println("<FORM METHOD=GET ACTION=\ 0 /servlet/saam.server.Console\">"

+"<INPUT TYPE=HIDDEN NAME=\"action\" VALUE=\"defineinterfaces\"><P> ...);
myCalendar = Calendar.getinstance();

334

myDate = myCalendar.getTime();
host__part = myDate.getMinutes();
for (int num = l; num <= numberOfinterfaces; num++){

}

address= "99.99.99." + num + ".0.0.0.0.0.0.0.0.0.0.0."+ host__part;
out.println("<P class=\"component\">Interface #" + num + " address: "

+ "<INPUT TYPE=TEXT NAME=\"interface" + num + "\" VALUE=\"" + address
+"\"><IP>");

out.println("<INPUT TYPE=SUBMIT VALUE=Enter><P>");
out.println("</FORM></BODY><HTML>");

}catch(IOException ioe) {
System.err.println(ioe);

/**
* Takes the IPv6 addresses that the user provided for each interface on the
* router, instantiates a Router object and then passes it to myServer's
* receive_LSA() method.
* @param NumOfinterfacesToAdd Indicates how many IPv6 addresses are sent in
* in the request.
* @param req Represents the client's request.
* @param res Represents the servlet's response.
*I

public void defineinterfaces(int NumOfinterfacesToAdd, HttpServletRequest req,
HttpServletResponse res){

res.setContentType("text/html");

String address;
InterfaceID myinterface;
Vector interfaces= new Vector();
int bandwidth = 10000;
Hello hello;

try{
PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Adding router to PIB</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\ 11 /core-styles.css\"> 11

+ "</HEAD>");
out.println("<BODY><Hl>The router has been added to PIB.</Hl>");

//add each interface
for (int num = l; num <= NumOfinterfacesToAdd; num++){

address= req.getParameter("interface" + num);

}

myinterface= new InterfaceID(IPv6Address.getByName(address),bandwidth);
interfaces.addElement(myinterface);

hello= new Hello(interfaces);
myServer.receive_Hello(hello);
out.println("<FORM METHOD=GET ACTION=/servlet/saam.server.Console>"

+ "<INPUT TYPE=HIDDEN Name=\"action\" VALUE=\"console\">"
+"<INPUT TYPE=SUBMIT VALUE=ReturnToConsole></FORM>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);

/**
* Displays all of the routers and corresponding interfaces that are known
* by the server's Path Information Base.

335

* @param res Represents the servlet's response.
*/

public void displayRouters(HttpServletResponse res){

Vector routers= myServer.PIB.getAllRouterids();
int myRouter;
Vector IPv6Addresses;

· IPv6Address myAddress;
res.setContentType("text/html");

try{
PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Display All Routers</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\ 11 /core-styles.css\ 11 > 11

+ "</HEAD>");
out.println("<BODY><Hl>Display All Routers</Hl>");
out.println("<FORM METHOD=GET ACTION=/servlet/saam.server.Console>"

+ "<INPUT TYPE=HIDDEN Name=\"action\" VALUE=\"console\ 11 > 11

+"<INPUT TYPE=SUBMIT VALUE=ReturnToConsole></FORM>");
out.println("<H2>Here are the IPv6 addresses of these 11 + routers.size()

+ 11 routers: </H2>");
for (int index= O; index< routers.size(); index++){

myRouter = ((Integer)routers.elementAt(index)) .intValue();
out.println("<H3>Router # 11 + myRouter + "</H3>");
IPv6Addresses = myServer.PIB.getRouterinterfaces(myRouter);
for (int num = O; num < IPv6Addresses.size(); num++){

myAddress = (IPv6Address)IPv6Addresses.elementAt(num);
out.println("<P class=\"component\">Interface #" + num + " address: "

+ myAddress.toString() +"<IP>");

}
out.println("</FORM></BODY><HTML>");

}catch(IOException ioe) {
System.err.println(ioe);

}

/**
* Queries the user for the node id of the router to be deleted.
* @param res Represents the servlet's response.
*/

public void selectRouterForDeletion(HttpServletResponse res){
res.setContentType("text/html");
try{

PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Select A Router For Deletion</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\ 11 HREF=\"/core-styles.css\">"
+ "</HEAD>");

out.println("<BODY><Hl>Delete A Router: </Hl>");
out.println("<FORM METHOD=GET ACTION=\ 11 /servlet/saam.server.Console\ 11 > 11

+ "<INPUT TYPE=HIDDEN NAME=\"action\" VALUE=\ 11 deleteARouter\ 11 ><P> 11

+ "<P class=\"component\ 11 > 11

+ "What is the node_id of the router to be deleted?"
+ "<INPUT TYPE=TEXT NAME=\"router\"></P>"
+"<INPUT TYPE=SUBMIT VALUE=Enter><P>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);
}

336

/**
* Takes the specified node id of the router to be deleted and performs the
* deletion operation.
* @param req Represents the client's request.
* @param res Represents the servlet's response.
*/

public void deleteARouter(HttpServletRequest req, HttpServletResponse res){
String node_id = req.getParameter("router");
res.setContentType("text/html");
try{

PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Delete A Router</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/core-styles.css\">"
+ "</HEAD>");

myServer.PIB.deleteARouter((new Integer(node_id)) .intValue());
out.println("<BODY><Hl>The router has been deleted.</Hl>");
out.println("<FORM METHOD=GET ACTION=/servlet/saarn.server.Console>"

+ "<INPUT TYPE=HIDDEN Name=\"action\" VALUE=\"console\">"
+"<INPUT TYPE=SUBMIT VALUE=ReturnToConsole></FORM>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);
}

/**
* Queries the user for the link id or subnet for which to search for
* all attached routers.
* @param res Represents the servlet's response.
*/

public void selectALink(HttpServletResponse res){
Vector links;
res.setContentType("text/html");
try{

PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Selection a Link</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/core-styles.css\">"
+ "</HEAD>");

out.println("<BODY><Hl>Select a Link: </Hl>");
out.println("<H2>Currently defined subnets: ");
links= myServer.PIB.getAllLinkids();
for (int index= O; index< links.size(); index++){

out.println("<P class=\"component\">" + links.elementAt(index)
+ "<IP>");

}

out.println("<FORM METHOD=GET ACTION=\"/servlet/saam.server.Console\">"
+ "<INPUT TYPE=HIDDEN NAME=\"action\" VALUE=\"findRoutersOnLink\"><P>"
+ "<P class=\"cornponent\">Which of these subnets should be searched?"
+ "<INPUT TYPE=TEXT NAME=\"link_id\"></P>"
+"<INPUT TYPE=SUBMIT VALUE=Enter><P>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

Systern.err.println(ioe);

/**
* Searches for and returns the routers that are attached to the specified
* subnet link_id.
* @param req Represents the client's request.
* @param res Represents the servlet's response.

337

*I
public void findRoutersOnLink(HttpServletRequest req,

Vector routers= new Vector();
int myRouter;
Vector IPv6Addresses = new Vector();
IPv6Address myAddress;
IPv6Address link_id = null;

res.setContentType("text/html");
try{

HttpServletResponse res){

link_id = IPv6Address.getByName(req.getParameter("link_id"));
}catch(UnknownHostException uhe){

System.out.println("Console:findRoutersOnLink: " + uhe);
}
try{

PrintWriter out= res.getWriter();
out.println("<HTML><HEAD><TITLE>Find Routers on a Link</TITLE>"

+ "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/core-styles.css\">"
+ "</HEAD>");

routers = myServer.PIB.findRoutersOnLink(link_id);
out.println("<BODY><Hl>These " + routers.size()

+ 11 routers are attached to subnet: 11

+ link_id + "</Hl>");
out.println(11 <FORM METHOD=GET ACTION=/servlet/saam.server.Console>"

+ "<INPUT TYPE=HIDDEN Name=\ 11 action\ 11 VALUE=\"console\">"
+"<INPUT TYPE=SUBMIT VALUE=ReturnToConsole></FORM>");

for (int index= O; index< routers.size(); index++){
myRouter = ((Integer)routers.elementAt(index)) .intValue();
out.println(11 <H3>Router #" + myRouter + "</H3>");
IPv6Addresses = myServer.PIB.getRouterinterfaces(myRouter);
for (int num = O; num < IPv6Addresses.size(); num++){

}

myAddress = (IPv6Address)IPv6Addresses.elementAt(num);
out.println("<P class=\"component\">Interface #" + num + II address: n

+ myAddress.toString() + "</P>");

out.println("</FORM></BODY><HTML>");
}catch(IOException ioe) {

System.err.println(ioe);
}

!**
* The web server invokes this method each time it receives a POST
* request for this servlet.
* @param req Represents the client's request.
* @param res Represents the servlet's response.
*/

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

if (req.getMethod() .equals(11 HEAD")) return;
res.setContentType("text/html");
PrintWriter out= res.getWriter();

String action= req.getParameter("action");

if (action.equals ("INSERT"))
}

338

else if (action.equals("DELETE")) {
}

339

340

package saam.server;

import saam.net.*;
import saam.message.*;
import saam.util.*;
import java.net.*;
import java.sql.*;
import java.util.*;
import java.io.*;

I**
* The DatabaseStructure<lem> is a Path Information Base object

within the
* SAAM architecture that performs SQL queries on the database

containing the
* information needed to obtain a picture of the network for use in

assigning
* flows to paths.
*I

public class DatabaseStructure extends PathinformationBase{

I** A connection to a given database. *I
private Connection con = null;

I** A boolean that will allow the showing of comments. *I
private boolean showComments = false;

private SAAMRouterGui gui;

II**

II These methods handle database connection details.
II**
******I

I**
* Constructs a DatabaseStructure object that will connect to an

Oracle
* database using Sun's JDBC-ODBC bridge.
*I

public DatabaseStructure(){

gui=new SAAMRouterGui("PIB");
I** Sun's JDBC-ODBC bridge driver *I
String driver= "sun.jdbc.odbc.JdbcOdbcDriver";
I**

* A JDBC URL identifies an individual database in a driver-specific
manner.

*I
String url = "jdbc:odbc:PIB";
I** The username for the database. *I
String username = "PIB";
I** The database user's password. *I
String password= "PIB";

try {

}

II Load (and therefore register) the db driver
Class.forName(driver);
II Ask DriverManger to etablish a connection to the db
con= DriverManager.getConnection(url, username, password);

341

}

catch {ClassNotFoundException e) {
gui.sendText("PIB: Couldn't load database driver: "+ e);

}
catch (SQLException e) {

gui.sendText("PIB: Couldn't get db connection: "+ e);
}
//if (showComrnents) (

gui.sendText("PIB: DatabaseStructure: Connection established.");
//}

/**
*Removes all current path data from the database .. Its most commonly

used
* during initialization of a SAAM server for a new network.
*/

public void deleteAllData()

/** Used for passing SQL statements to the database. */
Statement statement;

try {

}

statement= con.createStatement();
statement.executeUpdate("DELETE FROM FLOW;");
statement.executeUpdate("DELETE FROM INTERFACES;");
statement.executeUpdate("DELETE FROM LINK;");
statement.executeUpdate("DELETE FROM PATH;");
statement.executeUpdate("DELETE FROM ROUTER;");
statement.executeUpdate("DELETE FROM SERVICE_LEVEL_PIPE;");
statement.executeUpdate("DELETE FROM SLP_SEQUENCE;");
statement.executeUpdate("DELETE FROM TRAVERSES;");
statement.close();
catch{SQLException e) {
gui.sendText("PIB: deleteAllData: "+ e);

if (shoWComrnents) {
gui.sendText{"PIB: deleteAllData: All data deleted.");

/*Standard code for db methods ...

*I

Statement statement;
ResultSet rs;
try{

statement= con.createStatement();
statement.close();

}catch(SQLException e){
gui.sendText("PIB: receive_LSA: SQLException: "+ e);

}

//**

JI These methods are used to process link state advertisements from
routers
//**
******/

/**
* Determines whether a given router exists yet within the PIB.

342

* @param IPv6Addresses A vector of interface addresses contained
within

* a Hello or an LSA message.
* @returns node_id The id of the node containing at least one of the
* interface addresses in the vector that was passed.
*I

public int doesRouterExist(Vector IPv6Addresses){
I** Used for passing SQL statements to the database. *I
Statement statement;
I** Used to store result sets from database queries. *I
ResultSet rs;
String addresses;
IPv6Address myIPv6Address;
int node_id = O;
try{

addresses= "";
for (inti= O; i < IPv6Addresses.size(); i++) {

myIPv6Address = (IPv6Address)IPv6Addresses.elementAt(i);
addresses= addresses.concat(myIPv6Address.toString());
if (i < (IPv6Addresses.size()-1)){

addresses= addresses.concat("', '");

}

statement= con.createStatement();
II search for existing interfaces
rs = statement.executeQuery("SELECT * FROM INTERFACES WHERE

ADDRESS IN ('"
+addresses+"');");

II if any are found, then return true
if (rs .next()){

node_id = (new Integer(rs.getString("NODE_ID"))) .intValue();
}
statement.close();

}catch(SQLException e){
gui.sendText("PIB: doesRouterExist: SQLException: "+ e);

}
if (showComments) {

if (node_id != 0)
gui.sendText("PIB: doesRouterExist: Router "

+ node_id + " exists.");
else

gui.sendText("PIB: doesRouterExist: Router is not in
database.");

}
return node_id;

I**
* Finds an unassigned node id and adds it to the PIB. It is commonly

used
* for assigning a new node_id to a previously unknown router.
* @returns max_node_id An unassigned router id.
*I

public int getNewNodeid(){

Statement statement;
ResultSet rs;
String node_id;
int max_node_id O;

343

}

try{
statement= con.createStatement();
II find the largest assigned node_id
rs= statement.executeQuery("SELECT NODE_ID FROM ROUTER;");
while (rs.next()){

node_id = rs. getString ("NODE_ID");
if (max_node_id < (new Integer(node_id)) .intValue{))

max_node_id = (new Integer(node_id)) .intValue();
}
II increment it and then assign that id to the new router
max_node_id++;
statement.executeUpdate("INSERT INTO ROUTER (NODE_ID) VALUES ("

+ (new Integer(max_node_id)) .toString() + ");");
statement.close();

}catch(SQLException e){
gui. sendText ("PIE: assignNewNodeid: SQLException: " + e);

}
if (showCornrnents) {

}

gui.sendText("PIE: assignNewNodeid: Router's id assigned: "
+ max_node_id);

return max_node_id;

I**
* Determines whether a given interface exists yet within the PIE.
* @pararn myIPv6Address The interface address contained within a hello

or LSA
* message.
* @returns found True if the interface address already exists within

the PIE.
*I

public boolean doesinterfaceExist(IPv6Address myIPv6Address){
Statement statement;
ResultSet rs;
boolean found = false;
try{

statement= con.createStatement();
rs = statement.executeQuery("SELECT * FROM INTERFACES WHERE

ADDRESS = I II •

}

+ myIPv6Address.toString() + "';");
II if any are found, then return true
if (rs .next())

found = true;
statement.close();

}catch(SQLException e){
gui.sendText("PIE: doesinterfaceExist: SQLException: "+ e);

}
if (shoWCornrnents) {

if (found)
gui.sendText("PIB: doesinterfaceExist: Interface "

+ myIPv6Address.toString() +"is found.");
else

gui.sendText("PIB: doesinterfaceExist: Interface "
+ myIPv6Address.toString() +"is not found.");

return found;

I**
* Determines whether a given link exists yet within the PIB.

344

* @param address The IPv6 address of an interface.
* @returns found True if the link address already exists within the

PIB.
*I

public boolean doesLinkExist(IPv6Address address){
Statement statement;
ResultSet rs;
boolean found = false;
try{

statement= con.createStatement();
rs= statement.executeQuery("SELECT *FROM LINK WHERE LINK_ID = '"

+ address.getNetworkAddress() + "';");
II if any are found, then return true
if (rs .next())

found = true;
statement.close();
}catch(SQLException e){

gui.sendText("PIB: doesLinkExist: SQLException: "+ e);
}
if (showComments) {

if (found)

}

gui.sendText("PIB: doesLinkExist: Link "
+ address.getNetworkAddress() +"is found.");

else
gui.sendText("PIB: doesLinkExist: Link "

+ address.getNetworkAddress() +"is not found.");

return found;

I**
* Adds a new link to the PIB.
* @param address The IPv6 address of an interface.
* @param max_bandwidth The max transmission rate over this network

segment.
*I

public void addLink(IPv6Address address, int max_bandwidth){
Statement statement;
ResultSet rs;
try{

statement= con.createStatement();
statement.executeUpdate("INSERT INTO LINK VALUES ('"

+ address. getNetworkAddress () + " ', ' " + max_bandwidth + "') ; ") ;
statement.close();
}catch(SQLException e){

gui.sendText("PIB: addLink: SQLException: "+ e);
}
if (showComments) {

I**

gui.sendText("PIB: addLink: Link " + address.getNetworkAddress()
+ n is added.");

* Adds a new interface to the PIB.
* @param node_id The id of the router whose interface is being added.
* @param address The IPv6 address of an interface.
*I

public void addinterface(int node_id, IPv6Address address){
Statement statement;
ResultSet rs;

345

try{
statement= con.createStatement();
statement.executeUpdate("INSERT INTO INTERFACES VALUES ('"

+ node_id + "', '" + address.getNetworkAddress() + '"
+ address + " ') ; ") ;

statement.close();
}catch(SQLException e){

gui.sendText("PIB: addinterface: SQLException: " + e);
}
if (showComrnents) {

gui.sendText("PIB: addinterface: node_id = " + node_id + ",
link_id = II

+ address.getNetworkAddress() + ", address
added. n);

" + address + " is

}
}

/**
* Determines whether a service level pipe exists yet within the PIB.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns found True if this SLP is already in the PIB.
*I

public boolean doesSLPExist(IPv6Address myIPv6Address, int
service_level){

Statement statement;
ResultSet rs;
boolean found = false;
String node_id = null;
try{

statement= con.createStatement();
rs = statement.executeQuery("SELECT * FROM INTERFACES WHERE

ADDRESS= Ill

+ myIPv6Address.toString() + "';");
if (rs.next()){

node_id = rs. getString ("NODE_ID") ;

rs = statement.executeQuery(
"SELECT* FROM SERVICE_LEVEL_PIPE WHERE LINK ID= '"
+ myIPv6Address.getNetworkAddress() .toString() + "' AND

SOURCE_ROUTER = '"

}

+ node_id +"'AND SLP_ID = '" + service_level + "';");
II if any are found, then return true

if (rs.next())
found = .true;

statement.close();
}catch(SQLException e){

gui.sendText("PIB: doesSLPExist: SQLException: "+ e);
}
if (showComrnents) {

if (found)

}

gui.sendText("PIB: doesSLPExist: SLP from router "
+ node_id + " is found.");

else
gui.sendText("PIB: doesSLPExist: SLP from router "

+ node_id +" is not found.");

return found;

346

/**
* Updates the status of a known SLP's delay, loss_rate, and

throughput.

the

* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @param delay The average delay experienced by a packet's stay in

* particular SLP outbound queue.
* @param loss_rate The average loss_rate experienced by packets in a
* particular SLP.
* @param throughput The average thro~ghput provided by a particular

SLP.
*I

public void updateSLP(IPv6Address address, int service_level, int
delay,

int loss_rate, int throughput){
Statement statement;
ResultSet rs;
String node_id = null;
try{

statement= con.createStatement();
rs = statement.executeQuery(11 SELECT * FROM INTERFACES WHERE 11

+"ADDRESS= '" + address.toString() + "'; 11
);

if (rs . next ()) {
node_id = rs.getString("NODE_ID");

}
statement.executeUpdate(

"UPDATE SERVICE_LEVEL_PIPE SET OBSERVED_DELAY = Ill +delay
+ 11

', OBSERVED_LOSS_RATE = '" + loss_rate + 11
',

OBSERVED_THROUGHPUT =
+throughput+ 11

' WHERE SLP_ID = ' 11 + service_level + 11
' AND

SOURCE_ROUTER = ' 11

+ node_id + "' AND LINK_ID = '" + address.getNetworkAddress() +
II I j II) j

statement.close();
}catch(SQLException e){

gui.sendText(11 PIB: updateSLP: SQLException: 11 + e);
}
if (showComrnents) {

gui. sendText (11 PIB: updateSLP: SLP ". + service_level + 11 is
updated. n);

}

/**
* Adds a previously unknown SLP to the PIB along with its targeted

QoS.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @param target_delay The average delay experienced by a packet's

stay in the
* particular SLP outbound queue.
* @param target_loss_rate The average loss_rate experienced by

packets in a
* particular SLP.
* @param target_throughput The average throughput provided by a

particular SLP.
*/

347

public void addSLP(IPv6Address address, int service_level, int
target_delay,

int target_loss_rate, int target_throughput){
Statement statement;
ResultSet rs;
String node_id = null;
String delay= 11 0 11

, loss_rate = 11 0 11
, throughput 11 0 11

;

try{
statement= con.createStatement();
rs = statement.executeQuery("SELECT * FROM INTERFACES WHERE "

+"ADDRESS= '" + address.toString() + 11
';

11
);

while (rs.next()){
node_id = rs. getString (11 NODE_ID 11

);

}
statement.executeUpdate(11 INSERT INTO SERVICE_LEVEL_PIPE (SLP_ID, 11

+ 11 SOURCE_ROUTER, LINK_ID, TARGET_DELAY, TARGET_LOSS_RATE,
TARGET_THROUGHPUT, 0

+ "OBSERVED_DELAY, OBSERVED_LOSS_RATE, "
+ "OBSERVED_THROUGHPUT) VALUES ('" + service_level + 11

',

+ node_id + "', '" + address.getNetworkAddress() .toString() +

+ target_delay + II I I
1

II + target_loss_rate + D I I I II +
target_throughput + 11

', '
11

+ delay + 11
', '

11 + loss_rate + '" + throughput + 11
');

11
);

statement.close();
}catch(SQLException e){

gui.sendText(11 PIB: addSLP: SQLException: 11 + e);
}
if (showComments) {

gui.sendText(11 PIB: addSLP: SLP 11 + service_level + 11 is added to
11 +address) ;

}

II**

II These methods are used to process a flow request from a host
II**
******I

I**
* Finds a router id that has an interface to on the same link as the

host
* making a flow request.
* @param address The IPv6 address of the interface of the host

requesting
* the flow.
* @returns ARouter The router id of the first router found on this

link.
*I

public int findARouterOnLink(IPv6Address address){
Statement statementl,statement2;
ResultSet rsl,rs2;
int ARouter = O;
try{

statementl = con.createStatement();
statement2 = con.createStatement();
II check to see if requesting host is a router itself
rsl = statementl.executeQuery(11 SELECT * FROM INTERFACES WHERE

ADDRESS
+ address.toString() + 11

';");

348

II if so, return its node_id
if {rsl.next{)){

ARouter = {new Integer{rsl.getString{"NODE_ID 11
))) .intValue{);

}
II otherwise, find any other router on the same subnet
else {

rs2 = statement2.executeQuery("SELECT * FROM INTERFACES WHERE
LINK_ID = ' 11

+ address.getNetworkAddress() + 11
';

11
);

if (rs2.next()){
ARouter = {new Integer{rs2.getString("NODE_ID"))) .intValue();

}
}
statementl.close{);
statement2.close{);

}catch(SQLException e){
gui.sendText("PIB: findARouterOnLink: SQLException: "+ e);

}
if (showComments) {

gui.sendText(11 PIB: findARouterOnLink: Router 11

+ ARouter + n on n + address.getNetworkAddress()+ II is assigned
for n

+address);
}
return ARouter;

}

I**
* Determines if there is a path that can support a particular flow

request.
* A value of zero is returned if no path can support this QoS.
* @param source_router The node id of a router on the same physical

link as
* the source host.
* @param destination_router The node id of a ro~ter on the same

physical
* link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns path_id The id of a path that can support this request.
*I

public int getPathThatCanSupportFlowRequest(int source_router,
int destination_router, FlowRequest

myFlowRequest){
Statement statementl,statement2;
ResultSet rsl,rs2;
String max_throughput;
String delay = null;
String loss_rate = null;
String throughput = null;
int path_id = O;
try{

statementl = con.createStatement{);
statement2 = con.createStatement();
II find a path between these two routers that can meet the QoS

request
rsl = statementl.executeQuery(11 SELECT MAX(EFFECTIVE_THROUGHPUT)

MAXT FROM PATH "
+ "WHERE SOURCE_ROUTER = '" + source_router
+ "'AND DESTINATION_ROUTER '" + destination_router

349

+ " ' AND EFFECTIVE_DELAY <= / 11 +
myFlowRequest.getRequestedDelay()

+ "' AND EFFECTIVE_LOSS_RATE <= '"
+ myFlowRequest.getRequestedLossRate()
+ 11 / AND EFFECTIVE_THROUGHPUT >= 1

"

+ myFlowRequest.getRequestedThroughput() + 11
';

11
);

if (rsl.next()){
max_ throughput =· rsl. getString ("MAXT") ;
rs2 = statement2.executeQuery("SELECT * FROM PATH "

+ "WHERE SOURCE_ROUTER = '" + source_router
+ "'AND DESTINATION_ROUTER = '"
+ destination_router
+"'AND EFFECTIVE_DELAY <= '" +

myFlowRequest.getRequestedDelay()
+ "' AND EFFECTIVE_LOSS_RATE <= '"
+ myFlowRequest.getRequestedLossRate()
+"'AND EFFECTIVE_THROUGHPUT = '" + max_throughput + "';");

if (rs2.next()){
path_id = (new Integer(rs2.getString("PATH_ID"))) .intValue();
delay= rs2.getString("EFFECTIVE_DELAY");
loss_rate = rs2.getString("EFFECTIVE_LOSS_RATE");
throughput= rs2.getString("EFFECTIVE_THROUGHPUT");

}
statementl.close();
statement2.close();

}catch(SQLException e){
gui.sendText("PIB: getPathThatCanSupportFlowRequest: SQLException:

II + e) i

}
if (showComments)

gui.sendText("PIB: getPathThatCanSuppor.tFlowRequest:"
+ II SELECT MAX(EFFECTIVE_THROUGHPUT) MAXT FROM PATH II

+ "WHERE SOURCE_ROUTER = '" + source_router
+ 11

' AND DESTINATION_ROUTER = '" + destination_router + "'");
gui.sendText(" AND EFFECTIVE_DELAY <= '"

+ myFlowRequest.getRequestedDelay()
+ "'AND EFFECTIVE_LOSS_RATE <= '"
+ myFlowRequest.getRequestedLossRate()
+ "' AND EFFECTIVE_THROUGHPUT >= ' 11

+ myFlowRequest.getRequestedThroughput() + "';");
if (path_id != 0)

gui.sendText("PIB: getPathThatCanSupportFlowRequest: path
assigned = "

+ path_id + " with effective D" + "
+ •ms, LR = " + loss_rate + 11 %, T
+ "kbps n) i

else{

" + delay
" + throughput

gui.sendText(11 PIB: getPathThatCanSupportFlowRequest: "
+"Flow request cannot be supported.");

return path_id;

/**
* Finds an unassigned flow id and assigns this new flow to a path.
* @param path_id The id of a path that can support this request.
* @param source_router The node id of a router on the same physical

link as
* the source host.

350

* @param destination_router The node id of a router on the same
physical

* link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns max_flow_i~ The id that is being assigned to this flow.
*I

public int getNewFlowid(int path_id, int source_router,
int destination_router, FlowRequest

myFlowRequest){
Statement statement;
Resul tSet. rs;
String flow_id;
I** The max flow id assigned so far. *I
int max_flow_id = O;
try{

statement= con.createStatement();
rs= statement.executeQuery(11 SELECT FLOW...:.ID FROM FLOW;");
while (rs.next()){

flow_id = rs.getString("FLOW_ID");
if (max_flow_id < (new Integer(flow_id)) .intValue())

max_flow_id = (new Integer(flow_id)) .intValue();
}
max_flow_id++;
II increment it and assign it along with the QoS parameters
statement.executeUpdate("INSERT INTO FLOW (FLOW_ID, PATH_ID,

SOURCE_NODE,"
+ " DESTINATION_NODE, NEGOTIATED_DELAY, NEGOTIATED_LOSS_RATE, "
+ "NEGOTIATED_THROUGHPUT) VALUES (11

+ max_flow_id + ", " + path_id + "
+ source_router + ", "
+ destination_router + 11

,
11

+ myFlowRequest.getRequestedDelay() + ", 11

+ myFlowRequest.getRequestedLossRate() + 11
,

+ myFlowRequest.getRequestedThroughput() + 11
);

11
);

statement.close();
}catch(SQLException e){

gui.sendText("PIB: getNewFlowid: SQLException: 11 + e);
}
if (showComments) {

gui.sendText("PIB: getNewFlowid: Flow 11

+ max_flow_id + "assigned.");

return max_flow_id;

I**
* Retrieves the sequence of SLP that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path A vector of SLPs that compose this path.
*I

public Vector getSLPSequenceOfPath(int path_id){
Statement statement;
ResultSet rs;
Vector slps_in_path =new Vector();
SLPSequence SLP_sequence;
try{

statement= con.createStatement();
II get the sequence of service level pipes that compose the path
rs = statement.executeQuery("SELECT * FROM SLP_SEQUENCE WHERE

PATH_ID ='"

351

+ path_id + "' ORDER BY SLP_SEQUENCE ASC;");
while(rs.next()){

SLP_sequence =new SLPSequence();
try{

SLP_sequence.setLinkid(IPv6Address.getByName(rs.getString("LINK_ID")));
}
catch(UnknownHostException uhe){

gui.sendText("PIB: getSLPSequenceOfPath: UnknownHostException:

+ uhe);
}
SLP_sequence.setServiceLevel((new Integer(rs.getString

("SLP_ID"))) . intValue ()) ;
SLP_sequence.setSourceRouter((new Integer(rs.getString

("SOURCE_ROUTER"))) .intValue());
SLP_sequence.setPathid((new Integer(rsjgetString

("PATH_ID"))) . intValue ()) ;
SLP_sequence.setSequenceNumber((new Integer(rs.getString

("SLP_SEQUENCE"))) . intValue ()) ;
slps_in_path.addElement(SLP_sequence);

}
statement.close();

}catch(SQLException e){
gui.sendText("PIB: getSLPSequenceOfPath: SQLException: ." + e);

}
if (showComments) {

gui.sendText("PIB: getSLPSequenceOfPath: SLP sequence of " +
path_id

+ n of size II+ slps_in_path.size() +II is retrieved.");
}
return slps_in_path;

/**
* Retrieves the IPv6 address of an interface.
* @param node_id The id of the router whose interface is being

queried.
* @param link_id The network portion of the IPv6 address of an

interface.
* @returns address The address of the interface that connects this

node and
* link.
*/

public IPv6Address getinterfaceAddress(int node_id, IPv6Address
link_id) {

Statement statement;
ResultSet rs;
IPv6Address address= new IPv6Address();
try{

statement= con.createStatement();
rs = statement.executeQuery("SELECT ADDRESS FROM INTERFACES WHERE

+ "NODE_ID = '" + node_id + "'AND LINK_ID = '" +
link_id.toString() + "';");

if (rs . next ())
address= IPv6Address.getByName(rs.getString("ADDRESS"));

352

statement.close{);
}catch{SQLException e){

gui.sendText{ 11 PIB: getinterfaceAddress: SQLException: 11 + e);
}
catch(UnknownHostException uhe){

gui.sendText{"PIB: getinterfaceAddress:UnknownHostException: 11

+ uhe);
}
if (shoWComments) {

gui.sendText(11 PIB: getinterfaceAddress: Interface address 11

+address+ n returned.");
}
return address;

//**

// These methods are used to determine all possible paths across the
network
//**
******/

/**
* Retrieve all of the router ids assigned by the PIB so far.
* @returns VA vector of all assigned router ids.
*I

public Vector getAllRouterids(){
Statement statement;
ResultSet rs;
Vector V =new Vector();
try{

statement = con.createStatement();
//search for existing routers
rs= statement.executeQuery{"SELECT *FROM ROUTER;");

II if any are found, then add them to V
while {rs.next()) {

V.addElement(new Integer(rs.getint("NODE_ID 11
)));

}
statement.close();

}catch(SQLException e){
gui.sendText(11 PIB: getAllRouterids: SQLException: 11 + e);

}
if (shoWComments) {

gui.sendText("PIB: getAllRouterids: routers in PIB:");
gui.sendText(V.toString());

}
return V;

/**
* Retrieves the maximum service level of this SAAM region.
* @returns max_slp_id The numerically highest service level id

assigned.
*I

public int findMaxServiceLevel(){
Statement statement;
ResultSet rs;
String slp_id;
int max_slp_id O;

353

try{
statement= con.createStatement();
rs = statement.executeQuery("SELECT SLP_ID FROM

SERVICE_LEVEL_PIPE;");
while (rs.next()){

}

slp_id = rs.getString("SLP_ID");
if (max_slp_id <.(new Integer(slp_id)) .intValue())

max_slp_id = (new Integer(slp_id)) .intValue();

statement.close();
}catch(SQLException e){

gui.sendText("PIB: findMaxServiceLevel: SQLException: "+ e);
}
if (showComments) {

}

gui.sendText("PIB: findMaxServiceLevel: The max service level is
+ (new Integer(max_slp_id)) .toString());

return max_slp_id;

!**
* Retrieves an array of parents for each router. A parent is a

directly
* connected node.
* @param VA vector of all router ids.
* @param service_level The level of service for which paths are being

built
* for.
* @returns parent A hashtable of vectors containing the parents of

each router.
*/

public Hashtable getParents(Vector V, int service_level){
Statement statementl,statement2;
ResultSet rsl,rs2;
Vector myVector =new Vector();
Hashtable parent = new Hashtable();
String link_id = null;
Integer node_id;
try{

statementl = con.createStatement();
statement2 = con.createStatement();
II for each "destination" node
for (int index= O; index< V.size(); index++){

myVector =new Vector();

WHERE "

WHERE II

/I get all directly connected links
rsl statementl.executeQuery("SELECT LINK_ID FROM INTERFACES

+ "NODE_ID = '" + V.elementAt(index) + "';");
II for each directly connected link
while (rsl.next()){

link_id = rsl. getString ("LINK_ID");
//get all nodes that that· are connected to the link
rs2 statement2.executeQuery("SELECT NODE_ID FROM INTERFACES

+ "LINK_ID = '" + link_id + "';");
//for each connected node
while (rs2.next()){

node_id =new Integer(rs2.getString("NODE-'-ID"));
II if this node is not the "destination" node
if (!node_id.equals(V.elementAt(index))) {

II add it to the parent vector of this "destination" node

354

myVector.addElement(node_id);
} //end if

} // end while rs2
} //end while rsl
parent.put(V.elementAt(index),myVector);

} //end for each destination node
statementl.close();
statement2.close();

}catch(SQLException e){
gui.sendText("PIB: getParents: SQLException: " + e);

}
if (showComments) {

}

gui.sendText("PIB: getParents: Parent hashtable:");
gui.sendText(parent.toString());

return parent;

/**
* Assigns a path from a source and to a destination.
* @param source_router The node_id of the source of the path.
* @param destination_router The node_id of the destination of the

path.
* @returns max_path_id The id to be assigned to this new path.
*I

public int getNewPathid(int source_router,int destination_router){
Statement statement;
ResultSet rs;
String path_id;
int max_path_id = O;
try{

statement= con.createStatement();
rs= statement.executeQuery("SELECT PATH_ID FROM PATH;");
while (rs.next()){

}

path_id = rs.getString("PATH_ID");
if (max_path_id < (new Integer(path_id)) .intValue())

max_path_id = (new Integer(path_id)) .intValue();

max_path_id++;
statement.executeUpdate("INSERT INTO PATH (PATH_ID,SOURCE_ROUTER,"

+"DESTINATION_ROUTER) VALUES("+ max_path_id + ","
+ source_router + "," + destination_router + ");");

statement.close();
}catch(SQLException e){

gui. sendText ("PIB: getNewPathid: SQLException: " + e) ;
}
if (showComments) {

gui.sendText("PIB: getNewPathid: Path " + max_path_id + " from "
+source_router+" to "+destination_router+" is inserted.");

}
return max_path_id;

/**
* Identifies the id of the physical link between two adjacent

routers. If no
* link exists between a source and destination router, the default

address
* of all zeros is returned.
* @param source_router The node_id of a router.
* @param destination_router The node_id of an adjacent router.

355

* @returns subnet The link id between this source and destination.
*I

public IPv6Address getLinkBetween(int source_router, int
destination_router){

Statement statement;
ResultSet rs;
String link_id;
Vector link_ids =new Vector();
IPv6Address subnet= new IPv6Address();
try{

statement= .con.createStatement();
rs = statement.executeQuery("SELECT LINK_ID FROM INTERFACES WHERE

+ 11 NODE_ID = ' 11 + source_router + 11
';

11
);

while (rs.next()){
link_id = rs. get String (11 LINK_ID") ;
link_ids.addElement(link_id);

rs = statement.executeQuery(11 SELECT LINK_ID FROM INTERFACES WHERE

+ 11 NODE_ID = ' 11 + destination_router + "';");
while (rs.next()){

}

link_id = rs.getString(11 LINK_ID 11
);

if (link_ids.contains(link_id)){
subnet= IPv6Address.getByName(link_id);

statement.close();
}catch(SQLException e){

gui.sendText(11 PIB: getLinkBetween: SQLException: 11 + e);
}
catch(UnknownHostException uhe) {

gui.sendText("PIB: getLinkBetween: 11 + uhe);
}
if (showCommerits) {

gui.sendText(11 PIB: getLinkBetween: Link between 11 + source_router
+ 11 and "

+ destination_router +"is 11 +subnet);

return subnet;

/** .
* Assigns a service level pipe sequence entry in the building of a

path.
* @param service_level The level of service for which paths are being

built
* for.
* @param source_router The node_id of the source of the SLP.
* @param link_id The subnet that this SLP goes over.
* @param path_id The id assigned to the path.
*. @param sequence_number The number assigned to specify the sequence

of this
* SLP in the path.
*/

public void assignSLPSequence(int service_level, int source_router,
IPv6Address link_id, int path_id, int sequence_number){
Statement statement;
ResultSet rs;
try{

statement con.createStatement();

356

statement.executeUpdate("INSERT INTO SLP_SEQUENCE (SLP_ID,"
+ "SOURCE_ROUTER,LINK_ID,PATH_ID,SLP_SEQUENCE) VALUES('"
+ service_level + "', '" + source_router
+ 11 /

1
1

II + link_id. toString () + n 1
I

1 11 + path_id + II 1 1 II

+ sequence_nurnber + "');");
statement.close();

}catch(SQLException e){
gui.sendText("PIB: assignSLPSequence: SQLException: " + e);

}
if (showCornments) {

}

gui.sendText("PIB: assignSLPSequence: SLP from "+source_router
+" to link n + link_id + n on path "+ path_id
+"is assigned sequence number •+sequence_nurnber);

II**

II These methods are used to determine the effective QoS of paths
II**
******I

I**
* Retrieves a vector of all path ids constructed by the PIB.
* @returns path_ids All of the path ids known to the PIB.
*I

public Vector getAllPathids(){
Statement statement;
ResultSet rs;

}

Vector path_ids =new Vector();
Integer path_id;
try{

statement= con.createStatement();
rs= statement.executeQuery("SELECT PATH_ID FROM PATH;");
while (rs.next()){

}

path_id =new Integer(rs.getString("PATH_ID"));
path_ids.addElement(path_id);

statement.close();
}catch(SQLException e){

gui.sendText("PIB: getAllPathids: SQLException: " + e);
}
if (showCornments) {

}

gui.sendText("PIB: getAllPathids: paths in the PIB:");
gui.sendText(path_ids.toString());

return path_ids;

I**
* Retrieves the SLPs that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path The SLPs that make up the path.
*I

public Vector getSLPsOfPath(int path_id){
Statement statementl,statement2,statement3;
ResultSet rsl,rs2,rs3;
Vector slps_in_path =new Vector();
SLP mySLP;
String service_level, link_id, source_router,observed_delay,

observed_loss_rate,observed_utilization,target_throughput;

357

int observed_throughput;
try{

statementl con.createStatement();
statement2 con.createStatement();
statement3 con.createStatement();
II get the sequence of service level pipes that compose the path
rsl = statementl.executeQuery("SELECT * FROM SLP_SEQUENCE WHERE

PATH_ID =' 11

+ path_id + II Ii II) i

while(rsl.next()){
mySLP =new SLP();
link_id = rsl. getString (II LINK_ID n) ;
service_level = rsl.getString(11 SLP_ID 11

);

mySLP.setServiceLevel((new Integer(service_level)) .intValue());
source_router = rsl.getString(11 SOURCE_ROUTER");
rs2 = statement2.executeQuery("SELECT ADDRESS FROM INTERFACES

WHERE LINK_ID = '"
+ link_Jd + 11

' AND NODE_ID = ' 11 + source_router + 11
';

11
);

if (rs2.next()){.
try{

mySLP.setAddress(IPv6Address.getByName(rs2.getString(11 ADDRESS 11
)));

}catch(UnknownHostException uhe){
gui.sendText(11 PIB: getRouterinterfaces:UnknownHostException:

+ uhe);
}

rs3 statement3.executeQuery("SELECT * FROM SERVICE_LEVEL_PIPE
WHERE SLP_ID = Ill

+ service_level + 11
' AND SOURCE_ROUTER = ' 11 + source_router +

"'AND LINK_ID = ' 11

+ link_id + II I i II) i

if (rs3 . next ()){
target_throughput = rs3.getString(11 TARGET_THROUGHPUT 11

);

mySLP.setTargetThroughput((new
Integer(target_throughput)) .intValue());

observed_delay = rs3.getString(11 0BSERVED_DELAY 11
);

mySLP.setDelay((new Integer(observed_delay)) .intValue());
observed_loss_rate = rs3.getString(11 0BSERVED_LOSS_RATE 11

);

mySLP.setLossRate((new
Integer(observed_loss_rate)) .intValue());

observed_utilization = rs3.getString(11 0BSERVED_THROUGHPUT 11
);

observed_throughput = (new
Integer(observed_utilization)) .intValue()

I 100 * (new Integer(target_throughput)) .intValue() I 10;
mySLP.setThroughput(observed_throughput);

}
slps_in_path.addElement(mySLP);

}
statementl.close();
statement2.close();
statement3.close();

}catch(SQLException e){
gui.sendText(11 PIB: getSLPsOfPath: SQLException: " + e);

}
if (shoWComments) {

}

gui.sendText(11 PIB: getSLPsOfPath: SLP vector for path "
+ path_id + 11

:
11
);

gui.sendText(slps_in_path.toString());

358

a

return slps_in_path;

/**
* Records the calculated effective quality of service parameters for

* particular path.
* @param path_id The id of the path in question.
* @param effectiveDelay The effective delay that can be expected when
* transmiting a flow over this path.
* @param effectiveLossRate The effective loss rate that can be

expected when ·
* transmiting a flow over this path ..
* @param effectiveThroughputRemaining The effective throughput

capacity that
* was not being used at last observation.
*/

public void setEffectiveQoSOfPath(int path_id, int effectiveDelay,
int effectiveLossRate, int effectiveThroughputRemaining){
Statement statement;
ResultSet rs;
try{

statement= con.createStatement();
statement.executeUpdate("UPDATE PATH SET EFFECTIVE_DELAY =

+ effectiveDelay + "', EFFECTIVE_LOSS_RATE ='" +
effectiveLossRate

+ "', EFFECTIVE_THROUGHPUT ='" + effectiveThroughputRemaining
+"'WHERE PATH_ID = '" + path_id +"';");

statement.close();
}catch(SQLException e){

gui. sendText ("PIB: setEffectiveQoSOfPath: SQLException: " + e);
}
if (shoWComments) {

gui.sendText("PIB: setEffectiveQoSOfPath: path "+path_id+"
effectively has n

+ n D = II + effectiveDelay + "ms, LR = n + effectiveLossRate
+ "%, remaining T = "+ effectiveThroughputRemaining+"kbps");

/**
* Retrieves a vector of all path ids that travses the specified SLP.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns path_ids All of the path ids that traverse this SLP.
*I

public Vector getA11PathidsThatTraverseSLP(IPv6Address address,
int

service_level){
Statement statementl,statement2;
ResultSet rsl,rs2;
String node_id =new String();
Integer path_id;
Vector path_ids =new Vector();
try{

statementl = con.createStatement();
statement2 = con.createStatement();
rsl = statementl.executeQuery("SELECT NODE_ID FROM INTERFACES

WHERE II

359

+"ADDRESS= 111 + address.toString() + 111
;

11
);

while (rsl.next()){
node_id = rsl .getString ("NODE_ID");

}
rs2 statement2.executeQuery("SELECT PATH_ID FROM SLP_SEQUENCE

WHERE II

111

+ n LINK_ID = Ill + address.getNetworkAddress() + 111 AND SLP_ID

+ service_level + " 1 AND SOURCE_ROUTER = 1
" + node_id + " 1

;");

while (rs2.next()){
path_id =new Integer(rs2.getString("PATH_ID"));
path_ids.addElement(path_id);

}
statementl.close();
statement2.close();

}catch(SQLException e){
gui.sendText("PIB: getAllPathids: SQLException: "+ e);

}
if (showCornments) {

}

gui.sendText("PIB: getAllPathids: paths that traverse " + address
+ " 1 s service level#"+ service_level);

gui.sendText{path_ids.toString{));

return path_ids;

//**

II These methods are used to retrieve various other info
//**
******/

/**
* Retrieves a vector of all interface addresses attached to this

router.
* @param node_id The node id of the router in question.
* @returns IPv6Addresses The interface addresses of this node.
*I

public Vector getRouterinterfaces(int node_id){
Statement statement;
ResultSet rs;
Vector IPv6Addresses new Vector{);
IPv6Address address;
try{

statement= con.createStatement();
//search for existing routers
rs = statement.executeQuery{"SELECT * FROM INTERFACES WHERE

NODE_ID = 1
"

+ node_id + " 1
;");

1while (rs.next()) {

}

address= IPv6Address.getByName(rs.getString("ADDRESS"));
IPv6Addresses.addElement{address);

statement.close{);
}catch(SQLException e){

gui.sendText{"PIB: getRouterinterfaces: SQLException: "+ e);
}
catch{UnknownHostException uhe){

gui.sendText{"PIB: getRouterinterfaces:UnknownHostException: "
+ uhe);

360

if (showComments) {

}

gui.sendText("PIB: getRouterinterfaces: interface of node "
+node_id+":");

gui.sendText(IPv6Addresses.toString());

return IPv6Addresses;

!**
* Deletes a specified router from the PIB.
* @param node_id The node_id of the router to be deleted.
*/

public void deleteARouter(int node_id){
Statement statementl,statement2,statement3,statement4;
ResultSet rsl,rs2;
String link_id;
try{

statementl = con.createStatement();
statement2 con.createStatement();
statement3 con.createStatement();
statement4 con.createStatement();
rsl = statementl.executeQuery("SELECT LINK_ID FROM INTERFACES

WHERE NODE_ID = '"
+ node_id + "';");

while (rsl.next()){
link_id = rsl. getString ("LINK_ID") ;
statement4.executeUpdate("DELETE FROM ROUTER WHERE NODE_ID = /II

+ node_id + " ' ; ") ;
rs2 = statement2.executeQuery("SELECT NODE_ID FROM INTERFACES

WHERE LINK_ID = '"
+ link_id + "';");

if (!rs2.next()){
statement3.executeUpdate("DELETE FROM LINK WHERE LINK_ID

+ link_id + "';");
}

}
statementl.close();
statement2.close();
statement3.close();
statement4.close();

}catch(SQLException e){
gui.sendText("PIB: deleteARouter: SQLException: "+ e);

}
if (showComments) {

gui.sendText("PIB: deleteARouter: deleting node"+ node_id);

/**
* Retrieves a vector of all physical link ids known to the PIB.
* @returns links All of the known links in the network.
*/

public Vector getAllLinkids(){
Statement statement;
ResultSet rs;
IPv6Address link_id;
Vector links= new Vector();
try{

statement = con.createStatement();
rs= statement.executeQuery("SELECT *FROM LINK");
while (rs.next()){

361

/II

}

link_id = IPv6Address.getByName(rs.getString(11 LINK_ID 11
));

link~.addElement(link_id);

statement.close();
}catch(SQLException e){

gui.sendText(11 PIB: getAllLinkids: SQLException: 11 + e);
}
catch(UnknownHostException uhe) {

gui.sendText(11 PIB: getAllLinkids: 11 + uhe);
}
if (showComments) {

}

gui. sendText (n PIB: getAllLinkids .: known links addresses: II) i

gui.sendText(links.toString());

return links;

./**
* Retrieves a vector of all routers attached to a specific phyical

link.
* @param link_id The IPv6 address of the link in question.
* @returns routerids The ids of routers that are directly attached to

this
* link.
*/

public Vector findRoutersOnLink(IPv6Address link_id){
Statement statement;
ResultSet rs;
Vector routerids =new Vector();·
int node_id;
try{

statement= con.createStatement();
//search for existing routers
rs = statement.executeQuery(11 SELECT * FROM INTERFACES WHERE

LINK_ID '"

}

}

+ link_id.toString() + 11
';

11
);

II if any are found, then add them
while (rs.next()) {

}

node_id = (new Integer (rs. getString (11 NODE_ID 11
))) • intValue ();

gui.sendText(11 PIB: findRoutersOnLink: node_id = 11 + node_id);
routerids.addElement(new Integer(node_id));

statement.close();
}catch(SQLException e){

gui.sendText(11 PIB: findRoutersOnLink: SQLException: 11 + e);
}
if (showComments) {

}

gui.sendText("PIB: findRoutersOnLink: router on link 11 +link_id);
gui.sendText(routerids.toString());

return routerids;

362

package saam.server;

import saarn.net.*;
import saarn.message.*;
import java.sql.*;
import java.util.*;
import java.io.*;

I**
* The PathinformationBase<lem> is an abstract class within the SAAM
* architecture that dictates what methods need to be implemented by any

class
* that wishes to perform the retrieval and storage activities involved

with
* maintaining a picture of the network.
*I

public abstract class PathinformationBase

I**
*Removes all current path data from the database .. Its most commonly

used
* during initialization of a SAAM server for a new network.
*I

public abstract void deleteAllData();

II**

II These methods are used to process link state advertisements from
routers
II**
******I

I**
* Determines whether a given router exists yet within the PIB.
* @pararn IPv6Addresses A vector of interface addresses contained

within
* a Hello or an LSA message.
* @returns node_id The id of the node containing at least one of the
* interface addresses in the vector that was passed.
*I

public abstract int doesRouterExist(Vector IPv6Addresses);

I**
* Finds an unassigned node id and adds it to the PIB. It is commonly

used
* for assigning a new node_id to a previously unknown router.
* @returns max_node_id An unassigned router id.
*I

public abstract int getNewNodeid();

I**
* Determines whether a given interface exists yet within the PIB.
* @pararn rnyIPv6Address The interface address contained within a hello

or LSA
* message.
* @returns found True if the interface address already exists within

the PIB.
*I

public abstract boolean doesinterfaceExist(IPv6Address myIPv6Address);

I**

363

* Determines whether a given link exists yet within the PIB.
* @param address The IPv6 address of an interface.
* @returns found True if the link address already exists within the

PIB.
*I

public abstract boolean doesLinkExist(IPv6Address address);

/**
* Adds a new link to the PIB.
* @param address The IPv6 address of an interface.
* @param max_bandwidth The max transmission rate over this network

segment.
*/

public abstract void addLink(IPv6Address address, int max_bandwidth);

/**
* Adds a new interface to the PIB.
* @param node_id The id of the router whose interface is being added.
* @param address The IPv6 address of an interface.
*/

public abstract void addinterface(int node_id, IPv6Address address);

/**
* Determines whether a service level pipe exists yet within the PIB.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns found True if this SLP is already in the PIB.
*/

public abstract boolean doesSLPExist(IPv6Address address, int
service_level);

/**
* Updates the status of a known SLP's delay, loss_rate, and

throughput.
* @param address The IPv6 address of an interface.
* @param service_level ·The level of service that this logical pipe is
* providing.
* @param delay The average delay experienced by a packet's stay in

the
* particular SLP outbound queue.
* @param loss_rate The average loss_rate experienced by packets in a
* particular SLP.
* @param throughput The average throughput provided by a particular

SLP.
*I

public abstract void updateSLP(IPv6Address address, int service_level,
int delay, int loss_rate, int throughput);

/**
* Adds a previously unknown SLP to the PIB along with its targeted

QoS.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @param target_delay The average delay experienced by a packet's

stay in the
* particular SLP outbound queue.
* @param target_loss_rate The average loss_rate experienced by

packets in a
* particular SLP.

364

* @param target_throughput The average throughput provided by a
particular SLP.

*I
public abstract void addSLP(IPv6Address address, int service_level,

int target_delay,
int target_loss_rate, int target_throughput);

II**

II These methods are used to process a flow request from a host
II**
******I

I**
* Finds a router id that has an interface to on the same link as the

host
* making a flow request.
* @param address The IPv6 address of the interface of the host

requesting
* the flow.
* @returns ARouter The router id of the first router found on this

link.
*I

public abstract int findARouterOnLink(IPv6Address address);

I**
* Determines if there is a path that can support a particular flow

request.
* A value of zero is returned if no path can support this QoS.
* @param source_router The node id of a router on the same physical

link as
* the source host.
* @param destination_router The node id of a router on the same

physical
* link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns path_id The id of a path that can support this request.
*I

public abstract int getPathThatC~Supp9rtFlowRequest(int
source_router,

int destination_router, FlowRequest myFlowRequest);

I**
* Finds an unassigned flow id and assigns this new flow to a path.
* @param path_id The id of a path that can support this request.
* @param source_router The node id of a router on the same physical

link as
* the source host.
* @param destination_router The node id of a router on the same

physical
*'link as the destination host.
* @param myFlowRequest A host's request for the establishment of a

flow.
* @returns max_flow_id The id that is being assigned to this flow.
*I

public abstract int getNewFlowid(int path_id, int source_router,
int destination_router, FlowRequest

myFlowRequest);

I**

365

* Retrieves the sequence of SLPs that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path A vector of SLPs that compose this path.
*I

public abstract Vector getSLPSequenceOfPath(int path_id);

I**
* Retrieves the IPv6 address of an interface.
* @param node_id The id of the router whose interface is being

queried.
* @param link_id The network portion of the IPv6 address of an

interface.
* @returns address The address of the interface that connects this

node and
* link.
*I

public abstract IPv6Address getinterfaceAddress(int node_id,
IPv6Address

link_id);

II**

II These methods are used to determine all possible paths across the
network
II**
******I

I**
* Retrieve all of the router ids assigned by the PIB so far.
* @returns VA vector of all assigned router ids.
*I

public abstract Vector getAllRouterids();

I**
* Retrieves the maximum service level of this SAAM region.
* @returns max_slp_id The numerically highest service level id

assigned.
*I

public abstract int findMaxServiceLevel();

I**
* Retrieves an array of parents for each router. A parent is a

directly
* connected node.
* @param VA vector of all router ids.
* @param service_level The level of service for which paths are being

built
* for.
* @returns parent A hashtable of vectors containing the parents of

each router.
*I

public abstract Hashtable getParents(Vector V, int service_level);

I**
* Assigns a path from a source and to a destination.
* @param source_router The node_id of the source of the path.
* @param destination_router The node_id of the destination of the

path.
* @returns max_path_id The id to be assigned to this new path.
*I

366

public abstract int getNewPathid(int source_router, int
destination_router);

I**
* Identifies the id of the physical link between two adjacent

routers. If no
* link exists between a source and destination router, the default

address
* of all zeros is returned.
* @param source_router The node_id of a router.
* @param destination_router The node_id of an adjacent router.
* @returns subnet The link id between this source and destination.
*I

public abstract IPv6Address getLinkBetween(int source_router,
int

destination_router);.

I**
* Assigns a service level pipe sequence entry in the building of a

path.
* @param service_level The level of service for which paths are being

built
* for.
* @param source_router The node_id of the source of the SLP.
* @param link_id The subnet that this SLP goes over.
* @param path_id The id assigned to the path.
* @param sequence_number The number assigned to specify the sequence

of this
* SLP in the path.
*I

public abstract void assignSLPSequence(int service_level,
int source_router, IPv6Address link_id,
int path_id, int sequence_number);

II**

II These methods are used to determine the effective QoS of paths
II**
******I

a

I**
* Retrieves a vector of all path ids constructed by the PIB.
* @returns path_ids All of the path ids known to the PIB.
*I

public abstract Vector getAllPathids();

I**
* Retrieves the SLPs that make up a given path.
* @param path_id The id of the path in question.
* @returns slps_in_path The SLPs that make up the path.
*I

public abstract Vector getSLPsOfPath(int path_id);

I**
* Records ·the calculated effective quality of service parameters for

* particular path.
* @param path_id The id of the path in question.
* @param effectiveDelay The effective delay that can be expected when
* transmiting a flow over this path.

367

* @param effectiveLossRate The effective loss rate that can be
expected when

* transmiting a flow over this path.
* @param effectiveThroughputRemaining The effective throughput

capacity that
* was not being used at last observation.
*I

public abstract void setEffectiveQoSOfPath(int path_id, int
effectiveDelay,

int effectiveLossRate, int effectiveThroughputRemaining);

I**
* Retrieves a vector of all path ids that travses the specified SLP.
* @param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe is
* providing.
* @returns path_ids All of the path ids that traverse this SLP.
*I

public abstract Vector getA11PathidsThatTraverseSLP(IPv6Address address,
int

service_level);

II**

II These methods are used to retrieve various other info
II**
******I

I**
* Retrieves a vector of all interface addresses attached to this

router.
* @param node_id The node id of the router in question.
* @returns IPv6Addresses The interface addresses of this node.
*I

public abstract Vector getRouterinterfaces(int node_id);

I**
* Deletes a specified router from the PIB.
* @param node_id The node_id of the router to be deleted.
*I

public abstract void deleteARouter(int node_id);

I**
* Retrieves a vector of all physical link ids known to the PIB.
* @returns links All of the known links in the network.
*I

public abstract Vector getAllLinkids();

I**
* Retrieves a vector of all routers attached to a specific phyical

link'.
* @param link_id The IPv6 address of the link in question.
* @returns routerids The ids of routers that are directly attached to

this
* link.
*I

public abstract Vector findRoutersOnLink(IPv6Address link_id);

368

package saam.server;

import
import
import
import
import
import
import
import

/**

saam.net.*;
saam.message.*;
saam.control.*;
saam.router.*;
saam.util.*;
java.net.*;
java.util.*;
. . * Java.10. ;

* The Server is an object within the SAAM architecture that
* maintains a picture of the network for use in assigning flows to

paths.
*/

public class Server {

//declare class variables

/** Contains what is known about the network. */
private PathinformationBase PIB;

/** Enables the Server to receive and send particular types of
messages. */

private ControlExecutive controlExec;

/** A maximum number of hops that a search for different paths may
take. *I

private int Hmax = 4;

/**
* Used to lookup what flow id should be used to send out control

messages
* to specified routers.
*I

private Hashtable flowLookUp =new Hashtable();

/** Used to assign the right number of service level pipes to
interfaces in

* this SAAM region. Only used during initialization -- later were
assume

* SLPs are known to routers
*/

private int numOfServiceLevels 4;

/**
* The value assigned to flow ids that can not be supported. This

should be
* switched over to 0 as soon as routers are converted.
*I

public static int FLOWNOTSUPPORTABLE = 99;

public static int INITIALDELAY = O;
public static int INITIALLOSSRATE = O;
public static int INITIALTHROUGHPUT = 10000;

public static int RETURNFLOWDELAY = 50;
public static int RETURNFLOWLOSSRATE = 50;
public static int RETURNFLOWTHROUGHPUT = lOOO;

369

public static int ROUTERNOTINPIB = O;

public static int NOSUPPORTABLEPATHINPIB O;

public static int SERVERNODEID 1;

public static int FLOWTOSERVER O;

public static int PSUEDORANDOMSOURCEPORT 8000;

public static int INITIALPATHID = 0;

public static int INITIALHEIGHTOFSEARCH = 1;
public static int INCREMENTATIONOFSEARCH = l;
public static int ~ESTINATIONNODE = O;

public static int INITIALZERO = q;

!** Defines with the appropriate IPv6 address of this server. */
//private String serverIPv6 = controlExec.getServerIP() .toString();
private String serverIPv6 = "99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

/** Time when the all possible paths were found. */
private long timeOfLastPIBBuild = System.currentTimeMillis();

/**
* The amount of time that we want to have between rebuilding of

paths. This
* is not currently implemented.
*/

private long timeBetweenPIBBuilds = 120000; II 2 minutes (or 120 sec)

/** A boolean that will allow the showing of comments. */
private boolean showCornments = true;

private SAAMRouterGui gui;

/**
* Constructs a server that will use a specified type of Path

Information
* Base. The PIB may be in the form of a database structure

(which
* requires an existing ODBC configured local database) or a class
* object structure. The control executive is the interface to the

IPv6
* protocol stack, in order for messages to flow to and from the

network.
* The final step taken is the deletion of all existing data, which is
* important only in a database structure since a class object

structure is
* volatile.
* @param type The type of structure that the PIB is to assume.
* @param controlExec The control executive that will exchange

messages
* with this server.
*!

public Server(String type, ControlExecutive controlExec){
if· (type == "database")

PIB = new DatabaseStructure();

370

}

else
PIB =new ClassObjectStructure();

this.controlExec = controlExec;
gui=new SAAMRouterGui ("Server") ;

PIB.deleteAllData();

II**

II These methods handle external network communications from routers
II*************************************~********************************
******I

I**
* Receives Hello messages from routers and then processes them. It

starts
* building a vector of IPv6Addresses from the interfaces included in

the
* Hello message. This vector is passed to the PIB's doesRouterExist()

which
* determines if a router with any of these interfaces have been

identified
* before. If this is a new router, a new unique node id is

assigned.<p>
* For each of the interfaces identified in the Hello message, if this
* interface was is not known to the PIB, check to see if the

corresponding
* link is known to the PIB. If this link is not known to the PIB, add

it.
* Next, add the new interface between the node and link. Also, add

each
* service level pipe that is assigned within this SAAM region.<p>
* The next step is to rebuild the paths that are possible across the

network
* now considering this new hello message. The frequency of these

rebuilds is

be
* not a major concern in a controlled environment, but will need to

*addressed later. Finally, a flow request.is create and received for
* communicating back to this node. This is only possible if the PIB's
* determineAllPossiblePaths() has been executed after the processing

of this
* particular hello message, if this a new router. After all paths to

each
* known router are found, we finish this method with a call to
* determineEffectiveQoSForPaths(). The call to
* determineEffectiveQoSForPaths() ensures that even if no QoS

parameters are
* known about these new parts of the network, that at least some

initial
* values will be assigned. This initialization allows the new paths

to be
* assigned if needed.
* @param hello An initialization message from a router.
*I

public void processHello(Hello hello) {

long start, finish;

371

Vector interfaces;
int node_id = INITIALZERO;
InterfaceID myinterface;
int bandwidth = INITIALZERO;
IPv6Address address= new IPv6Address();
Vector IPv6Addresses =new Vecto~();
boolean newRouter = true;
FlowRequest myFlowRequest = new FlowRequest();

fl capture the start time of processing a hello
start = System.currentTimeMillis();

fl produce a vector of IPv6Addresses
interfaces hello.getinterfaceIDs();
for (inti INITIALZERO; i <interfaces.size(); i++){

address= ((InterfaceID)interfaces.elementAt(i)) .getIPv6();
IPv6Addresses.addElement(address);

}

fl check if router exists and if so, return it's node id, else
return 0

node_id = PIB.doesRouterExist(IPv6Addresses);

fl if the router does not exist in PIB
if (node_id == ROUTERNOTINPIB){

II assign it a new node id
node_id = PIB.getNewNodeid();

} else {
newRouter = false;

}

fl run through all of the LSA interfaces
for (int i = INITIALZERO; i < interfaces.size(); i++)

myinterface = (InterfaceID)interfaces.elementAt(i);
address= myinterface.getIPv6();
fl if a new interface is not found in the PIB, then
if (!PIB:doesinterfaceExist(address)){

bandwidth= myinterface.getBandwidth();
address= myinterface.getIPv6();
fl if the link is not contained in the PIB, then add it
if (!PIB.doesLinkExist(address)){

PIB.addLink(address, bandwidth);
}
fl now add the interface between the node and the link
PIB.addinterface(node_id, address);
II now add each service level pipe
for (int service_level = O; service_level < numOfServiceLevels;

service_level++){
PIB.addSLP(address, service_level, INITIALDELAY,

INITIALLOSSRATE,
INITIALTHROUGHPUT);

}
} // end if
//end interfaces for

II capture the hello processing finish time
finish= System.currentTimeMillis();

gui.sendText("Server: processHello: Time required
+(finish-start)+" milliseconds.");

372

II time since last PIB build is > 2 min and if node did not exist
before

//if ((timeOfLastPIBBuild - System.currentTimeMillis())
>timeBetweenPIBBuilds

11 &&
newRouter){

II rebuild all possible paths
findAllPossiblePaths();

II determine effective QoS of each path
determineEffectiveQoSForPaths();

II construct a new flow to this router
try{

myFlowRequest = new
FlowRequest(IPv6Address.getByName(serverIPv6),

address,System.currentTimeMillis(),RETURNFLOWDELAY,
RETURNFLOWLOSSRATE,RETURNFLOWTHROUGHPUT);

} catch(UnknownHostException uhe) {
System.err.println("Server: main: UnknownHostException: " +

uhe);
}
processFlowRequest(myFlowRequest);

//}

//end processFlowRequest

/**
* Receives link state advertisement messages from router and

processes the
* service level pipe status information that they contain. It begins

by
* checking to see if a router with the interface address described by

this
* LSA is known to the PIB. If such a router is known to exist, it

then
* checks to see if the service level pipe described by this LSA is

known to
* the PIB. If the service level pipe is known, then update its

status.
* Otherwise, add the SLP with the specified QoS characteristics.

Finally,
* update the effective QoS for the paths that pass over this service

level
* pipe by calling the determineEffectiveQoSForPaths().
* @param router A representation of a router as defined by an LSA.
*/

public void processLSA(LinkStateAdvertisement LSA) {

long start, finish;
int node_id = INITIALZERO;
int bandwidth = INITIALZERO;
byte service_level = O;
int delay = INITIALZERO;
int loss_rate = INITIALZERO;
int utilization = INITIALZERO;
Vector interfaces= new Vector(3,l);
Vector SLPs =new Vector(3,l);
IPv6Address link_id;

373

IPv6Address address;
Vector IPv6Addresses =new Vector(l,l);

II capture the start time of processing an LSA
start= System.currentTimeMillis();

II produce a one element vector of IPv6Addresses
address= LSA.getMyIPv6();
IPv6Addresses.addElement(address);

II check if router exists and if so, return it's node id, else
return 0

node_id = PIB.doesRouterExist(IPv6Addresses);

II if the router does exist in PIB, then so does the interface ...
if (node_id != ROUTERNOTINPIB){

service_level = LSA.getServiceLevel();
delay= LSA.getDelay();
loss_rate = LSA.getLossRate();
utilization= LSA.getUtilization();

if (showComments){

}

gui.sendText("Server: processLSA: node_id = " + node_id
+ ", address= " +address+ ", SL= "+service_level
+•, D " +delay+ ", LR= "+loss_rate
+•, U ="+utilization);

II if this SLP is defined, then just update its status
if(PIB.doesSLPExist(address, service_level))
{

PIB.updateSLP(address, service_level, delay, loss_rate,
utilization) ;

}
II otherwise, insert it
else {

PIB.addSLP(address, service_level, delay, loss_rate,
utilization) ;

} // end else
} // end if
else { //do nothing
}

II capture the LSA processing finish time
finish= System.currentTimeMillis();
gui.sendText("Server: processLSA: Time required

+(finish-start)+" milliseconds.");

II revise the effective QoS of paths made up of this SLP
determineEffectiveQoSForPaths(address,service_level);

//end processLSA

/**
* Receives and processes flow requests from applications. It begins
* by finding a source and a destination router. These routers may be

where
* the applications are residing themselves, which is our standard

situation.

374

* The application could, however, reside on some host that is not
registered

<p>

* with the PIB as a router. In this case, the appropriate source or
* destination router would be a router connected to the same link.

* The PIB is checked to ensure that there is the effective QoS
available on

* some path to satisfy the request. If a satisfactory path is found,
a new

* unique flow id is assigned and this new flow is associated with
that path.

* Each router in the path is retrieved and a new flow routing table
entry is

* sent to each. If no path can provide the requested level of QoS,
then the

* flow is assigned to zero, which will be interpreted by IPv6 as best
effort

* traffic. Finally, a flow response is sent back to the application
to

* inform it of its assigned flow id. If the flow id that is return is
zero,

* it will be the application's responsibility to either lower it QoS
request

* or to send its traffic as best effort.
* @param flow_request The message requesting the establishment of a

flow.
*I

public void processFlowRequest(FlowRequest flow_request) {

I** A vector of slp_sequence information for a path. *I
Vector slps_in_path;
SLPSequence currentSLPSequence,nextSLPSequence =new SLPSequence();
int SLP_source_router, SLP_destination_router, service_level;
IPv6Address link_id =new IPv6Address();
IPv6Address next_hop;
IPv6Address sourceAddress;
int source_router, destination_router, path_id,

flow_id=FLOWNOTSUPPORTABLE;
long start, finish;

II capture the start time of processing a flow request
start= System.currentTimeMillis();

II find a router on the same subnet as the source host
source_router =

PIB.findARouterOnLink(flow_request.getSourceinterface());

II find a router on the same subnet as the destination host
destination_router =

(PIB.findARouterOnLink(flow_request.getDestinationinterface()));

path_id = PIB.getPathThatCanSupportFlowRequest(source_router,
destination_router,

flow_request);

II if a path can support this request, then ...
if(path_id != NOSUPPORTABLEPATHINPIB){

II assign a flow id to the request
flow_id =

PIB.getNewFlowid(path_id,source_router,destination_router,

375

flow_request);

II determine each router in path
II transmit Flow Routing Table Entry to it
slps_in__path = PIB.getSLPSequenceOfPath{path_id);
II for each router in the path, send a FRTE update
for {int index= INITIALZERO; index< slps_in__path.size{);

index++){
II assign new slp sequence object
currentSLPSequence = {SLPSequence)slps_in__path.elementAt{index);

II if not the last link ..
if {index+l != slps_in_path.size{)){

nextSLPSequence =
{SLPSequence)slps_in_path.elementAt{index+l);

}

II retrieve values from this object
SLP_source_router = currentSLPSequence.getSourceRouter{);
link_id = currentSLPSequence.getLinkid();
service_level = currentSLPSequence.getServiceLevel();

II if not the last link ...
if (index+l != slps_in_path.size()){

SLP_destination_router = nextSLPSequence.getSourceRouter();
} else {

}

II else it is the destination node of the flow
SLP_destination_router = destination_router;

II determine destination address for next hop
next_hop = PIB.getinterfaceAddress{SLP_destination_router,

link_id);

JI determine source address
sourceAddress = PIB.getinterfaceAddress(SLP_source_router,

link_id);

II send the flow routing table entry update
sendFRTEUpdate(sourceAddress, flow_id, next_hop, service_level);

II end for

// end if

//give routers time to finish updating tables
try{

Thread.sleep{2000);
}catch{InterruptedException ie){

gui.sendText{ie.toString());
}
II if the source of this flow is the server,

if (source_router == SERVERNODEID) { .
II then add this new flow to hash table for later lookup
if (showCornrnents){

}

gui.sendText{"Server: processFlowRequest: use flow "+flow_id
+"to send to node "+destination_router);

if (destination_router SERVERNODEID) {
flow_id = FLOWTOSERVER;

376

flowLookUp.put(new Integer(destination_router),new
Integer(flow_id));

}

sendFlowResponse(flow_request, flow_id);

II capture the flow request processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: processFlowRequest: Time required

+(finish-start)+" milliseconds.");

I**
* Receives flow termination from routers and then processes them.
*I

public void receiveFlowTermination() { }

II**

II These methods handle external network communications to routers
II**
******I

I**
* Sends a flow routing table entry update message to a router. This

message
* provides the router the required information to forward packets

based on
* its flow id.
* @param sourceAddress The router that will receive the FRTE update.
* @param flow_id The id assigned to the flow in question.
* @param next_hop The IPv6 address of the next node in the path.
* @param service_level The service level that this flow is assigned

to.
*I

public void sendFRTEUpdate(IPv6Address sourceAddress, int flow_id,
IPv6Address next_hop, int

service_level) {
if(showComments){

gui.sendText("Server: sendFRTEUpdate: flowLookUp hashtable:");
gui.sendText(""+flowLookUp);

}
FlowRoutingTableEntry myFRTE = new FlowRoutingTableEntry(flow_id,

(byte)service_level,
next_hop);

int sourcePort = PSUEDORANDOMSOURCEPORT;

llcontrolExec.listenToRandomPort(this);
short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = sourceAddress;
II take steps to determine what flow id to send the packet on
Vector interfaces= new Vector();
interfaces.addElement(destHost);
int destNodeid = PIB.doesRouterExist(interfaces);
int flowidToSenditOn = ((Integer)flowLookUp.get

Integer (destNodeid))) . intValue ();
try{

(new

controlExec.send(this,myFRTE, flowidToSenditOn, (short)sourcePort,

377

destPort);
} catch (FlowException fe){

System.err.println(fe.toString());
}
if (showComments){

destHost,

gui.sendText("Server: sendFRTEUpdate: FRTE for flow 11 + flow_id
+"sent to interface 11 +sourceAddress);

gui.sendText(" with next hop= "+next_hop
+" on service level 11 +service_level+ 11 via flow

11 +flowidT0SenditOn);
}

I**
* Sends a flow response to the requesting·application to notify it of
* its newly.assigned flow id. A flow id of zero is used to indicate

that the
* flow cannot be supported. Once a flow response message is

instantiated and
* a source and destination port is defined, the control executive's

send()
* is called to send it to the destination host.
* @param flow_request The flow request message that was received.
* @param flow_id The flow id that is assigned to the flow request.
*I

public void sendFlowResponse(FlowRequest flow_request, int flow_id){
if(showComments){

gui.sendText(11 Server: sendFlowResponse: flowLookUp hashtable:");
gui.sendText(""+flowLookUp);

FlowResponse response = new
FlowResponse(flow_request.getTimeStamp(),

flow_id);
int sourcePort = PSUEDORANDOMSOURCEPORT;

llcontrolExec.listenToRandomPort(this);
short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = flow_request.getSourceinterface();
II take steps to determine what flow id to send the packet on
Vector interfaces= new Vector();
interfaces.addElement(destHost);
int destNodeid = PIB.doesRouterExist(interfaces);
int flowidToSenditOn = ((Integer)flowLookUp.get

Integer(destNodeid))) .intValue();
try{

(new

controlExec.send(this, response, flowidToSenditOn,
(short)sourcePort,

destPort);
}catch(FlowException fe) {

System.·err .println (fe. toString ());
}
if (showComments){

destHost,

gui.sendText("Server: sendFlowResponse: Flow response "

}

+ response + " from SourcePort: "+sourcePort+" to 11 +destHost
+ 11 sent via flow "+flowidToSenditOn);

378

II**

II These methods handle internal manipulation of data describing network
status
II**
******I

I**
* Determines all of the possible paths that exist between any source

and
* destination router in the network. This determination is based on

the
* physical definition of the network that is provided by the hello

messages
* received from the routers and stored within the PIB. The paths that

are
* found are then recorded in the PIB for fast assignment of flows

later.<p>
* All node ids are first retrieved from the PIB. For each service

level, we
* build an array of parents of each node. A parent is node that is

directly
* connected. Those directly connected nodes would have service level

pipes
* that would need to be passed through to get to the child node in

question.
* This parent array is used to populate a path table. Each node id is
* assigned as the final destination of path and all of the different

paths
* are then found by working out from this destination. For each of

these
* destination nodes, a call is made to processPath() to find all the

valid
* paths that go to this destination node. We make the call with a

specified
* height of search of 1.
*I

public void findAllPossiblePaths() {
long start, finish;
int NumberOfRouters;
int max_slp_id = INITIALZERO;
I** A count of the highest path id assigned so far. *I
int max__path_id = INITIALZERO;
int service_level = INITIALZERO;

I** A vector of the routers that are known by the db. *I
Vector V =new Vector();

I** A vector of the parent routers for each given destination
router. *I

Hashtable parent;

II capture the start time of processing a path data
start= System.currentTimeMillis();

II reset the maximum path id assigned so far to zero
max__path_id = INITIALPATHID;

V = PIB.getAllRouterids();

379

//retrieve COUNT of routers
NumberOfRouters = V.size{);

//find all possible paths for each service level
max_slp_id = (new Integer(PIB.findMaxServiceLevel())) .intValue();
for (service_level INITIALZERO; service_level <= max_slp_id;

service_level++){.

//build parent array of each SLP at this service level
parent= PIB.getParents(V, service_level);

//populate path table
for (int index= INITIALZERO; index< NumberOfRouters; index++){

int heightOfSearch = INITIALHEIGHTOFSEARCH;
int aPath[] =new int[Hmax + INCREMENTATIONOFSEARCH];
aPath[DESTINATIONNODE] =

((Integer)V.elementAt(index)) .intValue();
processPath(parent, aPath, heightOfSearch,service_level);

}
}

II capture the path data processing finish time
finish= System.currentTimeMillis();
gui.sendText("Server: findAllPossiblePaths: Time required

+(finish-start)+" milliseconds.");

timeOfLastPIBBuild = finish;

/**
* Processes all valid paths that arrive at the.'destination node

within some
* range of hops. For each parent of the node at the distance of
* heightOfSearch from the destination, a check is made to ensure that

adding
* this new parent will cause no cycle. If this checks out, then that

parent
* can be added and a new path can be assigned. The service level

pipes in
* this new path are identified and their sequence numbers in this

path are
* recorded to the PIB. Next, a check is made to see if the height of

the
* search is less than the server's max search height of Hmax. If it

.is less,
* the method recursively calls itself with an incremented

heightOf Search
* variable.
* @param parent Contains each router and a list of other
* routers that are directly attached to them.
* @param aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[O].
* @param heightOfSearch The number of nodes in the path so far.
* @param service_level The level of service assigned to a flow.
*I

public void processPath(Hashtable parent,

service_level){
IPv6Address link_id;

int aPath[], int heightOfSearch, int

380

int justARouter;
int sequence_number;
int path_id;
Enumeration W ((Vector)parent.get(

new Integer(aPath[heightOfSearch-
1)))) .elements();

){

while (W.hasMoreElements()) {
justARouter = ((Integer)W.nextElement()) .intValue();
if (causeNoCycle(aPath, heightOfSearch; justARouter)) {

II assign this router as the source in this path
aPath[heightOfSearch] = justARouter;

II record the new path id, etc.
path_id = PIB.getNewPathid(justARouter, aPath[DESTINATIONNODE]);

II run through the SLP's and record their sequence
for (int index = heightOfSearch; index >DESTINATIONNODE; index--

II determine link_id of this SLP
link_id = PIB.getLinkBetween(aPath[index],

aPath[index-
INCREMENTATIONOFSEARCH]);

}

II assign the SLP its sequence number
sequence_number = heightOfSearch - index;
PIB.assignSLPSequence(service_level, aPath[index],

link_id, path_id, sequence_number);

if (heightOfSearch < Hmax) {
processPath(parent, aPath,

heightOfSearch+INCREMENTATIONOFSEARCH,

service_level);
}

}
}
if (showComments){

gui.sendText("Server: processPath: paths at depth of
"+heightOfSearch

+" from node "+aPath[DESTINATIONNODE]+" is completed.");

}

I**
* Checks to ensure that the addition of a specified new node to a

specified
* path does not result in a cycle being created. This check is

completed by
* the new node is already a member of the list of nodes in the path

already.
* @param aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[O].
* @param heightOfSearch The number of nodes in the path so far.
* @param justARouter The proposed next node in for a new path.
* @returns noCycles True if no cycles are created by the addition of
* justARouter.
*I

public boolean causeNoCycle(int aPath[], int heightOfSearch,
int justARouter){

381

boolean noCycles = true;
for (int index= INITIALZERO; index< heightOfSearch; index++){

if (justARouter == aPath[index]){

}

if (showComments){

}

gui.sendText("Server: causeNoCycle: adding "+justARouter
+" to get to "+aPath[DESTINATIONNODE]+" via "
+aPath[heightOfSearch-INCREMENTATIONOFSEARCH]
+"at a height of "+heightOfSearch+" caused cycle!");

return noCycles = false;

if (showComments){
gui.sendText("Server: causeNoCycle: adding "+justARouter

+" as hop #"+heightOfSearch+" to get to "+aPath[DESTINATIONNODE]
+" via "+aPath[heightOfSearch-INCREMENTATIONOFSEARCH]
+" does not cause cycle.");

return noCycles;

I**
* Determines what the effective QoS on each path in the PIB is. For

each
* path, the service level pipes that compose it are retrieved. Then,

for
* each of these service level pipes, we total up the delay and loss

rate.
* The effective throughput remaining is determined by finding the

minimum
* difference between the observed throughput and the target

throughput of
* each service level pipe.
*I

public void determineEffectiveQoSForPaths(){
long start, finish;
Vector path_ids;
Integer myPathid;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO,
minThroughputRemaining = INITIALZERO;

II capture the start time of processing a path data
start= System.currentTimeMillis();

II for each path
path_ids = PIB.getAllPathids();

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

II for each path
myPathid = (Integer)path_ids.elementAt(indexl);

SLPs = PIB.getSLPsOfPath(myPathid.intValue());

for (int index2 = INITIALZERO; index2 < SLPs.size(); index2++){

mySLP = (SLP)SLPs.elementAt(index2);

382

--- --

II add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();

II add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRate();

II find min throughput
throughput= mySLP.getThroughput();

targetThroughput = mySLP.getTargetThroughput();

throughputRemaining = targetThro.ughput - throughput;
if (throughputRemaining < minThroughputRemaining I I

}

minThroughputRemaining == INITIALZERO){
minThroughputRemaining = throughputRemaining;

PIB.setEffectiveQoSOfPath(myPathid.intValue(),totalDelay,totalLossRate,

minThroughputRemaining);

}

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

II capture the path data processing finish time
finish= System.currentTimeMillis();
gui.sendText("Server: determineEffectiveQoSForPaths: Time required

+(finish-start)+" milliseconds.");

I**
* Determines the effective QoS for just those paths that pass over

the
* specified service level pipe. For each path, the service level

pipes that
* compose it are retrieved. Then, for each of these service level

pipes, we
* total up the delay and loss rate. The effective throughput

remaining is
* determined by finding the minimum difference between the observed
* throughput and the target throughput of each service level pipe.
* @param address The address of the interface containing this service

level.
* @param service_level The service level of this SLP.
*I

public void determineEffectiveQoSForPaths(IPv6Address address/ int
service_level){

long start, finish;
Vector path_ids;
Integer myPathid;
Vector SLPs;
SLP mySLP;
int totalDelay INITIALZERO, totalLossRate INITIALZERO,

383

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO, minThroughputRemaining

INITIALZERO;

II capture the start time of processing a path data
start= System.currentTimeMillis();

II for each path·
path_ids = PIB.getAllPathidsThatTraverseSLP(address, service_level);

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

II for each link
myPathid = (Integer)path_ids.elementAt(indexl);

SLPs = PIB.getSLPsOfPath(myPathid.intValue());

for (int index2 = INITIALZERO; index2 < SLPs.size(); index2++){

mySLP = (SLP)SLPs.elementAt(index2);

II add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();

II add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRate();

II find min throughput
throughput= mySLP.getThroughput();

targetThroughput = mySLP.getTargetThroughput();

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining I I

minThroughputRemaining
INITIALZERO){

minThroughputRemaining = throughputRemaining;

}

PIB.setEffectiveQoSOfPath(myPathid.intValue(),totalDelay,totalLossRate,

minThroughputRemaining);

="

}

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

II capture the path data processing finish time
finish= System.currentTimeMillis();
gui.sendText("Server: determineEffectiveQoSForPaths: Time required

+(finish-start)+" milliseconds.");

I**
* Returns the String representation of this Server.
* @return The String representation of this Server.
*I

384

}

public String toString(){
return "Server";

385

package saam.server;

import saam.net.*;

/**
* The SLP class stores the QoS parameters that describe that

status
* of a service level pipe. This class is used as a standard way to pass

this
* information back and forth between the server and the server's path
* information base.
*/

class SLP
/**The address assigned to the router.interface that contains this

slp. */
private IPv6Address address= new IPv6Address();
/** The service level of this particular slp. */
private int service_level = O;
/** The average delay experience by packets placed into this queue. */
private int delay = O;
/** The average rate of packet loss experience by flows using this

queue. */
private int loss_rate = O;
/** The rate of data passing through this slp. */
private int throughput = O;
/** The negotiated data rate planned for this slp. */
private int target_throughput = O;

/**
* Constructs a SLP object without any arguments.
*I

public SLP(){}

/**
* Constructs a SLP object using the parameters that are passed.
* @param address The address assigned to the router interface that

contains
* this slp.
* @param service_level The service level of this particular slp.
* @param delay The average delay experience by packets placed into

this
* queue.
* @param loss_rate The average rate of packet loss experience by

flows using
* this queue.
* @param throughput The rate of data passing through this slp.
* @param target_throughput The negotiated data rate planned for this

slp.
*/

public SLP(IPv6Address address, int service_level, int delay,
int loss_rate, int throughput, int target_throughput){

this.address = address;
this.service_level = service_level;
this.delay= delay;
this.loss_rate = loss_rate;
this.throughput = throughput;
this.target_throughput = target_throughput;

/**
* Assigns the value of what router interface this slp is assigned to.

386

* @param address The address assigned to the router interface that
contains

* this slp.
*I

public void setAddress(IPv6Address address){
this.address = address;

/**
* Assigns the value of the service level of this particular slp.
* @param service_level The service level of this particular slp.
*/

public void setServiceLevel(int service_level){
this.service_level = service_level;

!**
* Assigns the value of the average delay experience by packets placed

into
* this queue.
* @param delay The average delay experience by packets placed into

this
* queue.
*I

public void setDelay(int delay){
this.delay = delay;

/**
* Assigns the value of the average rate of packet loss experience by

flows
* using this queue.
* @param loss_rate The average rate of packet loss experience by

flows using
* this queue.
*I

public void setLossRate(int loss_rate){
this.loss_rate = loss_rate;

}

!**
* Assigns the value of the rate of data passing through this slp.
* @param throughput The rate of data passing through this slp.
*I

public void setThroughput(int throughput){
this.throughput = throughput;

}

/**
* Assigns the value of the negotiated data rate planned for this slp.
* @param target_throughput The negotiated data rate planned for this

slp.
*I

public void setTargetThroughput(int target_throughput){
this.target_throughput = target_throughput;

/**
* Retrieves the value of the address assigned to the router interface

that
* contains this slp.

387

* @returns address The address assigned to the router interface that
* contains this slp.
*I

public IPv6Address getAddress(){
return address;

}

/**
* Retrieves the value of the service level of this particular slp.
* @returns service_level The service level of this particular slp.
*/

public int getServiceLevel(){
return service_level;

/**
* Retrieves the value of the average delay experience by packets

placed into
* this queue.
* @returns delay The average delay experience by packets placed into

this
* queue.
*I

public int getDelay(){
return delay;

/**
* Retrieves the value of the average rate of packet loss experience

by flows
* using this queue.
* @returns loss_rate The average rate of packet loss experience by

flows
* using this queue.
*I

public int getLossRate(){
return loss_rate;

}

/**
* Retrieves the value of the rate of data passing through this slp.
* @returns throughput The rate of data passing through this slp.
*I

public int getThroughput(){
return throughput;

/**
* Retrieves the value of the negotiated data rate planned for this

slp.
* @returns target_throughput The negotiated data rate planned for

this slp.
*/

public int getTargetThroughput(){
return target_throughput;

}

/**
* Generates the string representation of this service level pipe.
* @returns slp The string representation of this service level pipe.
*/

388

public String toString(){
String slp = "\ninterface:"+address+", SLP "+service_level

+": D = "+delay+"ms, LR= "+loss_rate+"%, T ="
+throughput+"kbps, target T = "+target_throughput;

return slp;

389

package saarn.server;

import saarn.net.*;

/**
* The SLPSequence class stores sequence information to

identify the
* order of service level pipes that make up a path. This class is used

as a
* standard way to pass this information back and forth between the

server and
* the server's path information base.
*I

class SLPSequence {
/** The level of service for which paths are being built for. */
private int service_level;
/** The node_id of the source of the SLP. */
private int source_router;
/** The id of physical link over which this SLP assigned. */
private IPv6Address link_id;
/** The number assigned to specify the sequence of this SLP in the

path. */
private int sequence_number;
/** The id assigned to the path. */
private int path_id;

/**
* Constructs a SLPSequence object.
*I

public SLPSequence(){
}

!**
* Constructs a SLPSequence object.
* @pararn service_level The level of service for which paths are being

built.
* for.
* @param source_router The node_id of the source of the SLP.
* @param address The IPv6 address of an interface on the link.
* @param sequence_number The number assigned to specify the sequence

of this
* SLP in the path.
* @param path_id The id assigned to the path.
*I

public SLPSequence(int service_level, int source_router,
IPv6Address address, int sequence_number, int path_id){
this.service_level = service_level;
this.source_router = source_router;
this.link_id = address.getNetworkAddress();
this.sequence_number = sequence_number;
this.path_id = path_id;

!**
* Sets the service level of the SLP.
* @param service_level The level of service for which paths are being

built.
* for.
*I

public void setServiceLevel(int service_level){
this.service_level = service_level;

390

/**
* Sets the node id of the source router of this SLP.
* @param source_router The node_id of the source of the SLP.
*/

public void setSourceRouter(int source_router){
this.source_router = source_router;

}

/**
* Sets the link id of the SLP.
* @param address The IPv6 address of an interface on the link.
*/

public void setLinkid(IPv6Address link_id){
this.link_id = link_id;

/**
* Sets the sequence number of the SLP in the path.
* @param sequence_number The number assigned to specify the sequence

of this
* SLP in the path.
*/

public void setSequenceNumber(int sequence_number){
this.sequence_number = sequence_number;

/**
* Sets the id of the path for which this SLP sequence object is a

part of.
* @param path_id The id assigned to the path.
*I

public void setPathid(int path_id){
this.path_id = path_id;

}

I*
* Retrieves the service level of this SLP.
* @returns service_level The level of. service for which paths are

being
* built for.
*I

public int getServiceLevel(){
return service_level;

/*
* Retrieves the source router of this SLP.
* @returns source_router The node_id of the source of the SLP.
*/

public int getSourceRouter(){
return source_router;

I*
* Retrieves the link id of this SLP.
* @returns link_id The network address of the segment that this

interface
* connects.
*/

391

public IPv6Address getLinkid(){
return link_id;

I*
* Retrieves the sequence number of this SLP in the path.
* @returns sequence_nU:mber The number assigned to specify the

sequence of
* this SLP in the path.
*/

public int getSequenceNumber(){
return sequence_number;

}

I*
* Retrieves the path id of this SLP.
* @returns path_id The id assigned to the path.
*I

public int getPathid(){
return path_id;

public String toString(){
String slps "SL:"+service_level+", SourceRouter:"+source_router+",

link_id: II

}

+link_id+", sequence#:"+sequence_number+", in path:"+path_id;
return slps;

392

APPENDIX J. UTIL PACKAGE SOURCE CODE

393

package saam.util;

!**
* Array is a utility class that contains static methods for
* manipulating arrays of various data types. This works well
* on arrays of primitive data types; but, unfortunately,
* it was discovered that the methods manipulating Object
* arrays in this class eliminate the possibility of polymorphism.
*<p>
* This is because the only way to dynamically extend an array in
* Java is to create a new array of different size and assign it to
*the original array reference ("The Java Programming Language",
* 2ed - Ken Arnold, James Gosling) . If we create a new array
* of type Object, we lose the identity of the original array,
* thereby disallowing a cast of the method result back to the
* original type, which means the original type can't be of any type
* but those types that are recognized by the methods of this class.
*<p>
* This implies that we must know the type of the Object array we
* are recreating ahead of time. Meaning this class would have
* to contain a method for every possible Object in order to be
* useful to the language, which is clearly impractical.<p>
*
* On the other hand, is losing polymorphism worth the increase
* in performance associated with array manipulation? We can add
* Objects to an Object Array, and we can cast the Objects within
* the Array when we retreive them.
*<p>
* The jury is still out on this one.<p>
*
* At any rate, <p>
*
* If you're looking to dynamically expand arrays of primitive

data

* types, this is your class.

*

* If you're looking to dynamically expand arrays of Objects,

while

* maintaining the ability to polymorph the arrays themselves,

* look to java.util.Vector.
.
*

* If you wish to dynamically expand arrays of Objects, and don't

* mind inserting elements into a generic Object array, this

class

* will work and may be faster than Vector.

*
*/

public final class Array {

/**
* Returns an array of bytes that is a subarray of
*"the given byte array. If you're familiar
* with the substring() method in java.lang.String, you'll know
* how to use the methods in this class.
* @param array The array you desire a subset of.
* @param beginindex The beginning index, inclusive.
* @param endindex The ending index, exclusive.
* @return A new non-null byte array that is a subarray
* of this byte array in the range (beginindex,
* endindex-1) inclusive.
*I

394

public static byte[] getSubArray(
byte[] array, int beginindex, int endindex){

byte[] subArray =new byte[endindex-beginindex];
System.arraycopy(array,beginindex,subArray,0,endindex

beginindex);
return subArray;

}

/**
* Returns an array of ints that is a subarray of
* the given int array. If you're familiar
* with the substring() method in java.lang.String, you'll know
* how to use the methods in this class.
* @param array The array you desire a subset of.
* @param beginindex The beginning index, inclusive.
* @param endindex The ending index, exclusive.
* @return A new non-null int array that is a subarray
* of this int array in the range (beginindex,
* endindex-1) inclusive.
*/

public static int[] getSubArray(
int[] array, int beginindex, int endindex){

int[] subArray =new int[endindex-beginindex];
System.arraycopy(array,beginindex,subArray,0,endindex

beginindex);

}
return subArray;

!**
* Returns an array of Objects that is a subarray of
* the given Object array. If you're familiar
* with the substring() method in java.lang.String, you'll know
* how to use the methods in this class.
* @param array The array you desire a subset of.
* @param beginindex The beginning index, inclusive.
* @param endindex The ending index, exclusive.
* @return A new non-null Object array that is a subarray
* of this Object array in the range (beginindex,
* endindex-1) inclusive.
*I

public static Object[] getSubArray(
Object[] array, int beginindex, int endindex){

Object[] subArray =new Object[endindex-beginindex];
System.arraycopy(array,beginindex,subArray,0,endindex

beginindex);

}
return subArray;

/**
* Returns an array of bytes that is a concatenation of
* the given byte arrays.<p>
* first index[O] .. index[first.length-1],
* second= index[first.length] ..
* index[first.length+second.length-1].
* @param first The first array you wish to concatenate.
* @param second The second array you wish to concatenate.
* @return A new non-null byte array that is a concatenation
* of first and second.
*/

395

public static byte[] concat(byte[] first, byte[] second)
throws IndexOutOfBoundsException {

int lengthl,length2;
try{

lengthl = first.length;
}catch(NullPointerException npe){

try{
//first null, second not
length2 = second.length;
return second;

}catch(NullPointerException npe2){
//both null, now what?
return second;//?? arbitrary since both null

}
try{

length2=second.length;
}catch(NullPointerException npe){

//first not null, but second is
return first;

}
//both not null
byte[] concatArray =new byte[lengthl+length2];
System.arraycopy(first,O,concatArray,0,lengthl);
System.arraycopy(second,O,concatArray,lengthl,length2);
return concatArray;

}//concat(byte[] first, byte[] second)

!**
* Returns an array of ints that is a concatenation of
* the given int arrays.<p>
* first index[O] .. index[first.length-1],
* second = index[first.length] ..
* index[first.length+second.length-1].
* @param first The first array you wish to concatenate.
* @param second The second array you wish to concatenate.
* @return A new non-null int array that is a concatenation
* of first and second.
*I

public static int[] concat(int[] first, int[] second)
throws IndexOutOfBoundsException

int lengthl,length2;
try{

lengthl = first.length;
}catch(NullPointerException npe){

}

try{
//first null, second not
length2 = second.length;
return second;

}catch(NullPointerException npe2){
//both null, now what?
return second;//?? arbitrary since both null

try{
length2=second.length;

}catch(NullPointerException npe){
//first not null, but second is
return first;

}
//both not null

396

int(] concatArray =new int[lengthl+length2];
System.arraycopy(first,0,concatArray,O,lengthl);
System.arraycopy(second,0,concatArray,lengthl,length2);
return concatArray;

}//concat(int[] first, int[] second)

/**
* Returns an array of bytes that is a concatenation of
* the given byte and byte array.<p>
* theByte = index[O],
* second= index[l] ..
* index[second.length].
* @param theByte The byte you wish to concatenate.
* @param array The second array you wish to concatenate.
* @return A new non-null byte array that is a concatenation
* of theByte and array.
*I

public static byte[] concat(byte theByte, byte[) array)
throws IndexOutOfBoundsException {

try{
byte[] newArray =new byte[array.length+l];
newArray[O]=theByte;
System.arraycopy(array,0,newArray,l,array.length);
return newArray;

}catch(NullPointerException npe}{
byte[] newArray =new byte[l];
newArray[O] = theByte;
return newArray;

}
}//concat(byte theByte, byte[] array)

/**
* Returns an array of ints that is a concatenation of
* the given int and int array.<p>
* theint index[O],
* second= index[l] ..
* index[second.length].
* @param theint The int you wish to concatenate.
* @param array The second array you wish to concatenate.
* @return A new non-null int array that is a concatenation
* of theint and array.
*/

public static int[] concat(int theint, int[] array)
throws IndexOutOfBoundsException {

try{
int[) newArray =new int[array.length+l];
newArray[O]=theint;
System.arraycopy(array,0,newArray,l,array.length);
return newArray;

}catch(NullPointerException npe){
int[] newArray =new int[l];
newArray[O] = theint;
return newArray;

}
}//concat(int theint, int[] array)

/**
* Returns an array of bytes that is a concatenation of
* the given byte and byte array.<p>
* second= index[OJ ..
* index[second.length-1).

397

* theByte = index[second.length],
* @param array The second array you wish to concatenate.
* @param theByte The byte you wish to concatenate.
* @return A new non-null byte array that is a concatenation
* of array and theByte.
*/

public static byte[] concat(byte[] array, byte theByte){
try{

byte[] newArray =new byte[array.length+l];
newArray[array.length]=theByte;
System.arraycopy(array,0,newArray,0,array.length);
return newArray;

}catch(NullPointerException npe){
byte[] newArray =new byte[l];
newArray[O] = theByte;
return newArray;

}
}//concat(byte[] array, byte theByte)

/**
* Returns an array of ints that is a concatenation of
* the given int and int array.<p>
* second index[O] ..
* index[second.length-1].
* theint index[second.length],
* @param array The second array you wish to concatenate.
* @param theint The int you wish to concatenate.
* @return A new non-null int array that is a concatenation
* of array and theint.
*/

public static int[] concat(int[] array, int theint){
try{

int[] newArray =new int[array.length+l];
newArray[array.length]=theint;
System.arraycopy(array,0,newArray,0,array.length);
return newArray;

}catch(NullPointerException npe){
int[] newArray =new int[l];
newArray[O] = theint;
return newArray;

}
}//concat(int[] array, int theint)

/**
* Returns an array of ints that is a concatenation of
* the given long and long array.<p>
* second index[O] ..
* index[second.length-1].
* theint index[second.length],
* @param array The second array you wish to concatenate.
* @param theint The long you wish to concatenate.
* @return A new non-null long array that is a concatenation
* of array and theint.
*/

public static byte[] concat(long first, long second){
byte[] firstArray = PrimitiveConversions.getBytes(first);
byte[] secondArray = PrimitiveConversions.getBytes(second);
return concat(firstArray,secondArray);

}//concat(long[] array, long theint)

/**
* Returns an array of Objects that is a concatenation of

398

* the given Object and Object array.<p>
* second= index[O] ..
* index[second.length-1).
* theObject = index[second.length],
* @param array The second array you wish to concatenate.
* @param theObject The Object you wish to concatenate.
* @return A new non-null Object array that is a .concatenation
* of array and theObject.
*/

public static Object[] concat(Object[] array, Object theObject){
try{

Object[] newArray =new Object[array.length+l];
newArray[array.length]=theObject;
System.arraycopy(array,0,newArray,O,array.length);
return newArray;

}catch(NullPointerException npe){
Object[] newArray =new Object[l];
newArray[O] = theObject;
return newArray;

}
}//concat(Object[) array, Object theObject)

/**
* Returns an array of bytes with theByte inserted into
* array at position.<p> This method automatically expands
* array if position > the length of array.
* @param array The byte you wish to add to the array.
* @param theByte The second array you wish to concatenate.
* @param position The position at which the byte will be added.
* @return A new non-null byte array with theByte inserted into
* array at position.<p>
*/

public static byte[] replaceElementAt(byte theByte, byte[] array,
int position)

throws IndexOutOfBoundsException {

int length = O;
try{

length = array.length;
//if the exception is thrown, we know length= 0,
//so we do nothing with the exception

}catch(NullPointerException npe){}

if(position<O){
throw new IndexOutOfBoundsException(

"Can't add "+theByte+" to position "+position+".");
}else if(position<length){

array[positionJ=theByte;
return array;

}else{
//automatically expand the array if the insertion
//point (position) is greater than the length of
//the old array.
int newlength=position+l;
byte[] concatArray =new byte[newlength];
concatArray[position]=theByte;
System.arraycopy(array,O,concatArray,0,length);
return concatArray;

}//else
}//replaceElementAt()

399

/**
* Returns an array of ints with theint inserted into
* array at position.<p> This method automatically expands
* array if position > the length of array.
* @param array The int you wish to add to the array.
* @param theint The second array you wish to concatenate.
* @param position The position at which the int will be added.
* @return A new non-null int array with theint inserted into
* array at position.<p>
*!

public static int[] replaceElementAt(int theint, int[] array,
int position)

throws IndexOutOfBoundsException {

int length = O;
try{

length = array.length;
//if the exception is thrown, we know length= 0,
//so we do nothing with the exception

}catch(NullPointerException npe}{}

if(position<O){
throw new IndexOutOfBoundsException(

"Can't add "+theint+" to position "+position+".");
}else if(position<length){

array[position]=theint;
return array;

}else{
//automatically expand the array if the insertion
//point (position) is greater than the length of
//the old array.
int newlength=position+l;
int[] concatArray =new int[newlength];
concatArray[position]=theint;
System.arraycopy(array,0,concatArray,0,length);
return concatArray;

}//else
}//replaceElementAt()

/**
* Returns an array of Objects with theObject inserted into
* array at position.<p> This method automatically expands
* array if (position > the length of array) .
* @param theObject The Object you wish to add to the array.
* @param array The array to be added to.
* @param position The position at which the Object will be added.
* @return A new non-null Object array with theObject inserted into
* array at position.<p>
*/

public static Object[] replaceElementAt(Object theObject, Object[]
array,

int position)
throws IndexOutOfBoundsException

int length = O;
try{

length = array.length;
//if the exception is thrown, we know length 0,
//so we do nothing with the exception

}catch(NullPointerException npe) {}

400

if(position<O){
throw new IndexOutOfBoundsException(

"Can't add "+theObject+" to position "+position+".");
}else if(position<length){

array[position]=theObject;
return array;

}else{
if (length==O){array =new Object[l];}
//automatically expand the array if the insertion
//point (position) is greater than the length of
//the old array.
irit newlength=position+l;
Object[] concatArray =new Object[newlength];
concatArray[positionJ=theObject;
System.arraycopy(array,O,concatArray,0,length);
return concatArray;

}//else
}//replaceElementAt()

/**
* Returns an array of Objects that is a concatenation of
* the given Object arrays.<p>
* first index[O] .. index[first.length-1],
* second= index[first.length] ..
* index[first.length+second.length-1].
* @param first The first array you wish to concatenate.
* @param second The second array you wish to concatenate.
* @return A new non-null array that is a concatenation
* of first and second.
*/

public static Object[] concat(Object[J first, Object[] second)
throws IndexOutOfBoundsException

int lengthl,length2;
try{

lengthl = first.length;
}catch(NullPointerException npe){

}

try{
//first null, second not
length2 = second.length;
return second;

}catch(NullPointerException npe2){
//both null, now what?
return second;//?? arbitrary since both null

try{
length2=second.length;

}catch(NullPointerException npe){
//first not null, but second is
return first;

}
//both not null
Object[] concatArray =new Object[lengthl+length2];
System.arraycopy(first,0,concatArray,0,lengthl);
System.arraycopy(second,0,concatArray,lengthl,length2);
return concatArray;

}//concat(Object[J first, Object[] second)

401

package saam.util;

!**
* A utility class with static methods that performs conversions
* from a byte array to a primitive data type and from a primitive
* data type to a byte array.
*I

public final class PrimitiveConversions{

/**
* Converts a long to a byte array containing 8 bytes.
* @param in The long to be converted.
* @return The byte array that represents the long supplied.
*/

public static byte[] getBytes(long in){
int length = 8;
byte[] result= new byte[length];
for(int x=length-l;x>=O;x--){

result[x] = (byte) (in>>((length-1-x)*8));

return result;

/**
* Converts an int to a byte array containing 4 bytes.
* @param in The int to be converted.
* @return The byte array that represents the int supplied.
*/

public static byte[] getBytes(int in){
int length = 4;
byte[] result= new byte[length];
for(int x=length-l;x>=O;x--)

result[x] = (byte) (in>>((length-1-x)*8));
return result;

/**
* Conver~s an int to a byte array containing the number of bytes
* requested.
* @param in The int to be converted.
* @return The byte array that represents as many bytes of
* the int as are requested. This method is intended to allow
* smaller ints to be stuffed into a fewer number of bytes; but,
* it is up to the user of this method to determine whether or not
* the int can be accurately represented by the number of bytes
* requested.
*I

public static byte[] getBytes(int in, int howManyBytes){
int length = 4; '
if(howManyBytes>O&&howManyBytes<5){

length = howManyBytes;
}
byte[] result= new byte[length];
for(int x=length-l;x>=O;x--)

result[x] = (byte) (in>>((length-1-x)*S));
return result;

/**
* Converts a short to a byte array containing two bytes.
* @param in The short to be converted.

402

* @return The byte array that represents the short supplied.
*I

public static byte[] getBytes(short in){
int length = 2;
byte[] result= new byte[length];
for(int x=length-l;x>=O;x--)

result[x] = (byte) (in>>((length-1-x)*8));
return result;

/**
* Converts a byte array of 1 or 2 bytes into a short. If the
* array is null; this method returns zero.
* @param array The array to be converted.
* @return The result of converting the array to a short.
*/

public static short getShort(byte[] array){
int length = O;
try{

length = array.length;
}catch(NullPointerException npe){

return O;
}
if (length>2)length=2;
short s = O;
for(int x=length-l;x>=O;x--){

sl=((array[x]&OxFF)<<((length-1-x)*8));
}
return s;

/**
* Converts a byte array of 1 to 4 bytes into an int. If the
* array is null, this method returns zero.
* @param array The array to be converted.
* @return The result of converting the array to a int.
*I

public static int getint(byte[] array){
int length = O;
try{

length = array.length;
}catch(NullPointerException npe){

return O;
}
if (length>4)length=4;
int s = O;
for(int x=length-l;x>=O;x--){

sl=((array[x]&OxFF)<<((length-1-x)*8));

return s;

/**
* Converts a byte array of 1 to 8 bytes into an long. If the
* array is null, this method returns zero.
* @param array The array to be converted.
* @return The result of converting the array to a long.
*/

public static long getLong(byte[] array){
int length = O;
try{

403

length = array.length;
}catch(NullPointerException npe){

return O;
}
if (length>8)length=8;
long s = O;
for(int x=length-l;x°>=O;x--){

sl=C(long) (array[x]&OxFF)<<((length-1-x)*S));
}
return s;

404

II Dean Vrable - CS3973 - March, 1998

package saam.util;

I**
* A thread-safe circular linked list implementation of a queue.

Adapted
* from Sethi's Programming Languages<lem> book
* http:llstore.awl.comlscatalogloffer.mhtml?sho=0-201-59065-4&n=l
*I

public class Queue {

private Object obj;
private Queue next;
private int count = O;

I**
* A static method that returns an empty <code>Queue<lcode>
* @return An empty <code>Queue<lcode>.
*I

public static Queue emptyQ()

Queue q =new Queue();
q.obj = null;
q.next = q;
return q;

I**
* Inserts an <code>Object<lcode> at the tail of the
* <code>Queue<lcode>.
* @param o The <code>Object<lcode> to be inserted into the
* <code>Queue<lcode>.
* @return A new <code>Queue<lcode> with this <code>Object<lcode>
* inserted at the tail.
*I

public synchronized Queue enqueue(Object o) {

Queue q =new Queue();

q.obj null;
q.next = this.next;

this.obj = o;
this.next = q;
return q;

I**
* Peeks at the next <code>Object<lcode> to be removed from the
* <code>Queue<lcode>.
* @return The <code>Object<lcode> at the head of the
* <code>Queue<lcode>.
*I

public synchronized Object peek() {

II return this.next.obj;
return this.obj;

}

405

}

/**
* Removes the <code>Object</code> at the head of the
* <code>Queue</code>.
* @return The <code>Queue</code> with the Object at the

* head removed.
*/

public synchronized Queue dequeue()

Queue front = this.next;
this.next = front.next;
return this;

}

/**
* Determines if the <code>Queue</code> is empty.
* @return true if the queue is empty
*/

public synchronized boolean isemptyQ()

return this == this.next;
}

/**
* Returns the number of objects in this <code>Queue</code>.
* @return The number of objects in this <code>Queue</code>.
*I

public synchronized int getCount(){
count=O;

//go around the circle until you arrive back at "this"
for (Queue q =this.next; q !=this; q = q.next){

count++;

return count;
}

/**
* A <code>String</code> representation of all objects in this
* <code>Queue</code>.
* @return A String representing of all objects in this
* <code>Queue</code> ·
*/

public synchronized String toString()

}

Strings= new String(getCount()+" elements [");

for (Queue q = this.next; q != this; q = q.next) {
s += q.obj.toString();

returns+"]";

406

package saam.util;

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**

* A simple Graphical User Interface that consists of a JPanel with
* a JTextArea and a JTextField that can be updated with the sendText
* and setTextField methods respectively.
*/

public class SAAMRouterGui extends JPanel

public static Hashtable instances= new Hashtable();
public static Vector titles= new Vector();
private boolean show = true;
private int rows = 6;
private int cols = 25;
private JTextArea messages = new

JTextArea(rows,cols);
private JTextField tf =new JTextField();
private String title;

public SAAMRouterGui(String title){

}

super(new BorderLayout(}};
this.title=title;
titles.add(title);
instances.put(title,this);
add(messages, BorderLayout.CENTER);
add(tf,BorderLayout.SOUTH};
messages.setBackground(new Color(150,172,190));
tf.setBackground(new Color(150,150,255}};
tf.setFont(new Font("serif" ,Font.BOLD,12));
setLocation(0,0};
if(show)setVisible(true};

public static SAAMRouterGui getinstance(String name) {
return (SAAMRouterGui)instances.get(name);

}
public static Vector getTitles(){

return titles;
}
public void sendText(String message){

if(show)messages.append(message + "\n");
}
public void setTextField(String message){

if(show}tf.setText(message};
}
public JTextArea getTextArea(}{

return messages;
}
public JTextField getTextField(}{

return tf;
}
public void setTextFieldFontSize(int size}{

if(show)tf.setFont(new Font("serif" ,Font.BOLD,size}};
}
public String toString(){

return title;

407

408

REFERENCES

[1] Steinke, S., "ATM and Alternatives in the Wide Area Backbone." Network

Magazine, pp. 36-42, July 1999.

[2] Karve, Anita, "Lesson 119: IP Quality of Service," Network Magazine, pp. 36-42,

June 1998.

[3] Rumbaugh, James, Jacobson, Ivar, and Boo~h, Grady, The Unified Modeling

Lcmguage Reference Manual, Addison Wesley Longman, Inc., 1999.

[4] Sackett, George C. and Metz, Christopher Y., ATM and Multiprotocol Networking,

McGraw-Hill, 1997.

[5] Peterson, Larry L. and Davie, Bruce ~-· Computer Networks, A Systems Approach.

Morgan Kaufmann, 1997.

[6] Floyd, Sally and Jacobson, Van, "Link-sharing and resource management models

for packet networks," IEEE/ACM Transactions on Networking, 3(4):365-386,

August 1995.

[7] Bennett, Jon C.R. and Zhang, Hui, "Hierarchial Parcket Fair Queueing Algorithms,"

IEEE/ACM Transactions on Networking, 5(5):675-689, October 1997.

[8] Xie, Geoffrey G. and Lam, Simon S., "Real-Time Block Transfer Under a Link

Sharing Hierarchy," IEEE/ACM Transactions on Networking, 6(1):30-41, February

1998.

[9] Xie, Geoffrey G. and Lam, Simon S., "Delay Guarantee of Virtual Clock Server,"

IEEE/ACM Transactions on Networking, 3(6):683-689, December 1995.

[10] Lam, Simon S. and Xie, Geoffrey G., "Group Priority Scheduling," IEEE/ACM

Transactions on Networking, 5(2):205-218, April 1997.

[11] Xie, Geoffrey G., Hensgen, Debra, Kidd, Taylor, and Yarger, John, "SAAM: An

Integrated Network Architecture for Integrated Services," paper presented at the 6th

IEEEIIFIP International Workshop on Quality of Service, Napa, CA,

[http://www.cs.nps.navy.mil/people/faculty/xie/pub]. May 1998.

[12] Xie, Geoffrey G., Hensgen, Debra, Kidd, Taylor, and Yarger, John, "Efficient

Management of Integrated Services Using a Path Information Base."

[http://www.cs.nps.navy.mil/people/faculty/xie/pub]. 14 May 1998.

409

[13] Larman, Craig, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design, Prentice Hall, Inc., 1998.

[14] Berg, Daniel J. and Fritzinger, Steven, Advanced Techniques for Java Developers,

Proven Solutions from Leading Java Experts, John Wiley & Sons, Inc., 1997.

[15] Hunter, Jason and Crawford, William, Java Servlet Programming, O'Reilly &

Associates, Inc., 1998.

[16] Sridharan, Prashant, Advanced Java Networking, Prentice Hall, Inc., 1997.

[17] Hughes, Merlin, et al, Java Network Programming, Manning Publications Co.,

1999.

[18] Boone, Barry, Java Certification Exam Guide For Programmers and Developers,

McGraw-Hill Companies, Inc., 1997.

[19] Roberts, Simon and Heller, Philip, Java I.I Certification Study Guide, SYBEX

Inc., 1997.

[20] Murphy, David M., Building an Active Node on the Internet, Master's Thesis,

Massachusetts Institute of Technology, Boston, Massachusetts, May 1997.

[21] Lange, Danny B. and Oshima, Mitsuru, Programming and Deploying Java Mobile

Agents with Aglets, Addison Wesley Longman, Inc., 1998.

[22] Heller, Philip and Roberts, Simon, Java 1.2 Developer's Handbook, SYBEX Inc.,

1999.

[23] Calvert, Kenneth L., et al, "Directions in Active Networks," IEEE

CQmmunications, 36(10), Oct. 1998.

[24] Krupczak, Bobby, et al, "Implementing Communication Protocols in Java", IEEE

Communications, 36(10), Oct. 1998.

[25] Ricciulli, Livio, "ANETD: Active NETworks Daemon (vl.O)."

[http://www.csl.sri.com/ancors/anetd/docs]. Aug 1998.

410

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center ... 2
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library ... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Director, Training and Education ... 1
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4. · Director, Marine Corps Research Center ... 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division .. 1
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6. Marine Corps Representative ... 1
Na val Postgraduate School
Bldg. 330, IN-116
555 Dyer Road
Monterey, CA 93943

7. Marine Corps Tactical Systems Support Activity 1
Technical Advisory Branch
Attn: Maj J.C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

8. Chairman,Code CS .. 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

411

9. Dr. Geoffrey Xie ... l
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

10. Dr. Debra Hensgen .. ; 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

11. Mr. Cary Colwell : : ... 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

12. Dr. Donald Brotzman ... 1
Undersea Research Department, Code UW
Naval Postgraduate School
Monterey, California 93943-5100

13. Dr. Gordon Bradley .. 1
Operational Research Department, Code OR
Naval Postgraduate School
Monterey, California 93943-5100

14. Dr. Harry K. Edwards ... l
Computer Science Department
University of Michigan
Flint, Michigan 48504

15. Captain Dean J. Vrable .. 3
6225 Chesaning Rd.
Chesaning, MI 48616

16. Captain John W. Yarger .. 3
P.O. Box 114
Brisbin, PA 16620

412

