
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2005

TwoLevel Assurance of QoS

Requirements for Distributed Realtime

and Embedded Systems

Liu, Shih-Hsi

2005 ACM Symposium on Applied Computing, March 13-17, 2005, Santa Fe, New Mexico, USA

http://hdl.handle.net/10945/39154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36731533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Two-Level Assurance of QoS Requirements for Distributed Real-time and
Embedded Systems

∗

Shih-Hsi Liu
Barrett R. Bryant
Jeffrey G. Gray

Department of Computer and
Information Sciences

University of Alabama at
Birmingham

Birmingham, AL 35294, USA

{liush, bryant, gray}
@cis.uab.edu

Rajeev Raje
Andrew Olson

Department of Computer and
Information Science

Indiana University Purdue
University Indianapolis

Indianapolis, IN 46202, USA

{rraje, aolson}
@cs.iupui.edu

Mikhail Auguston
Department of Computer

Science
Naval Postgraduate School
Monterey, CA 93943, USA

maugusto@nps.navy.mil

ABSTRACT
Assuring quality of service (QoS) requirements is critical
when assembling a distributed real-time and embedded (DRE)
system from a repository of existing software and hardware
components. This paper presents a two-level approach for
assuring satisfaction of QoS requirements in the context of
a reduced design space for DRE systems. Techniques from
artificial intelligence and statistics are used to fulfill these
collective objectives at system assembly time. The result
not only lessens the overhead of validation of QoS require-
ments at run-time, but also reduces the development and
integration cost of DRE systems.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]:
Real-time and embedded systems.

General Terms
Algorithms, Design

Keywords
Real-Time, Quality of Service, Domain-specific Modeling

1. INTRODUCTION
Distributed real-time and embedded (DRE) systems are

widely used in military, manufacturing, and control systems.
Many of these systems consist of legacy components, either
hardware or software. Thus, there is an urgent demand
to fulfill the need of the development and integration of
DRE systems from existing components. During the syn-
thesis process of a DRE system, appropriate components

∗This research was supported in part by U. S. Office of Naval
Research award N00014-01-1-0746.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

are selected from a repository. A validation process sub-
sequently ensures that the assembled system fulfills the re-
quirements. In addition to functional requirements, quality
of service (QoS) is an important requirement of DRE sys-
tems. UniFrame [8] is a QoS-based approach for building
distributed systems from heterogeneous components. While
identifying relevant QoS properties to be validated in a dis-
tributed domain, UniFrame does not currently address the
problem of building DRE systems. In this paper, a two-
level assurance technique for QoS of DRE systems assem-
bled from components is presented. This technique, based
on artificial intelligence and statistics, reduces the design
space and validates QoS requirements at system assembly
time. Consequently, we believe that this technique may ease
the overhead of validation of QoS requirements at runtime,
and reduce the development and integration cost of DRE
systems. In addition, the usage of a modeling tool for as-
surance framework construction and statistical concepts for
assembled cases (i.e., solutions of design space) facilitate the
reusability and flexibility in different perspectives. Section 2
describes the framework of the system. Section 3 concludes
our work.

2. FRAMEWORK
In this section, the framework of the system is described.

Starting from nonfunctional requirements, a use case sce-
nario is analyzed to determine the static and dynamic QoS
requirements. Then, a Petri Net-based QoS model as an
analysis and assurance toolkit is constructed. Backtracking
and branch-and-bound algorithms are employed to prune off
infeasible assembled cases based on static QoS requirements
at the first level. A domain-specific scripting language then
further discards less probable assembled cases based on pre-
vious states and observations of dynamic QoS requirements
of components stored in a knowledge base. More details
of each level and Petri Net model will be addressed in the
following subsections. Figure 1 shows the QoS assurance
framework of the system.

2.1 Petri Net-based QoS Modeling
The achievement of quality of services usually requires co-

operation of collective components of a DRE system. There-
fore, a formal approach to model and analyze the compo-
nents of a DRE system with respect to its quality of services
is necessary: a Petri Net-based QoS model is created in the

903

2005 ACM Symposium on Applied Computing

A Use Case

Scenario

Static

QoS

Dynamic

Qos Knowledge

Base

Backtracking/

Branch-and-

Bound

Evolutionary

Algorithms with

PPCEA

Functional and Nonfunctional

Specification

Petri Net

by GME

Discard

Y

N

Best Static

QoS results

from test cases

Statistical dynamic

QoS results for

runtime

Figure 1: The QoS assurance framework.

Generic Modeling Environment (GME) [4]. A Petri Net rep-
resented by a Petri Net graph is a formalism beneficial in
modeling concurrent and asynchronous systems [7]. Its char-
acteristics are appropriate for simulating data and control
flow of QoS parameters (i.e., QoS systemic paths) among
components involved. In order to diagnose data and control
flow from a Petri Net graph, a reachability tree is derived to
show various QoS systemic paths analyzed by analysis be-
haviors. Analysis behaviors crosscut the source code of the
Petri Net model GME interpreter generated can be weaved
in by using AspectJ [1]. There are several merits to imple-
ment Petri Nets with GME and AspectJ. Because GME is a
metaconfigurable modeling tool that permits the customiza-
tion of visual domain languages, new features of Petri Nets
can be easily added to the Petri Net metamodel to facili-
tate extensibility and reusability of the Petri Net model [4].
In addition, separation of concerns of simulation of QoS sys-
temic paths and analysis behaviors promotes reusability and
modularity of source code.

2.2 Backtracking and branch-and-bound
A Petri Net acquires numerous possible solution of a de-

sign space by modeling and analyzing a DRE system. How-
ever, most of these solutions are inappropriate for the DRE
system, because they do not satisfy strict static QoS require-
ments. To decrease the solution space of a DRE system with
strict static QoS requirements, backtracking or branch-and-
bound (B/B) approaches are applied [3] at the first level of
assurance: if the results of the internal nodes of the reacha-
bility tree do not satisfy strict static QoS requirements dur-
ing the trace, the approach discards all subsequent branches.
Unlike most of the assurance approaches such as [6] that val-
idates one design space solution at a time, B/B approaches
utilize a “parallel pruning concept” that cuts infeasible de-
scendant leaves concurrently. Therefore, the computation
time of B/B approaches is faster than those pruning ap-
proaches without the concept of parallel computation.

2.3 Evolutionary Algorithms
In the DRE domain, validating each QoS requirement in-

dividually may ignore the probable impacts on the effect
that QoS requirements have on each other. Fitness func-
tions of evolutionary algorithms (EAs) solve this problem
by combining all of the associated concerns of QoS require-
ments into a mathematical formula.

B/B approaches assure the static QoS requirements that
are imperative and orthogonal. However, it is time consum-
ing for B/B approaches to evaluate non-imperative and/or
non-orthogonal static QoS requirements. Hence, an EA eval-
uates the best results of joint non-strict static QoS param-
eters by a fitness function.

Evaluating dynamic QoS requires the cooperation of the
deployment environment. However, the statistical results
of dynamic QoS by EAs at component assembly time may
serve as excellent estimates during runtime. Dynamic QoS
requirement validation utilizes the previous state informa-
tion of a component in the knowledge base to obtain the
statistical results computed by EAs.

A domain-specific scripting language, Programmable Pa-
rameter Control for Evolutionary Algorithms (PPCEA) [5],
is developed as a metaprogram of EAs to support the prun-
ing of the design space. By a user-defined discard rate, EAs
decide which assembled cases should be deleted. For exam-
ple, if the worst result of an assembled case is not close to
the dynamic QoS requirement, this case can be discarded
before runtime.

3. CONCLUSION
The earlier an error is found, the less costly software is de-

veloped [2]. Our approach obeys this golden rule to reduce
the design space at system assembly time. It not only lessens
the workload of QoS assurance at runtime, but also econo-
mizes the development and integration cost of DRE systems
constructed by assembly of components. Besides, construct-
ing Petri Net-based QoS modeling in the GME collaborating
AspectJ facilitates reusability, extensibility and flexibility.
B/B approaches utilize the parallel pruning concept to ex-
pedite the reduction of design space. PPCEA provides a
flexible, reusable and statistical means to delete less proba-
ble cases, and auxiliary statistical results as the reference at
runtime.

4. REFERENCES
[1] AspectJ. http://eclipse.org/aspectj/.

[2] B. W. Boehm. Software engineering economics.
Englewood Cliffs, N.J., Prentice-Hall, 1981.

[3] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer
Algorithms. Computer Science Press, 1998.

[4] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments. Computer,
34(11):44–51, Nov. 2001.

[5] S.-H. Liu, M. Mernik, and B. R. Bryant. Parameter
control in evolutionary algorithms by domain-specific
scripting language PPCEA. In Proc. Int. Conf.
Bioinspired Optimization Methods and Their
Applications, pages 41–50, 2004.

[6] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design space exploration and model
synthesis. In Proc. EMSOFT 2003, 3rd Intl. Conf.
Embedded Software, pages 290–305, 2003.

[7] J. L. Peterson. Petri nets. ACM Computing Surveys,
9(3):223–252, Sept. 1977.

[8] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
and C. C. Burt. A quality of service-based framework
for creating distributed heterogeneous software
components. Concurrency and Computation: Practice
and Experience, 14(12):1009–1034, 2000.

904

