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ABSTRACT  

This paper presents two computer-aided techniques for discovering formal specification 

behavioral requirements and for mapping components and methods within an implementation to their 

driving requirements. The first technique is an informal technique while the second technique is 

formal.  The first technique uses a system reference model (SRM) abstraction and a set of existing 

formal specifications to discover implementation components that are not well covered by the formal 

specification set. This technique also provides a mapping between requirements and code segments 

driven by those requirements. The second technique uses a bounded constraint solver to match a set of 

tests with a generic formal specification taken from a small library 
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1 INTRODUCTION  
It is widely claimed that formal methods help improve the quality of software [CW], [ELC]. Formal methods have 

received considerable academic attention during the last three decades, as reflected by the many technical papers published 
in the open literature. For example, IEEE Software (Sept. 1990), IEEE Computer (Sept. 1990), and IEEE Transactions on 
Software Engineering (Sept. 1990, May 1997, Aug. 2000) all have published special issues on formal methods. Formal 
Specifications (FS) are mathematically based techniques for assisting with the implementation and assurance of systems 
and software. Numerous FS languages have been proposed over the past four decades, primary of which are temporal 
logics [CE], and diagrammatic languages, such as statechart assertions [D1, D2], the FS formalism used by this paper. 
There are two primary categories of temporal logics, linear time and branching time, with Propositional Linear-time 
Temporal Logic (PLTL) being the better known linear time FS language, and Computational Tree Logic (CTL and CTL*) 
being the better known variants of branching time logics.  

Run-time Verification (RV) of formal specification assertions (RV), also known as Run-time Execution Monitoring 
(REM), is a class of methods for monitoring the sequencing and temporal behavior of an underlying application and 
comparing it to the correct behavior as specified by a formal specification [D5, HR]. The lightweight technique described 
in this paper is an RV-based technique.  

The SElf-awarE Computing (SEEC) Model was named one of ten “World Changing Ideas” by Scientific American in 
their December 2011 issue [SEEC]. SEEC is designed to address the challenge of programming modern and future 
computer systems that must meet conflicting goals (e.g. high performance with low energy consumption).  SEEC meets this 
challenge by allowing developers to collaboratively create adaptive systems that understand user’s goals and requirements 
and takes appropriate actions in the face of unexpected events such as variations in application workload or a malicious 
attack.  In the SEEC model programmers expose application, while system programmers and hardware developers expose 
actions.  SEEC’s runtime decision engine monitors goals and progress and then uses a novel combination of control theory 
and machine learning to schedule actions that meet goals optimally. One outcome of this paper is a technique for mapping 
requirements and goals with implementation code, a useful step in making an application a SEEC application. 

SAT-solving is defined as the process of deciding, given a set of propositional formulas in Conjunctive Normal Form 
(CNF), whether there is an assignment to the variables in the formula such that the formula is satisfied (true). While the 
core problem is a classical NP-complete problem [HU], recent advances have resulted in efficient SAT solvers capable of 
solving formulas with hundreds of thousands of variables and millions of clauses [MZ]. 

Bounded constraint solving [K] uses SAT-solving to discover an instance assignment to a set of n-ary relations  (unary 
relations are sets, functions are binary relations) that satisfy a set of First Order Logic (FOL) constraints.  

This paper presents two computer-aided techniques for discovering FS’s. The first technique is light-weight and 
informal; it uses a FS repository, a System Reference Model (SRM), and a code coverage tool to discover code segments 
that are not covered by FS’s. The second technique is a heavyweight formal method that uses bounded constraint solving to 
match a set of test scenarios with a generic FS taken from a FS library. 

The rest of the paper is organized as follows. Chapter 2 provides an overview of formal speciations, a FS library, FS 
validation, and bounded constraint solving. Section 3 describes the light weight requirement discovery technique, and 
section 4 describes the formal FS discovery technique.  

2 PRELIMINARIES  
2.1 FORMAL SPECIFICATIONS USING STATECHART ASSERTIONS  
In section 3 we will be using the following Traffic Light Controller (TLC) example. The TLC controls lights at a 

junction of two streets, El Camino Real and B Street, in Silicon Valley. Sensors are positioned under both streets. The El 
Camino Real sensor dispatches a newCar or newTruck event to the TLC, when a new car or a new truck is detected. The 
system should contain a camera positioned in each direction of the El Camino Real. The TLC must conform to the 
following Natural Language (NL) requirements governing the behavior of the El Camino Real lights: 

R1. If the average weight of vehicles on record on El-Camino Real is lower than 2000 kg, then the El 
Camino Real lights should not remain green for more than one minute. 
R2: If four or more cars are waiting while lights are red in the El Camino Real direction, then lights 
must turn green within at most 15 seconds of the arrival time of the fourth car. 
R3: When lights turn red in the El Camino Real direction, they must not turn green for at least 15 

  



seconds. 
R4: When red or green in eiterr direction, , then upon reset lights must turn yellow within five seconds. 
R5. If a car is in going through the junction at a speed of 1 m/sec or less then lights in both directions 
must turn red for at least 30 seconds. 

Figure 1 depicts statechart assertions for requirement R3. The syntax, semantics, and application of statechart 
assertions to the Validation and Verification (V&V) of mission critical systems are elaborated in [D1, D2, DMTS]. The 
following is a short overview.  

The statechart assertion of Fig. 1 starts of in the Init state where it waits for an event; UML events are annotated as 
event[optional-condition]/optional-action. When event lightsTurnedRed occurs, the assertion transitions to state Red, 
where it executes a timer.restart() Java action, restarting a 15 second timer. It then waits for either the lightsTurnedGreen 
or timeoutFire events, the later being the 15-second timer expiration event. The statechart-assertion continues hopping 
from state to state given the input events. Whenever it reaches the Error state its sets the built-in Boolean bSuccess flag to 
false (it is true by default), thereby announcing that the assertion has detected a violation of requirement R3.  

2.2 VALIDATION  
Validation is a testing process for assuring that the statechart-assertion is a good representative of its corresponding 

NL requirement. This is done by examining the assertion’s response to hand crafted test scenarios and comparing the 
assertions actual Boolean response to the expected response - as prescribed by the NL requirement. An additional 
important aspect of validation is to examine, understand, and expose the true intention of the requirement and resolve 
potential ambiguities. For example, a validation test for requirement R5 exposes the fact that the period in which the speed 
must be lower than the specified threshold is not specified in R5. In other words, according to the NL specification it is OK 
to turn all lights red if the car speed drops below 1m/sec only for a very short time. Hence, we modify the requirement as 
follows. 

R5a: If a car is in going through the junction at a speed of 1 m/sec or less for at least 10 seconds then 
lights in both directions must turn red, within 5 seconds thereafter, for at least 30 seconds. 

Figure 2a is a statechart assertion for requirement R5a, and Figures 2b, 2c, and 2d contain timeline diagram depictions 
of three validation test scenarios for this assertion. The setSpeed() and getSpeed() method are used by test driver to set 
speed values, and by the assertion to obtain them. During validation, the JUnit2 driver plays God and sets speed values, 
whereas during testing speed values are sampled from log file generated earlier, when executing the System Under Test 
(SUT) [D2]. The statechart assertion of Figure 2a uses a built-in 1Hz tick event, and two built in timers, one (named 
timerT2) for 2 seconds, and the other (named timerT3) for 30 seconds. Each timer is restarted using a restart() action; it 
fires the timeoutFire event when its time limit expires. 

 
Figure 1. A statechart assertions for TLC requirement R3. 

 
 

2 JUnit is a well-known standard Java testing framework; see www.junit.org. 

  

                                                 



 
a. A statechart assertion for requirement R5a  

 

          
b. Validation test1: the statechart assertion is expected 

to succeed for this scenario 
 

c. Validation test2: the statechart assertion is expected 
to fail for this scenario 

 
 

d. Validation test3: the statechart assertion is expected to fail for this scenario 
 

Figure 2. A statechart assertion for requirement R5a and three corresponding validation tests 
 

  



As described in [D2] the assertion repository tool contains assertions, their generated code, and validation test suite 
(one that is also used in a later stage for verification).  Our lightweight technique assumes that assertions have been well 
validated, preferably using validation patterns, as suggested in [D2, DMTS]. 

2.3 A GENERIC FORMAL SPECIFICATION LIBRARY 
A generic statechart assertion library [D2] is a collection of statechart assertions with the following generic parameters: 

• Event names: generic assertions use names such as P, Q, and R; These generic event names are mapped to concrete 
system event names when the assertion is instantiated (e.g., when used for verification). 

• Time bounds, such as the 15 second limit in Figure 1 (per requirement R3), are represented by generic bounds, such a 
T. 

• Count values, such as the value four in requirement R2, are represented using generic values, such as N. 

Hence, the generic statechart assertion of Figure 3 represents the NL requirement Flag whenever event Q occurs more than 
N times between events P and R. 

 

Figure 3. A Generic statechart assertion 
A. 2.4 BOUNDED CONSTRAINT SOLVING 

The MIT-Kodkod [K] is an efficient SAT-based constraint solver for First Order Logic (FOL) with relations, transitive 
closure, bit-vector arithmetic, and partial models. It enables the analysis of both satisfiable and unsatisfiable problems, 
while providing a finite model finder for the former and a minimal unsatisfiable core extractor for the latter. MIT-Kodkod 
is used in a wide range of applications, including code checking, test-case generation, declarative execution, declarative 
configuration, and lightweight analysis of Alloy, UML, and Isabelle/HOL. 

The MIT-Kodkod has a Java API on its front-end, and uses one of a plurality of possible SAT-solvers on the back-end. 
The Kodkod definition of a constraint set uses four primary Java objects named Relation, Expression, Formula, and Atoms. 
Atoms define the (bounded) domain of discourse. Relation and Expression objects are sets of tuples taken from a collection 
of predefined atoms; Relation objects are explicitly bound to some finite collection whereas Expression objects are 
calculated from other Relation and Expression objects. Formula objects are FOL formula written in Java, whose domain of 
discourse is the abovementioned collection of Relation and Expression objects.  

The top level MIT-Kodkod Formula is a set of logical constraints that is translated to a CNF and handed of to a SAT 
solver. The SAT solver then searches for an instance solution to the constraint set. Clearly, the absence of a solution within 
the bounded region does not necessarily imply that an unbounded version of the problem has no solution.  

In our Kodkod representation of a FS we will be using unary Relations - which amount to simple sets, and binary 
relations, which correspond to arrays. For example, the equivalent of a preset-state state-machine variable is a binary 
relation stateAtTime, stateAtTime ⊆ state × time. We use the conventional programming notation stateAtTime[t] to denote 
the state(s) at time t. The Kodkod approach for calculating for stateAtTime[t] is stateAtTime.join(t).  

  

http://people.csail.mit.edu/emina/pubs/kodkod.phd.pdf
http://people.csail.mit.edu/emina/pubs/kodkod.tacas07.pdf
http://people.csail.mit.edu/emina/pubs/kodkod.fm08.pdf
http://alloy.mit.edu/kodkod/apps.html


3 AN INFORMAL TECHNIQUE FOR DETECTING CODE SEGMENTS 
WITH INSUFFICIENT SPECIFICATION 

3.1 CONSTRUCTING THE SRM 
An SRM is a collection of UML documents and models. It consists of executable and non-executable components. For 

example, a technical-report publishing system contains case diagrams (UC’s), activity diagrams (AD’s), sequence diagrams 
(SD’s), and possibly other architectural-level UML diagrams in its non-executable part. The executable SRM consists of 
class diagrams (CD’s), an object model, statechart assertion diagrams, and a JUnit validation test suite.  

Figure 4 shows the class diagram of the executable SRM for the TLC example. It consists of the repository of 
statechart assertions (diagrams and resulting auto-generated Java code) discussed in previous sections, a domain model 
(DM), and a JUnit validation test suite driver – derived from the test suite discussed in the previous section.  

 

 

 
Figure 4. The UML class diagram of an executable SRM for the TLC example. 

 
The assertion repository part of the executable SRM contains Java object implementation code for all statechart 

assertions, as well as code for propositional assertions, which are outside the scope of this paper (see [D5] for further 
information). In the case of the executable SRM for the TLC example, the assertion repository consists of code for the 
statechart assertions of NL requirements R1 through R4, and R5a The assertion repository is implemented as a wrapper that 
encapsulates a collection of Java-object instance implementations of statechart assertions; each statechart assertion is 
implemented as a Java (or C++) class [D1]. The assertion repository dispatches events received via the bridge to all 
assertions in the collection and announces failure when one or more assertions fail. 

  



The DM part of the executable SRM is developed according to the specification and marketing documents. Hence, for 
example, the Vehicles, Car, and Truck classes in Figure 4 exist as specified by the nonfunctional requirement R3 of the 
TLC example. 

Finally, let’s consider the bridge connecting the DM to the assertions. The bridge is responsible for passing, from the 
executing DM to the assertions, all events and data artifacts the assertions assert about, as well as timing information (the 
incrTime method calls in the validation test driver). For example, when a Car object fires its constructor, a newCar event 
notification is sent via the bridge to the assertion repository. We have implemented two types of bridges: (i) hard-coded, 
and (ii) Aspect-oriented (e.g., using AspectJ). A hard-coded bridge depends on hard-coded source code instrumentation that 
sends all events from the DM to the assertion repository. The Aspect-oriented approach, on the other hand, as described in 
[DMOS], does not require such verbatim code instrumentation. 

3.2 DRIVING VALIDATION TESTS VIA THE SRM 
Using the executable SRM, validation test artifacts (events and data values) drive the assertion repository via the DM, 

as done by the JUnit test of Listing 1a. This is in contrast with the direct validation test of Listing 1b, which is of the kind 
described in the previous section, i.e., tests that exercise assertions directly. Hence for example, instead of a validation test 
issuing a newCar event to a particular assertion or to the entire assertion repository, as in the case of direct validation, the 
DM-based test driver operates via the DM: it creates a scenario in which Sensor objects sense a vehicleDetected event, 
thereby inducing the construction of a new Car object, which in turn sends a newCar event to the assertions. 

a. A via-DM validation test; the assertion for 
requirement R2 is expected to fail, therefore the 
entire assertion repository is expected to report a 

failure. 

b. A direct validation of assertion for requirement 
R2 
 

public void testMe() {  

  EClight.lightsTurnedRed(); 

  // argument is weight 

  // 1000 to 4000 Kg. is a car 

  sensor.vehicleDetected (2200);     
  sensor.vehicleDetected (2800);    
  sensor.vehicleDetected (1450);   
  sensor.vehicleDetected (3700);  
  timer.incrTime(16); 

  EClight.lightsTurnedGreen();     

  assertFalse(dM.isSuccess());  

} 

public void testMe() {  

  assertion.lightsTurnedRed (); 

 

  assertion.newCar(); 

  assertion.newCar(); 

  assertion.newCar(); 

  assertion.newCar(); 

  assertion.incrTime(16);         

  assertion.lightsTurnedGreen(); 

  
assertFalse(assertion.isSuccess());  

 } 
 

 Listing 1. JUnit via-DM validation test vs. direct-validation test for the TLC. 
Note that the DM in Figure 4 is not an implementation model. Although it contains sufficient detail to enable via-DM 

testing as in Listing 1a, it does not contain a controller that makes specific deterministic decisions, such as when the lights 
actually change status, as is evident from Listing 1a, where the JUnit test case is the driver of those light-color values.  

Via-DM validation testing helps ensure that the DM is not under-modeled. For example, the via-DM validation test in 
Listing 1a refers to a timer object to advance the clock, because via-DM testing implies that the DM is responsible for 
generating all artifacts witnessed by the assertions, including time; the DM in Figure 4 and its corresponding Java 
implementation, however, contains no such Timer class, an obvious underrepresentation. 

3.3 USING CODE COVERAGE TO DETECT UNCOVERED CODE SEGMENTS  
When validation tests are all via-DM validation tests, we perform the last phase of our light-weight FS discovery 

technique by running test coverage analysis. Test coverage provides information about the extent to which the test suite 

  



exercises source code classes, methods, or individual lines. A test coverage report for the TLC model example is illustrated 
in Figure 5.3 The coverage report in Figure 5a indicates that the Truck and Camera classes have 0% coverage; i.e., no 
validation test touches those classes. Recall, however, that every FS assertion must be validated before we reach this stage. 
Consequently, we can deduce that there are no FS assertions about the behavior of the TLC that pertain to the behavior of 
the Camera class or the behavior of the Truck class, and we should therefore consider adding requirements to that effect. 

Similarly, the coverage report in Figure 5b indicates that there is no validation test, i.e., no assertion that is concerned with 
the behavior of the Vehicles collection when more than 100 vehicles are detected.   

Figure 5. Source code coverage discovery of missing assertions. 

3.4 DISCOVERING REQUIREMENT TO IMPLEMENTATION MAPPING 
Discovering the mapping between requirement and the implementation is a process similar to the abovementioned 

process, except that the implementation now substitutes the DM. Two additional changes are made to the process: 

1. Instead of using the via-DM (now via-implementation) test suite to exercise all assertions in the 
assertion repository, we exercise a single assertion at a time, i.e.,  we exercise a single 
requirement at a time. 

2.  For each such assertion and its associated validation test-suite, we use the coverage tool to 
detect implementation code snippets that have a high coverage score. Such high coverage 
means the requirement assertion is tightly coupled with that code location. 

4 USING BOUNDED CONSTRAINT SOLVING TO DISCOVER FORMAL 
SPECIFICATIONS 

4.1 A FOL REPRESENTATION OF A STATECHART ASSERTION FS 
The bounded Kodkod representation of a statechart assertion FS’s structure, contains the following basic declarations 

and bounds, described for a concrete version of the statechart-assertion of Figure 3: 

• Atoms, are strings that represent artifacts of the FS, including its state names (e.g., “Init”), transition names (e.g., 
“Tr1”, “Tr2”), and event names (e.g., “P”). In addition, the atom set contains two atoms, named nCntGtN and 
nCntNotGtN, for the condition nCnt>N being true or false, respectively. In addition, the atom set contains two atoms 
that represent the actions nCnt++ and timer.restart (for generic assertions with time constraints). Finally, the numbers 0 
through MAX_INT are also atoms, with MAX_INT being a customizable number such as 100. These numbers are 
used for the timer and nCnt counter. 

• A timeDomain Expression (i.e., a set), which contains integer values representing time. Similarly, countDomain 
represent the values the FS’s variable (nCnt) can hold. 

3 Coverage in this example was done using the Emma test coverage tool (www.eclemma.com). 

 
b. Coverage of the Vehicles collection. Clearly there is 

no validation test and therefore no assertion that 
pertains to buffer overflow  

 
 
a. The DM coverage report after executing the via-

DM validation suite. 
 

  

                                                 



• A restartTimes Relation, that represents time slots in which a FS timer restarts (note that the assertion of Figure 3 has 
no timer, but an assertion for R1 would have one). Separate constraints will force t to be in restartTimes if and only if 
stateAtTime[t] is a state with an action timer.restart.   

• A states unary relation (i.e., a set) declared as in: states = Relation.unary("states"). This relation is then bound to of the 
states of the FS, as in:  
bounds.boundExactly(states, tupleFactory.setOf("Init","P", "Error")). 
Note that the relation is bounded exactly to the set of state atoms, so to prevent the constraint solver from finding a 
solution that assumes a FS with fewer states than the abovementioned set. 

• A transitionIDs unary relation bound (exactly) to: " Tr1", "Tr2", "Tr3", and "Tr4". Note that the diamond decision 
polygon is reduced to two transitions:  PR[nCnt<=N]Init and P R[nCnt>N]Error. 

• A transitions ternary relation: transitions ⊆ states x transitionIDs x states, such as <"Init", "Tr1", "stP"> 
• A conditions unary relation bound to "nCntGtN" , "nCntNotGtN".  
• A localEvents unary relation bound to "P","R","Q". This set represents the events labeling the transitions of the 

statechart assertion FS.  
• A special event named stutter, that represents the case that this FS cannot respond to the input event when in its 

present-state, and therefore stutters in its present state. 
• A special event named timeoutFire, that represents the case that this timer fires. Recall that statechart-assertion 

semantics are such that when it is in a state with an outgoing transition labeled timeoutFire (e.g. Red in Figure 1), then 
this transition is traversed when the timer fires. This semantics is enforced below. 

• Two action relations: beforeActions - for actions that execute before the associated transition fires (as with nCnt++ 
action, binding the operation to "incrNCnt"), and afterActions one that executes afterwards (as with the timer.restart 
action, binding the operation to timerRestart"). 

• A firstState and flaggedState relations that are bound to the FS’s initial and Error states, respectively. 
• Binary relations eventToTransition and conditionToTransition that map localEvents and conditions, respectively, to 

transitionIDs.  
• Binary relations beforeActionToTransition and afterActionToTransition that map beforeActions and afterActions, 

respectively, to transitionIDs. For example “incrNCnt” is mapped to the transition whose ID is “Tr2” (i.e., the Figure 3 
transition PP). 

• A stateAtTime binary relation that maps timeDomain to states. 
• A countAtTime binary relation that maps timeDomain to the integers.  
• A localEventAtTime binary relation that maps timeDomain to localEvents ∪ {stutter} ∪ {timeoutFire}. 

The structural part also contains a Formula named declarations for constraining the following: 
• stateAtTime and localEventAtTime are functions, rather than generic relations. In Kodkod this constraint is written 

as the Formula: stateAtTime.function(timeDomain, states). 
• localEventAtTime is a function from timeDomain to localEvents. 
• restartTimes is a subset of timeDomain. In Kodkod it is written as the Formula: restartTimes.in(timeDomain). 

The semantics of an FS are enforced as follows. We use a Formula denoted existsCompuation that forces the FS to 
have a legal computation.  Listing 2 contains the corresponding Kodkod predicate method. Note that the existsCompuation 
method returns a Formula; this return value is subsequently conjuncted with all other constraints and passed along to the 
constraint solver. Clearly, existsCompuation is but a conjunction of single step advances of the FS state machine.  

Formula existsComputationFromTo(int startIndex, int endIndex) {  
  if (startIndex >= endIndex) return Formula.TRUE; 

 Formula pred = Formula.TRUE; 
 int prev_i = startIndex;  
 for (I = 0; i < endIndex; i++) {  

  Formula pred_i = existsComputationOneStep(prev_i,  i);  
  pred = pred.and(pred_i); 
  prev_i = i; 

 } 
 return pred; 

  



} 

Listing 2. The predicate method that constrains a statechart assertion FS to legal behavior according to its 
semantics 

The existsComputationOneStep single step predicate method forces the FS to have a computation from time-step t-1 to 
time-step t. It does so by enforcing constraints on all the at time relations (e.g., stateAtTime) that enable only legal 
transitions or stuttering. Hence, it is a conjunction of the following predicates: 

• stutterConstraint[t]: which assures the FS stutters at time t (i.e., doesn't change states and does not perform any 
action) when the local-event is stutter. 

• nonStutterConstraint[t]: which assures that if the FS does not stutter at time t, then it makes a state change based 
on one of the events annotating its transitions. 

• forcePossibleNextState[t]: which assures that the FS advances at time t to the next state according to given 
localEventAtTime[t], eventToTransition[t] and conditionAtTime[t]. Conditions constrained in a straightforward 
manner, such as: conditionAtTime[t] for the FS of Figure 3 maps time t to  nCntGtN if and only if countAtTime[t] > 
N; timeoutFire transitions are enabled for every time slot t in restartTimes. Constraints for the time and counting 
parameters, such   N of figure 3, are discussed in the sequel. 
In addition, existsComputationOneStep assures the FS is not lazy, i.e., it stutters only if there is no alternative, i.e., 
when there is no enabled transition for the current event.  

• forceActionsOnTransition[t]: assures the execution of actions when transitions are traversed. For example, 
beforeActionToTransition maps “incrNCnt” to “Tr2”, hence countAtTime is constrained so that: 
countAtTime[t]=countAtTime[t-1]+1 when a transition Tr has beforeActionToTransition[Tr]=incrNCnt, and 
countAtTime[t]=countAtTime[t-1] otherwise. Similarly, this predicate constrains t to be in restartTimes if and only 
if stateAtTime[t] is a FS state with an action timer.restart. 

• timeOut[t]: imposes the following constraint on localEventAtTime[t]. Let t’ be max{i∈restartTime | i<t }; then 
localEventAtTime[t]=timeoutFire if and only if t-t’ equals the timer’s initial value (e.g., 5 time units in Figure 1). 

The constraint set representation of a FS is the conjunction of its structural and semantic Formulae.  
 

4.2 USING BOUNDED CONSTRAINT SOLVING TO MATCH TESTS WITH A 
CONCRETE FS-ASSERTION 

Concrete FS assertions are ones in which: 
• The test event namespace is the same namespace used in the assertion, such as P, Q, and R in Figure 3. 
• Time and counting parameters, such as N is Figure 3, are constrained with tight bounds, such as N=3.  

Absent a constraint representing the input sequence, the Kodkod solver will solve the FS constraint set by finding an 
instance of some legal sequence of local-events and state changes for the FS. This instance sequence is provided in the 
form of an instance assignment to the at time relations, i.e., the localEventAtTime,  stateAtTime and countAtTime relations.  

A specific input sequence is added to the constraint set by enforcing tight bounds to the localEventAtTime relation, 
such as the test of Listing 3. 

  TupleSet eventAtTimeTS = tf.noneOf(2); 
  Tuple tuple = tf.tuple(""+0, "P"); 
eventAtTimeTS.add(tuple);   
  tuple = tf.tuple(""+3, "Q"); eventAtTimeTS.add(tuple);    

tuple = tf.tuple(""+5, "Q"); eventAtTimeTS.add(tuple);  
  tuple = tf.tuple(""+14, "Q"); eventAtTimeTS.add(tuple);  
  tuple = tf.tuple(""+15, "Q"); eventAtTimeTS.add(tuple);   
  bounds.boundExactly(localEventAtTime, eventAtTimeTS);  

Listing 3. Representing a specific test scenario using tightly bounded constraints. 
Listing 4 contains the top-level formula for a test that is expected to lead the FS to the Error state. It contains three 

conjuncts: a declarations formula enforcing the FS’s structural constraints as specified in section 4.1, the existsCompuation 
formula enforcing its semantics, and the endsInErrorState formula. Given this top-level formula, the constraint solver 
searches for an instance assignment to  the FS specification (e.g., a stateAtTime assignment) that satisfies this formula. 

  



public Formula assertFalseIsSuccess() { 
  return declarations() 
  .and((existsComputation()))  
  .and(endsInErrorState ())   
  ;  
 } 

Listing 4. The top-level formula for a FS and a test that is expected to lead the FS to the Error state 
A similar top-level formula, that uses endsInErrorState.not() instead of endsInErrorState , is used for a test that is 

expected to lead the FS to a good (non-Error) state. 

4.3 MATCHING TESTS WITH A GENERIC FS-ASSERTION 
The FS representation of section 4.1 uses binary relations that map events, states, and count values to time. Therefore, 

this representation is only capable of solving constraint pertaining to a single input sequence. Our technique however, 
matches a FS to a collection of tests, called a test-suite. A test-suite is broken into two parts, acceptable tests - that 
represent acceptable system behavior, and failing tests - that represent unacceptable system behavior.   

To represent the behavior of a FS in the context of a test-suite, we modify the three “at time” relations of section 4.1, 
namely stateAtTime, countAtTime, and localEventAtTime to be ternary relations, with the third dimension of each relation 
being a test identifier, such as the test number.  

In addition, we introduce the following additions and modifications to the FS structural constraints of 
section 4.1: 

1.  A new ternary relation named realEventAtTime is used to represent the concrete test-suite, i.e., a 
collection of concrete-event sequences generated by a given test scenario. The domain of these 
events is a set called realEvents. This relation is in addition to localEventAtTime which 
represents generic-event sequences. Hence for example, the tuple <1, 5,  pumpReset> of 
realEventAtTime represents the concrete event pumpReset (assuming an infusion pump domain 
of discourse for the real events) being generated at time slot 5 of test number 1. Similarly, the 
tuple <1, 5, P> of  localEventAtTime  represents the generic event P occurring at time slot 5 of 
test number 1.  

2.  Time-bounds and count-limits within generic FS’s, such as the limit N in the FS of Figure 3, are 
represented with a relaxed constrained, allowing them to range between prescribed lower and 
upper bounds, such as [1,10]. 

3. Newly added structural constraints specify requirements for a mapping S: realEventAtTime  
localEventAtTime as follows: 

a.  We define surjective function R: realEvents  localEvents.  

b. For every test in the test-suite, the length of the test sequence in realEventAtTime is equal 
to the length of that test in localEventAtTime. 

c.  Let tn represent a test number, t a time slot, Er a real-event, and Eg a generic event. S 
specifies that for every tuple <tn, n, Er> in realEventAtTime, there exists <tn, n, Eg> in 
localEventAtTime such that Eg = R(Er). 

The semantic constraints for a generic FS computes a existsCompuation Formula per test, thereby enforcing an FS 
computation for that particular test.  

Given a library of generic FS assertions and a test suite, the discovery of a concrete FS that matches a given test suite 
is done by checking individual generic FS’s from the library for a match, including the discovery of concrete parameters 
that make that FS concrete, as discussed below.  

 Given a single generic FS F and a test-suite TS with Na acceptable tests and Nf failing tests, the Formula of Listing 5 
provides the top-level constraints for the constraint solver when checking whether F conforms to TS. If it does, the instance 

  



solution discovered by the constraint solver induces a concrete version of the generic FS by providing the function R, the 
mapping S, and specific time and counting parameter values. 

public Formula assertWithTestCollection 
    (AcceptableTests acceptableTests, FailingTests failingTests) { 

  Formula f = Formula.TRUE; 
  for (Expression tn: acceptableTests) { 
   f = f 
    .and(declarations(tn)) 
    .and((existsComputation(tn)))  
    .and(endsInErrorState(tn).not()) 
    ; 
  } 
  for (Expression tn: failingTests) { 
   f = f 
    .and(declarations(tn)) 
    .and((existsComputation(tn)))  
    .and(endsInErrorState(tn)) 
    ; 
  } 
  return f; 
 } 

Listing 5. The top-level formula for a discovering whether a candidate FS matches a test suite 
 

5 CONCLUSION 
It is safe to say that say that completeness problems in computer science are notoriously difficult, 
starting from Gödel's incompleteness theorem and its Halting problem counterpart.  Detecting missing 
assertions belongs to this category because one does not know a requirement one has not thought of.  
Hence the importance of the first technique, albeit lightweight.  

As for the second, formal technique, more research is needed to extend the technique to work in the 
presence of existing concrete formal specifications that might be in conflict with the ones deduced 
using our technique. Similarly, more research is needed to extend the technique to prune unreasonable 
automatically generated concrete FS’s. 
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