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ABSTRACT 

Techniques for anomaly detection in the maritime domain by extracting traffic patterns 

from ship position data to generate atlases of expected ocean travel are developed in this 

thesis. An archive of historical data is used to develop a traffic density grid. The Hough 

transformation is used to extract linear patterns of elevated density from the traffic 

density grid, which can be considered the “highways” of the oceans. These highways 

collectively create an atlas that is used to define geographical regions of expected ship 

locations. Ship position reports are compared to the atlas of highways to flag as 

anomalous any ship that is not operating on an expected highway. The atlas generation 

techniques are demonstrated using automated information system (AIS) ship position 

data to detect highways in both open-ocean and coastal areas. Additionally, the atlas 

generation techniques are used to explore variability in ship traffic as a result of extreme 

weather and seasonal variation. Finally, anomaly detection is demonstrated by comparing 

AIS data from 2013 to the highways detected in the archive of data from 2012. The 

development of an automatic atlas generation technique that can be used to develop a 

definition of normal maritime behavior is the significant result of this thesis. 
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EXECUTIVE SUMMARY 

The research detailed in this thesis is a development of techniques that automate pattern 

extraction from large volumes of maritime vessel position data to enable region-based 

anomaly detection in the maritime environment. The extracted patterns, or highways, are 

detected using the Hough transformation and are compiled together into atlases of 

expected ocean traffic patterns that capture a geographical region-based definition of 

normal maritime behavior. The point-in-polygon approach facilitates geographical 

region-based anomaly detection of ships as compared to the generated atlases.  

The atlas generation method can be broken into three key stages. In the first stage, 

a technique is developed to process position reports into a traffic density grid. In the 

second stage, a modified version of the Hough transformation commonly used in image 

processing is applied to identify linear patterns of elevated density in the traffic density 

grid. In the third stage, traffic density analysis along the highway is performed to define 

the highway’s width. An iterative method enables the detection of less prominent 

highways until all significant traffic patterns have been extracted and compiled into an 

atlas of the area.  

Anomaly detection is performed by comparing incoming ship position reports to 

the generated atlas. By using point-in-polygon solving techniques, each position report is 

identified as either “on,” i.e., the report lies within a polygon defined by the width of the 

highway, or “off” a highway.  

Archived automated information system (AIS) data from 2012 is used in this 

thesis to develop case studies of atlas generation and anomaly detection for validation of 

the developed techniques. The iterative process performed in an open ocean environment 

enables the detection of four significant highways crossing the southern Atlantic Ocean. 

More than 99.99% of the position reports received in the southern Atlantic Ocean during 

2012 map to one of these four highways, even though they account for only 54% of the 

regional area.  
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The techniques developed in this thesis can be extended to detect non-linear 

highways as well. For example, in coastal regions, the highways can be detected by 

breaking the larger region into sub-regions and detecting the linear highways in each of 

the sub-regions, then using these highways as the piecewise-linear definition of a 

highway of some other shape.  

Additionally, these atlas generation techniques can be used to define traffic 

variability in the maritime environment. As one example, some seasonal variability exists 

in ocean traffic patterns, and the comparison of spring, summer, fall, and winter atlases 

enables a measurement of this variability. As another example, the techniques developed 

in this thesis enable an automated assessment of how extreme weather systems like 

hurricanes impact ocean traffic patterns. A particular highway detected in the Caribbean 

Ocean disappeared as Hurricane Ernesto crosses its path in August 2012 but was 

reconstituted in the days afterward.  

The anomaly detection techniques developed in this thesis can also be used to 

study ship behavior. As one example, the atlas generation techniques detect a highway 

along the western coast of Africa from data archived in 2012. If data in the same region 

from January 1, 2013 are compared to the detected highway, of the 148 ships that transit 

at least 150 nm during the day in question, only 24 fail to use the highway.   

The significant contribution in this thesis is the exploration of a technique from 

image processing to the problem of maritime domain anomaly detection. The use of the 

Hough transformation, an image processing technique, to detect and quantify maritime 

vessel behavior patterns has not been observed before in literature. A second contribution 

is in the development of techniques to produce an atlas of ocean highways. The anomaly 

detection techniques explored in this thesis are also a significant contribution. 

Automating the initial determination of a vessel’s geographic location as normal or 

abnormal can provide important first indications of a vessel’s intentions without any 

requirement for expert analysis. 
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I. INTRODUCTION 

The president of the United States issued National Security Presidential Directive 

NSPD-41 on December 21, 2004, which details the Maritime Security Policy (MSP) of 

the United States. It also established a committee to oversee the implementation of the 

National Plan to Achieve Maritime Domain Awareness (MDA) as one of eight 

supporting plans to the MSP [1]. In this document, MDA is defined as the effective 

understanding of anything associated with the global maritime domain that could impact 

the security, safety, economy, or environment of the United States [2]. The document 

emphasizes the need to identify threats in the maritime domain by integrating 

intelligence, surveillance, observation, and navigation systems into a common operating 

picture (COP) [2].  

Data alone are not enough to achieve a useful COP; an ability to identify trends 

and differentiate anomalies is required for MDA objectives to be met [2]. There were 

more than 55,000 port calls in 2009 from nearly 7,000 different oceangoing vessels in the 

United States alone [3]. Rapid decision making and response in this busy environment 

requires automated methods to turn the volumes of raw data collected on these vessels 

into processed intelligence.  

The research detailed in this thesis is a development of techniques that automate 

pattern extraction from large volumes of maritime vessel position data to enable anomaly 

detection. By doing so, this research directly contributes to the efforts for information 

exploitation detailed under the technology priorities in [2].  

A. THESIS OBJECTIVE 

The objective of this thesis is to contribute to MDA by developing an anomaly 

detection mechanism that identifies and labels a ship’s behavior as normal or abnormal 

when compared to traffic patterns extracted from archived ship position data. The 

extracted patterns, or highways, are determined using the Hough transformation 

technique and are compiled together into atlases of expected ocean traffic patterns that 

capture a geographical-position based definition of normal maritime behavior.  
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The Hough transformation is used to build a model of expected vessel traffic 

based only on position reports, independent of any association to a particular vessel. The 

developed method was applied experimentally to an archive of historical data to 

demonstrate the concept of a complete anomaly detection architecture. 

B. RELATED WORK 

The related work for this thesis falls into two categories: that related to 

applications of the Hough transformation and that related to anomaly detection.  

Hough transformation has been extensively used in the literature to identify linear 

regions in images. The Hough transformation is used in [4]–[8] to extract the location of 

roads from satellite images. Specifically, edge detection, the division of a larger region 

into a grid of small sub-regions, and optimal search techniques in combination with the 

Hough transformation to detect roads in each sub-region are used in [4], and then those 

detections are combined into a compilation of roads within the region of interest [4].  

Alternatively, a wavelet transform to extract roads from remote imagery, even in the 

presence of noise is employed in [5]. The road detection problem is broken into two 

components in [6]: centerline extraction and width estimation by looking for parallel lines 

within a single image. Before the Hough transformation is applied in [6], Canny edge 

detection is used to preprocess the image so that the Hough transformation is effective. 

Region growing techniques to expand a single road into an understood network of roads 

are used in [8]. No literature was found using the Hough transformation in the maritime 

domain, but these references describe techniques for basic pattern extraction that are 

extended to the maritime domain for use in this thesis.  

Anomaly detection in the maritime domain is a complex and multifaceted 

problem, and various approaches to building a robust anomaly detection technique are 

explored in the literature. An anomaly detection system for MDA that integrates 

statistical methods with qualitative or symbolic classification of ships to reduce analyst 

workload in the process of detecting illegal and hazardous activities on the oceans is 

proposed in [9]. The proposed system is based on interviews with maritime operators to 

identify real-world requirements and, if developed, would serve as a bridge between 
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operators and surveillance systems to reduce analyst workload. Alternatively, the 

automatic development of a scheme of normal behavior patterns without the need for 

expert human input is a goal of this thesis. 

An adaptive kernel density estimator (KDE) method is employed in [10] and [11] 

to develop a statistical model of expected vessel behavior based on position and speed. 

Alternatively, the KDE method is compared to a Gaussian mixture model (GMM) in 

[11], and it was found that KDE is superior to GMM. A statistical analysis of automated 

information system (AIS) data is employed in [10] to detect anomalies and predict future 

vessel behavior. Motion patterns are extracted from AIS data using KDE and are used to 

define normal behavior. Anomaly detection is based on ship motion compared to these 

predefined regions. A Gaussian sum tracking filter is employed to use the historical 

patterns to predict future movement. Both of these techniques use statistical methods to 

develop a model of past behavior based on individual vessel tracks, whereas patterns are 

extracted based on the position reports alone in this thesis.  

Mechanisms for clustering, classifying, and detecting outliers in groups of vessels 

based on their behavior are developed in [12]. The method employs compression 

techniques to reduce the amount of data needed to understand vessel motion and 

similarity measurement powered by various alignment techniques for clustering, 

classification, and outlier detection. AIS archives provide the historical training data for 

the work described in [12] similarly to how they are used in the proof of concept for this 

thesis. 

C. ORGANIZATION 

Five chapters and two appendices are contained in this thesis. The background 

information related to AIS, the Hough transformation, and anomaly detection is covered 

in Chapter II. The pattern extraction techniques used in generating an atlas of normal 

behavior and how that atlas is used in anomaly detection are described in Chapter III. 

Specific details on how the techniques from Chapter III are employed in this research and 

selected case studies of atlas generation and anomaly detection are included in Chapter 

IV. A summary of key results and considerations for follow on work is provided in 
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Chapter V. Programming code in the Python language used in AIS data preprocessing is 

contained in Appendix A. The MATLAB programming code used to apply the Hough 

transform to maritime data is contained in Appendix B. 
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II. BACKGROUND 

Three concepts that are central to the anomaly detection algorithm developed in 

this thesis are explored in this chapter. First, the data sources and formats available for 

developing MDA are discussed. Next, the Hough transformation and its potential 

applicability to improving MDA are broached. Finally, anomaly detection methods are 

examined. 

A. AUTOMATED INFORMATION SYSTEM DATA 

The pattern extraction and anomaly detection methods used in this thesis rely 

heavily on having accurate position reporting from vessels of interest. While these 

position reports could come from any means, including radar, satellite imagery, or 

observations recorded from trusted vessels, the development of AIS has created large 

archives of ship position reports that lend themselves well to research and development 

of MDA tools. The pattern extraction techniques could be used with any data source and 

more powerfully still with a fusion of multisource intelligence data sources, but only AIS 

data are used in this thesis as a proof of concept. 

AIS was developed to provide ship operators with integrated displays of all ships 

within their very high frequency (VHF) radio range. It was conceived as a mechanism for 

improving safety at sea by enabling ships to clearly identify the other ships around them 

not just by location on a radar screen but also by specific name [13]. The system is now 

required by US Coast Guard regulation on all passenger vessels of more than 150 gross 

tons displacement or certified to carry more than 150 passengers-for-hire, all tankers, all 

vessels of more than 300 gross tons displacement, all sail boats over 65 feet in length, and 

all towing vessels over 26 feet in length [13]. Similar requirements have been 

implemented internationally. Estimates from 2012 indicate that more than 70,000 vessels 

are AIS equipped; projections indicate that as many as 150,000 vessels will be AIS 

equipped in the future [14].  

Most AIS reports are transmitted at 12.5 watts, a signal strength that, coupled with 

their use of the VHF spectrum, enables them to be received by satellite-based collection 
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systems. The data used for this thesis were collected by commercial satellite AIS 

collection companies that archive the data and sell it to customers for various research 

and operational management purposes. The data used in this research were collected by 

the exactEarth and ORBCOMM corporations. Both companies are using and expanding 

their own constellations of microsatellites, employing low earth orbits to provide global 

collection of AIS reports [15], [16].   

AIS uses a self-organizing time-division multiple access scheme that enables 

users within radio range of one another to deconflict transmission. This can result in the 

receipt of as many as 7,500 messages per second at the satellite because there will be 

many local AIS deconfliction areas within a single satellite footprint [13], [14]. Each 

commercial company employs proprietary methods for satellite AIS detection, but the 

end product is an archive of position reports from all over the world [15]. These archives 

grow by approximately 300 MB every day as measured by the storage of this data in text 

formatted files.  

There are a variety of AIS reports, but the most important to this thesis are the 

position reports that are transmitted every two to ten seconds by ships that are underway. 

These reports are transmitted in received AIS data message (AIVDM) formatted 

sentences with seven fields [17]. As an example, the message 

!AIVDM,1,1,,B,177KQJ5000G?tO`K>RA1wUbN0TKH,0*5C 

is properly formatted with an AIVDM flag in the first field and the data payload in the 

sixth field. For position reports, this data payload contains 22 American standard code for 

information interchange (ASCII) characters that represent 128 bits of encoded data with 

four bits of padding. Each ASCII character represents six binary bits of information. The 

six bits are found by subtracting 48 from the standard value representation of the ASCII 

character so that ASCII characters “0” through “W” correspond to integer values 0 

through 63 and binary values between 000000 and 111111. The bits are then related to 

various length data fields as displayed in Table 1.  [17]. 
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Table 1.   The 16 AIS position report fields (after [13]). 

Field Parameter Number of 
bits 

Units or Description 

1 Message ID 6  
2 Repeat indicator 2 Used by the repeater to 

indicate how many times a 
message has been repeated 

3 User ID 30 A unique ID, usually the 
Maritime Mobile Service 
Identifier (MMSI) 

4 Navigational status 4 Specific Codes for Underway, 
at anchor, restricted 
maneuverability and other 
navigational statuses 

5 Rate of turn 8 degrees per minute 

6 Speed over ground 10 1/10 knot  

7 Position accuracy 
flag 

1  

8 Longitude 28 1/10,000 min  
East = positive (as per 2's 
complement) 
West = negative (as per 2's 
complement). 

9 Latitude 27 1/10,000 min  
North = positive (as per 2's 
complement) 
South = negative (as per 2's 
complement). 

10 Course over ground 12 1/10 degree   
11 True heading 9 Degrees  
12 Time stamp 6 UTC second when the report 

was generated by the 
electronic position system  

13 Special maneuver 
indicator flag 

2  

14 Spare 3 Not used. Should be set to 
zero. Reserved for future use. 

15 Receiver autonomous 
integrity monitoring 
flag 

1  

16 Communication state 19  
 Number of bits 168   
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The key fields for the data used in this thesis are 1, 3, 8, and 9. Position reports 

have a message ID of 000001, 000010, or 000011. The maritime mobile service identifier 

(MMSI) is a unique global identifier for ships. It can be used to correlate position reports 

into tracks for a particular ship or to cross-reference all information available for a ship 

from a fusion of data sources. The physical position report as determined by the global 

positioning system (GPS) using the world geodetic system established in 1984 (WGS-84) 

datum is located in fields 8 and 9. While a time stamp in seconds is located in Field 12, 

AIS systems only transmit the six binary digits representing the second that a report was 

transmitted. The receiver must use a local time reference to log the complete timestamp 

of the report. An example of how an AIVDM sentence can be decomposed into a position 

report is presented in Figure 1.   

 

Figure 1.   The data payload of AIVDM messages is stored in the sixth field in ASCII 
encoded binary that contains a message type, user ID, and position report.  

B. THE HOUGH TRANSFORMATION 

The human eye is capable of seeing how features are arranged in images, while 

computational algorithms are necessary to automate the same discernment [18]. For 

example, a viewer can discern specific patterns in the flow of maritime traffic when 

observing the map depicted in Figure 2 like the densely traveled paths between South 

America and Europe. These traffic patterns are to the oceans what highways are to the 

land. The techniques proposed in this thesis use the Hough transformation methods 

outlined in [18] and [19] and tailor those methods to accommodate data related to 

maritime vessel traffic so that the computer can extract the linear traffic patterns, or 

highways. Those extracted highways taken collectively into an atlas provide the computer 

with a template of normal vessel behavior to be used to comparatively identify 

anomalous behavior.  
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Figure 2.   Traffic patterns are visible to the human eye when observing one million 
AIS position reports collected via satellite by the ORBCOMM 

constellation (from [16]). 

1. Common Uses of the Hough Transformation 

The Hough transformation, first published in 1962, is most commonly used to 

find alignments, or shapes, in images. The transformation can be adapted to detect any 

shape, but it has proved particularly useful in detecting linear patterns like those of roads 

[4]–[8]. Another example is using the Hough transformation to identify asbestos fibers by 

detecting and measuring the circular regions in electron diffraction patterns [18]. The 

transformation has also proved useful to robotics guidance and quality control 

applications because it can improve machine vision by enabling machines to gather 

measurements with sub-pixel accuracy [18]. 

2. Line Detection 

Although the Hough transformation can be used to detect a variety of shapes in 

images, our work focused on the detection of linear regions only. As such, this 

description of the Hough transformation is tailored to describe straight line detections and 

is adapted from [18] and [19]. The Hough transformation is performed by translating a 

point in the reference axis system, or real space, to a set of definitions in the Hough space 

that exhaustively list the various straight lines that can be drawn through the point and 



10 

how each of those lines relate to the origin of the reference axis system. To illustrate how 

the method is performed, a simple example is used to detect the co-linearity of the points 

P1 through P5 presented in Figure 3.   

 

Figure 3.   The Hough transformation is used to detect the co-linearity of points P1 
through P5. 

Every point Pn is transformed into a series of coordinates (d, θ). The first step in 

the process is represented in Figure 4.  Every possible line Lψn through Pn at an angle ψ 

with respect to a horizontal reference line is considered. Five examples of these lines are 

depicted in Figure 4.  For each Lψn, the closest point of approach D between the origin of 

the reference axis system and Lψn is identified in polar coordinates (d, θ) where d is the 

distance from the origin to D and θ is the angle between the horizontal axis through the 

origin and a line drawn from the origin to D. 
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Figure 4.   In the first step of the Hough transformation, the distance to the closest 
point of approach D must be found for every possible line through Pn. 

The values of Db, db, and θb are illustrated for P3 and Lψb in Figure 4.  These 

values can be calculated by first defining Q to be a point that is one unit of distance away 

from Pn and along the same line that intersects Pn at angle ψ. The coordinates of Q are  

 x y n,x n,y(Q , Q )  (P  cos( ), P  sin( ))    . (1) 

Next, d can be found according to  
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where O represents the origin located at (0, 0). The slope m can be found from  
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and the y-axis intercept b can be found from  

 y xP mP b  . (4) 
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Since D must also lie along the same line as P and Q, the coordinates of that point can be 

found from the simultaneous solution of 

 y xD mD b   (5) 

and 

 

 2 2
x yd D D  . (6) 

This enables the determination of θ from 

 1cos xD

d
     

 
. (7) 

This process is repeated for ψ = [1, 180] so that each point of interest P is 

expressed as a list of 180 (d, θ) pairs similar to Table 2.  This collection of (d, θ) pairs is 

often considered the Hough space.  

Table 2.   The complete Hough space for the points in Figure 3 enables the 
determination of the common (d, θ) pair. 

 

Co-linear points have an identical entry of (dD, θD) occurring in their coordinate 

sets at angle ψD. Visually, the presence of co-linearity results in an intersection at (dD, θD) 

when (d, θ) plots for each Pn are overlaid as displayed in Figure 5.    
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Figure 5.   An intersection in (d, θ) plots for each Pn represents the detection of a co-
linear region. 

The final step is to return to the x-y coordinate plane and form the line through the 

co-linear point at angle ψD. The bounds of this line are found by identifying the extreme 

values of x and y from the set of coordinates that contain the set (ψD, dD, θD). Connecting 

these bounds results in the definition of a detected line as displayed in Figure 6.   

In imagery applications, the intensity and color within a digital image are 

represented on a scale from [0, 255]. Co-linear points of interest with equal intensity 

represent the presence of a straight line in the image. For other applications, such as the 

MDA application investigated in this thesis, the data must be preprocessed so as to form a 

matrix similar to the digital representation of an image in order to be able to use the 

Hough transformation. 

Other representations of the Hough transformation make use of the polar 

coordinate system to prevent infinite slope problems from hindering the detection of 

vertical patterns [18], [19]. In this thesis, the infinite slope problem was addressed by 

performing the Hough transformation on rotations of the same space.  
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Figure 6.   The final result of the Hough transformation is the definition of the line 
representing the co-linear regions of the image. In this example, the red 

line has been detected that describes the co-linearity of points P1 through 
P5. 

C. ANOMALY DETECTION 

Anomaly detection is the process of attempting to identify patterns in data that are 

unexpected or abnormal [20]. A direct approach to developing such a process is to draw 

clear boundaries around the region that describes normal behavior and identify anything 

outside of those boundaries as abnormal. Very few real world problems, however, lend 

themselves to clear definitions of every possible normal behavior. As such, most anomaly 

detection mechanisms are developed to solve very specific components of a larger 

analysis process. The broad application of that framework to MDA is examined and the 

portion of the larger MDA anomaly detection problem that this thesis works to solve is 

outlined in this section. 
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1. Classification of Anomaly Detection Systems 

It is useful to consider a framework for comparing anomaly detection systems. 

One framework includes consideration of input data, type of anomaly, data labeling, and 

output [20]. 

The first aspect of an anomaly detection system is the nature of the input data that 

will be used [20]. For the MDA problem, multivariate data describing vessel traffic on 

the oceans are available. As has been described, position reports from AIS are one 

available data source, but even within AIS, ships also transmit static data reports 

containing detailed vessel information that could be of use in anomaly detection. Outside 

of AIS, other sources of MDA data include coastal and shipboard radar sensors, port 

records, ship registry records, satellite imagery, weather observations, buoy 

constellations, and an endless variety of other data associated with the seas. A robust 

anomaly detection system for MDA would need to absorb data from multiple sources.  

The second aspect of anomaly detection is the type of anomaly the system will 

identify. Anomalies may be of point, contextual, or collective in nature. Point anomalies 

refer to the ability to identify a single data record as anomalous. Contextual anomalies are 

more complex in that they include a contextual case in which behavior is anomalous, 

whereas in a different context, identical behavior might be normal. Collective anomaly 

detectors identify sets of data that are, as a group, anomalous as compared to the entire 

data set [20]. All three types could be of use in MDA, but a truly exhaustive system needs 

both collective and contextual perspectives.  Any recreational water area provides ready 

examples: taken as a point anomaly, it is not unusual for either a ski boat or a fishing boat 

to be in the middle of a lake. In a collective and contextual approach, comparing a set of 

observations of the two watercraft, it would be far more unusual for the ski boat to loiter 

in one spot than it would be for the fishing boat. Further, it would be abnormal for either 

to loiter in that same spot in the middle of a thunderstorm.   

The third aspect of an anomaly detection system is to have a labeled data set 

where each record has already been identified as normal or abnormal. A completely 

exhaustive data set generally requires human expertise and can be difficult to obtain. As 
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such, the system can be classified as supervised, semi-supervised, or unsupervised 

depending on the availability of labeled data, with supervised systems requiring a 

complete set of labeled data of both normal and abnormal behavior. Semi-supervised 

systems require a definition of normal behavior but not of abnormal. Unsupervised data 

sets require neither. Unsupervised systems are generally statistical in nature and 

overcome an absence of labeled data by assuming that normal is also the most 

statistically frequent behavior [20].  

For MDA, thoroughly listing every possible normal and abnormal behavior is 

daunting and even potentially impossible. It is most likely that a complete MDA anomaly 

detection solution will involve some hybrid approach wherein human expertise has 

identified a set of normal and abnormal behaviors, but statistical methods are also used in 

detection to cover cases that may not have been considered. 

The fourth aspect of anomaly detection systems is their output. These may be 

either qualitative or quantitative in nature. The qualitative, or labeled, solution is purely 

to identify behavior in a binary fashion as normal or abnormal, whereas the quantitative, 

or score, approach involves assessing some degree of normality on an established scale 

[20]. Both approaches could be useful in MDA, but the score-based approach affords 

more ability to infer meaning directly from the abnormal classification. In the 

recreational example, the score-based system might identify a loitering jet ski as less 

strange than a loitering jet ski in a thunderstorm, which could conceivably better enable 

emergency responders to prioritize their actions based directly on the anomaly detection 

system output. 

2. The Point-in-polygon Problem 

If expected behavior can be bounded within some geographic region, then 

qualitative anomaly detection becomes a problem of identifying whether detected 

behavior geographically lies within those boundaries. The following techniques for doing 

so are provided in [22]. To describe this technique, we determine if test point (x, y) lies 

within a polygon defined by two vectors vx and vy with the x and y coordinates of the 

outline of the polygon, respectively, as depicted in Figure 7.   
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Figure 7.   An example point-in-polygon problem begins with a point (x, y) and a 
polygon defined by vectors of coordinates vx and vy. 

First, a reference coordinate system is set up with the test point at its center, 

translating the polygon definition to the new coordinate system as indicated by 
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The quadrant relative to the test point in which each of the points (vx’,vy’) rests is 

identified according to the reference values seen in Figure 8.  The sequential list of each 

of the values moving around the polygon makes up the set of values Qr. 

  

Figure 8.   A numbered quadrant reference system relative to the test point enables a 
solution to the point-in-polygon problem. 

For the example problem, Qr is determined by identifying the quadrant of the 

bottom left corner of the polygon, then the next corner moving counter-clockwise, and so 

on until all points of the polygon have been considered, resulting in Qr = [2, 0, 0, 1]. 

Next, the differences of vector Qr are calculated to create a new vector listing how many 

quadrants are between each consecutive point in the definition of the polygon. If a 

counterclockwise rotation is required to get from the quadrant of one point to the 

quadrant of the next, the difference has a negative sign. Clockwise rotations carry 

positive signs. For example, in a shift from the third quadrant to the zeroth quadrant, the 

difference is −1; a shift from the first quadrant to the third quadrant is a difference of +2. 

The difference vector of the example will be [2, 0, 1, 1]. If the sum of all of these 

differences is zero, then the test point is outside of the polygon. If the sum has any value 

other than zero, then the test point is inside of the polygon. Continuing with the example, 
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we see that the sum of the difference vector is not zero, and thus, (x, y) lies inside of the 

polygon.  

If the test point is changed to (3, 4), the reference axis changes to that displayed in 

Figure 9.  In this alternate example, Qr = [1, 0, 0, 1]. The difference vector follows as 

[−1, 0, 1, 0]. This vector has a sum of zero, identifying the test point as lying outside of 

the polygon. 

 

Figure 9.   In a test case conducted with a point outside of the polygon, the reference 
quadrant system changes. 

A geographic anomaly detection system for MDA can be instantiated with this 

point-in-polygon technique by using an archive of data to identify and bound the 

geographic regions of expected behavior. When a point of interest or a collection of 

points of interest are to be flagged as normal or abnormal, they are each compared to the 

polygon defining the region of expected behavior and flagged as inside and normal or 

outside and abnormal. 

Background concepts necessary for the development of the techniques presented 

for anomaly detection in the maritime domain were examined in this chapter. The AIS 

system and its data collection process were discussed. Additionally, the Hough 
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transformation, anomaly detection, and one solution to the point-in-polygon problem 

were described. 
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III. ANOMALY DETECTION TO IMPROVE MARITIME 
DOMAIN AWARENESS 

One approach to improving MDA is to develop an automated system capable of 

highlighting anomalous ship tracks that do not fit the expected behavior patterns so that 

such ships can be flagged for follow-on analysis. One such system following the flow 

chart depicted in Figure 10 is developed in this chapter. The chapter is broken into two 

parts. Atlas generation is covered in the first; how the generated atlas is used for anomaly 

detection is explained in the second. 

 

Figure 10.   The anomaly detection algorithm uses atlases generated from historical 
data to determine if real-time ship position data is normal or anomalous as 

compared to the historically observed behavior for an area. 

Based on the classification system outlined in Chapter II, this system comprises a 

collective, position-based, unsupervised labeled anomaly detection system with some 

limited contextual cuing [20]. These factors are detailed in Table 3.   

First, archived historical vessel tracking data are used to develop a variety of 

atlases that depict the expected behavior patterns on the oceans. Just as with terrestrial 

road maps, the atlas encompasses the collection of all expected traffic patterns, which are 

termed “highways.” Second, a comparison method is described for matching incoming 
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data with available atlases and then determining whether or not a ship is on one of the 

highways within that atlas. The concepts used to implement each of these components are 

detailed in this chapter. 

Table 3.   The anomaly detection system can be classified according to the 
categories outlined by [20]. 

Aspect Value Description 
Data Input Multivariate  Geographic Position Reports 

Time Period of Interest 
Region of Interest 
Various Filtering Techniques  

Type of Anomaly Collective and 
Contextual (limited) 

Collective in that the anomaly is based on a 
vessel track comprised of a collection of 
observations of geographic positions 

Type of Data Set Unsupervised No human expert is involved in the system, 
but rather the statistical patterns that exist 
in an archive of data are assumed to 
represent normal behavior 

Output Labeled A ship is either “anomalous” or “normal” 

 

A. ATLAS GENERATION 

Archives of data on ship tracks provide a wealth of information from which 

expected ship behavior over a variety of scenarios can be discerned. A common quality in 

all of the related work from Chapter I is that vessel tracks are preserved throughout the 

anomaly detection process. As an alternative technique, a common image processing 

technique is used in this thesis to develop an atlas of ship motion based on statistical 

analysis of position reports with no need for unique vessel identification.  

The nine distinct steps depicted in Figure 11 outline the approach taken in this 

thesis to develop an atlas of expected ocean highways from archives of ship position 

reports.  
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Figure 11.   The atlas of historic ocean highways is tailored to a user’s needs by taking 
input from the user on the region of interest, various filter options, and the 

required resolution of the area.  

1. Data Input and Preprocessing 

Preprocessing involves accepting data in the sensor output format and filtering 

and preparing that data so that follow-on steps can be correctly applied. This is the first 

step in the flow process outlined in Figure 11.  The available archive of data is first 

filtered by timestamp to the window of interest and then filtered by latitude and longitude 

to the geographic area of interest. Data is then further filtered as necessary for other 

details, such as vessel type or flag of origin, depending on user preferences. 

The key inputs to the method include an archive of position reports and three user 

inputs determining the region of interest, various filter options, and the grid resolution. 

The generic method enables the user to create an atlas; the various filtering options 

applied to the archive of data enable that atlas to be specifically matched to scenarios of 

interest. An archive of AIS position reports collected globally via satellite is used in this 

thesis, but the archive could just as easily be from any sensor capable of recording 

position reports. As one alternate example, in local recreational areas, it might be more 
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useful to employ an archive of position reports collected via a coastal radar system since 

personal watercraft do not generally employ AIS.  

The user also selects the region-of-interest (ROI). From the complete archive of 

position reports G, the data is filtered to include only the ROI as given by  

 min max min max{ ; }ROI x yG G long G long lat G lat      (11) 

where GROI denotes the data only from the ROI, Gx and Gy represent the coordinates of 

each position report in longitude and latitude, and long and lat min and max represent the 

user defined boundaries to the ROI. Case studies in Chapter IV of this thesis exemplify 

the ability to select coastal regions or open-ocean areas.  

Additionally, filters can be put in line to build the atlas from position reports of 

any category of data collected concurrently by the sensor recording position data. With 

the plethora of data transmitted in AIS reporting systems, atlases can be tailored to only 

indicate the historically expected highways employed by cargo vessels or only those 

employed by fishing vessels of less than a certain length, as just two examples. With 

other data sources and atlas applications, it might be more useful to filter data based on 

time of day or speed of vessels.  

Once the original data set is filtered to meet the user’s need, the data set is pared 

down to just the latitude and longitude pairs indicating ship position. No other data is 

used for atlas generation after the initial filtering occurs. In the case of AIS, the original 

position report has 16 fields of data as outlined in Chapter II, but only the sixth and 

seventh fields are used for atlas generation beyond this point.  

2. Grid Generation 

Grid generation is next in the process as we continue through the flow diagram 

outlined in Figure 11.  The user also determines the grid resolution that should be 

employed. The highway detection method in follow-on steps uses the relative density of 

position reports in disparate sections of the ROI to detect the most frequently traveled 

routes in that area. Thus, the ROI must be divided into a grid with an equal number of 

rows and columns that can be used to develop a count of how many position reports 
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occur in each region of the grid. The mesh size for this grid is determined by the user 

because the same grid size is not applicable in every scenario. The mesh size refers to the 

size of each region of the grid along the axis of longitude in minutes. This mesh size 

impacts the quality of the results. Many factors impact what the “right” value is for a 

given region. To better illustrate the impacts that might occur, four different grid sizes are 

used to produce the traffic density grids shown in Figure 12.  The balance of finding a 

value that is fine enough without being too fine is explored in the next subsection. 

  

Figure 12.   Comparing grid sizes (a) 0.10 minutes, (b) 0.50 minutes, (c) 0.75 minutes, 
and (d) 1.00 minutes provides insight into how to select the best size. 

Reductions in grid size increase processing time and result in lost 
highways, yet larger grid sizes reduce the accuracy of highway placement.  
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a. Selecting a Fine Enough Grid Resolution 

As in most digital applications, increasing resolution is generally 

desirable; however, there are some limits in this application. First, the significant figures 

measured by the position report source set a lower limit of what resolution is possible. 

For example, GPS reports in AIS are only received to the fourth decimal place in minutes 

of longitude. Setting a mesh size less than this results in mesh squares tied to position 

reports that can never exist in the data archive and creates false zero counts in the water 

space. Second, finer grids result in higher computational costs as the number of 

individual regions of the grid that must be considered grows. Third, less apparent 

associations may be overlooked. These missed highways are somewhat equivalent to the 

false negative problem in radar analysis – a highway may be overlooked when it actually 

does exist. To illustrate, if two ships are travelling on parallel courses with just 1.5 

nautical miles (nm) of separation, or approximately 0.0250 minutes of longitude at the 

equator, and the grid is too fine, this may not be detected as a highway because of the 

zero traffic density regions between the two vessels. This impact becomes more 

pronounced at extreme latitudes where a degree of longitude represents a much smaller 

distance in nautical miles. For example, at the Arctic Circle, 1.5 nm of separation equates 

to 0.06 minutes of longitudinal separation. For reference, most vessels, with the exception 

of tugs and similarly specially equipped vessels, generally work to maintain separations 

of 1.5 nm for safety.  

Although the regions are detected computationally rather than by 

observance, comparing the strength of the pattern that the human eye can detect as the 

size changes between the grids shown in Figure 12 is analogous to understanding how the 

grid size impacts the algorithm’s ability to detect linear regions. The strength of the 

linearity of the trend line that crosses from the lower left hand corner to the upper right 

hand corner becomes more apparent as the grid size increases. With a grid size of only 

0.1 minutes of longitude as in Figure 12(a), the trend is more difficult to visually 

distinguish from the low densities of the open ocean.  
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b. Selecting a Large Enough Grid Resolution 

Selecting a mesh size that is too large can have negative impacts too. To 

begin, the grid size impacts the exactness of highway placement. Linear traffic patterns 

are detected from the grid, and the highway is overlaid across the associated grid squares. 

As a result, the placement has an inherent measurement accuracy of no more than +/- the 

diagonal length of a grid square. Further, nonexistent highways may be incidentally 

detected in a mesh that is too large. Equivalent to a false positive in the radar analysis 

realm, this relates to a highway being detected that does not really exist. By again 

observing the linear regions in the four grid options depicted in Figure 12, this point can 

be more clearly explained. At a grid size of 0.50 minutes of longitude as in Figure 12(b), 

the area of the ocean in the upper right corner appears to potentially have two linear 

regions that are somewhat parallel, separated by a low traffic density region. When the 

grid size is increased to 1.00 minutes of longitude as in (d), the low traffic density region 

between the two linear regions of higher traffic density is less apparent.  

c. Final Grid Determination 

Once a grid size Δx has been selected empirically, a vector of longitude 

grid region boundaries bx is established according to 

 min min min max[ , , 2 ,..., ]x x xb Long Long Long Long     (12) 

where the boundaries of the ROI are [Longmin, Longmax] along the longitude of the ROI. 

The latitude steps are determined such that the grid is referenced over the ROI using an 

equal number of columns and rows through 

 min min min max[ , , 2 ,..., ]y y yb Lat Lat Lat Lat      (13) 

where Δy is found from 

 max min

max min
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The developed grid is used as an overlay above a map of ship position reports to develop 

a count of how many position reports exist in each region. An example of this process is 

depicted by Figure 13.   

 

Figure 13.   The traffic density grid is formed by mapping position reports to the grid 
and counting how many position reports occur in each region of the grid to 

produce a matrix H of these counts. The grid has an equal number of 
columns and rows. 

The matrix of these counts H, depicted on the right side of Figure 13, is 

normalized to generate a new matrix HN by performing  

 
max( )N

H
H

H
 . (15) 

3. Highway Detection  

Once the grid has been developed, the Hough transformation can be used to detect 

highways, which is the third major section of the flow diagram depicted in Figure 11.   

a. Traffic Density Threshold Determination 

Before the automatic detection of these co-linear densities can occur, a 

threshold for traffic densities of interest ρTH must be selected. The grid contains 
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normalized traffic densities, so ρTH is some percentage of the maximum traffic density 

present in the ocean space. Any value can be selected, but in this thesis, the 75th 

percentile served as a reasonable starting point for most case studies. For comparison, the 

exact placement of the 75th percentile in a box plot of all traffic densities for two 

different grid sizes are depicted in Figures 14 and 15. This example uses a relatively 

empty open-ocean area with a strong diagonal traffic pattern. Within the figures, blue 

represents areas of low traffic density, with warmer colors of yellow and red indicating 

areas of higher traffic density. Using the percentile value rather than a specific traffic 

density couples ρTH to the previously determined grid resolution and empowers the 

algorithm to detect highways even as they begin to disappear to the human eye. The 

larger grid size depicted in Figure 14 requires a ρTH of 0.100 to consider the top quartile 

of regions for highway detection. The smaller grid size depicted in Figure 15 requires a 

ρTH of 0.025 to consider the top quartile of regions for highway detection.  

 

Figure 14.   Looking at a box and whisker plot of ship densities for several grid sizes 
provides a mechanism for identifying the ship densities that occur in the 

most heavily travelled areas of a water space. With a grid size of 0.5 
minutes of longitude, the 4th quartile densities range from 0.100 to 1.000. 
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Figure 15.   With a grid size of 0.1 minutes applied to the same area as depicted in 
Figure 14, the 4th quartile normalized densities now range from 0.025 to 

1.000. 

b. Co-linear Threshold Determination 

In addition to the traffic density threshold, two other thresholds are used 

within the highway detection portion of the algorithm. As explained in Chapter II, 

elements of the grid matrix with a (d, θ) pair in common in the Hough space are co-

linear. In the MDA application, tolerance factors are applied to both d and θ to enable 

highway detection in cases where a highway is more than one grid square wide or has 

slight disparities in slope over its length.  

c. Identification of the Dominant Trend 

Each region of the grid that meets or exceeds the traffic density threshold 

is transformed in the Hough space using the Hough transformation techniques described 

in Chapter II. To summarize, every region of the grid  

 ( , ) THR x y     , (16) 

where x and y denote the row and column indices within the grid, is transformed into the 

Hough space where it becomes a set of values  
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 ( , ) {( , )}x yS d   (17) 

that includes the (d, θ) pair of all possible straight lines through that grid region at indices 

(x, y). From the Hough space, co-linear regions are detected by identifying common (d, θ) 

pairs within each set S between different grid regions. 

As the term is used in this thesis, the “dominant” trend refers to that linear 

region with the most co-linear grid regions that meet or exceed ρTH. The dominant trend 

pair (dD, θD) can be found by performing a frequency study of (d, θ) occurrences across 

all grid regions. The most frequently occurring pair represents the dominant trend. 

Although many applications directly use the straight-line definition 

derived from the Hough space to define the line detected in the real space, the maritime 

domain requires special consideration. Because highways may be of any width and, more 

specifically, because that width may change over the length of a highway, the direct 

result of the Hough space may not be the most comprehensive definition of the highway. 

Instead, a first-degree polynomial is fitted to the collection of all regions of the grid for 

which 

 ( , ) 0D DS d    (18) 

is true. This polynomial fits the common form of  

 1 2y p x p  . (19) 

with p1 describing the slope of the highway within the grid and p2 describing where the 

line would intersect with the left edge of the grid. This polynomial best fits the collection 

of co-linear grid regions in the least-squares sense. An example of the placement of this 

centerline for a traffic density grid is displayed in Figure 16.   
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Figure 16.   The highway centerline will be mapped across the traffic density grid and 
represent the location of the dominant trend.  

Because the first-degree polynomial is of the form of Equation (17), it 

cannot be used to develop a model of highways that run vertically. Instead, vertical 

highways can be detected by rotating the grid 90 degrees clockwise before performing 

the Hough transformation and then rotating the resultant highways 90 degrees counter-

clockwise before follow on steps are performed. This requirement to run the method in 

two orientations can be overcome by implementing a polar polynomial fitting technique, 

but this solution was not further explored within this thesis. One parameterization enables 

vertical line detection by using [18] 

 cos( ) sin( )x y     (20) 

as an alternative form of Equation (17) where, rather than describing a line by its slope P1 

and intercept P2, the line is described by the length ρ and angle θ of a normal to the line 

that runs through the origin. 
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4. Highway Width Analysis 

Once the centerline of a highway is identified, a width study is performed to 

determine the left and right limits of the highway as seen from the process flow depicted 

in Figure 11.  Terrestrial highways are relatively uniform in width, with changes 

occurring only as lanes are physically added to or removed from the infrastructure of the 

highway, but oceanic highways are not uniform since they are not generally physically 

bounded. As such, the width must be determined incrementally along the highway to best 

capture its variability.  

The algorithm determines the width at each incremental step along the highway 

by considering the densities of the regions of the grid along a line perpendicular to the 

detected highway at the given step. The highway width is located at the index of the last 

region of the grid along that line that still meets or exceeds a traffic density threshold ρw. 

The width is different on either side of the highway centerline and at each incremental 

step.  

The threshold ρw can be set to any value, but one technique for determining it 

comes from finding the parameters of mean µ and standard deviation σ for the normal 

distribution curve fitting a profile of the densities across the width of the highway at each 

incremental step. The location of the mean traffic density µi at each increment is found 

according to  

 
j

j
i

j
j
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 (21) 

where i is the index of the incremental step along the highway centerline, j is index of the 

cross section of the highway width taken at a given increment, and ρj is the traffic density 

of the grid region at the index j. The standard deviation σi at each increment is found 

according to  
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The mean µ and standard deviation σ are found by taking the arithmetic mean where  

 
i

i

i


 


 (23) 

and 
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i

i


 


. (24) 

If ρw is set to define the highway as all regions that are within one standard deviation of 

the mean, then an adjusted value of threshold ρw′ can be found directly from the normal 

distribution  
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  (25) 

from [21] where the factor  
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 . (26) 

The desired location of x is (μ – σ), or one standard deviation below the mean. This 

substitution results in the determination of ρw′ through 
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   . (27) 

One example of determining these values from the distribution of densities across 

the width of a highway is displayed in Figure 17.  The profile of traffic densities across 

the highway width is used as a histogram of ship locations. The profile appears normal in 

shape, and a normal distribution is fit to it as displayed in red in Figure 17.  The value of 

ρw′ corresponds to the traffic density of the normal curve at the matrix row index where 

the normal curve has fallen to one standard deviation below the location of the mean, as 

indicated in Figure 17.   
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Figure 17.   A normal curve can be fitted to the distribution of densities across the 
width of a highway. 

Since the normal probability distribution comes from normalizing the distribution 

to have a unitary area under the curve by using the coefficient K, the final value of ρw 

then results from translating between ρw′ and the true traffic density value using the 

scaling factor K from Equation (24). This enables the determination of ρw through 

 
'w

w K

  . (28) 

As an example, for a water space where ρw = 0.643, a demonstration of the 

incremental determination of width is displayed in Figure 18.   
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Figure 18.   The width of a highway is determined by locating the last region of the 
grid moving out from the highway centerline that lies at or above ρw = 

0.643.  

The extreme locations of the traffic density threshold in either direction are 

indicated with the triangles seen in Figure 18.  Those limits are then smoothed into a 

defined width limit for the track using a moving average method as in 

 ( , ) ,

y nx n

ji
j yi x

sx sy

ww
w w

n n





 
 
 
 
 
 


 (29) 

where n is the number of elements in the sum, also called the smoothing factor. Variables 

(wsx, wsy) and (wi, wj) represent the row and column indices within the grid of the 

smoothed and pre-smoothed widths, respectively. This result is plotted with dashed black 

lines in Figure 18.    
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5. Mapping 

One of the final steps outlined in the flow diagram in Figure 11 involves adding 

the highway to a map of the ROI. The Hough transformation is performed on a space 

indexed according to the reference grid. For the end results to be universally meaningful, 

they must be translated back into latitude and longitude. This is performed through linear 

interpolation. For grid column references, interpolation to longitude is performed by 

calculating 

 1
1 2 1

2 1

( )
x x

l Long Long Long
x x
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where l is the longitude being sought, Long1 and Long2 are the two known values of 

longitude correlating to x2 and x1, the grid column references to either side of the known 

value of x. For clarity, these values are all labeled in Figure 19.   

 

Figure 19.   Interpolation is performed to transform grid reference values to values of 
latitude and longitude. 

6. Trend Removal and Iterative Analysis 

To enable the detection of less obvious linear trends in the data, the dominant 

trend is removed after it is discovered. Otherwise, secondary, tertiary, and further trends 

go undetected because they are overshadowed. The flow for this portion of the process is 

illustrated in Figure 20.   
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Figure 20.   The iterative use of the Hough transformation enables the detection of less 
prominent highways. 

The grid space has been renormalized to the maximum traffic density of the 

secondary trend without removing the dominant trend from the water space shown in 

Figure 21.  This renormalization only increasingly emphasizes the dominant trend. In the 

Hough space, the values of (dD, θD) representing the primary trend occur so frequently 

that they overshadow any secondary trends. For proper consideration of subsequent 

trends, each trend must be effectively erased before the iterative use of the Hough 

transformation. 
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Figure 21.   An example ocean space exemplifies why removal of the dominant trend 
is necessary before subsequent trends can be identified.  

Simply removing the dominant trend and replacing those grid squares with zeros 

can unintentionally create new linear regions on the edges of the removed regions. 

Instead, the grid values that fall within a region bounded by the width definitions of the 

dominant trend are replaced by a pseudorandom value taken from the collection of all 

traffic density values occurring in the ROI. Once this replacement has occurred, the grid 

is renormalized to the new traffic density of interest, and the Hough transformation is 

performed again to identify the next-most-dominant trend in the region.  

The four most dominant trends are iteratively identified for the Southern Atlantic 

Ocean in Figure 22.  This case study is explored in more detail in Chapter IV, but this 

figure is included here to illustrate how the grid changes as trends are removed with each 

iteration of the highway discovery process. Replacing the dominant trend in (a) before 

renormalizing the grid enables the detection highway (b) that is travelled by fewer ships 

and, thus, has a lower traffic density than other highways in the water space. The same 

process continued enables the discovery of the highways in (c) and (d). 
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Figure 22.   The four most dominant trends are detected in the Southern Atlantic 
Ocean from the reference grid of ocean densities.  

This process can be continued until the water space is exhausted of all significant 

trends.  

7. Post Processing Considerations and Outputs 

The two products of the nine step method include two very similar items. First, an 

atlas of historic ocean highways is generated. Periodic reevaluations and updates must 

occur in step nine of the model because traffic patterns on the oceans are not static. This 

update process produces the final product: an atlas of expected ocean highways for the 

region of interest. 

In both the historic and expected cases, the atlas includes a collection of historic 

highway definitions. Each highway definition is given to the user as three sets of 

coordinates in longitude and latitude pairs. The first set contains the reference line for the 

highway’s centerline, while the second and third sets contain the lines defining the width 

of the highway to either side of the centerline. Because of its use of globally understood 

latitude and longitude, the format enables the highways to be imported into a variety of 

tools including mapping software.  
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B. ANOMALY DETECTION  

The definitions of the highway are used for anomaly detection by considering 

whether a received position report lies inside or outside the limits of the highway. The 

widths of the highway are used to define a polygon starting along one side of the 

highway, crossing the highway perpendicularly at its end point, tracing down the other 

side of the highway in the opposite direction, and, finally, crossing the highway 

perpendicularly again to reconnect to the first side at the opposite end point.  

Once this polygon has been defined, anomaly detection becomes a classic point-

in-polygon problem. The method used to solve this problem in this thesis comes from 

[22] as described in Chapter II. To identify if a particular vessel of interest is anomalous, 

the available position reports associated with that vessel are each tested against the most 

applicable atlas of highways.  

 

Figure 23.   Anomaly detection within a geographic region, outlined in black, uses the 
point-in-polygon approach to highlight behaviors that are within the 

region in green and outside of the region in red. 

A tolerance is set to determine how consistently a vessel must be located on a 

highway for it to be considered to be following the given route. This tolerance requires 
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consideration of highway length and width coupled with the time interval over which the 

position reports are available. In some cases, this tolerance might be very high, requiring 

100% of the position reports received to be on a highway for the vessel to prevent the 

vessel from being flagged as anomalous. One example of such a case is on lengthy 

transatlantic crossings, where vessels are frequently on the same great circle course for 

days at a time. In small coastal regions, however, some lower tolerance might be applied 

to consider ships entering or leaving a highway near the small harbors along coastal 

routes.  

In the first section of this chapter, atlas generation from preprocessing through 

grid generation, highway detection, width determination, iteration, and post processing 

was covered. How that atlas is employed in anomaly detection was explained in the 

second section.  
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IV. RESULTS 

The method described in Chapter III is applied to archived AIS data in this 

chapter. The implementation of the method, including programming techniques used, is 

discussed in the first section. A series of case studies meant to examine how atlas 

generation and anomaly detection occur in different scenarios is contained in the second. 

To provide a proof of concept for the algorithm described in Chapter III, the 

PYTHON programming language was used for AIS data preprocessing functions and 

MATLAB was used to develop demonstrations of atlas generation and anomaly 

detection. 

A. METHOD IMPLEMENTATION 

Although any vessel position data source can be used to test the highway 

detection techniques, the large archives of AIS data available commercially make it a 

good candidate for initial investigations. A set of AIS position reports collected 

worldwide during 2012 was used in this thesis to study the technical considerations that 

arise in implementing the techniques developed in Chapter III. 

1. Data Input and Preprocessing 

AIS position reports are received in AIVDM sentence format as described in 

Chapter II. For this thesis, only the sixth field, the data payload field, needs to be decoded 

as all position related information is stored in this field as shown in Figure 1. Since this 

field is encoded in ASCII, a script written in the PYTHON programming language is 

used to translate the ASCII to binary and also to translate the binary values to a comma 

separated value (csv) text file that can be imported into MATLAB for the follow-on atlas 

generation methods. The code used to complete this translation is included in Appendix 

A. Each row of the csv contains ten fields of data. The column headings for these data 

fields are as follows:  

 AIS Message Type 

 Maritime Mobile Service Identity (MMSI)* 
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 Navigational Status 

 Rate-of-Turn, degrees per minute 

 Speed-Over-Ground, nautical miles per hour 

 Latitude, Minutes* 

 Longitude, Minutes* 

 Course-Over-Ground, degrees 

 True Heading, degrees 

 Time Stamp, seconds Unix Time Code* 

Once the csv has been created, it is imported into MATLAB for follow-on 

filtering and eventual atlas creation. Only those columns denoted with an asterisk (*) in 

the list above are used in atlas generation. The MMSI is preserved to enable filtering by 

the user, as the MMSI is a unique identifier for the ship that can be cross-referenced with 

other data sources to identify the ship and any related characteristics of the ship that are 

matters of public record including its country of registry, length, class, and in some cases 

even destination, cargo or crew manifests. As discussed in Chapter II, receiver stations 

for AIS log time of receipt. A time stamp field populated by the original satellite AIS 

receiver is also preserved to enable the user to select time periods of interest. Latitude and 

longitude are the crucial pieces of information as they are fed into the atlas generation 

algorithm to enable automatic highway detection as described in Chapter III.  

2. Grid Generation 

To create the traffic density grid, first a vector is created that starts at the western 

most boundary of the region and steps toward the eastern boundary in increments equal to 

the grid resolution. This process is outlined generically in Chapter III. To simplify the 

matrix operations performed in follow-on steps, a similar vector is created that steps 

incrementally from the southern boundary of the region of interest to the Northern 

boundary, but the steps are incremented such that an equal number of elements exist in 

both the longitude and latitude vectors. These two vectors are used to define the limits of 

each region of a grid.  
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Once the regions have been defined, a count of how many position reports occur 

in each region of the grid is taken. To do so, the position reports are sliced into bins of 

data falling between the incremental steps on the longitude vector. Next, the counts are 

populated into a traffic density matrix aligned with the longitude vector bins along the 

columns and the latitude vector bins along the rows. These counts are performed using 

MATLAB’s hist function. Once the matrix is fully populated, it is normalized by the 

maximum occurring density count according to Equation (13) in Chapter III, resulting in 

a final traffic density matrix with values falling between zero and 1. This traffic density 

grid, when viewed using MATLAB’s surf function, appears as displayed in Figure 24.   

 

Figure 24.   The traffic density grid contains values of ship position report densities 
between zero and one that can be displayed using MATALB’s surf 

function. The color bar indicates that normalized traffic density values 
correspond to each color in the grid. 
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To the human eye, the highways are often apparent by observing this surface plot 

of the traffic density grid. The automatic detection of these highways is enabled by using 

the traffic densities in the way that the intensity and color would be used in image 

processing.  

3. Highway Detection 

As described in Chapter III, the Hough transformation is only performed on 

regions of the grid above ρTH. To do so, the traffic density grid is adjusted so that the 

maximum traffic density value of one indicates a traffic density at or above ρTH. The 

index of each of these regions is put through the Hough transformation described in 

Chapter II. The MATLAB script used to perform this transformation and to identify the 

value in the Hough space that occurs with the maximum frequency, which indicates the 

most dominant linear trend within the region, is included in Appendix B. 

MATLAB’s built in polyfit function is used to perform polynomial fitting to the 

indices within the traffic density grid of those regions that make up the dominant trend. 

This function is fully detailed in [23]. Essentially, polyfit finds the polynomial by first 

building a Vandermonde matrix,  
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    (31) 

where n is the number of grid regions contributing to the dominant trend and x represents 

the column indices of each of those regions. 

Next, an orthogonal-triangular decomposition is performed resulting in two 

matrices, Q and R, such that Q is an n by two unitary matrix and R is a two by two upper 

triangular matrix such that 

 V QR .  (32) 
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The vector p of the coefficients of the best-fitting polynomial in the least squares 

sense is found by solving  

 
inv(Q) y

R
p    (33) 

where y is the vector of row indices of each of the regions. The variable p contains two 

elements, p1 representing the slope of the highway and p2 representing the projected 

intersection of the highway with a line along the left vertical plane of the grid. 

Additionally, the minimum and maximum column grid references from the set of 

all grid regions contributing to the dominant trend xmin and xmax are used to identify the 

extremities of the traffic pattern. The polynomial and extremities are used to create a 

model of the highway identifying how the traffic pattern is mapped to the grid. The 

model is identified by a series of (hx, hy) pairs found by first identifying the horizontal 

values hx from 

 min max[ : 0.1: ]xh x x  (34) 

and then identifying the vertical components hy from 

 1 2y xh p h p  . (35) 

4. Highway Width Analysis 

As described in Chapter III, once a centerline has been found, the width is 

determined by moving out from the highway to either side and identifying where the 

traffic density first falls below the threshold. Of note, this can be implemented with a 

threshold value lower than that used to detect the highway itself. This application permits 

the edges of highways to have a lower traffic density than the centerline. Within 

MATLAB, a while loop is used to step outwards in the traffic density grid from the 

location of the highway. As soon as the traffic density tolerance is broken, that point (wx, 

wy) is recorded as the location of the boundary of the width of the highway. The 

MATLAB smooth function with a span of 50 is used to create the final width result (wsx, 

wsy) from 
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5. Trend Removal 

To enable the detection of less dominant highways within the traffic density grid, 

highways that have already been detected are removed before the grid is normalized to 

the new traffic density of interest. The traffic density values of the regions of the traffic 

density grid within the boundaries of the highway width definitions are replaced 

according to 

 ' { }G u   (37) 

where '  is the replacement traffic density value, G is the set of all traffic density values 

occurring in the ocean region of interest, and u is a pseudo-randomly selected index taken 

from a uniform distribution between one and the number of densities in G. The value of u 

is determined by the built in rand function in MATLAB, which generates pseudorandom 

values between [0, 1] that are then scaled to the desired range of indices in G. 

During the development of work in this thesis, we made an effort to build a 

statistical model of open-ocean traffic densities that could be used as a noise model in 

replacing the highway region, but the variability in different regions of the ocean and the 

availability of real data for the region of interest at this stage in atlas generation made use 

of such a model less desirable than randomly selecting a traffic density value from the 

collection of all values present in the traffic density grid. This method of implementation 

prevents the ocean noise model from needing to be tailored to the region of interest.  

Once a highway has been removed, the process is iterated to subsequently detect 

less and less dominant regions.  
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6. Mapping 

The centerline and width definitions are unique to the traffic density grid, but 

translating them back to a global latitude and longitude reference enables them to be used 

with a variety of display software or other follow on applications. Linear interpolation 

between grid reference values and the globally understood values of latitude and 

longitude is completed using MATLAB’s interp2 to complete this translation in 

accordance with the methodology outlined in Chapter III. 

For this thesis, the figures displaying highway data overlaid above a map are 

generated using the standard MATLAB plotting tools coupled with plot_google_map 

from [24] and available via the MATLAB file exchange. This tool uses the Static Google 

Maps API to pull an image from Google maps and display it behind the active figure in 

MATLAB, aligning the map with the overlaid highway models by converting the map to 

WGS-84 datum coordinates. AIS and, thus, the atlases generated as part of this thesis also 

use WGS-84 datum for position reporting via GPS as described in Chapter II. 

7. Anomaly Detection 

Once an atlas has been defined, basic anomaly detection is performed by the 

MATLAB function inpolygon [25]. Based on the point-in-polygon problem described in 

Chapter II, inpolygon returns a logical 0 or 1 indicating that a point is either outside or 

inside of a polygon, respectively. The position reports available for a vessel of interest are 

each tested against the polygon defined by the highway width definitions. If a tolerable 

number of position reports are within the highway, then the ship is labeled normal.  If 

not, then the ship is flagged as anomalous, indicating that it does not fit the expected 

traffic pattern of its geographic area. 

B. CASE STUDIES  

The thesis is not intended to draw conclusions regarding normal behavior of 

ships, but selected case studies were developed to exemplify the functionality of the 

highway determination and anomaly detection methods described in Chapter III. 
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The algorithm developed in this research is fairly generic and lends itself well to a 

variety of case studies. To demonstrate the potential uses of an atlas in a larger anomaly 

detection scheme, three models of employment are explored in this thesis. First, the 

complete algorithm with iteration is demonstrated using data from the southern Atlantic 

Ocean. This case exemplifies the capability of the algorithm when employed iteratively 

to find a collection of highways that are frequently traveled within a water space. 

Because the first case study focuses on a large open area of the ocean where transits in 

straight lines are common, the second case study explores the functionality of atlas 

development in coastal regions. Because of land and shoal water, ships are prevented 

from travelling in straight point-to-point transit fashion. Piecewise approximations of the 

coastal routes for two regions are presented where the linear Hough transformation 

results for adjoining regions are combined to provide a non-linear highway. Third, the 

use of pattern extraction to better understand how routes change over time is explored. As 

two of the many examples of factors affecting shipping routes, the impacts of seasonal 

variations and extreme weather systems are presented by comparing the highways 

detected in a given geographical region over different time intervals. 

1. Demonstration of the Complete Method 

The region of interest for this case study is the southern Atlantic Ocean. To ensure 

that only open-ocean traffic was observed, the region was bounded well outside of coastal 

waters. The exact region lies between the lines 15°S and 30°N in latitude and the lines of 

30°W and 20°W in longitude. This area is outlined in black in Table 4.  The data set of 

AIS position reports was collected via satellite over seven months in 2012. A sample of 

the position reports received are plotted in Figure 25 in blue to provide a visual idea of 

how traffic is distributed in the area. The grid size is 0.2 minutes longitude. Other general 

characteristics of the water space are listed in Table 5.   
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Table 4.   The four most prominent highways in the southern Atlantic Ocean during 
2012 are detected by the Hough transformation.  

Table 5.   The general specification of the water space used for the case study of the 
southern Atlantic Ocean during 2012 enable a comparison between “open-

ocean” ship densities and “highway” ship densities listed in Table 7.    

Specification Value 
Area of Region (nm2) 1,600,300  
Position Reports Received 2,143,706 
Ship Density (reports per month per nm2)  0.191 

 

The Hough transformation is performed four times, with the recently identified 

trend removed after each iteration. This process is visually displayed in Figure 22 of 

Chapter III. Each iteration uses the new 75th percentile as the normalization factor, 

resulting in highway precedence as listed in Table 6.   
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Table 6.   Traffic density thresholds used for the southern Atlantic Ocean during 
2012 represent renormalization to the new 75th percentile over four iterations. 

Rank ρth 

1 75.0 

2 56.0 

3 42.0 

4 31.5 

 

The highways are displayed in Figure 25 by a trio of red lines: a solid line along 

the centerline of maximum traffic density and a dashed red line to either side identifying 

the width limits. A general description of each of the highways in order of precedence is 

provided in Table 7.  Additional specifications for each highway are listed in Table 8.   

Table 7.   The four most prominent highways in the southern Atlantic Ocean 2012 
can be generally described by the route they take across the water space. 

Rank General Description Eastern Most 
Point 

Western Most 
Point 

1 A direct route between the eastern 
most point of South America to 
Europe, passing east of Cape Verde  

29° 48’ 00” W
02° 03’ 12” S 

20° 00’ 00” W 
19° 51’ 12” N 

2 A direct route between the eastern 
most point of South America to 
Europe, passing west of Cape Verde  

29° 48’ 00” W
06° 02’28” N 

20° 00’ 00” W 
27° 54’ 59” N 

3 A direct route between North America 
to the southern tip of Africa, passing 
south of Cape Verde 

29° 48’ 00” W
18° 48’ 35” N 

20° 00’ 00” W 
08° 21’ 33” N 

4 A direct route between the eastern 
most point of South America to the 
southern tip of Africa 

29° 48’ 00” W
07° 00’ 31” S 

20° 00’ 00” W 
13° 49’ 09” S 
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Table 8.   Specifications for the four most prominent highways in the southern Atlantic Ocean during 2012 
demonstrate how highway ship densities compare to the general water space described by Table 5.   

Rank Course Mean 
Width  
(nm) 

Highway 
Area (nm2) 

Position 
Reports 

“On 
Highway” 

% of All 
Position 

Reports for 
Area 

Ship Density on 
Highway 

(reports per month 
per nm2) 

Length 
(nm) 

1 023.7° 485.6  2.837 x 105 1,046,434 48.81% 0.5269 1,436.5 

2 023.1° 468.9  2.752 x 105 611,460 28.52% 0.3174 1,427.3 

3 138.1° 279.9  1.601 x 105 382,764 17.86% 0.3416 855.2 

4 125.3° 259.9  1.515 x 105 101,028 4.71% 0.0953 1,293.8 

Total --- --- 
8.705 x 105 

(54% of 
total area) 

2,141,686 99.99% --- --- 
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The propensity for maritime traffic to follow common routes, even on the 

unbounded open-ocean, can be discerned by considering the most dominant highway. 

The highway makes up just 17% of the total area of the region outlined in black in Figure 

25, yet nearly half of all position reports received are located within the definition of this 

highway. In fact, 99.99% of all position reports received for the area fall on one of the 

four most dominant highways, even though they account for less than 50% of the total 

area of the region given the overlap between the first three highways. In seven months, 

only about 2,000 position reports were received outside of the areas described by the four 

highways. If this trend remains consistent, this Southern Atlantic region where more than 

10,000 position reports occur daily would have a mean of fewer than ten that were off 

highway. This ability to highlight ships that are acting abnormally will better enable a 

human analyst to focus his or her efforts.  

This case study also serves to demonstrate the importance of finding a method to 

discern traffic patterns that may not be readily apparent in the presence of the most 

dominant trends. The fourth trend has a ship density of only 0.0953 position reports per 

month per nm2, which is lower than the ship density for the region as a whole, which lies 

at 0.191 position reports per month per nm2. It might easily be ignored by a method that 

did not remove the more dominant trends after discovery. 

2. Piecewise Highway Definition 

The linear detection implementation may seem limiting to the usefulness of the 

algorithm, but it is not. The pattern extraction method used in the southern Atlantic can 

also be used to detect and approximately map non-linear highways by using a piecewise 

approach to a region. A key example of where this may be useful is in coastal areas in 

which geographic land features prevent direct straight-line routes from point to point. 

Essentially, the region of interest is split into sub-regions, the highways in each sub-

region hj are detected, and then those highways are concatenated together into hT as in 

 1 2[ , ,..., ]T jh h h h  (38) 
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where j is the number of sub-regions used to divide up the coastal region. The complete 

highway Th  is then smoothed using a 5-point moving average operation into a single 

composite highway 'Th  across the entire region so that each element '
xTh  of 'Th can be 

found from  
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a. Eastern South American Case Study 

For the Coastal South American Region between 15°S and 0° Latitude, the 

region requires five regions for a piecewise approximation of the coastal traffic pattern, 

outlined in black and labeled in Figure 25.  The dominant trend in each of the other five 

regions is outlined with solid red lines. A sample of the position reports received for the 

area are plotted as a blue scatter plot to provide visual reference for traffic in the area.  

 

Figure 25.   The dominant highways for each of five sub-regions of coastal South 
America depict the high traffic densities in coastal regions. 
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The Hough transformation was not performed iteratively for this case 

study. Instead, it was only performed once to compare the locations of the most dominant 

trend for each region. The first, second, and fourth regions require grid rotation for 

dominant trend discovery because of the near-infinite slope of the dominant trend in each 

of these areas. The second and fifth regions are analyzed in the standard north-south 

orientation. Good matchup occurs between the individual highways in each of these 

regions in that when moving from south to north, the next region’s highway generally 

originates near the terminus of the previous region’s highway. 

The five local highways were smoothed into a single highway using a 

moving average operation with a step size of five data points. The same process was 

independently applied to the centerline of maximum traffic density and the left and right 

width definitions. The final result can be visualized in Figure 26.  Additionally, the 

specifications of each of the five segments and of the final highway are listed in Table 9.   

 

Figure 26.   The results from the five sub-regions enable the development of a 
smoothed coastal highway representing the dominant traffic pattern along 

the coast of South America between 15°S and the equator. 
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Table 9.   Specifications of the five piecewise segments and the final composite highway for coastal 
South America show how ship density can vary over the length of a coastal highway. 

Segment 
Ship Density 
in Segment 

(reports/nm2) 
Course 

Mean 
Width  
(nm) 

Length 
(nm) 

Position 
Reports 

“On 
Highway” 

 
Highway 

Area 
(nm2) 

% of All 
Position 
Reports 

in 
Segment 

Area 

Ship Density 
on Highway 
(reports/nm2) 

1 0.04 356.9° 108.5 120.3 3,695 13,122 16.1% 0.04 

2 0.56 045.8° 60.4 344.8 136,124 21,329 39.0% 0.91 

3 0.15 011.9° 48.9 98.2 16,070 4,263 18.1% 0.54 

4 0.13 351.1° 120.1 121.5 18,623 14,595 24.5% 0.18 

5 0.62 119.7° 75.2 358.9 169,888 27,474 48.0% 0.88 

Coastal 
Highway 

0.31 n/a 97.5 788.9 326,727 87,732 34.5% 0.53 
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b. Western Africa Case Study 

As a second demonstration of piecewise implementation of the highway 

detection techniques, a region on the coast of western Africa was selected. The region 

between 5°N and 30° N requires five regions for a piecewise approximation of the coastal 

traffic pattern as outlined in black in Figure 27.  The dominant trend in each of the five 

regions is depicted in red. Regions 2 and 3 require rotating the grid 90° for discovery 

because of their near-infinite slopes in the north-south orientation. A sample of the 

position reports received for the area are plotted in blue to provide visual reference for 

traffic in the area. 

 

Figure 27.   The dominant highways for each of five sub-regions of coastal western 
Africa are found by completing the pattern extraction method in each sub-

region independently.  

To provide a final highway definition, the five segments are smoothed into 

a single highway using the same method previously described and used with the South 

American region. The final result appears in Figure 28.   
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Figure 28.   The smoothed coastal highway is mapped with a solid red line with its 
width defined by dashed red lines. This highway represents the piecewise 

combination over the five regions depicted in Figure 27.   

One point that stands out in this case study is how thin the highway is in 

the area of the fifth region. Visually, based on the scatter plot of position report plotted in 

blue in Figure 29, it appears that the traffic is evenly spread and dense throughout the 

area. The specific details of each of the segments and the smoothed, complete highway 

are listed in Table 10.  The algorithm identifies that while traffic may be spread across 

the fifth region, its most densely populated linear pattern identifies a highway that transits 

through the Canary Islands, passing between Gran Canaria at 27°58’N, 15°36’W and 

Fuerteventura at 28°20’N, 14°1’W.   

This is one case where the human eye cannot find a distinct pattern in the 

region but the Hough transformation can, which demonstrates the effectiveness of this 

technique for detecting maritime highways.  
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Table 10.   Five piecewise segments combine to form the final composite highway for coastal western Africa.  

Segment 

Ship 
Density 
(reports 

per 
month 

per 
nm2) 

Course 
Mean 
Width  
(nm) 

Length 
(nm) 

Position 
Reports 

“On 
Highway” 

Highway 
Area 
(nm2) 

% of All 
Position 
Reports 

in 
Segment 

Area 

Ship 
Density 

on 
Highway 
(reports 

per 
month 

per 
nm2) 

1 0.94 135.0° 90.9 167.8 325,743 14,974 54.9% 3.11 

2 1.91 354.0° 68.0 301.9 928,524 20,798 78.1% 6.38 

3 1.55 000.5° 75.1 300.2 653,952 22,626 69.4% 4.13 

4 1.85 020.6° 123.7 252.1 413,816 33,960 37.7% 1.74 

5 1.46 027.1° 51.1 188.0 143,005 9,118 17.1% 2.24 

Coastal 
Highway 

1.54 n/a 68.9 1,298.5 2,517,997 81,863 54.0% 4.39 
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3. Highway Variability 

The mapping of ocean highways requires periodic update for a variety of reasons. 

Some are universal to the maritime environment, but others are unique to the type of 

traffic of interest. Examples include extreme weather, seasonal variations, fluctuation in 

international markets and trade, and changes in law enforcement monitoring of an area. 

Seasonal and weather related fluctuation are universal in impact and offer ground-

truth case study opportunities for exploring how the algorithm developed in this research 

might be used to identify and understand variation in maritime traffic patterns. 

Conclusions drawn from weather might be adjusted for extension to provide insight into 

how inside information of market or law enforcement will impact traffic patterns, but 

these cases are not specifically developed as part of this research. 

a. Hurricane Ernesto Case Study  

This traffic analysis method provides a means for assessing the impact of 

extreme weather patterns on maritime traffic, which can assist in predicting the 

 impact future weather events will have on traffic patterns in the area. Hurricane Ernesto 

moved on a generally westerly track through the Caribbean in early August of 2012 [26]. 

The National Hurricane Center graphic of the track of Hurricane Ernesto is shown in 

Figure 29.   

The impact of the hurricane can be observed in the atlas generated daily 

over a three-day period, as displayed in Figure 30.  The hurricane track for the day is 

overlaid in black above the Hough transformation detected highway in red. In this case, a 

particular highway of interest was selected from all highways found in the area.  The 

highway is mapped using a normalized traffic density of interest of 0.80 and a traffic 

density tolerance of 0.50 for width determination. Essentially, the southern portion of the 

highway dissolves as the hurricane crosses its path and then reconstitutes within the next 

24 hours as the hurricane moves further west. 
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Figure 29.   Hurricane Ernesto tracked East-to-West across the Caribbean in August 
2012 (from [26]). 

The specific measurements of this highway for five consecutive days are 

listed in Table 11.  On August 5, 2012, the southern portion of the highway running along 

course 030° dissolves, leaving only the northernmost 130 nm of the complete 400 nm 

stretch intact. By August 7, 2012, the highway has essentially reformed to its dimensions 

previous to the storm, and the traffic density has resumed its pre-storm strength with just 

over one fifth of all position reports received for the area occurring along the 030° 

corridor.  
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Figure 30.   Hurricane Ernesto, plotted in black, caused a highway, plotted in red, to 
dissolve and then reform as Ernesto passed through the Caribbean over the 
days of (a) 04-05 August, (b) 05-06 August, (c) 06-07 August, and (d) 07-

08 August 2012. 

Although only a single case study, the persistence of this traffic pattern is 

evidence in support of the pursuit of an atlas-based anomaly detection method. The ocean 

may not have lane markings controlling ships’ travel, but ships do remain in generally 

predictable and orderly routes. As soon as the storm had passed, travel along the highway 

resumed. 
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Table 11.   The highway varied significantly before, during, and after Hurricane Ernesto in August 2012. 

Time 
Period 

Ship Density 
in Segment 

(reports/nm2) 

Course Mean 
Width  
(nm) 

Length 
(nm) 

Position 
Reports 

“On 
Highway” 

Approximate 
Highway 

Area 
(nm2) 

% of All 
Position 
Reports 

in 
Segment 

Area 

Ship Density 
on Highway 
(reports/nm2) 

03 Aug 
2012 

0.0071 029.7 112.5 403.2 419 44,698 22.8% 0.0094 

04 Aug 
2012 

BEFORE 

0.0086 028.3 110.4 424.5 507 46,189 22.9% 0.0110 

05 Aug 
2012 

DURING 

0.0058 027.9 177.1 132.1 206 24,488 13.7% 0.0084 

06 Aug 
2012 

AFTER 

0.0059 026.8 123.8 392.2 235 49,423 15.3% 0.0048 

07 Aug 
2012 

0.0054 029.4 152.26 428.8 342 66,982 24.3% 0.0051 
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The atlas method developed in this research provides an avenue for building 

insight into normal ship behavior, even in abnormal weather situations. One such 

behavior pattern may lie in the preemptive spike in traffic density just before the storm 

that can be observed along the highway. A plot of traffic density along the highway is 

presented in Figure 31.   

 

Figure 31.   Hurricane Ernesto caused a drop in ship density on an ocean highway 
during August 2012. 

Hurricane Ernesto struck this region on August 5, 2012 [26]. Traffic density on 

the highway mapped via the atlas method indicates that traffic spikes on August 4, 

remains high on the next day, and then sharply falls off when Hurricane Ernesto crosses it 

on August 6. As the hurricane moves across the area, traffic density drops below average 

and then begins to recover in the days after August 10 when the hurricane made land fall 

and moved inland [26], possibly permitting the coastal ports to resume their normal 

activities. The traffic density begins to recover, reaching another above average spike in 

traffic density, just before Tropical Storm Helene enters the same region on August 15, 

2012 [27].  
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Although prudent mariners may already know that ships seek safe harbor just 

before bad weather, this algorithm enables analysts to qualify exactly what impact the 

storm will have on the most frequently traveled highways in an area. 

b. Seasonal Variation in the Southern Atlantic Case Study 

Hypothetically, it is unlikely that traffic remains perfectly static on the 

oceans. An atlas-based anomaly detection method is expected to require updates to the 

atlas at some frequency. Expanding the previously discussed southern Atlantic case study 

to observe the changes in the dominant and secondary highways over four quarters of 

2012 provides some insight into the seasonal variability issues an ocean atlas would need 

to address. This case study will look at the changes over four quarters of 2012. The first 

quarter will be observed from January through March, with the second quarter falling 

from April through May, and so on for the third and fourth quarters. 

The dominant trend over all four seasons of 2012 remained the direct route 

described in the case study discussed in Section B.1 of this chapter. The subtle variation 

in the dominant highway is displayed in Figure 32.    

 

Figure 32.   The most dominant highway in the southern Atlantic Ocean varies slightly 
as determined over four different quarters of 2012. 
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The trends are so close that the underlying map is discarded from the 

figure because it prevents the viewer from discerning the slight variations in slope and 

width that characterize each of the highways, as summarized in Table 11.   

Table 12.   A direct route from the eastern most point of South America to Europe, 
passing east of Cape Verde, is the most dominant highway in the southern 

Atlantic Ocean. Its characteristics change over 2012. 

Quarter 

Position 
Reports 

Received 
in Area of 

Interest 

Ship 
Density 
(reports/ 

nm
2
) 

Course 
Area 

(millions 

of  nm
2
) 

Ship 
Density 

on 
Highway 
(reports 

/nm
2
) 

% of 
Total 

Reports 

Length 
(nm) 

Jan-Feb-
Mar 
2012 

840,047 0.52 024.4 0.14 0.2953 34.2% 1,399 

Apr-
May-Jun 
2012 

1,000,242 0.62 024.6 0.26 0.2662 47.4% 1,390 

Jul-Aug-
Sep 2012 

890,601 0.55 023.5 0.28 0.2188 47.5% 1,451 

Oct-Nov-
Dec 
2012 

1,134,816 0.70 024.3 0.23 0.2649 36.7% 1,405 

 

This case study serves as evidence that some seasonal variation does occur; 

although, it may not be as pronounced in the most significant transoceanic highways as 

expected. Further work is needed to understand variation on a more local level where 

fishing seasons and harsh winter conditions may be more likely to impact coastal traffic. 

The research developed here can provide a method for how such variations might be 

studied by developing a mechanism for extracting the traffic patterns on any time scale 

and in a region of any size.  
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C. ANOMALY DETECTION TEST CASE 

The use of the point-in-polygon technique described in Chapter II to enable 

anomaly detection along the western Africa coastal highway described in Section 2.b of 

this chapter is examined in this section. The highway is extracted from data collected 

during all of 2012. This case study assesses anomaly detection when comparing data 

from January 1, 2013, to the highway generated from the 2012 data. The track of each 

vessel is tested against the polygon defined by the width elements of the highway to 

identify whether or not each vessel is on the predefined coastal highway. 

On January 1, 2013, 338 unique vessels are identified by MMSI in the archive of 

AIS data in the region bounded by the lines of longitude at 20°W and 13°W and the lines 

of latitude at 10°N and 26°N.  This region and the highway previously developed are 

displayed in Figure 33.   

 

Figure 33.   The highway detected in the western Africa case study in Chapter IV, 
Section B can be used in a coastal anomaly detection scheme in the region 

bounded by the black box. 
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If the available position reports for each of these 338 vessels are tested against the 

expected behavior for the area, 34.6% of the vessels, or 117 of them, are anomalous in 

that they are on the highway for fewer than 10% of their position reports. Alternately, 

49.1% of the vessels, or 167 of them, are normal in that they are on the highway for more 

than 90% of their position reports. The remaining 54 vessels are on the highway some of 

the time but not all of the time. These results are summarized in Figure 34.   

 

Figure 34.   From the anomaly detection results, it can be seen that most ships are on 
the highway. 

If only vessels that are transiting the area are considered, then the results are more 

telling. In the same ROI and same time window, 148 vessels are observed to move at 

least 150 nm during the day in question. Of them, 59.5% or 88 vessels are found to be on 

the highway more than 90% of the time, while the number of vessels exhibiting 

anomalous behavior drops to 18.2% or 27. In fact, only 24 vessels never use the highway 

at all. These data are displayed in Figure 35.   
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Figure 35.   From the anomaly detection results for ships that travel at least 150 nm, it 
can be seen that a majority of ships are on the highway. 

It is not the intent to draw conclusions regarding normal behavior of ships in this 

thesis, but rather selected case studies were developed to exemplify the functionality of 

the highway and anomaly detection methods described in Chapter III. 

The methods outlined in Chapter III were expanded in this chapter with specific 

detail describing how the atlas generation and anomaly detection processes are completed 

using MATLAB. Test cases covering a variety of scenarios of atlas generation were 

outlined. Finally, a test case for anomaly detection was discussed. 
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V. CONCLUSIONS 

A method for improving maritime domain awareness by developing an atlas of 

expected ocean traffic patterns was outlined and that atlas was used as the definition of 

normal within an anomaly detection scheme in this thesis.  

An atlas generation method was developed beginning with a technique that 

preprocesses position reports into a traffic density grid. From the traffic density grid, a 

modified version of the Hough transformation was used to extract highways, which can 

be compiled and mapped into an atlas of expected ocean traffic patterns. An iterative 

method was developed to detect less prominent highways. Point-in-polygon problem 

solving was used to enable geographical region based anomaly detection of ship tracks as 

compared to the generated atlas.  

A variety of specific case studies were developed in which the atlas generation 

and anomaly detection methods demonstrated usefulness to maritime domain awareness. 

As just one of several examples, the method enabled observations of how a hurricane 

transformed expected ocean traffic patterns as it traversed the Caribbean. The anomaly 

detection methods enabled analysis of transit versus local traffic in a coastal region.  

A. SIGNIFICANT CONTRIBUTIONS 

The most significant contribution in this thesis is the exploration of a technique 

from image processing to the problem of maritime domain anomaly detection. The use of 

the Hough transformation, an image processing technique, to detect and quantify 

maritime vessel behavior patterns has not been observed before in literature. This is a 

significant contribution to MDA because it enables the extraction of traffic patterns 

without requiring the preservation of specific vessel tracks, reducing the data processing 

and storage requirements necessary for behavior analysis.  

A second contribution is in the development of techniques to produce an atlas of 

ocean highways. The extracted highways combine to form an atlas that provides a 

definition of established norms for information exploitation as required for national MDA 

efforts in accordance with [2]. 
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The anomaly detection techniques explored in this thesis are also a significant 

contribution. An automatic initial determination of a vessel’s geographic location as 

normal or abnormal is an important first step in assessing how much further analysis 

should be applied to determining a vessel’s intentions. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Several avenues for future work were opened in this thesis. The Hough 

transformation as used for this thesis was effective in detecting linear regions of interest 

within traffic patterns, but this could be expanded. First, the Hough transformation as 

used in this body of work must be run on two separate orientations of the ROI to 

overcome the problem of infinite slope. Future work could use polar coordinate 

techniques to enable detection of all linear patterns, regardless of slope, with only one 

ROI orientation required. 

While the piecewise linear coastal highway development provided sound results, 

it required manual decision making for the division of the larger coastal region into 

smaller sub-regions. Techniques could be developed to automate this process. 

The grid generation methods outlined in this thesis transform ship position data so 

that it becomes analogous to a digital image. In this work, the Hough transformation was 

explored, but other imagery processing techniques may also be able to contribute to 

MDA now that this technique for preprocessing the data into a traffic density grid has 

been observed to work. 

As another avenue for research, statistical techniques could be developed to 

determine grid size without user input. In this thesis, grid generation was based on 

empirically-based human decisions. Automating the determination of this value is 

desirable. One possibility is more exhaustive analysis of maritime traffic patterns to 

understand optimum grid sizes based on distance from land.  

AIS provided the large volume of reliable data necessary for algorithm 

development, but to truly improve MDA, new techniques should incorporate multiple 

data sources. The algorithm developed in this thesis was generally developed to be used 
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with data from any source, but no other source was tested. Preprocessing techniques to 

absorb other data sources and verify their ease of incorporation to atlas generation and 

anomaly detection technique would increase the relevance of the techniques presented in 

this thesis. Because the techniques extract highways based only on position reports, the 

method outlined in this thesis could also provide a foundation for extracting a pattern 

from a fusion of data from different sensors so long as the disparate position 

measurement systems are aligned. Such data fusion has been identified as another 

important tenet of information exploitation [2]. 

The case studies demonstrated here have provided generic atlases of traffic 

patterns for all ships in general. Using additional filters during data preprocessing would 

enable the building of case studies with very specific atlases unique to the profile of the 

ships. Such atlases might prove more useful in anomaly detection because they would 

increase the contextual cuing used in identifying abnormal behavior. 

In general, anomaly detection in the maritime environment has a multitude of 

unexplored possibilities. The method outlined in this thesis is a first means of detection 

based on statistical definitions of normal geographic position, but complete anomaly 

detection systems that used this method in series with other anomaly decision making 

tools would be more effective. 
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APPENDIX A. AIVDM INTERPRETER 

This appendix includes the PYTHON code used to translate AIS position reports 

in AIVDM data format to human-readable, comma separated list of the format [Message 

Type, MMSI, Navigation Status, Rate of turn, speed, longitude, latitude, course, true 

heading, timestamp]. Comments are in green text. 

( 1) # Read in Line of 6-Bit ASCII encoded data 
( 2)  
( 3) def getReport(asciiData): 
( 4)  
( 5)    asciiData = list(asciiData) 
( 6) 
( 7)    # Match ASCII Data to Binary Equivalent and Produce 
( 8)    # Binary Data String 
( 9)    upchar = ['0','1','2','3','4','5','6','7','8','9',':', 
(10)              ';','<','=','>','?','@','A','B','C','D','E', 
(11)              'F','G','H','I','J','K','L','M','N','O','P', 
(12)              'Q','R','S','T','U','V','W','`','a','b','c', 
(13)              'd','e','f','g','h','i','j','k','l','m','n', 
(14)              'o','p','q','r','s','t','u','v','w'] 
(15) 
(16)    downchar = ['@','A','B','C','D','E','F','G','H','I', 
(17)                'J','K','L','M','N','O','P','Q','R','S', 
(18)                'T','U','V','W','X','Y','Z','[','W',']', 
(19)                '^','-','.','/','0','1','2','3','4','5', 
(20)                '6','7','8','9',':',';','<','=','>','?'] 
(21) 
(22)    MMSIchar = ['0','1','2','3','4','5','6','7','8','9'] 
(23)             
(24) 
(25)    valueString = []; 
(26)    for m in range(0, len(asciiData)): 
(27)        letter = asciiData[m] 
(28)        g = upchar.index(letter) 
(29)        g2 = bin(g)[2:] 
(30)        diff = '0'*(6 - len(g2)) 
(31)        g3 = diff + g2 
(32)        valueString.append(g3) 
(33)    result = ''.join(valueString) 
(34)    print(result) 
(35)    # Determine message type 
(36)    try: 
(37)        messageType = int(result[0:6],2)            # Field 1 
(38)    except ValueError: 
(39)        return 0 
(40)    # Only position reports are handled by this function, 
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(41)    # return 1 if the entered report is not a position report 
(42)    # of type (1, 2, or 3) 
(43)    if (messageType >= 4) or (messageType < 1): 
(44)        return 1 
(45)    else: 
(46)        repeat = result[6:8]             
(47)        MMSI = str(int(result[8:38],2) )            # Field 2 
(48)        NavStat = str(int(result[38:42],2) )        # Field 3 
(49) 
(50)         
(51)        ROT = str(int(result[42:50],2)   )         # Field 4 
(52) 
(53) 
(54) 
(55)        speed = str(int(result[50:60],2)/10  )      # Field 5 
(56)         
(57)        longitude1 = result[61:89] 
(58)        if longitude1[0] == '0': 
(59)            longitude = str(int(longitude1,2)/600000) 
(60)        else: 
(61)            idx = 0 
(62)            tempLong = '' 
(63)            while idx < len(longitude1): 
(64)                if longitude1[idx] == '0': 
(65)                    tempLong += '1' 
(66)                else: 
(67)                    tempLong += '0' 
(68)                idx += 1 
(69)            longitude=str(-1*int(tempLong,2)/600000) #Field 6 
(70) 
(71)        latitude1 = result[89:116] 
(72)        if latitude1[0] == '0': 
(73)            latitude = str(int(latitude1,2)/600000) 
(74)        else: 
(75)            idx = 0 
(76)            tempLat = '' 
(77)            while idx < len(latitude1): 
(78)                if latitude1[idx] == '0': 
(79)                    tempLat += '1' 
(80)                else: 
(81)                    tempLat += '0' 
(82)                idx += 1 
(83)            latitude = str(-1*int(tempLat,2)/600000) #Field 7 
(84) 
(85)        course = str(int(result[116:127],2)/10 )    # Field 8 
(86)        hdg    = str(int(result[127:137],2))        # Field 9 
(87)        timestamp = str(int(result[137:142],2))    # Field 10 
(88) 
(89)        report =[str(messageType), MMSI, NavStat, ROT, speed, 
(90)                  longitude, latitude,course, hdg, timestamp] 
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(91) 
(92)        return report 
(93)  # END OF CODE 
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APPENDIX B. HOUGH TRANSFORMATION SCRIPT 

This appendix includes the function written as a MATLAB script to perform the 

Hough transform on position report data, identify the dominant linear trend in the region, 

and return a highway definition describing a linear model of the dominant trend. 

Comments are in green text. 

 

function [ highway, allPairsU, counts, pointsWithPair] = 
HoughTransform_Maritime2( TestMatrix,... 
    density_tol, slope_tol, dist_tol ) 
%This is a preliminary development for the Hough Transform applied to a 
%density Matrix. 
  
% TestMatrix is the input matrix of normalized density values for the 
% region of interest 
% density_tol is the user established density that should be used to 
% identify a highway 
% dist_tol is the tolerance a user would accept that would indicate two 
% points are on the same line. 
% tol_line is the tolerance for how many grid lengths away two points can 
% be before they should be considered NOT part of the same line. 
  
a = ((TestMatrix)'); 
d{size(a,1),size(a,2)} = []; 
allPairs = []; 
theta = [1:5:180]; 
for mm = 1:size(a,1) 
    for nn = 1:size(a,2) 
        if a(mm,nn) >= density_tol  
            for q = 1:length(theta) 
                Q1 = [mm,nn]; 
                Q2 = [mm + cosd(theta(q)), nn + sind(theta(q))]; 
                m = (Q2(2) - Q1(2))/(Q2(1) - Q1(1)); 
                b = -m*Q1(1) + Q1(2); 
                P = [0,0]; 
                d{mm,nn}(q,2) = abs(det([Q2-Q1;P-Q1]))/norm(Q2-Q1); 
                 
                Dx = (sqrt(-Q2(2)^2 + 2*m*Q2(1)*Q2(2) +... 
                    d{mm,nn}(q,2)^2*(m^2 + 1) - m^2*Q2(1)^2)... 
                    - m*(Q2(2) - m*Q2(1)))/(m^2 + 1); 
                 
                d{mm,nn}(q,1) = real(acosd(Dx/d{mm,nn}(q,2))); 
                allPairs = [allPairs;d{mm,nn}(q,1),d{mm,nn}(q,2)]; 
            end   
        end 
    end 
end 
%% Remove repeat entries in the table 
  
allPairs(:,2) = round(allPairs(:,2)*1000)/1000; 
allPairsU = unique(allPairs,'rows'); 
  
%% Identify the slope/tol pair that occurres most prevalently in the data 
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counts = zeros(size(allPairsU,1),1); 
for i = 1:size(allPairs,1) 
    for e = 1:size(allPairsU,1) 
        diff = abs(allPairs(i,:) - allPairsU(e,:)); 
         
        if diff(1) < slope_tol && diff(2) < dist_tol 
            counts(e) = counts(e) + 1; 
        end 
         
    end 
end 
  
[~, maxidx] = max(counts); 
  
thePair = allPairsU(maxidx,:); 
pointsWithPair = []; 
for mm = 1:size(a,1) 
    for nn = 1:size(a,2) 
        list = d{mm,nn}; 
        for e = 1:size(list,1) 
            list(e,:); 
            thePair; 
            [slope_tol, dist_tol]; 
            if sum(abs(list(e,:) - thePair) < [slope_tol, dist_tol]) == 2 
                pointsWithPair = [pointsWithPair; mm,nn];  %#ok<*AGROW> 
            end 
        end 
    end 
end 
  
P = polyfit(pointsWithPair(:,1),pointsWithPair(:,2),1); 
startX = min(pointsWithPair(:,1)); 
stopX = max(pointsWithPair(:,1)); 
  
highways_x = startX:1:stopX; 
highways_y = highways_x * P(1) + P(2); 
  
highway = [highways_x; highways_y]; 
end 
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