

Calhoun: The NPS Institutional Archive

Aliquots sums of Fibonacci numbers

Luca, Florian

Congressus Numerantium Vol.200, Proc. International Conf. Fibonacci Numbers \& Applic., (W. Webb, ed.) (2010), 153-160.

Aliquot sums of Fibonacci numbers

Florian Luca
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx
Pantelimon Stănică*
Naval Postgraduate School
Applied Mathematics Department
Monterey, CA 93943, USA
pstanica@nps.edu

July 24, 2007

Abstract

Here, we investigate the Fibonacci numbers whose sum of aliquot divisors is also a Fibonacci number (the prime Fibonacci numbers have this property).

1 Introduction

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers. For a positive integer n we write $\sigma(n)$ for the sum of divisors function of n. Recall that a number n is called multiply perfect if $n \mid \sigma(n)$. If $\sigma(n)=2 n$, then n is called perfect. In [2], it was shown that there are only finitely many multiply perfect Fibonacci

[^0]numbers, and in [3], it was shown that no Fibonacci number is perfect. For a positive integer n, the value $\varphi(n)$ of the Euler function is defined to be the number of natural numbers less than or equal to n and coprime to n.

Let $s(n)=\sigma(n)-n$. The number $s(n)$ is sometimes called the sum of aliquot divisors of n. Two positive integers m and n (with $m \neq n$) are called amicable if $s(m)=n$ and $s(n)=m$. It is not known if there exist infinitely many amicable pairs, but Pomerance [5] showed that the sum of the reciprocals of all the members of all amicable pairs is convergent.

Here, we search for Fibonacci numbers F_{n} such that $s\left(F_{n}\right)$ is a Fibonacci number. In particular, prime Fibonacci numbers have the above property. We put

$$
\mathcal{A}=\left\{n: s\left(F_{n}\right)=F_{m} \text { for some positive integer } m\right\} .
$$

In this paper, we give an upper bound on the counting function of \mathcal{A}.
Theorem 1. There exists a positive constant c_{0} such that the inequality

$$
\# \mathcal{A}(x)<c_{0} \frac{x}{\log \log \log x}
$$

holds for all $x>e^{e^{e}}$.
Throughout this paper, we use the Vinogradov symbols $\gg \lll<$ and the Landau symbols O, \asymp and o with their usual meanings. We recall that $A \ll B, B \gg A$ and $A=O(B)$ are all equivalent and mean that $|A|<c B$ holds with some constant c, while $A \asymp B$ means that both $A \ll B$ and $B \ll A$ hold. For a positive real number x we write $\log x$ for the maximum between 2 and the natural logarithm of x. Note that with this convention, the function $\log x$ is sub-multiplicative; i.e., the inequality $\log (x y) \leq \log x \log y$ holds for all positive numbers x and y. For a positive real number t and a subset \mathcal{B} of the positive integers, we write $\mathcal{B}(t)=\mathcal{B} \cap[1, t]$. We use p, q, P and Q with or without subscripts to denote prime numbers.

Acknowledgements. During the preparation of this paper, F. L. was supported in part by projects PAPIIT 104505, SEP-CONACyT 46755 and a Guggenheim Fellowship.

2 The Proof of Theorem 1

Let x be a large positive real number.

2.1 Some sieving

Let $\omega(n)$ and $\Omega(n)$ be the number of prime divisors of n and the number of prime power divisors of $n(>1)$, respectively. Let

$$
\begin{equation*}
\mathcal{A}_{1}(x)=\{n \leq x: \omega(n)<0.9 \log \log x \text { or } \Omega(n)>1.1 \log \log x\} . \tag{1}
\end{equation*}
$$

By the Turán-Kubilius inequalities (see [8])

$$
\sum_{n \leq x}(f(n)-\log \log x)^{2}=O(x \log \log x) \quad \text { for both } f \in\{\omega, \Omega\}
$$

we infer that

$$
\begin{equation*}
\# \mathcal{A}_{1}(x) \ll \frac{x}{\log \log x} \tag{2}
\end{equation*}
$$

Let $y=(\log \log x)^{1 / 3}$ and let

$$
\begin{equation*}
\mathcal{A}_{2}(x)=\{n \leq x: p \nmid n \text { for all primes } p<y\} . \tag{3}
\end{equation*}
$$

By Brun's sieve,

$$
\begin{equation*}
\# \mathcal{A}_{2}(x) \ll x \prod_{p<y}\left(1-\frac{1}{p}\right) \ll \frac{x}{\log y} \ll \frac{x}{\log \log \log x} \tag{4}
\end{equation*}
$$

We now write

$$
\sigma\left(F_{n}\right)=F_{n}+F_{m},
$$

and we look at bounds for m in terms of n, where $n \leq x$ does not belong to $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x)$.

2.2 Bounds for m in terms of n

We start with a lower bound for m. Let $\gamma=(1+\sqrt{5}) / 2$ be the golden section. Let $n \leq x$ not in $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x)$. Then, there exists $p<y$ such that $p \mid n$. Thus, $F_{p} \mid F_{n}$, therefore

$$
\gamma^{m}>F_{m}=s\left(F_{n}\right) \geq \frac{F_{n}}{F_{p}} \gg \gamma^{n-p} \geq \gamma^{n-y}
$$

where we used the fact that $F_{n} \asymp \gamma^{n}$. Hence,

$$
m \geq n-y+O(1)
$$

therefore

$$
m \geq n-2 y
$$

once x is sufficiently large. We now look at an upper bound for m. Note that

$$
\begin{equation*}
\gamma^{m-n} \ll \frac{F_{m}}{F_{n}} \leq \frac{\sigma\left(F_{n}\right)}{F_{n}} \leq \frac{F_{n}}{\varphi\left(F_{n}\right)} \leq \prod_{p \backslash F_{n}}\left(1+\frac{1}{p-1}\right) . \tag{5}
\end{equation*}
$$

For every prime number p let $z(p)$ be its order of apparition in the Fibonacci sequence, and for a positive integer d let $\mathcal{P}_{d}=\{p: z(p)=d\}$. It is known that $p \equiv \pm 1(\bmod z(p))$ holds for all primes $p>5$ and it is clear that

$$
F_{d} \geq \prod_{p \in \mathcal{P}_{d}} p \gg(d-1)^{\# \mathcal{P}_{d}}
$$

therefore

$$
\begin{equation*}
\# \mathcal{P}_{d} \ll \frac{d}{\log d} . \tag{6}
\end{equation*}
$$

Furthermore, $z(p) \gg \log p$. We now get by taking logarithms in (5) that

$$
m-n \leq \sum_{p \backslash F_{n}} \frac{1}{p-1}+O(1) \leq \sum_{d \mid n} \sum_{p \in \mathcal{P}_{d}} \frac{1}{p-1}+O(1)
$$

Obviously,

$$
\sum_{p \in \mathcal{P}_{d}} \frac{1}{p-1} \leq \sum_{\substack{p \equiv \pm 1 \\ p<d^{2}}} \frac{1}{\bmod d)}+\frac{\# \mathcal{P}_{d}}{d^{2}-2} \ll \frac{\log \log d}{\varphi(d)}
$$

where in the above inequality we have used estimate (6) as well as the known fact that the inequality

$$
\begin{equation*}
\sum_{\substack{(\bmod b) \\ p<t}} \frac{1}{p-1} \leq \frac{1}{p_{1}(a, b)-1}+O\left(\frac{\log \log t}{\varphi(b)}\right) \tag{7}
\end{equation*}
$$

holds uniformly in coprime positive integers $a<b$ and positive real numbers t, where $p_{1}(a, b)$ is the first prime in the arithmetic progression $a(\bmod b)$
(see, for example, [4]). Since the function $\log \log d$ is sub-multiplicative, we get that

$$
\begin{aligned}
m-n & \leq \prod_{p^{\mu}| | n}\left(1+O\left(\sum_{\nu=1}^{\mu} \frac{\log \log \left(p^{\nu}\right)}{p^{\nu}}\right)\right) \\
& \leq \exp \left(O\left(\sum_{p \mid n} \frac{\log \log p}{p}+\sum_{p \geq 2} \sum_{\nu \geq 2} \frac{\log \log \left(p^{\nu}\right)}{p^{\nu}}\right)\right) \\
& =\exp \left(O\left(\sum_{p \mid n} \frac{\log \log p}{p}+1\right)\right)
\end{aligned}
$$

Since $n \notin \mathcal{A}_{1}(x)$, it follows that $\omega(n)<1.1 \log \log x$. Thus, if we write $p_{1}<p_{2}<\ldots$ for the increasing sequence of all the prime numbers, then

$$
\begin{aligned}
\sum_{p \mid n} \frac{\log \log p}{p} & \leq \sum_{i=1}^{\omega(n)} \frac{\log \log p}{p} \leq \int_{2}^{p_{\omega(n)}} \frac{\log \log t}{t} d \pi(t) \\
& \ll\left(\log \log p_{\omega(n)}\right)^{2} \ll(\log \log \log \log x)^{2}
\end{aligned}
$$

Hence,

$$
m-n \leq \exp \left(O\left((\log \log \log \log x)^{2}\right)\right)<2 y
$$

where the last inequality holds if x is large. In conclusion, if $n \leq x$ is not in $\mathcal{A}_{1}(x) \cup \mathcal{A}_{2}(x)$, then $m \in[n-2 y, n+2 y]$.

2.3 More sieving

Let $\mathcal{Q}=\left\{q: z(q)<q^{1 / 3}\right\}$. Note that uniformly in $t>1$,

$$
2^{\# \mathcal{Q}(t)} \leq \prod_{\substack{q \in \mathcal{Q} \\ q<t}} q \leq \prod_{n<t^{1 / 3}} F_{n}<\gamma^{\sum_{n<t^{1 / 3}} n}<\gamma^{t^{2 / 3}},
$$

therefore

$$
\# \mathcal{Q}(t) \ll t^{2 / 3}
$$

which shows that

$$
\begin{align*}
\sum_{\substack{q \in \mathcal{Q} \\
q>s}} \frac{1}{q} & \leq \int_{s}^{\infty} \frac{1}{t} d \# \mathcal{Q}(t) \\
& \leq\left.\frac{\# \mathcal{Q}(t)}{t}\right|_{t=s} ^{t=\infty}+\int_{s}^{\infty} \frac{\# \mathcal{Q}(t)}{t^{2}} \\
& \ll \frac{1}{s^{1 / 3}}+\int_{s}^{\infty} \frac{d t}{t^{4 / 3}} \ll \frac{1}{s^{1 / 3}} \tag{8}
\end{align*}
$$

We now put $u=(\log x)^{3}$ and let

$$
\begin{equation*}
\mathcal{A}_{3}(x)=\{n \leq x, z(p) p \mid n \text { for some } p>u\} . \tag{9}
\end{equation*}
$$

For every fixed prime $p>u$, the number of $n \leq x$ which are multiples of $p z(p)$ is $\lfloor x / p z(p)\rfloor \leq x / p z(p)$. So,

$$
\begin{align*}
\# \mathcal{A}_{3}(x) & \leq \sum_{p>u} \frac{x}{p z(p)} \leq \sum_{\substack{p>u \\
p \notin \mathcal{Q}}} \frac{x}{p z(p)}+\sum_{\substack{p>u \\
p \in \mathcal{Q}}} \frac{x}{z(p) p} \\
& \ll \sum_{u^{1 / 3}<d \leq x} \sum_{\substack{\left.p \equiv \pm 1 \\
p<d^{3} \\
p+d\right)}} \frac{x}{d p}+\frac{x}{u^{1 / 3}} \\
& \ll x \sum_{u^{1 / 3}<d \leq x} \frac{\log \log d}{d \varphi(d)}+\frac{x}{u^{1 / 3}} \\
& \ll x \sum_{u^{1 / 3}<d \leq x} \frac{(\log \log d)^{2}}{d^{2}}+\frac{x}{u^{1 / 3}} \\
& \ll x(\log \log x)^{2} \sum_{d>u^{1 / 3}} \frac{1}{d^{2}}+\frac{x}{u^{1 / 3}} \ll \frac{x(\log \log x)^{2}}{(\log x)^{1 / 3}}, \tag{10}
\end{align*}
$$

where in the above estimates we used (8) with $s=u^{1 / 3}$, the fact that $\phi(d) \gg$ $d / \log \log d$ for all d, as well as estimate (7) with $b=d$ and $a=1$ and $d-1$, respectively.

We finally put $\omega_{u}(n)$ for the number of prime factors $p \leq u$ of $n, v=$ $2 \log \log \log x$ and let

$$
\begin{equation*}
\mathcal{A}_{4}(x)=\left\{n \leq x: \omega_{u}(n)>v\right\} . \tag{11}
\end{equation*}
$$

Again by Turán-Kubilius inequality,

$$
\sum_{n<x}\left(\omega_{u}(n)-\log \log u\right)^{2}=O(x \log \log u)
$$

and since $\log \log u=(1+o(1)) \log \log \log x$, we get easily that

$$
\begin{equation*}
\# \mathcal{A}_{4}(x) \ll \frac{x}{\log \log \log x} \tag{12}
\end{equation*}
$$

From now on, we deal only with numbers $n \leq x$ which are not in $\mathcal{A}_{1}(x) \cup$ $\mathcal{A}_{2}(x) \cup \mathcal{A}_{3}(x) \cup \mathcal{A}_{4}(x)$.

2.4 The 2-adic order of $\sigma\left(F_{n}\right)$

Let $K=\lfloor 0.8 \log \log x\rfloor$. Since $n \notin \cup_{i=1}^{4} \mathcal{A}_{i}(x)$, we get that n has $\omega(n)-$ $\omega_{u}(n)>0.9 \log \log x-2 \log \log \log x>K$ prime factors $P>u$, once x is sufficiently large. Let $P_{1}>P_{2}>\ldots>P_{K}$ be the first (largest) prime factors of n. Then $P_{K}>u$. Note that

$$
F_{n}=\left(\prod_{i=0}^{K-1} \frac{F_{n / P_{1} \ldots P_{i}}}{F_{n / P_{1} \ldots P_{i+1}}}\right) F_{n / P_{1} \ldots P_{K}}
$$

where by convention we take $P_{0}=1$. Let

$$
L_{i}=\frac{F_{n / P_{1} \ldots P_{i}}}{F_{n / P_{1} \ldots P_{i+1}}} \quad \text { for } i=0, \ldots, K-1 \quad \text { and } \quad L_{K}=F_{n / P_{1} \ldots P_{K}}
$$

We next observe that L_{i} and L_{j} are coprime for all $0 \leq i<j \leq K$. Indeed, assume that $i<j \leq K$ and Q are such that $Q \mid \operatorname{gcd}\left(L_{i}, L_{j}\right)$. Then

$$
Q \left\lvert\, \operatorname{gcd}\left(F_{n / P_{1} \ldots P_{i+1}}, \frac{F_{n / P_{1} \ldots P_{i}}}{F_{n / P_{1} \ldots P_{i+1}}}\right) .\right.
$$

However, it is well-known that the greatest common divisor appearing above divides P_{i+1}. Hence, $Q=P_{i+1}$, and $Q \mid F_{n}$, therefore $z(Q) \mid n$. Since $Q>u>5$ for large x, we get that $Q z(Q) \mid n$ contradicting the fact that $n \notin \mathcal{A}_{3}(x)$. Thus, L_{i} and L_{j} are indeed coprime for all $i<j$.

In [6], Ribenboim and McDaniel studied square-classes of Fibonacci numbers. Given two integers m and n, they are in the same square-class if $F_{m} F_{n}$
is a square. It follows from their results that if $m>12 n$ and n is sufficiently large, then m and n are not in the same square-class. In particular, if x is large, then none of the numbers L_{i} is a perfect square. Thus, there exists a prime $Q_{i} \mid L_{i}$, such that the order at which Q_{i} appears in L_{i} (hence, in F_{n}) is odd. It is also clear that Q_{i} is odd if x is large enough (say if $u>3$). Thus, $\prod_{i=1}^{K}\left(Q_{i}+1\right)$ is a divisor of $\sigma\left(F_{n}\right)$, which proves that $\sigma\left(F_{n}\right)$ is a multiple of 2^{K}.

2.5 The conclusion

Let $\mathcal{A}_{5}(x)$ be the set of all positive integers $n \in \mathcal{A}(x)$ which are not in $\cup_{i=1}^{4} \mathcal{A}_{i}(x)$. Let $n_{1}<n_{2}<\ldots<n_{\ell}$ be all the elements in $\mathcal{A}_{5}(x)$. Then there exists $k_{i} \in[-2 y, 2 y]$ such that $m_{i}=n_{i}+k_{i}$ for all $i=1, \ldots, \ell$. Furthermore, $2^{K} \mid \sigma\left(F_{n_{i}}\right)=F_{n_{i}}+F_{n_{i}+k_{i}}$. Let $M=\lceil 4 y+1\rceil$. We show that if $\ell>M$, then $n_{i+M}-n_{i}$ is large whenever $i \leq \ell-M$. Indeed, let $n_{i}<n_{i+1}<\ldots<$ n_{i+M}. Then $k_{j} \in[-2 y, 2 y]$ for all $j=i, \ldots, i+M$, and since there are at most $2\lfloor 2 y\rfloor+1<M+1$ possible values of k_{j} and $M+1$ possibilities for the index j, it follows that there exist $j_{1}<j_{2}$ in $\{i, \ldots, i+M\}$ such that $k_{j_{1}}=k_{j_{2}}$. Let k denote the common value of $k_{j_{1}}$ and $k_{j_{2}}$. Using the formula $F_{n}=\left(\gamma^{n}-\delta^{n}\right) /(\gamma-\delta)$, where $\delta=(1-\sqrt{5}) / 2$ is the conjugate of γ, we note that the relation $2^{K} \mid F_{n_{j_{1}}}+F_{n_{j_{1}}+k}$ gives

$$
\begin{equation*}
\gamma^{n_{j_{1}}}\left(1+\gamma^{k}\right)-\delta^{n_{j_{1}}}\left(1+\delta^{k}\right) \equiv 0 \quad\left(\bmod 2^{K}\right), \tag{13}
\end{equation*}
$$

and similarly for $n_{j_{2}}$. Here and in what follows, we say that an algebraic integer α is a multiple of an integer m if α / m is an algebraic integer. Write $\lambda=n_{j_{2}}-n_{j_{1}}$. Then the above relation for $n_{j_{2}}$ gives

$$
\begin{equation*}
\gamma^{n_{j_{1}}} \gamma^{\lambda}\left(1+\gamma^{k}\right)-\delta^{n_{j_{1}}} \delta^{\lambda}\left(1+\delta^{k}\right) \equiv 0 \quad\left(\bmod 2^{K}\right) \tag{14}
\end{equation*}
$$

Multiplying the congruence (13) by γ^{λ} and subtracting it from congruence (14), we get that

$$
\begin{equation*}
\delta^{n_{j_{1}}}\left(1+\delta^{k}\right)\left(\gamma^{\lambda}-\delta^{\lambda}\right) \equiv 0 \quad\left(\bmod 2^{K}\right) . \tag{15}
\end{equation*}
$$

Conjugating the above relation (15) and multiplying the resulting congruences, we get

$$
\left|1+\delta^{k}\right|\left|1+\gamma^{k}\right|\left|\gamma^{\lambda}-\delta^{\lambda}\right|^{2}
$$

is an integer which is a multiple of $2^{2 K}$. Noting that the above integer is nonzero, by taking logarithms we get

$$
\lambda \log \gamma+O(M) \geq 2 K
$$

therefore $\lambda \gg K$. Thus, we just proved that $n_{i+M}-n_{i} \gg K$, therefore

$$
\begin{equation*}
\# \mathcal{A}_{5}(x) \ll \frac{x M}{K}+M \ll \frac{x}{(\log \log x)^{2 / 3}}, \tag{16}
\end{equation*}
$$

which together with the upper bounds (2), (4), (10) and (12) completes the proof of Theorem 1.

References

[1] N. L. Bassily, I. Kátai, and M. Wijsmuller, 'On the prime power divisors of the iterates of the Euler- φ function', Publ. Math. (Debrecen) 55 (1999), 17-32.
[2] F. Luca, 'Multiply perfect numbers in Lucas sequences with odd parameters', Publ. Math. (Debrecen) 58 (2001), 121-155.
[3] F. Luca, 'Perfect Fibonacci and Lucas numbers', Rend. Circ. Mat. Palermo (2) 49 (2000), 313-318.
[4] C. Pomerance, 'On the distribution of amicable numbers', J. Reine Angew. Math. 293/294 (1977), 217-222.
[5] C. Pomerance, 'On the distribution of amicable numbers. II', J. Reine Angew. Math. 325 (1981), 183-188.
[6] P. Ribenboim and W. L. McDaniel, 'Square classes in Lucas sequences having odd parameters', J. Number Theory 73 (1998), 14-27.
[7] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge U. Press, 1995.
[8] P. Turán, 'On a theorem of Hardy and Ramanujan', J. London Math. Soc. 9 (1934), 274-276.

[^0]: *This paper was written while at Auburn University Montgomery, Department of Mathematics, Montgomery, AL 36124-4023, USA

