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Abstract

Here, we investigate the Fibonacci numbers whose sum of aliquot
divisors is also a Fibonacci number (the prime Fibonacci numbers have
this property).

1 Introduction

Let (Fy,)n>1 be the sequence of Fibonacci numbers. For a positive integer n
we write o(n) for the sum of divisors function of n. Recall that a number n is
called multiply perfectif n | o(n). If o(n) = 2n, then n is called perfect. In [2],
it was shown that there are only finitely many multiply perfect Fibonacci

*This paper was written while at Auburn University Montgomery, Department of Math-
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numbers, and in [3], it was shown that no Fibonacci number is perfect. For
a positive integer n, the value p(n) of the Euler function is defined to be the
number of natural numbers less than or equal to n and coprime to n.

Let s(n) = o(n) —n. The number s(n) is sometimes called the sum
of aliquot divisors of n. Two positive integers m and n (with m # n) are
called amicable if s(m) = n and s(n) = m. It is not known if there exist
infinitely many amicable pairs, but Pomerance [5] showed that the sum of
the reciprocals of all the members of all amicable pairs is convergent.

Here, we search for Fibonacci numbers F), such that s(F,) is a Fibonacci
number. In particular, prime Fibonacci numbers have the above property.
We put

A= {n:s(F,) = F,, for some positive integer m}.

In this paper, we give an upper bound on the counting function of A.

Theorem 1. There exists a positive constant cy such that the inequality

#A(x)

< _
0 log log log x
holds for all x > e* .

Throughout this paper, we use the Vinogradov symbols >, < and the
Landau symbols O, < and o with their usual meanings. We recall that
A< B, B> Aand A = O(B) are all equivalent and mean that |A| < ¢B
holds with some constant ¢, while A < B means that both A < B and
B < A hold. For a positive real number x we write logx for the maximum
between 2 and the natural logarithm of x. Note that with this convention, the
function log z is sub-multiplicative; i.e., the inequality log(zy) < logzlogy
holds for all positive numbers x and y. For a positive real number ¢ and a
subset B of the positive integers, we write B(t) = BN [1,t]. We use p, ¢, P
and () with or without subscripts to denote prime numbers.
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2 The Proof of Theorem 1

Let x be a large positive real number.
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2.1 Some sieving

Let w(n) and Q(n) be the number of prime divisors of n and the number of
prime power divisors of n (> 1), respectively. Let

Ai(z) ={n <z :w(n) <09loglogz or Q(n) > 1.1loglogx}. (1)

By the Turdan-Kubilius inequalities (see [8])

Z(f(n) —loglogz)* = O(xloglog 7) for both f € {w, 2},

n<x

we infer that

T
. 2
#A(r) < log log x @)
Let y = (loglog z)'/3 and let
As(x) ={n <z :pfn for all primes p < y}. (3)

By Brun’s sieve,

#A:(0) < o ][ (1 _ %) v v ()

Sloey S loglogloga
p<y Ogy Ogogog.T

We now write
o(F,) =F,+ Fp,,

and we look at bounds for m in terms of n, where n < x does not belong to
.Al(ZE) U A2($)
2.2 Bounds for m in terms of n

We start with a lower bound for m. Let y = (14-4/5)/2 be the golden section.
Let n < z not in A;(z) U As(x). Then, there exists p < y such that p | n.
Thus, F, | F,, therefore

F,
Y > F=8(F,) > —>"P >A4"Y,
FP

where we used the fact that F;, < +". Hence,

m>n—y+ 0(1),
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therefore
m>n— 2y,

once z is sufficiently large. We now look at an upper bound for m. Note that

_ F,. _o(F,) F, 1
men — < < < || 1+—). 5
pP|EFn

For every prime number p let z(p) be its order of apparition in the Fibonacci
sequence, and for a positive integer d let Py, = {p : z(p) = d}. It is known
that p = £1 (mod z(p)) holds for all primes p > 5 and it is clear that

Fy> [ p> (d—1)#,

PEPy

therefore

d
#Pa < Togd (6)

Furthermore, z(p) > logp. We now get by taking logarithms in (5) that

—n< _ < -
m—n < —+0() <> > — +0(1)
p|Fn d|n p€Pq
Obviously,
1 1 P loglog d
=< 2 1 df—dz g(d? ’
PEP4 p p=+1 (mod d) ¥

p<d?

where in the above inequality we have used estimate (6) as well as the known
fact that the inequality

1 1 loglogt
> o () ")

p=a (mod b)
p<t

holds uniformly in coprime positive integers a < b and positive real numbers
t, where pj(a,b) is the first prime in the arithmetic progression a (mod b)



(see, for example, [4]). Since the function loglogd is sub-multiplicative, we
get that

pH ‘ |n v=1

< e |0 Zlog;ogp +Zzlog1;§(p”)

pln p>2 v>2

log1
= exp O ZM+1

b
pln

Since n ¢ A;(x), it follows that w(n) < 1.1loglogz. Thus, if we write
p1 < p2 < ... for the increasing sequence of all the prime numbers, then

w(n)
Z loglog p < Z loglog p < /pw(ﬂ log IOgtdﬂ(t)
pln p a =1 p a 2 t

< (loglog pum))® < (loglogloglog z)>.
Hence,
m —n < exp (O((loglogloglog z)?)) < 2y,

where the last inequality holds if x is large. In conclusion, if n < x is not in
Ai(z) U Ay(z), then m € [n — 2y, n + 2y].

2.3 More sieving
Let @ = {q: 2(q) < ¢"/3}. Note that uniformly in t > 1,

2120 < TJq< ] Fo<a™rere™ <477,

qeQ n<tl/3
q<t

therefore

#O(t) < 27,



which shows that

1
o< / Sd#0(1)
qEQ s
q>s
< ‘ #Q
1 o dt
< S [ < ©
We now put v = (log x)? and let
As(z) ={n < z,z(p)p | n for some p > u}. (9)

For every fixed prime p > wu, the number of n < x which are multiples of
pz(p) is [x/pz(p)] < x/pz(p). So,

M) < Y <Y oYy S

pz(p) T Spz(p) e
PEQ peEQ

< > > £+%

dp
ul/3<d<zp=+£1 (mod d)

p<d?
loglog d x
<7z Z d(d) + ul/3
ul/3<d<z
(log logd x
<z ), T
ul/3<d<w
1 T z(loglog z)?
2 —
< z(loglogz) dX:/S d? + ul/3 < (log:v)l/s ? (10)
>yl

where in the above estimates we used (8) with s = u!'/3, the fact that ¢(d) >
d/loglogd for all d, as well as estimate (7) with b=d and a =1 and d — 1,
respectively.

We finally put w,(n) for the number of prime factors p < w of n, v =
2logloglog x and let

Ag(x) ={n <z :w,(n) > v} (11)



Again by Turan-Kubilius inequality,

Z(wu(n) —loglogu)? = O(xloglogu),

n<x
and since loglogu = (1 4 o(1)) logloglog x, we get easily that

X

#A4(7) < (12)

logloglogx’

From now on, we deal only with numbers n < z which are not in 4, (z) U

.AQ(ZE) U Ag(l’) U .A4(£L')

2.4 The 2-adic order of o(F,)

Let K = |0.8loglogx]|. Since n ¢ U, A;(z), we get that n has w(n) —
wu(n) > 0.9loglogz — 2logloglogz > K prime factors P > u, once x is
sufficiently large. Let P, > P» > ... > Pk be the first (largest) prime factors
of n. Then Pgx > u. Note that

K-1 F
Fn = (H /—1> Fn/Pl...PK7

i=0 Fn/Pl...Pi+1
where by convention we take Py = 1. Let

L, = fori =0, ..., K—1 and Ly = Fyp,..Py-

F’n/Pl...PiJrl
We next observe that L; and L; are coprime for all 0 <14 < j < K. Indeed,
assume that ¢ < j < K and @ are such that @ | ged(L;, L;). Then

Fn/Pl...Pi )

FTL/Pl...Pi+1

Q ‘ ged (Fn/Pl...Pi_H;

However, it is well-known that the greatest common divisor appearing above
divides P,;. Hence, Q = Piyq, and Q | F,, therefore z(Q) | n. Since
Q > u > 5 for large x, we get that Qz(Q) | n contradicting the fact that
n & As(z). Thus, L; and L; are indeed coprime for all ¢ < j.

In [6], Ribenboim and McDaniel studied square-classes of Fibonacci num-
bers. Given two integers m and n, they are in the same square-class if F}, F,
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is a square. It follows from their results that if m > 12n and n is sufficiently
large, then m and n are not in the same square-class. In particular, if x is
large, then none of the numbers L; is a perfect square. Thus, there exists a
prime Q; | L;, such that the order at which @); appears in L; (hence, in F},) is
odd. Tt is also clear that @; is odd if = is large enough (say if u > 3). Thus,
HZI;(Qz + 1) is a divisor of o(F,), which proves that o(F,) is a multiple
of 2K,

2.5 The conclusion

Let As(z) be the set of all positive integers n € A(z) which are not in
Ui Ai(x). Let ny < mg < ... < ng be all the elements in As(z). Then there
exists k; € [—2y, 2y] such that m; = n; +k; for alli =1,... ¢. Furthermore,
2K | o(F,,) = F,, + F,, 41, Let M = [4y + 1]. We show that if £ > M,
then n;;p — n; is large whenever ¢ < ¢ — M. Indeed, let n; < n;ip < ... <
nitnm. Then k; € [—2y,2y] for all j =4, ..., i+ M, and since there are at
most 2[2y| +1 < M + 1 possible values of k; and M + 1 possibilities for
the index 7, it follows that there exist j; < jp in {i,...,7 + M} such that
kj, = kj,. Let k denote the common value of k;, and kj,. Using the formula
F, = (y"—=0")/(y—=6), where 6 = (1 —/5)/2 is the conjugate of 7, we note
that the relation 2% | Fy, + Foj 4k gives

(14 4%) = 6™ (1+65) =0 (mod 2%), (13)

and similarly for n;,. Here and in what follows, we say that an algebraic
integer «v is a multiple of an integer m if a/m is an algebraic integer. Write
A = nj, —nj,. Then the above relation for n;, gives

VML +R) ="Ml +6%) =0 (mod 2). (14)

Multiplying the congruence (13) by 4* and subtracting it from congruence
(14), we get that

5" (146" (y* =" =0 (mod 25). (15)

Conjugating the above relation (15) and multiplying the resulting congru-
ences, we get
|1+ 81+ |y = o7



is an integer which is a multiple of 22X, Noting that the above integer is
nonzero, by taking logarithms we get

Aogy + O(M) > 2K,

therefore A > K. Thus, we just proved that n;,,; — n; > K, therefore

M
S As(1) < T8+ M < v

—_— 1
K (log log :)%/3’ (16)

which together with the upper bounds (2), (4), (10) and (12) completes the
proof of Theorem 1.
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