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THE SCIENTIFIC METHOD OF CHOOSING MODEL FIDELITY 

ABSTRACT 

Michael P. Bailey 

Department of Operations Research 
Naval Postgraduate School 

Monterey, CA 93943, U. S. A. 

Simulation modeling currently enjoys great popular­
ity as a tool for solving problems within Department 
of Defense activities. In this work we consider the 
process of upgrading an existing simulation model by 
increasing the fidelity of the modeL The submod­
els to be upgraded and the degree to which they are 
upgraded should be chosen in a coherent, scientific 
manner. This is currently not the norm. 

In this work we describe a method which a simula­
tion analyst can use to choose from a set of proposed 
model upgrades that accounts for both the cosLs of 
the upgrade as well as the benefits. 

1 INTRODUCTION 

Emerging computer environment standards and tech­
nology, as well as software design improvements, have 
produced an unprecidented opportunity to improve 
existing models used in support of military analysis. 
The model enhancements selected for implementation 
come from a set of initiatives generated by the devel­
oper /user community. Although the designers, de­
velopers, and users of simulation models are sophisti­
cated teehnologists and decision scientists, the model 
improvements they select are usually chosen in a.n en­
tirely unscientific way. 

In this work, we present a fledgling methodology 
proposed for deterntlning which aspects of a given 
model should be chosen for improvement, and discuss 
the implementation of this method using examples 
from experiences in model development. 

Emerging technologies in the computer science 
realm have produced an opportunity to change model 
fidelity expediently. Simulation modeling software ug.. 
ing the object-oriented programming paradigm has 
existed for decades (see Bertwistle(1973)), but object­
oriented models have a reputation for being poor per­
formers. A diversity of products have now become 
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available which combine modern software production 
environments, object-oriented simulation (OOS), and 
performance competitive with FORTRAN models. 

The relevance of this OOS revolution to the present 
discussion is that object-oriented models are forced to 
be modular, so that exchanging an existing submode! 
with an enhanced one does not carry the cost it usep. 
to. Thus, growth of simulation models from pri¥ 
tive to sophisticated is more graceful, costs less, a.nd 
does not rely on personnel possessing extreme inti­
macy with the model's implementation. 

Computer development and runtime environments 
are finally becoming standardized, a.n initiative com­
monly known as open arr:hitecture. The impact of 
this movement is that, because of the degree of 
standardization, models are portable to an uupreci­
dented degree. Models must no longer adhere to 
the political boundries 00 the computer environment 
map. Model developers are now capable of producing 
machine-independent implementations so that mod­
els can keep pace with the growth of computer envi­
ronment capabilities. Improving model performance 
and capabilities no longer comes at the high cost of 
reimplementation. 

In this environment, model extensions can be pur­
sued by organizations other than the model's sponsor. 
Hence, the sponsor wiH be presented with a variety 
of model upgrades whose software development costs 
are sunk costs. The sponsor can select a subset 
of the already-implemented upgrades for inclusion in 
the supported model. Jn this environment of con­
tinual upgrades with negligible software development 
costs, the model's sponsor organization should make 
upgrade choices in a structured manner. 

The changing nature of the perceived threat and 
combat environment will motivate organizations to 
expand models to accomodate scenarios different 
froon those for which the models were designed. Re­
duced testing budgets place more pressure on the 
modeling community to produce tools capable of re-



liably evaluating weapon systems' performance, tac­
tics, decisions, and policies. 

Thus, progressive upgrades of existing models are 
both feasible and necessary. Which su~models to im­
prove is a choice we will face more often, and one we 
should deal with scientifically. 

2 FIDELITY 

In this section, we attach some formality to the ncr 
tion of model fidelity. Some underlying assumptions 
concerning the nature of the level of fidelity problem 
will be presented so that Lhe subsequent mathemati­
cal formulation is understood. 

2.1 Definitions 

Model level of fidelity refers to the degree to which 
the model produces the same outcomes as the tan­
gible, physical system. Thus, a policy constructed 
with the aid of a model with infinite fidelity would be 
identical to a policy produced using unlimited e.xper~ 
imentation with the real system. 

Model validation (as we define it) is the practice 
of comparing the model to the physical system and 
concluding that the model produces outcomes similar 
to the physical system. The hope is that the model 
output is similar to the physical system to the degree 
that the model is usable. Model validation is often 
confounded by several factors: 

• the physical system is not observable because it 
does not yet exist, observing it is a hazard to 
the system or the observer, the agency in control 
of the system prevents it from being observed, or 
observation itself causes the system to change its 
behavior; 

• the envirownent for which the physical system is 
intended does not yet exist, or is inaccessible for 
some reason, or the physical system does not op­
erate in a.n environment as pristine or consistent 
as that generated by the computer; 

• the model is steady-state, a condition not at­
tained by most physical systems. 

Thus, model validation is often impossible in the mil­
itary modeling. discipline. 

If we loosen the definition of validation to include 
the practice of conceptual or subjective validation, see 
Balci(l990), we can validate more models but only 
a.t the expense of objectivity and user trust - the 
reasons we pursue validation. The usual response to 
this situation is to increase model resolution. Here 
we define resolution to he degree to which detail is 

included in submode)s. In the familiar barbershop 
queuing model seen in most introductory simulation 
courses, the system is modeled as a M/M/n queue. If 
we introduce 

• different customer types (styles, crewcuts, fades); 

• different barber speeds; 

• time-of-day effects; 

• opening and closing the shop; 

• earthq ua.kes; 

we are adding resolution to the model. In objeet­
oriented models, increasing resolution means replac­
ing larger objects by semia.utonomous subobjeets, re-­
placing simple decision logic with more complex logic, 
using more source data such as higher resolution ter­
rain data, including more objects, or simply improv­
ing approximations. Increasing resolution makes sub­
models more data-dependent. 

Summarizing, validation of military models is often 
weak or impossible, models of high fidelity are valid, 
models of high resolution may or may not be valid 
but are always complex. Resolution is often (poorly) 
used as a surrogate for fidelity. 

2.2 Assumptions 

The hidden assumption in the approaclt we take is 
that model fidelity must not decrease with model res­
olution. Simulation modeling may be thought of as 
the modeling of the interactions of objects and their 
environment. As the resolution becomes greater, the 
logic within an object becomes more environmentally 
dependent because more of the system is considered 
environmental to the (smaller) object. Thus, user 
confidence grows with resolution because more of the 
physical system is taken into account by the actions 
of the model's objects. 

Is this reasonable? Analysts have often found 
themselves arguing in the negativ~ often to the frus­
tration of both themselves and the sponsoring orga­
nization. The sponsor cannot fathom why the ana­
lyst insists on ignoring physical realities of the system 
modeled, while the analyst sees resolution as a source 
of obfuscation. The method proposed by the ana­
lyst is often much too mathematically sophisticated 
to be useful for the sponsor. Intercession in this often­
occuring debate is critical to the future growth of the 
modeling community. 



2.3 Example 

In Bailey et al(1992), an object-oriented simulation 
model of a Marine Air Ground Task Force (MAGTF) 
command, control, communications, computers, and 
intelligence (C41) network, called the Marine Corps 
Communications Architecture Analysis Model (MC­
CAAM), is presented. The Marine Corps is prepar­
ing to procure a next-generation single-channel ra­
dio with anti-jamming capability, MCCAAM was de­
signed to evaluate performance of allocations of next­
generation radios to units in the MAGTF, where the 
measure of performance of an allocation is tactically 
driven. The ultimate goal is to select the best mix 
and allocation of radios. 

In this work, we will deseribe a set of three possible 
upgrades to the MCCAAM model which are already 
implemented. They can be looked on as switches 
which the user can turn to increase or decrease the 
resolution of MCCAAM in three areas, they are 

1. the presence of radio jammers; 

2. the failure and repair of radios; 

3. the persistence of communication tasks. 

The presence of jammers would seem to be a step in 
the right direction, as the new radio being deployed 
has anti-jamming capability while the existing :radio 
does not. The failure and repair of radios might be 
critical to the fidelity of the model, as the new radios 
have better reliability performance, but take longer 
to repair and take more time to reenter service. 

When a communication task is not completed in 
time, the system assesses a penalty per unit time late 
for the task. If the tasks are persistent, they assess 
this penalty until they are completed. However, if we 
determine that the task has been overcome by events, 
we can stop the task from continuing. This action 
stops the assessment of penalty, as well as decongest­
ing the communications network. 

In what follows, we will assess the costs and benifits 
of including these three upgrades in MCCAAM, and 
describe how we can come to a conclusion about the 
efficacy of making the upgrades. 

3 ASSESSING COSTS AND BENEFITS OF 
INCREASING FIDELITY 

Why aren't current models of extremely high reso­
lution? The answer is fairly obvious, though some­
times difficult to elucidate. Model developers have 
cultivated a framework of constraints regarding the 
capabilities of simulation, an intuition concerning the 
level of importance of a snbmodel to the performance 

of the overall system, the availability of data, and 
the sophistication of the user. Finally, the budget 
afforded a given development effort dictates certain 
constraints on the fidelity of a model. This framework 
must be challenged, as it represents inertia which the 
sponsors cannot afford. 

3.1 The Impact to Usability of the Model 

Any constraint in model fidelity reflects some cost. 
Ai; stressed above, development costs will not be ma­
jor contributors to the negative impacts of model up­
grade. Thus, what are these negative impacts, and 
what do we include as a negative impact? 

3.1.1 Data Hunger and Risk 

It is clear that one of the major shortcomings of 
an increase in resolution is an attendant increase in 
data hunger. As a submodel becomes more specific 
and detailed, the requirement for supporting data in­
creases. Collection of the appropriate data tO support 
a submodel is vulnerable to the same shortcomings as 
model validation. Furthermore, some of the required 
data is often used to support some judgemental pro­
cess, such as the probability that a missle battery acts 
on a partially jammed tra.eking solution. 

An axiom of model development is that more res­
olution requires more daLa. Sponsors do a great deal 
of data collection for the systems they administer, 
but this data is not usually collected with modeling 
in mind. Architecture standards should force all of 
these data. sources to be compatable, so that access 
to data will not represent much cost. Thus, the risk 
in data sources is the major cost of using data.. 

3.1.2 Performance Degradation 

Closely associated with the resolution of the support­
ing data used, poorer performance of the model is 
seen as a negative impact of model :fidelity increase. 
While it is certainly true that computers are getting 
faster, increasing resolution of a submode} can cost 
several orders of magnitude in algorithm complexity. 
The analyst who develops a model's upgrades must 
evaluate the impact each upgrade has on the compu­
tational budget. 

3.1.3 Increased Developer/User Sophistica· 
tion Required 

By including more detail in a. submode}, the devel­
oper increases the required level of understanding for 
himself and the user. To a great extent, the user can 
approach submodels he does not understand as black 



boi:es, and experiment only with the processes he un­
derstands. This approach carries some risk of model 
misuse, but defensive software design can reduce this. 
Some consideration must also be given to the overall 
comprehensibility of the model. 

The model developer's level of system knowledge 
is not optional. In order t.o produce the appropri­
ate submodel, the developer must be expert in the 
model and in the system. Aggregated models are of­
ten produced because the modeler does not have the 
background, the appetite, or the time to become a 
system expert. This problem is particularly preva.­
lent in models produced in an academic environment, 
where depth of knowledge of the physical system may 
not be a high priority. 

3.1.4 Measuring Cost 

Measuring uncertainty of the data sources for alter­
native submodels is fairly straightforward. There are 
well established methods for determining the sensitiv­
ity of a model to a single datum, see Kleijnen(1975), 
Cogliano and Schruben(l987), or Gla.Merman(1990) 
for academic treatments of this topic. In Rothen­
berg(I989), a simpler though less developed method 
for estimating model sensitivity to submodels is pre­
sented. By combining sensitivity and uncertainty 
measures in a manner appropriate for the problem, 
relative risk can be computed for each upgrade op­
tion. By analyzing these values, program managers 
can constrain this summed risk, so that any set of up­
grades undertaken does not exceed the comfort level 
of the program manager. 

Suppose that we are considering a package of sub­
mode! upgrades involving submodels 1, 2,, .. , N. If 
the risk associated with submodel i is given as r1, 
then the combined risk is rN = E~1 ri. The project 
director's comfort level, given by R, constrains the 
dat&-hunger-generated risk as R ~ rN We must re­
mind ourselves that this risk is to the integrity and 
reliability of the model, not to the developing organi~ 
zation. 

Accessing performance costs is straightforward. 
We want the model to produce the desired outcomes 
in a specified amount of time. Upgrade negative im­
pact in terms of time should be seen as a multiplier. 
Thus, if we have upgrades 1, 2, ... N, and testing up­
grade i seems to make the time until completion m1 
longer, then the performance cost of including the N 
submodels is fflN = TI~ 1 m1. If we expect our new 
platform to provide 1.5 times the speed of the current 
platform, and we cannot sacrifice any turn~around 
time for the model, then we must have mN ::::; 1.5. 

Finally, in considering cost of sophistication, mea.-

surement seems very difficult. Certainly, budgetary 
and personnel constraints arise from the developer so­
phistication cost. User sophistication, to the extent 
that it is a problem, must be addressed. Certainly, 
making a simulation model sai/o,-..proof requires extra 
design and implementation assets. 

3.1.5 Costing the MCCAAM Upgrades 

MCCAAM's three upgrades each need t.o be evalu­
ated for cost in each of the three categories, data risk, 
performance, and user sophistication. 

We start with the data risk costs. To add jammers 
to the MCCAAM model, we need the following data: 

• location, number and composition of the enemy 
jamming force; 

• technical parameters for ea.ch jammer type, in~ 
eluding jarnmer power, bandwidth, dwell time, 
antenna type, search method, reliability, and 
duty cycle; 

• employment tactics for each jammer. 

Additionally, the presence of ja.mmers makes the posi­
tions of the receiving units more critical. Based on the 
size of the baseline MCCAAM data.base, the size of 
the database of the upgraded model is only 5% larger. 
However, if we consider each data item's source, scor­
ing as fol1ows: 

current technical pub. 
or field test 

old technical pub. 
expert judgement 

developer judgement 

risk - 0 

risk = 1 
risk ;;; 5 
risk = 10 

By scoring the baseline and jammer upgrade mod~ 
els, we find that the data risk score grows by 30%. 
We made no attempt to determine the sensitivity of 
the model to the data. 

To add radio failure and repair processes to MC­
CAAM, we performed similar scoring. Because the 
frequency-hopping radio is new, and the existing ra­
dio is a well-tested WQrkhorse, the failure data had no 
risk. The repair data was drawn from some expert 
judgements. When a radio does fail, its replacement 
must reenter the radio net vacated by the broken ra­
dio. This reentry process was designed by the devel­
opers for the frequency-hoppers. Failure and repair 
of radios inflated the data risk score by 7%. 

To make the perishability of communication tasks, 
the data required is the allotted time for each kind of 
task, drawn from our own judgements, and inflating 
the risk score by 12%. 



The performance degradation costs can be accessed 
objectively. Based on some simple timing experi­
ments, we see that the upgrades slow the baseline 
model by: 

• jammers: 8%; 

• failure and repair: l %; 

• task perishability: 4%. 

None of these upgrades grossly inflate the turn­
around time of the model. The perishability up­
grade inflates computation much more than expected 
because it causes MCCAAM to do a good deal of 
garbage collection. 

The addition of jammers in the model meant 
that we were required to interview some experts on 
ground-based jamming operations in order to design 
the ja.mmer objects. We were also compelled to con­
struct a set of library jammer objects with default 
data, but they must be taylored to the scenario the 
user constructs. Thus, we have reduced our poten­
tial user population somewhat by making MCCAAM 
more sophisticated. 

The user is not really burdened with any further 
requirements for expertise for either of the two other 
upgrades. 

3.2 Benefits 

From the above definitions, we can say that we seek 
fidelity, yet we would like it to come at the expense 
of small increases in submode} resolution. How is the 
benefit of the increase in fidelity manifested? How do 
we measure it? We might call any such measurement 
a measure of overall model fidelity. 

In this discussion, we will consider the ease where 
the simulation is used in support of making some se­
lection from a set of alternatives, (eg. C4I architec­
tures, ammunition round reliabilities, EA-6 jamming 
assignments, or submarine tactics). A different ap­
proach must be developed for simulations used for 
training. 

Let i = 1, 2, ... , S be the set of feasible alternatives 
for the selection. Suppose that we cotild experiment 
with the real system as if it were a simulation model, 
and that we eould sample an unlimited number of 
replications. Let P; be the relative frequency of the 
event that SJ is the best of the S selections. Depend­
ing on the underpinning of the reader's philosophical 
framework of probability and optimization, P; could 
be seen as the probability that selection s; is the op­
timal choice. Henceforth, treat Pi : j = 1, 2, ... , S as 
probabilities. 

We run our selection process for M independent 
runs for the current model and a model with sub­
mode) i upgraded, heretofore known as the baseline 
and upgraded models, resp. 

Let /&( s;) be the frequency with which the base­
line model chooses selection s; as the solution, while 
f.,.(s;) is the frequency of SJ for the upgraded model. 
fb(sJ)/M is the baseline's point estimate of p;, so 
that the value of the upgrade may be measured by 

x. = t [f,(•;)-f.(<;)J' (1) 
J=t /.,(s;) 

where we use f.,(s1) as our estimate of P;· Under 
the assumption that the upgrade makes no difference 
in the selection process, we know X11. ,.,, X~-l• see 
Agr~ti(1990). We can construct 

x,. (2) 
11.EKCl,2, ... ,S 

If we assume (unreasonablly) that the upgrades' 
effects are mutually independent, BK is the sum 
of independent X~-t random variables, so BK ""' 

' XIKl(S-1)' 

3.3 'Irading Cost and Benefit 

The costs and benefits elucidated above suggest sev­
eral ways to proceed. Suppose that we 

• restrict total data risk score to R; 

• restrict performance degradation to D; 

• insist that no upgrade demands more knowledge 
of the developers or users than they can be ex­
pected to attain in a short time. 

If we let Rb be the data risk involved with the baseline 
system, and Db be the run time of the current system, 
we could proceed as described below 

• start with baseline = existing system, R. = 
100%, D6 = 100%, and all upgrades under con­
sideration. 

•REPEAT 

1. test run each remaining upgrade to the cur­
rent baseline system; 

2. find Bx for small sets of upgrades which do 
not violate the three constraints for data 
risk, performance, and sophistication; 

3. add upgrade set K with highest BK; 

4. recompute R~, Dh for the new baseline; 



5. remove all ugrades which a.re infeasible ad­
ditions to the new baseline; 

• UNTIL no more upgrades a.re feasible. 

3.4 Assessing MCCAAM's Upgrades 

As mentioned, the set of possible decision oul.cornes 
for MCCAAM analysis are frequency-hopping radio 
allocations. Our choices are 

l. forward edge of battle (FEBA} gets priority in 
allocationg frequency-hoppers; 

2. top conunand levels get priority; 

3. don't use the new radios a.t a.II. 

Potentially, we can replace 30% of all the radios with 
frequency hoppers. Suppose that we let constraint 
right-hand sides be R = 145%, D = 115%, chosen t.o 
make the exposition interesting. The baseline model 
had 

109.02 
21.10 
6.20 

As all of the upgrades are feasible additions to the 
baseline model, so we chose the jamming (JAM) up­
grade. Thus the new baseline model includes com­
munications jamming objects, and Rb = 130%, D• = 
108%. Reevaluating the remaining choices with the 
new baseline, we observe 

1.13 
0.33 

We chose the radio failure and repairs (R+F) to 
create a new baseline model. As a result, R6 = 
137%, D& = 112% (recall tha.t R& is additive and Di 
is multiplicative). At this point, adding task perisha­
bility would violate the constraint on Rb, so we're 
finished. 

4 ISSUES OF PRACTICE: SHORTCOM­
INGS AND PROMISE 

Given the evidence of the utility of adopting the stan­
dards of open architecture and objeck>riented simu­
lation, sponsors should support the reimplementation 
of models to position them for future growth. This 
step must be taken before any of the above analysis 
gains any degree of validity. 

The methodology we describe here is clearly devel­
opmental and needs much improvement. We recog­
nize the following as the major shortcomings: 

• Data Risk Costing 

- risk weights are rough-hewn and arbitrarily 
chosen; 

- determining sensitivity of the model to data 
is difficult and time-consuming; 

• Submodel Benefits 

- interactions of upgrades not accounted for; 

- constraint right-hand sides not objective; 

• Evaluation Process 

- constrained optimization not the only ap­
proach; 

- greedy algorithm (used above) not gua.r­
enteed to produce optimal solution in this 
discrete optimization. 

It would be extremely naive t.o propose tha.t pro­
gram managers construct the constraints and ben­
efit functions as in the previous sections, and plow 
forward with the upgrade policy generated by the 
implied. constrained optimization problem. However, 
pursuing the evaluation method described above will 
force development teams to compare the impacts of 
increasing re.80lution of suhmodels in a consistant 
manner. 

Alternatively, suppose that a group of upgrades 
have been proposed by the organization responsible 
for the growth of a model. Oversight of these decision 
makers should involve examination of the analysis be­
hind the selections, and possibly a formulation similar 
to that described here. It should he easy to verify that 
the selection of upgrades was ma.de under reasonable 
assumptionsi and that the constraints generated use 
reasonable models for performance loss, data source 
risk, and user or developer sophistication. 

As has been illustrated in the example of MC­
CAAM, this framework for considering model fidelity 
is serviceable in the abstract, as well as when used 
on an existing model. Model developers should be 
obligated to produce similar reasoning whenever pre­
senting plans for upgrades. 

Finally, most developers realize that their job in­
cludes advocating model growth. This framework 
gives them a quantitative tool for arguing their case 
for model enhancement with program managers. 
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