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Abstract

Biosurveillance is the regular collection, analysis, and interpretation of health and health-
related data for indicators of diseases and other outbreaks by public health organizations.
Motivated by the threat of bioterrorism, biosurveillance systems are being developed and
implemented around the world. The goal of these systems has been expanded to include
both early event detection and situational awareness, so that the focus is not simply on
detection, but also on response and consequence management. Whether they are useful
for detecting bioterrorism or not, there seems to be consensus that these biosurveillance
systems are likely to be useful for detecting and responding to natural disease outbreaks
such as seasonal and pandemic flu, and thus they have the potential to significantly advance
and modernize the practice of public health surveillance.
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1 Introduction

Bioterrorism is not a new threat in the 21st century – at least a thousand years ago the plague

and other contagious diseases were used in warfare (Gottfried, 1985; Deaux, 1969) – but today

the potential for catastrophic outcomes is greater than it has ever been. To address this threat,

the medical and public health communities are putting various measures in place, including bio-

surveillance systems designed to pro-actively monitor populations for possible disease outbreaks.

The goal is to improve the likelihood that a disease outbreak, whether man-made or natural,

is detected as early as possible so that the medical and public health communities can respond

as quickly as possible. An ideal biosurveillance system analyzes population health-related data

in near-real time to identify subtle trends not visible to individual physicians and clinicians.

As they sift through data, many of these systems use one or more statistical algorithms to

look for anomalies to trigger detection, investigation, quantification, localization, and outbreak

management.
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Figure 1: Biosurveillance consists of human, animal, and agricultural surveillance. Animal
surveillance may consist of monitoring certain animal populations for unusual behavior or ex-
cessive mortality as a leading indicator of an outbreak as well as zoonotic surveillance which
refers specifically to animal diseases that can pass to humans. Agricultural surveillance may
include monitoring livestock and plant diseases important to the human food chain.

1.1 What is Biosurveillance?

Homeland Security Presidential Directive 21 (HSPD-21) defines biosurveillance as “the process

of active data-gathering with appropriate analysis and interpretation of biosphere data that

might relate to disease activity and threats to human or animal health — whether infectious,

toxic, metabolic, or otherwise, and regardless of intentional or natural origin — in order to

achieve early warning of health threats, early detection of health events, and overall situational

awareness of disease activity” (U.S. Government, 2007). As shown in Figure 1, “biosphere

data” can be divided into information about human, animal, and agricultural populations, and

biosurveillance thus consists of health surveillance on each of these populations.

One particular type of biosurveillance is epidemiologic surveillance which HSPD-21 de-

fines as “the process of actively gathering and analyzing data related to human health and

disease in a population in order to obtain early warning of human health events, rapid charac-

terization of human disease events, and overall situational awareness of disease activity in the

human population.” Thus, epidemiologic surveillance addresses that subset of biosurveillance

as it applies to human populations.

As shown in Figure 2, epidemiologic surveillance is but one element of public health

surveillance. Public health surveillance encompasses the surveillance of adverse reactions to

medical interventions (particularly drugs and vaccines) and how health services are used, as

well as epidemiologic surveillance. Syndromic surveillance is a specific type of epidemiological

surveillance that has been defined as “the ongoing, systematic collection, analysis, interpretation,
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Figure 2: A taxonomy of public health showing that epidemiologic surveillance is but one part
of a broader set of surveillance activities. Adapted from Rolka & O’Connor (2010).

and application of real-time (or near-real-time) indicators of diseases and outbreaks that allow

for their detection before public health authorities would otherwise note them” (Sosin, 2003).

Thus, syndromic surveillance is epidemiologic surveillance restricted to using leading indicators

of disease. In particular, syndromic surveillance is based on the notion of a syndrome which is

a set of non-specific pre-diagnosis medical and other information that may indicate the release

of a bioterrorism agent or natural disease outbreak. See, for example, Syndrome Definitions for

Diseases Associated with Critical Bioterrorism-associated Agents (CDC, 2003).

Syndromic surveillance differs from traditional epidemiologic surveillance in a number

of important ways. For example, syndromic surveillance often uses non-specific health and

health-related data (e.g., daily number of individuals seeking health care in an emergency room

with sore throats) whereas traditional notifiable disease reporting is based on confirmed cases

(e.g., daily number of individuals with laboratory confirmed diagnoses). In addition, while in

conventional public health surveillance it is unusual to initiate active surveillance without a

known or suspected outbreak, syndromic surveillance systems actively search for evidence of

possible outbreaks well before there is any suspicion of an outbreak.
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1.2 Biosurveillance Objectives

Syndromic surveillance has also been defined as “...surveillance using health-related data that

precede diagnosis and signal a sufficient probability of a case or an outbreak to warrant further

public health response” (Fricker & Rolka, 2006; CDC, 2006a). This definition focuses on a

number of ideas important to biosurveillance.

∙ First, biosurveillance is health surveillance, not military, regulatory or intelligence surveil-

lance. It may use a wide variety of types of data, from case diagnoses to health-related

data such as counts derived from chief complaints.

∙ Second, the data and associated surveillance are generally intended to precede diagnosis

or case confirmation in order to give early warning of a possible outbreak. Clearly once

a definitive diagnosis of a bio-agent has been made the need for detection becomes moot,

though tracking the location and spread of a potential outbreak is still important whether

an outbreak has been confirmed or not.

∙ Third, the process must provide a signal of “sufficient probability” to trigger “further

public health response.” Often the goal is not to provide a definitive determination that

an outbreak is occurring but rather to signal that an outbreak may be occurring. Such a

signal indicates further information is warranted through more detailed investigation by

public health officials.

The motivation for biosurveillance, and syndromic surveillance systems in particular, is

that some bio-agents have symptoms in their prodromal stages similar to naturally-occurring

diseases. For example, in the first week or two after exposure to smallpox individuals tend to

have symptoms similar to the flu such as fever, malaise, aches, nausea and vomiting (Zubay,

2005).

Biosurveillance systems have two main objectives: to support public health situational

awareness (SA) and to enhance outbreak early event detection (EED). The CDC (2008) defines

them as:

∙ Situational awareness is the ability to utilize detailed, real-time health data to confirm,

refute and to provide an effective response to the existence of an outbreak. It also is used

to monitor an outbreaks magnitude, geography, rate of change and life cycle.
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Figure 3: An illustration of how biosurveillance is intended to improve the probability of detect-
ing a disease outbreak, whether man-made or natural. The vertical axis is in terms of probability
specifically because early event detection is a stochastic phenomenon. That is, whether and when
a biosurveillance system detects an outbreak is a function of both the aspects of the specific
situation and chance.

∙ Early event detection is the ability to detect, at the earliest possible time, events

that may signal a public health emergency. EED is comprised of case and suspect case

reporting along with statistical analysis of health-related data. Both real-time streaming

of data from clinical care facilities as well as batched data with a short time delay are used

to support EED efforts.

As illustrated in Figure 3, biosurveillance systems are supposed to improve the chances the

medical and public health communities catch a disease outbreak early. The more biosurveillance

improves the probability of detecting an outbreak, the more a biosurveillance system is likely to

enhance SA and EED. The goal is “...deployment of surveillance systems that can rapidly detect

and monitor the course of an outbreak and thus minimize associated morbidity and mortality”

(Bravata et al., 2004).

When assessing biosurveillance systems, speed of (true positive) detection is one of three

dimensions critical for completely characterizing performance. The other two dimensions are
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the rate of false positives and the probability of successfully detecting an outbreak. In the

biosurveillance literature, these dimensions are often generically referred to timeliness, specificity,

and sensitivity.

All three dimensions are necessary and they trade off. For example, for a given EED

methodology, improving the speed of detecting an outbreak generally comes at the cost of

increasing the rate of false positives. Similarly, increasing the probability of detection usually

comes at the expense of the speed of detection. These trade offs are similar to the Type I and

Type II error trade offs inherent in classical hypothesis testing, though the sequential decision

making aspect of biosurveillance adds an additional level of complexity.

See Fricker (2010b), particularly the rejoinder, for a more detailed discussion about eval-

uating biosurveillance system performance and about the appropriate metrics for quantifying

biosurveillance system performance.

2 Biosurveillance Systems

As HSPD-21 states, “A central element of biosurveillance must be an epidemiologic surveillance

system to monitor human disease activity across populations. That system must be sufficiently

enabled to identify specific disease incidence and prevalence in heterogeneous populations and

environments and must possess sufficient flexibility to tailor analyses to new syndromes and

emerging diseases.”

The use of biosurveillance, particularly in the form of syndromic surveillance, is widespread.

In 2003 it was estimated that approximately 100 state and local health jurisdictions were con-

ducting some form of syndromic surveillance (Sosin, 2003). In 2004, Bravata et al. (2004) con-

ducted a systematic review of the publicly available literature and various web sites from which

they identified 115 surveillance systems, of which they found 29 that were designed specifically

for detecting bioterrorism. In 2007-2008, Buehler et al. (2008) sent surveys to public health

officials in 59 state, territorial, and large local jurisdictions. Fifty-two officials responded (an

88 percent response rate) representing jurisdictions containing 94 percent of U.S. population.

They found that 83 percent reported conducting syndromic surveillance for a median of three

years and two-thirds said they are “highly” or “somewhat” likely to expand the use of syndromic

surveillance in the next two years.
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Figure 4: A biosurveillance system has four main functions: data collection, data management,
analysis, and reporting. Raw data enters the system at the left and flows through the system
to become actionable information at the right.

2.1 Components

As depicted in Figure 4, a biosurveillance system has four main functions: data collection, data

management, analysis, and reporting. As illustrated in the figure, raw data enters the system

at the left and as it flows through the system becomes actionable information at the right.

Expanding on Rolka (2006), the ideal system contains the following components:

∙ The original data, to which access is gained only after appropriately addressing legal and

regulatory requirements, as well as personal privacy and proprietary issues.

∙ Computer hardware and information technology for (near) real-time assembly, recording,

transfer, and preprocessing of data.

∙ Subject matter experts, data management and data knowledge experts, as well as software

and techniques for processing incoming data into analytic databases, including processes

and procedures for managing and maintaining these databases.

∙ Statistical algorithms to analyze the data for possible outbreaks over space and time
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that are of sufficient sensitivity to provide signals within an actionable time frame while

simultaneously limiting false positive signals to a tolerable level.

∙ Public health experts with sufficient statistical expertise that can appropriately choose

and apply the algorithms most relevant to their jurisdiction and appropriately interpret

the signals when they occur.

∙ Data display and query software, as well as the necessary underlying data, that facilitates

rapid and easy investigation and adjudication of signals by public health experts, including

the ability to “trace back” from signal to likely source.

∙ Other data displays, combined with decision support and communication tools, to support

situational awareness during an outbreak and to facilitate effective and efficient public

health response.

∙ Report production processes and access to supporting supplementary information.

Mandl et al. (2004), in Implementing Syndromic Surveillance: A Practical Guide Informed by

the Early Experience, provides a detailed discussion of what is required and guidance about how

to implement biosurveillance systems.

2.2 Examples

Below are brief descriptions of three biosurveillance systems chosen to illustrate large-scale

systems currently in operation. The first two are true systems, in the sense that they are

comprised of both dedicated computer hardware and software. The third is more properly

described as a set of software programs that can be freely downloaded and implemented by any

public health organization.

∙ BioSense. Developed and operated by the Centers for Disease Control and Prevention,

BioSense is intended to be a United States-wide biosurveillance system. Begun in 2003,

BioSense initially used Department of Defense and Department of Veterans Affairs out-

patient data along with medical laboratory test results from a nationwide commercial

laboratory. In 2006, BioSense began incorporating data from civilian hospitals as well.

The primary objective of BioSense is to “expedite event recognition and response coordi-
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nation among federal, state, and local public health and healthcare organizations” (Tokars,

2006; CDC, 2006c).

∙ ESSENCE. An acronym for Electronic Surveillance System for the Early Notification

of Community-based Epidemics, ESSENCE was developed by the Department of Defense

in 1999. ESSENCE IV now monitors for infectious disease outbreaks at more than 300

military treatment facilities worldwide on a daily basis using data from patient visits to the

facilities and pharmacy data. For the Washington DC area, ESSENCE II monitors military

and civilian outpatient visit data as well as over-the-counter pharmacy sales and school

absenteeism (DoD, 2006; Lombardo et al., 2004; OSD, 2005). Components of ESSENCE

have been adapted and used by some public health departments.

∙ EARS. An acronym for Early Aberration Reporting System, EARS was and continues

to be developed by the Centers for Disease Control and Prevention. EARS was originally

designed for monitoring for bioterrorism during large-scale events that often have little or

no baseline data (i.e., as a short-term “drop-in” surveillance method) (CDC, 2007). For

example, the EARS system was used in the aftermath of Hurricane Katrina to monitor

communicable diseases in Louisiana (Toprani et al., 2006), for syndromic surveillance at

the 2001 Super Bowl andWorld Series, as well as at the Democratic National Convention in

2000 (Hutwagner et al., 2003a). Though developed as a stand alone, portable surveillance

analytic method, EARS data management procedures and algorithms have been adapted

for use in many syndromic surveillance systems.

State and local biosurveillance systems may use EARS, BioSense, and in some cases

ESSENCE, while some localities have instituted their own systems. Other biosurveillance and

health surveillance systems include the Real-time Outbreak and Disease Surveillance system

RODS (2010), the National Notifiable Diseases Surveillance System CDC (2010b), and the

National Electronic Telecommunications System for Surveillance CDC (2010a). Descriptions of

some of these state and local systems (as well as other information) can be found in volume

53 of the CDC’s Morbidity and Mortality Weekly Report and the Annotated Bibliography for

Syndromic Surveillance CDC (2006b).

Among the more recent and unique surveillance efforts is Google Flu which is designed to

track “health seeking” behavior in the form of search engine queries for flu-related information.
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Figure 5: An excerpt from a New York Times article from November 12, 2008 about Google
Flu.

As with syndromic surveillance systems using OTC medicine sales, the idea is that sick people

first attempt to self-treat before seeking medical attention and, often, the first step is a search

engine query for information. Figure 5 is a graph published in the New York Times comparing

Google Flu’s estimated flu incidence based on search queries for flu-related terms to the CDC’s

sentinel physician data. The figure shows a clear correspondence between the two time series.

Ginsberg et al. (2009, p. 1012) say, “Because the relative frequency of certain queries is highly

correlated with the percentage of physician visits in which a patient presents with influenza-like

symptoms, we can accurately estimate the current level of weekly influenza activity in each

region of the United States, with a reporting lag of about one day.”

Another unique surveillance effort is HealthMap, a “multistream real-time surveillance

platform that continually aggregates reports on new and ongoing infectious disease outbreaks”

(Brownstein et al., 2008). HealthMap extracts information from web-accessible information

sources such as discussion forums, mailing lists, government web sites, and news outlets. It

then filters, categorizes, and integrates the information and, as shown in Figure 6, plots the

information on a map. The goal of HealthMap is to provide real-time information about emerging

infectious diseases and is intended for use by both public health officials and the traveling public

(Freifeld & Brownstein, 2010). As Brownstein et al. (2008, p. 1019) say, “Ultimately, the use of

news media and other nontraditional sources of surveillance data can facilitate early outbreak

detection, increase public awareness of disease outbreaks prior to their formal recognition, and

provide an integrated and contextualized view of global health information.”
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Figure 6: Screen shot of HealthMap map from June 5, 2010 (Freifeld & Brownstein, 2010).
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3 Biosurveillance Utility & Effectiveness

In spite of the widespread and potentially expanding use of biosurveillance, questions remain

about its utility and effectiveness. Examples of papers that discuss various issues, challenges,

and important research needs associated with effective implementation and operation of bio-

surveillance systems include Fricker (2010b), Shmueli & Burkom (2009), Uscher-Pines et al.

(2009), Green (2008), Buehler et al. (2008), Fricker & Rolka (2006), Rolka (2006), Stoto et al.

(2004), Bravata et al. (2004), Reingold (2003), and Sosin (2003).

In case studies of health departments in eight U.S. states, Uscher-Pines et al. (2009) found

that fewer than half had written response protocols for responding to biosurveillance system

alerts and the health departments reported conducting in-depth investigations on fewer than

15 percent of biosurveillance system alerts. Further, Uscher-Pines et al. (2009) said, “Although

many health departments noted that the original purpose of syndromic surveillance was early

warning/detection, no health department reported using systems for this purpose. Examples of

typical statements included the following: ‘I was a big supporter of syndromic surveillance for

early warning early on, but now I am more realistic about the system’s limitations.’ ”

In the literature, Reingold (2003) suggested that a compelling case for the implementation

of biosurveillance systems has yet to be made. Cooper (2006) said, “To date no bio-terrorist

attack has been detected in the United Kingdom, or elsewhere in the world using syndromic

surveillance systems.” Stoto et al. (2004) questioned whether biosurveillance systems can achieve

an effective early detection capability. And Green (2008) said, “Syndromic surveillance systems,

based on statistical algorithms, will be of little value in early detection of bioterrorist outbreaks.

Early on in the outbreak, there will be cases serious enough to alert physicians and be given

definitive diagnoses.”

The research challenges span many disciplines and problems:

∙ Legal and regulatory challenges in order to gain access to data.

∙ Technological challenges related to designing and implementing computer hardware and

software for collecting and assembling data.

∙ Ethical and procedural issues inherent in managing and safeguarding data.

∙ Analytical challenges of assessing the likelihood of outbreaks and of displaying data to
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enhance situational awareness.

∙ Managerial challenges of effectively assembling and operating the entire system.

These research challenges are not necessarily of equal importance nor are they listed in any type

of priority order. Furthermore, little is known about how they should be prioritized in terms

of their contributions to improving the utility and/or effectiveness of biosurveillance. However,

it is clear that improvements are necessary in all of these disciplines to achieve biosurveillance

systems that are maximally useful and effective.

Much of the continuing controversy surrounding biosurveillance stems from its initial

focus on early event detection, a use that requires a number of still unproven assumptions,

including:

∙ Leading indicators of outbreaks exist in pre-diagnosis health-related data of adequate

strength such that they are statistically detectable with satisfactory power.

∙ The leading indicators occur sufficiently far in advance of clinical diagnoses so that, when

found, they provide the public health community with enough advance notice to take

action.

∙ Statistical detection algorithms exist that produce signals reliable enough to warrant con-

tinued dedication of public health resources to investigate the signals.

Of course, a myopic focus only on early event detection in biosurveillance systems misses

important benefits such systems can provide, particularly the potential to significantly advance

and modernize the practice of public health surveillance. For example, whether or not bio-

surveillance systems prove effective at the early detection of bioterrorism, they are likely to have

a significant and continuing role in the detection and tracking of seasonal and pandemic flu, as

well as other naturally occurring disease outbreaks. This latter function is echoed in an Insti-

tute of Medicine report on Microbial Threats to Health by Smolinski et al. (2003): “[S]yndromic

surveillance is likely to be increasingly helpful in the detection and monitoring of epidemics,

as well as the evaluation of health care utilization for infectious diseases.” In a similar vein,

Uscher-Pines et al. (2009) quote a public health official: “Health departments should not be at

the mercy of alerts; they need to develop their own uses for syndromic surveillance.”
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In terms of bioterrorism, Stoto (2006) states that biosurveillance systems build links

between public health and health care providers - links that could prove to be critical for

consequence management should a bioterrorism attack occur. Furthermore, Sosin (2003) points

out that biosurveillance systems can act as a safety net should the existing methods of detection

fail to detect an attack. As such, biosurveillance can provide additional lead-time to public health

authorities so they can take more effective public health actions. For example, a Dutch biologist

conducting automated salmonella surveillance related that the surveillance system detected an

outbreak whose occurrence was somehow missed by sentinel physicians (Burkom, 2006). And

unusual indicators in a biosurveillance system (not necessarily a signal from an EED algorithm)

may give public health organizations time to begin organizing and marshalling resources in

advance of a confirmed case and/or provide critical information about how and where to apply

resources.

4 Quantitative Methods Used in Biosurveillance Systems

Biosurveillance systems use a variety of temporal and spatial methods for early event detection.

As is discussed in more detail below, most of these have been adapted from other fields and

applications. Buckeridge et al. (2005) provides a useful classification of common surveillance

scenarios and a mapping of some early event detection methods to those scenarios.

Situational awareness is an emerging concept in biosurveillance and, as such, specific

methods for assessing and displaying relevant information has not yet been incorporated into

the systems. Currently situational awareness is limited to displaying the spatial distribution of

data via geographic information system (GIS) software. See, for example, Li et al. (2006).

4.1 Temporal Methods

Most syndromic surveillance systems apply variants of the standard univariate statistical process

control (SPC) methods: Shewhart, cumulative sum (CUSUM), and/or exponentially weighted

moving average (EWMA) charts. Woodall (2006) provides a comprehensive overview of the

application of control charts to health surveillance. Montgomery (2004) is an introduction to

these methods in a statistical process control setting and Fricker (2010a) is a primer on how

to apply these and other statistical methods to biosurviellance, both for early event detection
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and situational awareness. Fricker (2008), Shmueli & Fienberg (2006), and Shmueli & Burkom

(2009) also review these and other methods potentially applicable to early event detection in a

biosurveillance setting.

The challenge in applying these methods is that syndromic surveillance generally violates

classical SPC assumptions. In SPC it is often reasonable to assume that:

∙ since one controls the manufacturing process, the in-control distribution is (or can reason-

ably be assumed to be) stationary;

∙ observations can be drawn from the process so they are independent (or nearly so);

∙ monitoring the process mean and standard deviation is usually sufficient;

∙ the asymptotic distributions of the statistics being monitored are known and thus can be

used to design appropriate control charts;

∙ shifts, when they occur, remain until they are detected and corrective action taken; and,

∙ temporal (as opposed to spatial) detection is the critical problem.

However, the general biosurveillance problem violates many, if not all, of these assump-

tions. For example:

∙ there is little to no control over disease incidence and thus the distribution of disease

incidence is usually non-stationary;

∙ observations (often daily counts) are autocorrelated, and the need for quick detection works

against the idea of taking measurements far enough apart to achieve (near) independence;

∙ in biosurveillance there is little information on what types of statistics are useful for mon-

itoring – one is often looking for anything that seems unusual;

∙ because individual observations are being monitored, the idea of asymptotic sampling

distributions does not apply, and the data often contain significant systematic effects that

must be accounted for;

∙ outbreaks are transient, with disease incidence returning to its original state once an

outbreak has run its course; and,
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∙ identifying both spatial and temporal deviations are often critical.

This gap between existing SPC methods and the biosurveillance problem provides an area ripe

for new research.

In spite of the gap, the standard SPC methods are sometimes applied to biosurveillance

data with little modification (see, for example, Fricker (2007) or Stoto et al. (2006)) and in some

cases the methods are modified to attempt to account for the autocorrelation. For example,

EARS applies variants of the Shewhart control chart (see equations (1) and (2) below) and a

cumulative method (see equation (3) below). These methods use various moving windows of

data to estimate the process mean and standard deviation (Hutwagner et al., 2003a) and they

are intended to be used when little historic (“baseline”) information is available.

The EARS methods are called “C1,” “C2,” and “C3” and are defined as follows (Hut-

wagner et al., 2005). Let Y (t) be the observed count for period t representing, for example, the

number of individuals arriving at a particular hospital emergency room with a specific syndrome

on day t. The C1 calculates the statistic C1(t) as

C1(t) =
Y (t)− Ȳ1(t)

S1(t)
(1)

where Ȳ1(t) and S1(t) are the moving sample mean and standard deviation, respectively:

Ȳ1(t) =
1

7

t−7
∑

j=t−1

Y (j) and S2

1
(t) =

1

6

t−7
∑

j=t−1

[

Y (j)− Ȳ1(j)
]2

.

If S2
1(t) = 0 then EARS sets it to a small positive number. As implemented in the EARS

system, the C1 signals on day t when the C1 statistic exceeds a threshold ℎ, which is fixed at

three sample standard deviations above the sample mean: C1(t) > 3.

The C2 is similar to the C1, but incorporates a two-day lag in the mean and standard

deviation calculations. Specifically, it calculates

C2(t) =
Y (t)− Ȳ3(t)

S3(t)
(2)

where

Ȳ3(t) =
1

7

t−9
∑

j=t−3

Y (j) and S2

3
(t) =

1

6

t−9
∑

j=t−3

[

Y (j)− Ȳ3(j)
]2

.

If S2

3
(t) = 0 then EARS sets it to a small positive number and the C2 method signals on day t

when C2(t) > 3.
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The C3 combines current and historical data from day t and the previous two days,

calculating the statistic C3(t) as

C3(t) = Y (t) +
t−2
∑

j=t−1

Y (j)× I{Y (j) < 3}, (3)

where I is the indicator function. In EARS the C3 method signals on day t when C3(t) > 2 and

Y (t) > Ȳ3(t).

The C3 method described above, as implemented in EARS V4.5, is different from the

original EARS implementation. See Fricker (2008) for a description of the original C3 method.

BioSense originally implemented the C1, C2, and C3 methods, but has since modified the

C2. Calling the new method “W2,” it calculates the mean and standard deviation separately

for weekdays and weekends (using the relevant last seven days with a two-day lag). Following

the suggestion of Buckeridge et al. (2005), it uses an empiric method to define the threshold and

users of the system can select the threshold as an option (CDC, 2006d).

To date, multivariate SPC methods have not been incorporated into operational bio-

surveillance systems. Some research has been conducted to define and evaluate directional

multivariate methods, including Joner et al. (2008), Fricker (2007), and Stoto et al. (2006).

Whether or not multivariate methods provide additional sensitivity to detect outbreaks com-

pared to the current practice of using multiple simultaneous univariate methods has yet to be

conclusively demonstrated. Various methods have also been proposed to combine and/or adjust

for the application of multiple univariate methods in multivariate settings. See the discussion

in Rolka et al. (2007) about parallel and consensus monitoring methods and Stoto et al. (2006)

and Stoto et al. (2004) for a discussion and an evaluation of some of these methods.

Regression and time series methods have also been proposed to explicitly model, and

hence account for, seasonality. The basic idea is to model the disease incidence process, perhaps

including terms in the model for annual seasonal variations, monthly variations, and even day

of the week and holiday variations. The model is then used to either: (1) predict the expected

number of events and the difference between the expected number and observed number is

monitored for excessive deviations or, (2) model and then remove the explainable/known effects

(sometimes called preconditioning) and then the residuals are monitored using traditional SPC

methods. This is consistent with recommendations by Montgomery (2004) for autocorrelated

data. Examples in the literature include Brillman et al. (2005), who apply the CUSUM to the
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prediction errors, the CDC’s cyclical regression models discussed in Hutwagner et al. (2003b),

log-linear regression models in Farrington et al. (1996), and time series models in Reis & Mandl

(2003). See Shmueli & Burkom (2009) for additional discussion of the use of regression and

time series methods for syndromic surveillance and Burkom et al. (2006) for a comparison of

two regression-based methods and an exponential smoothing method applied to biosurveillance

forecasting. Also see Lotze et al. (2008) for a detailed discussion of preconditioning applied to

syndromic surveillance data.

Other temporal methods that have been proposed or are in use for syndromic surveillance

include: wavelets (see Goldenberg et al. (2002), Zhang et al. (2003), Shmueli (2005), and the

discussion in Shmueli & Burkom (2009)); Bayesian networks (see Wong et al. (2005), Rolka et al.

(2007)); hidden Markov models (see Le Strat & Carrat (1999)); Bayesian dynamic models (see,

for example, Sebastiani et al. (2006)), and rule-based methods (see, for example, Wong et al.

(2003)).

4.2 Spatial and Spatio-temporal Methods

Kleinman et al. (2004) and Lazarus et al. (2002) proposed a generalized linear mixed model

(GLMM) to simultaneously monitor disease counts over time in a region divided into smaller

sub-areas (zip codes). It is statistically attractive because it uses information across the entire

region while appropriately adjusting for the smaller areas.

As described in Kleinman et al. (2004), there are two forms of the model depending on

whether individual data and covariates are available versus aggregated counts and covariates by

zip code. In the former case, the model is

E(yijt∣bi) = pijt and logit(pijt) = xijt� + bi, (4)

where yijt is an indicator for whether or not person j in area i is a case on day t, pijt is the

probability he or she is a case, xijt is a vector of observed covariates on person j and/or area

i over time up to and including day t, � is a vector of fixed effects, and bi is a random effect

for area i. When no individual level covariate information is available, the most likely situation,

the model is

E(yit∣bi) = pit and logit(pit) = xit� + bi, (5)

where yit =
∑nit

j=1
yijt. In this model, pit can be thought of as the probability that an individual
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in area i will be a case on day t.

Having fit the model in equation (5), z cases are observed on day t+1. The rarity of the

observed count is assessed by calculating

Pr(Z ≥ z cases) = 1−

z−1
∑

k=1

(

nit

k

)

p̂it(1 − p̂it)
nit−k, (6)

where p̂it is calculated from the estimated coefficients in the usual way for logistic regression and

1/(p̂it ×# tests conducted) is proposed as the recurrence interval: the number of time periods

for which the expected number of counts of z or more cases is one (Woodall et al., 2008). Waller

(2004) recommends an alternate calculation for the recurrence interval and Woodall et al. (2008)

take issue with both the use of and recommended calculations for the recurrence interval.

The Small Area Regression and Testing (“SMART”) method in BioSense (see the BioSense

User Guide (CDC, 2006e)) is based on the Kleinman et al. (2004) and Lazarus et al. (2002)

GLMM approach. However, as implemented in BioSense it only uses spatial information to bin

data into separate time series, the output of which are subsequently combined using a Bonferroni

correction. Hence, the BioSense SMART method is properly classified as a temporal method.

The most commonly used spatial method is the scan statistic, particularly as imple-

mented in the SaTScan software (www.satscan.org). Originally developed to retrospectively

identify disease clusters (see Kulldorff, 1997), the method is now regularly used prospectively

in biosurveillance systems (see Kulldorff, 2001). For example, it was used as part of a drop-in

syndromic surveillance system in New York City after the 9/11 attack (Ackelsberg et al., 2002).

While it has been studied by the BioSense program, it has not yet been implemented in the

BioSense system interface (see Bradley (2005) and the BioSense User Guide (CDC, 2006e)).

The basic idea in SaTScan is to count the number of cases that occur in a cylinder, where

the circle is the geographic base and the height of the cylinder corresponds to time. The cylinder

is passed over space, varying the radius of the circle (up to a maximum radius that includes

50 percent of the monitored population) and the height of the cylinder and counts of cases for

those geographic regions whose centroids fall within the circle for the period of time specified

by the height of the cylinder are summed. When used for prospective biosurveillance, the start

date of the height of the cylinder is varied but the end date is fixed at the most current time

period. Conditioning on the expected spatial distribution of observations, SaTScan reports the

most likely cluster (in both space and time) and its p-value.
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Though widely used, some aspects of the prospective application of the SaTScan method-

ology have been questioned, particularly the use of recurrence intervals and performance com-

parisons between SaTScan and other methods. See Woodall et al. (2008) for further details.

Also, see Kulldorff (2001) for other methods for disease mapping and for testing whether an

observed pattern of disease is due to chance.

Fricker & Chang (2008) introduced a new spatia-temporal methodology for biosurveil-

lance entitled the repeated two-sample rank (RTR) procedure. It is designed to sequentially

incorporate information from individual observations and thus can operate on data in real-

time as it arrives into an automated biosurveillance system. In addition, upon a signal of a

possible outbreak, the methodology suggests a way to graphically indicate the likely outbreak

location, and the output can subsequently be used to track the spread of an outbreak. Thus, the

methodology can be used for both early event detection and situational awareness in automated

biosurveillance systems.

Olson et al. (2005) and Forsberg et al. (2006) take an alternate approach to assessing

possible disease clusters using M -statistics based on the distribution of pairwise distances be-

tween cases. That is, let X = {X1, . . . , Xn} represent the locations of n cases on the plane and

let d = {d1, . . . , d(n2)
} be the

(

n

2

)

interpoint distances, then the M -statistic is

M = (o− e)T Ŝ−1(o− e) (7)

where o and e are vectors of observed and expected counts of binned interpoint distances and

Ŝ−1 is the inverse of the estimate of the covariance matrix. However, Forsberg et al. (2005)

state, “...these methods still require much refinement and further research.”

Other approaches to spatial and spatio-temporal biosurveillance methods include the

Automated Epidemiologic Geotemporal Integrated Surveillance System (AEGIS) by Olson et al.

(2005) and the application of CUSUM methods to the spatial distribution of cases (see Rogerson

& Yamada (2004)). See Lawson & Kleinman (2005) for additional exposition and methods, and

Mandl et al. (2004) for further discussion on spatial and spatio-temporal modeling issues. For

spatial methods with application to more traditional public health data and problems, see Waller

& Gottway (2004).

20



5 Conclusion

Biosurveillance systems are being developed and implemented around the world. They are

motivated by a need for improved public health surveillance, not only for bioterrorism, but

also to improve detection and responsiveness to natural disease outbreaks such as H1N1, avian

influenza and SARS, and as such they hold great promise as public health tools. For additional

development and discussion, see Fricker (2010a), Lombardo & Buckeridge (2007), M’ikanatha

et al. (2007), Wagner et al. (2006), Waller & Gottway (2004), and Stroup et al. (1989).
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