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Abstract

Carbon capture and storage (CCS) has been demonstrated as a viable op-
tion for reducing carbon emissions to the atmosphere. We consider a situa-
tion where a tax on emissions is imposed on carbon dioxide (CO2) emitters
to encourage their participation in CCS. Operators of CO2 transportation
pipelines and storage sites enter into individual contracts with emitters to
store CO2. We study the problem of setting the price and volume of these
contracts under cost and emission uncertainty, and show how the storage
operator’s profit can be optimized.

Keywords: carbon capture and storage, pricing, uncertainty quantification

1. Introduction

Most low-carbon energy technologies require well-designed policy incen-
tives to encourage widespread deployment of the necessary infrastructure.
For carbon capture and storage (CCS), large networks of capture plants,
transportation pipelines, and storage reservoirs will be necessary. In paral-
lel, a market-based incentive structure is required to encourage emitters to
reduce emissions by employing CCS and participating in a network.

The potential impacts of CO2 emissions to the atmosphere are well known
and have triggered significant work on low-carbon energy technologies. In
order to reduce atmospheric concentrations of greenhouse gases over the long
term, multiple solutions are needed to reduce the total emission rate. No
single technology has been identified that is sufficient to meet the challenge
alone, given the magnitude of global dependence on carbon-intensive fuels.
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Most major studies on practical strategies to reduce global emissions have
included CCS on the list of technologies that can have a significant impact on
emission by 2050 (Pacala and Socolow, 2004; International Energy Agency,
2010). The basic idea behind CCS is to identify major point sources, like coal-
fired power plants, and then capture the produced CO2 before it is released
to the atmosphere. The captured gas can then be compressed and piped
to special storage sites where it is injected into deep subsurface reservoirs.
The sequestered CO2 is stored indefinitely and therefore does not increase
atmospheric concentrations.

There are currently eight industrial scale CO2 capture and storage projects
operating around the world, with dozens more in the construction or planning
stages (Global CCS Institute, 2012). The longest running project, Sleipner,
has been injecting CO2 since 1996 and so far has stored 16 Mt (1 Mt = 106

metric tonnes = 109 kilograms) in a deep reservoir beneath the Norwegian
North Sea (Arts et al., 2008; Chadwick et al., 2012). Sleipner was developed
in response to the passage of a Norwegian CO2 tax in 1991, and the avoided
tax burden quickly paid for the development costs.

Existing literature (Middleton and Bielicki, 2009; Middleton et al., 2012)
focuses on building a network that minimizes the overall capture, transporta-
tion, and storage costs, treating all players as a unified decision maker. To
date, most CCS projects have taken an integrated approach, where the cap-
ture and storage operations are developed in partnership. In the future,
however, other deployment models may be more common (Esposito et al.,
2011). Our work designs contracts between individual players: a CO2 emis-
sion producer and a pipeline and storage provider. We refer to these players
as the “emitter” and the “storage operator” respectively. Emitters can be
any point-source of CO2: coal and natural-gas power plants, steel and ce-
ment manufacturers, and other industries. We study how a storage operator
can design a contract that specifies the amount of CO2 to be stored at a
fixed unit price (per Mt). The inputs are the storage operator’s costs, his
expectations of the emission quantity and the emitter’s capture costs, and
an external tax on emissions faced by the emitter. Future work will study
a network of such contracts, where one storage operator can transport and
store CO2 from many sources.

Our work is based on three premises: (1) all participants are utility max-
imizers, (2) a fixed carbon tax has been established, and (3) some of the
quantities needed to design the contract are uncertain. The first premise
enables us to establish an economic model of how participants make their
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decisions. The second premise is essential since emitters will have little fi-
nancial incentive to participate in CCS if they are free to emit CO2 into the
atmosphere. Carbon taxes are generally considered an effective economic
incentive to reduce CO2 emissions. To date, many countries and municipal-
ities have adopted some form of carbon taxation, including: Finland (1990);
Netherlands (1990); Norway (1991); Sweden (1991); Denmark (1992); United
Kingdom (2001); Boulder, Colorado (2007); Quebec (2007); British Columbia
(2008); and the Bay Area Air Quality Management District, California (2008)
(Sumner et al., 2011). A number of other countries have carbon tax proposals
under consideration.

Due to the novelty of CO2-capture technology and the one-of-a-kind na-
ture of new capture plants, the true cost to install and operate the capture
facility can only be known to the emitter. The emitter may want to conceal
these costs to keep the storage contract price low. Additionally, the emission
quantity is also not constant. In the case of power plant, the uncertainty in
emission quantity is a result of fluctuations in electricity demand and plant
downtime for maintenance. Such uncertainties affect the optimal contract
the storage operator offers to the emitter. The third premise thus allows
us to construct the optimal contract for the storage operator while allow-
ing information to be unknown. Optimizing the price and volume of the
contract together can further increase the profits to the storage operator,
especially when the distributions of the capture costs and emissions volume
are correlated.

The models proposed in this paper encompass the unique aspects of this
problem. The emitter compares the cost of paying the emission tax against
the cost of engaging a storage operator to store their CO2. Meanwhile, a
storage operator has limited capacity and incurs costs for transporting and
storing captured CO2. Neither player will participate if a profit cannot be
obtained. We propose a newsvendor-type solution to determine the optimal
contract that maximizes profit to the storage operator, and minimizes costs
to the emitter. Our results provide guidance in determining how much CO2

should be transported and stored, and at what cost. We can also analyze
the effect of different costs on the optimal contracts.

2. Model Details

In this section we describe the components of our model, which are sum-
marized in Table 1. The storage operator faces a one-time cost K for setting
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up the site, a unit cost α1 (per Mt) for transporting and storing CO2 up to
the contract amount, and a marginal cost α2 (per Mt) to transport and store
any excess CO2 above the contract amount. Note that this is a simplified
cost model, and masks many of the financing details associated with large
capital projects. More complex cost structures, however, can be converted
to equivalent fixed and unit costs.

There is a maximum capacity cap of CO2 that the storage operator can
take due to limitations in the size of the storage reservoir. Typically there
is a maximum storage rate (Mt/yr) rather than a maximum volume (total
Mt), but here we focus on a single-period setting and assume that the con-
tracted amount of CO2 will be injected at a rate below the physical limit.
Additionally, there is a tax (per Mt) imposed on the emitter for any CO2

that is released to the atmosphere.
The power plant has an emissions volume em (in Mt) during the single

period which is a random variable from a known distribution. Additionally,
the capture costs cc is the (per Mt) cost of employing capture technology
to prevent CO2 from being emitted. This cost is privately known to the
emitter, but the storage operator can estimate a distribution on cc to help
decide what price to charge the emitter.

We divide the decision process into two stages. In the contracting stage,
the storage operator maximizes his expected profit over two decision vari-
ables. The first is the price, prc, to charge the emitter per Mt of CO2 trans-
ported and stored. The second is the contract amount, con (in Mt) that is
the amount the emitter can store at a given value of prc. Once such deci-
sions are made, the storage operator presents a contract that specifies both
the price and the contract amount. The emitter decides whether to accept
the contract by comparing prc against the difference between the tax and
the capture cost. If the emitter finds it is cheaper to capture and store the
carbon than to pay the emissions tax, he accepts the contract, and the stor-
age operator commits to build the pipeline capacity so that the contracted
amount of CO2 (con) can be transported via pipeline and stored. The stor-
age operator only builds the pipeline between the emitter and the storage
site after the contract is accepted and prior to the beginning of transporting
CO2.

In the execution stage, the emitter observes the actual emission quantity
and has the right (but not the obligation) to store con Mt of CO2 at the
operator’s site. If the emitter wants to store more CO2 than the contracted
amount, the storage operator may choose not to accept the excess based on
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either the cost of transportation or the capacity of the site. However, the
storage operator is not able to charge a different price for the additional
amount of CO2.

Table 1: List of terms and variables

Data [units]

K One-time setup cost [$] for site s1
α1 Marginal cost [$/Mt] incurred by the storage operator for

transporting and storing CO2 via pipelines
α2 Marginal cost [$/Mt] incurred by the storage operator for

transporting and storing CO2 via other means
cap Maximum capacity for site s1 [Mt]
tax Fixed tax [$/Mt] that the emitter pays for CO2 vented
———— —————————————————————————

Random Variables [units]

cc Cost [$/Mt] incurred by the emitter for CO2 captured
em Amount of CO2 [Mt] emitted by the emitter
———— —————————————————————————

Decision Variables [units]

prc Price [$/Mt] that the storage operator charges the emitter
for CO2 stored at site s1

con Contract amount of CO2 [Mt] transported via pipeline
and stored at the operator’s site

Under the framework described above, we construct two linked models
for the storage operator to determine the optimal contract volume and the
optimal price. In the first model in Section 3, we choose the optimal contract
volume given uncertainty in the emission quantity and a pre-determined unit
price. We extend the basic model to select the optimal price considering both
uncertainty in the capture cost and emission quantity in Section 4. In Section
5 we present numerical results for realistic input values, and study the effect
of correlation between em and cc on the optimal profit. Section 6 draws
conclusions and details avenues for further research. All proofs appear in the
Appendix.
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3. Stochastic Emission Quantity

First, we determine the optimal contract amount in the presence of a
stochastic emission quantity. Because there is uncertainty in the capture
process, the demand for power varies, and the plant may need to shut down
for unexpected maintenance, neither the emitter nor the storage operator
can definitively predict the volume of CO2 emissions available for storage.
To address this uncertainty, we treat the emissions volume (em) as a ran-
dom variable with a known distribution. Let f(em) denote the continuous
density distribution function of the emission quantity, and F (em) denote its
cumulative density function (c.d.f.). Since the emission quantity needs to
be positive and can be potentially quite large, we further assume that the
density function has a non-negative and continuous support. The storage op-
erator’s goal is to optimize the contract given a pre-determined prc, which,
for now, we assume is known.

Because the storage operator needs to build the pipelines for transport-
ing CO2 from the emitter to the site after the contract has been accepted
but prior to any CO2 being transported, the optimal contract amount is an
important decision. For simplicity, we assume that the emitter builds the ca-
pacity of the pipelines to match the contract amount. If the emitter asks to
store more than the contract amount, the storage operator can use another
method to transport the excess CO2 at a higher marginal cost, α2 (> α1).
In general, building a pipeline is the most efficient way of transporting large
volumes of CO2, and other options such as trucking are more expensive in
the long run (Herzog and Golomb, 2004).

Because our model assumes that the storage operator can only charge a
single price for all CO2 stored, the profit function for the storage operator
varies depending on em. Recall that cap denotes the maximum capacity at
the site the operator makes the injection. If emission amount is less than cap,
the storage operator receives revenue prc ·em; otherwise, he receives prc ·cap.
On the costs side, the operator incurs a cost of K +α1 · con, (where K is the
fixed setup cost and α1 is the marginal cost of operating the transport and
storage system) regardless of the emission quantity. When em is above con,
the storage operator incurs an additional cost of α2 · (min(em, cap) − con)
for transporting and storing the additional CO2. The following equation
summarizes the profit function for the three cases:
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Π(con, prc) =


prc · em− α1 · con−K if em ≤ con
prc · em− α1 · con− α2 · (em− con)−K if con < em < cap

prc · cap− α1 · con− α2 · (cap− con)−K if em ≥ cap.

The storage operator’s expected profit is:

E[Π(con, prc)] =

∫ con

em=0

[prc · em] f(em)dem (1)

+

∫ cap

em=con

[prc · em− α2 · (em− con)]f(em)dem

+

∫ ∞
em=cap

[prc · cap− α2 · (cap− con)]f(em)dem

−α1 · con−K.

Equation 1 shows the calculation of the expected profit by performing a
probability-weighting over the possible profits the storage operator would
receive under different values of em. Since the storage operator’s goal is to
maximize his expected profit, we can formulate an optimization problem as

max
con
{E[Π(con, prc)] | s.t. con ≤ cap}. (2)

The optimal solution to the problem is summarized in the proposition below,
and the proof is provided in the Appendix.

Proposition 1. Given a pre-determined price, the optimal contract that max-

imizes the storage operator’s expected profit is con∗ = min

{
F−1

(
α2 − α1

α2

)
, cap

}
,

where F−1 is the inverse c.d.f. of F .

Proposition 1 suggests that the optimal contract amount is independent
of the pre-determined unit price (prc) charged for the contract (as long as the
price is high enough for the storage operator to make a profit). Instead, it
depends on the marginal costs (α1 and α2) of transporting and storing CO2

as well as the distribution function of the emission quantity. The optimal
contract amount con∗ increases in α2 but decreases in α1. Since the storage
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operator commits himself to transport and store the contract amount via
pipelines, he is thus incentivized to build a bigger pipeline capacity when the
marginal cost of pipeline is cheaper and/or when the other transportation
methods are costly. In one extreme case where the marginal cost of transport-
ing and storing carbon is the same using pipelines as other transportation
methods (i.e. α1 = α2), the storage operator should not build any pipeline
(i.e. con∗ = 0). In the other extreme case where other transportation is not
available (i.e. α2 is infinity), the storage operator should set the contract
amount to be his total capacity. In Section 5 we explore some numerical ex-
amples showing the optimal contract amount under different distributional
settings.

4. Stochastic Capture Cost

Next, we model the decision for how much the storage operator should
charge the emitter per Mt of CO2 stored given uncertainty in both the cap-
ture cost cc and the emission quantity em. Because the emitter’s capture
cost varies depending on the technology used, it is private information and
the emitter does not have any incentive to report the cost truthfully. To
address this information asymmetry, the storage operator needs to form ra-
tional expectations of the distribution of the emitter’s capture cost. We allow
cc to be a random variable with a known distribution. The storage operator’s
objective is to find the optimal price for the contract to maximize his profit
while still incentivizing the emitter to participate (as long as the emitter is
sufficiently efficient in capturing CO2 and cc is low enough).

For a given price, the emitter will either accept or reject the contract
based on his capture cost. If the price is set too high, the storage operator
bears the risk of being turned down because the emitter is better off emitting
to the atmosphere and paying the tax. On the other hand, if the price is set
too low, the storage operator leaves “information rent” to the emitter which
in turn lowers his profit.

Given a contract (prc, con) specified by the storage operator, the emitter
determines whether he should accept the contract or vent the CO2 and pay
the tax. Since the cost to the emitter is the price to store the CO2 plus the
cost of capturing it, he will accept the contract only if prc + cc ≤ tax. If
the actual emission quantity is less than the contracted amount (em < con),
then both parties agree to only transport and store em amount of CO2 at
the price of prc. On the other hand, if the emitter produces more CO2 than
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contract amount (em > con), the emitter can either pay tax on the excess
amount or can request the storage operator to transport more to his site.
For simplicity, we assume that the storage operator is unable to charge a
higher price for the additional CO2. However, he may choose not to fulfill
the request if there is a lack of capacity.

Though the capture cost is the emitter’s private information, it is natural
for us to assume that the storage operator can learn the distribution of the
emitter’s capture cost through estimation. Let g(cc) denote the continuous
distribution function of the capture cost (per Mt of CO2) of the emitter. Since
the capture cost should be positive and can be very high, we assume that the
density function g has a non-negative and continuous support. Recall from
Section 3 that the optimal contract amount does not depend on the price or
the distribution of cc, and we can thus use the contract amount (con∗) as
given.

If the price is set such that the emitter is willing to accept the contract, the
storage operator will receive revenue from the contract. The storage operator
also pays the cost of operating the site as well as the cost of transporting and
storing the contracted (or requested) amount of CO2. Otherwise, the emitter
rejects the contract and the storage operator builds neither the storage site
nor the pipeline connecting the emitter and the storage site, and consequently
incurs no costs.

Consider the problem of designing a contract from the storage operator’s
point of view given the uncertainty in cc and em. For a given price prc, the
storage operator’s profit can be written as:

Π′(con, prc) =


prc · em− α1 · con−K if cc ≤ tax− prc & em ≤ con
prc · em− α1 · con− α2 · (em− con)−K if cc ≤ tax− prc & con < em < cap

prc · cap− α1 · con− α2 · (cap− con)−K if cc ≤ tax− prc & em ≥ cap
0 otherwise

We can thus calculate the storage operator’s expected profit while allow-
ing the contract to be rejected. This is the same as the expected profit given
the contract is accepted times the probability that the contract is accepted
(G(tax− prc)):

E[Π′(con, prc)] = E[Π(con, prc)] ·G(tax− prc). (3)

To maximize the storage operator’s expected profit, we solve the following
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unconstrained optimization problem by determining the optimal price:

max
prc
{E[Π

′
(con∗, prc)]}.

Proposition 2. Given the optimal contract amount con∗, the optimal price
prc∗ that maximizes the storage operator’s expected profit solves an implicit
equation and meets two conditions. The implicit equation is

G(tax− prc) ·
∫ cap

0

F (em)dem = g(tax− prc) · E[Π(con∗, prc)]. (4)

where F (em) is 1− F (em). In addition, the following conditions must hold
at prc∗:

g′(tax− prc∗) · E[Π(con∗, prc∗)]− 2g(tax− prc∗) ·
∫ cap

0

F (em)dem < 0,

and E[Π(con∗, prc∗)] ≥ 0.

Proposition 2 suggests that the optimal price depends on G(tax − prc),
which is the cumulative probability that the capture cost cc is lower than the
difference between tax and price, tax−prc. We can also interpretG(tax−prc)
as the estimated probability that the emitter will participate in CCS with
the storage operator. As mentioned before, the storage operator wants to set
the unit price to be as high as possible to maximize his expected profit, but
also ensures the price is low enough to induce efficient emitters (i.e., with low
capture costs) to accept the contract. This tradeoff is thus incorporated by
having the distribution of cc in the optimal solution in the terms G(tax−prc)
and g(tax− prc).

The discontinuity of the profit function at cc = tax − prc results in the
reliance on the density function g(tax − prc). While such reliance makes a
closed form solution for prc∗ intractable for general distribution functions,
simple line search methods can be used to find the optimal solution nu-
merically for any arbitrary distribution of g. The two conditions stated in
Proposition 2 serve the purpose of ensuring prc∗ is the optimal price and the
expected profit for the storage operator is non-negative (once the emitter ac-
cepts the contract). These conditions may further restrict the value of prc∗,
the allowable range of tax, and the allowed shape of the density distribution
g(cc).
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To provide more intuition for our result, let us consider a uniform dis-

tribution U [0, b] for g(cc). In this case, G(tax − prc) =
tax− prc

b
and

g(tax− prc) =
1

b
. The optimal price that satisfies Equation (4) is

prc∗ =
α2 ·

∫ cap
con∗

F (em)dem+ α1 · con∗ +K

2 ·
∫ cap
0

F (em)dem
+
tax

2
. (5)

Since g(cc) is a uniform distribution, g′(tax− prc∗) = 0 and the condition

g′(tax− prc∗) · E[Π(con∗, prc∗)]− 2 · g(tax− prc∗) ·
∫ cap

0

F (em)dem

=
−2

b

∫ cap

0

F (em)dem < 0

is satisfied. The condition E[Π(con∗, prc∗)] ≥ 0 holds as long as

tax ≥
α2 ·

∫ cap
con∗

F (em)dem+ α1 · con∗ +K∫ cap
0

F (em)dem
. (6)

A simplified expression for E[Π(con∗, prc∗)] is derived in the proof of
Proposition 2 that allows for the calculation of (6). Note that the optimal
price does not depend on b in the uniform case. The optimal price prc∗

depends on the one-time setup cost faced by the storage operator and the
tax faced by the emitter. Both a higher setup cost and higher tax increase
the price the storage operator can charge; a higher tax also increases the
emitter’s willingness to participate in CCS. In addition, the optimal price is
independent of the contracted amount since

∂prc∗

∂con∗
=
−α2 · F (con∗) + α1

2 ·
∫ cap
0

F (em)dem
=
−α2 · (1− F (F−1(α2−α1

α2
)) + α1

2 ·
∫ cap
0

F (em)dem
= 0.

That is, a higher difference between the costs of pipeline and other means
of transportation (α1 and α2) leads to a higher contract amount the storage
operator is willing to commit to, but the optimal price does not change
accordingly.
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5. Experimental results

In this section, we provide numerical examples to assess the effect of the
distributions of cc and em on the optimal policies. The contract decisions are
computed in two stages. In the first stage, the optimal contract amount is
calculated independently of the price. In the second stage, we set the optimal
price. While the optimal values can be calculated numerically for given
distributions of cc and em, we can also use simulation to choose the contract
values. Simulation is an easy way to generate expected profit values for
different contract options. We demonstrate that more information about cc
and em (i.e., lower variance in the distributions) can lead to higher expected
profits for the storage operator.

We use the parameter values given in Table 2. These values are taken
to be representative of realistic costs based on current experience (Herzog
and Golomb, 2004; Rubin et al., 2007; Sumner et al., 2011). Due to the
immaturity of the CCS industry and the site-specific nature of all costs,
however, estimated values for each of these parameters can cover very broad
ranges and are the subject of some debate.

Table 2: Parameter values used in numerical solution.

Parameter Value
K $80 million
α1 $6 per tonne
α2 $15 per tonne
cap 80 Mt
tax $100 per tonne

Mean of em 2.5 Mt
Mean of cc $50 per tonne

5.1 Uniform distributions

Simulation optimization has recently become a very popular method for
finding optimal solutions when objective functions can be evaluated via simu-
lation (for an overview, see Fu et al. (2008)). In order to estimate the optimal
solution, we simulate many possible values of cc and em according to their
distributions g and f , and determine the optimal values of prc and con that
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would provide the highest average profit using those simulated values. As a
first example, we consider uniform distributions for em and cc, which take
the form U(a, b) with a and b as the lower and upper limits of the distri-
bution. Specifically, we use a distribution of the form U(µ − kσ, µ + kσ),
where µ is the mean of the distribution and σ is some level of variation in
the distribution. We vary k (using the same k for both cc and em) to show
the effect on the optimal solution when the ranges of the distributions vary.

Table 3: Optimal solutions for different values of k when the distributions of em and cc
take the form U(µ− kσ, µ+ kσ) with µem = 2.5 Mt, µcc =$50/tonne, σem = 0.5 Mt, and
σcc =$10/tonne.

k con∗ [Mt] prc∗ [$/tonne] Optimal Profit (millions)
0.25 2.52 $47.92 $24.42
0.5 2.54 $46.46 $18.92
1 2.59 $48.73 $14.68

Table 3 shows that the optimal expected profit increases as the range of
the uniform distributions decrease. In other words, there is a higher level of
certainty available on the estimate of the mean values of cc and em, a higher
profit can be obtained. Figure 1 shows graphically how the profit function
narrows as the variance of the distribution decreases. However, we note that
the optimal choices of con∗ and prc∗ do not change as drastically as the profit
function, suggesting that a robust solution is available given uncertainty in
the variance of the distribution.

5.2 Normal distributions

We now consider normal distributions for cc and em as N (µcc, σcc) and
N (µem, σem), respectively. The µ parameters are the sample means of the
distributions, while the σ values are the standard deviations. We modify
the coefficient of variation (CoV), which is defined to be σ/µ for the normal
distribution, and represents the relative level of dispersion given the mean.
Keeping the mean constant, we modify the CoV through the standard devia-
tion (using the same CoV for both cc and em). Table 4 displays the optimal
solutions, and we again see that a higher optimal profit can be obtained when
the uncertainty in the distribution is lower.
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Figure 1: Profit functions calculated for uniform distributions using distribution from
Table 3.

Table 4: Optimal solutions for different values of σ/µ for N (µ, σ) with µem = 2.5 Mt and
µcc =$50/tonne.

CoV con∗ [Mt] prc∗ [$/tonne] Optimal profit (millions)
1/6 2.61 $49.90 $14.21
1/5 2.62 $50.41 $13.74
1/4 2.64 $53.00 $13.60
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Figure 2: Profit functions calculated normal distribution from Table 4.
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We see that as the uncertainty (CoV) in the distribution decreases, the
expected profit increases and the profit function becomes steeper. The ex-
pected profit increases despite the fact that con∗ and prc∗ decrease, and this
is because there is a lower probability of a loss in revenue due to the con-
tract being denied, or the contract amount being greatly different from the
emissions amount.

To better view the profit function over choices of (prc, con), we plot the
expected profit over both dimensions. Figure 3 shows a contour plot of the
expected profit under the different options of (prc, con). We see that for many
solutions, the expected profit to the storage operator is negative. Therefore,
the decision of the amount of CO2 to store, and the best price to charge the
emitter, are important for making this venture profitable.
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Figure 3: Contour plot of E[Π] over prc and con using normal distributions with a CoV
of 1/6.

5.3 Correlated distributions

Lastly, we use simulation optimization to find optimal solutions for cases
where the distributions of em and cc are correlated. For example, economies
of scale may lead to a lower capture cost, suggesting em and cc might be
negatively correlated.

By jointly simulating cc and em according to correlated distributions,
we can capture the potential dependence in the randomness and find the
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appropriate optimal solution. As an example, we simulate em and cc from
the same normal distributions as used in the previous section with CoV values
of 1/6 as in Figure 3, but with correlations of −0.5 and 0.5. Figure 4 shows
the contour plots of the expected profit function for the correlated cases.
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Figure 4: Contour plot of E[Π] over prc and con using normal distributions with a CoV
of 1/6, and a correlation of −0.5 (left) and 0.5 (right) between em and cc.

The left plot of Figure 4 shows that a higher expected profit can be ob-
tained when the emission quantity and capture cost are negatively correlated.
This is because larger plants who emit more tend to have lower capture costs
and so are more likely to accept the contract for a given price, leading to
a higher revenue for the storage operator. When the emission quantity and
the capture cost are positively correlated, however, larger plants tend to have
very high costs and are thus less likely to accept the contract. As a result,
the storage operator’s expected profit is lowered. This intuition is supported
by the right plot of Figure 4.

6. Conclusions

We propose a stylized model to address the problem of incentivizing both
the storage operator and the emitter to participate in CCS. While a tax on
emissions would encourage power plants and other emitters to reduce the
level of CO2 released into the atmosphere, in order for CCS to contribute
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to this reduction it must be profitable for an independent party to invest in
transportation and storage technology. Profit maximization policies can be
used to estimate the likely amount of CO2 that could be stored if such a
party was to take advantage of a carbon tax. Given the relative newness of
such contracts and CCS technology, uncertainty in the models allow for both
parties to better deal with the risk associated with such contracts.

The methods used in this paper for designing optimal contracts can be
extended to more complicated models. For example, other costs or revenues,
whether deterministic or stochastic, to both emitters and storage operators,
could be added to the profit functions. More sophisticated pricing mecha-
nisms can also be incorporated using the same methods, and we intend to
continue to explore these methods.

Future work will design contracts over networks of emitters and storage
operators. It is likely that one storage operator will attempt to enter into
contracts with multiple emitters, each with different costs. This would allow
the storage operator to pool the risk associated with different emitters and
potentially increase the amount of CO2 stored.

Appendix

Proof of Proposition 1. To find the optimal value of con that maximizes
the storage operator’s expected profit, we first solve the unconstrained prob-
lem and maximize the objective function (1). We take the derivative of the
expected profit function with respect to con and set it equal to 0. Applying
Lebniz rule, we obtain the following equation:

∂E[Π(con, prc)]

∂con
= (prc · con)f(con) +

∫ cap

con

α2 · f(em)dem

−(prc · con)f(con) +

∫ ∞
cap

α2 · f(em)dem− α1

=

∫ cap

con

α2f(em)dem+

∫ ∞
cap

α2f(em)dem− α1

= α2(1− F (con))− α1 = 0. (7)

We thus find the stationary point as

con∗ = F−1
(
α2 − α1

α2

)
.
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We now verify that the second order condition is satisfied at con∗, i.e.

∂2E[Π(con, prc)]

∂con2

∣∣∣∣
con∗

= −α2f(con)|con∗ = −α2f(con∗) < 0.

Thus, con∗ is the optimal solution that maximizes the storage operator’s
expected profit. Since the storage operator cannot set the contract amount
to exceed the maximum capacity of the operator, and the expected profit
function is concave for all values of con for which f(con) > 0, we set the

optimal contract amount to be con∗ = max{F−1
(
α2−α1

α2

)
, cap}. �

Proof of Proposition 2. First we re-write E[Π(con∗, prc)] as

E[Π(con∗, prc)] = prc ·
(∫ cap

0
em · f(em)dem+

∫ ∞
cap

cap · f(em)dem

)
−α2 ·

(∫ cap

con∗
(em− con∗)f(em)dem+

∫ ∞
cap

(cap− con∗)f(em)dem

)
−α1 · con∗ −K

= prc ·
(
em · F (em)

∣∣∣∣cap
0

−
∫ cap

0
F (em)dem+ cap · (1− F (cap))

)
−α2 ·

(
(em− con∗) · F (em)

∣∣∣∣cap
con∗
−
∫ cap

con∗
F (em)dem

)
−α2 · (cap− con∗) · (1− F (cap))− α1 · con∗ −K

= prc ·
(
cap · F (cap)−

∫ cap

0
F (em)dem+ cap− cap · F (cap)

)
−α2 ·

(
(cap− con∗) · F (cap)−

∫ cap

con∗
F (em)dem

)
−α2 · ((cap− con∗)− (cap− con∗) · F (cap))− α1 · con∗ −K

= prc ·
(
cap−

∫ cap

0
F (em)dem

)
−α2 ·

(
(cap− con∗)−

∫ cap

con∗
F (em)dem

)
− α1 · con∗ −K

= prc ·
∫ cap

0
F (em)dem− α2 ·

∫ cap

con∗
F (em)dem− α1 · con∗ −K.

Thus,
∂E[Π(con∗, prc)]

∂prc
=

∫ cap

0

F (em)dem. To find the optimal value of

prc that maximizes the storage operator’s expected profit, take the derivative

18



of the expected profit function E[Π′] with respect to prc and set it equal to
0:

∂E[Π
′
(con∗, prc)]

∂prc
=

∂(E[Π(con∗, prc)] ·G(tax− prc)])
∂prc

=
∂E[Π(con∗, prc)]

∂prc
·G(tax− prc)− E[Π(con∗, prc)] · g(tax− prc)

= G(tax− prc) ·
∫ cap

0
F (em)dem− g(tax− prc) · E[Π(con∗, prc)]

= 0.

The stationary point (prc∗) solves the above equation. Next, we check
second order condition at prc∗:

∂2E[Π]

∂prc2

∣∣∣∣
prc∗

= −g(tax− prc∗) ·
∫ cap

0
F (em)dem+ g′(tax− prc∗) · E[Π(con∗, prc∗)]

−g(tax− prc∗) · ∂E[Π(con∗, prc∗)]

∂prc

= g′(tax− prc∗) · E[Π(con∗, prc∗)]− 2g(tax− prc∗) ·
∫ cap

0
F (em)dem.

When the value of the second derivative is less than 0, prc∗ is the optimal
solution that maximizes the storage operator’s expected profit. In addition,
to ensure the operator’s expected profit is non-negative, we further restrict
E[Π(con∗, prc∗)] ≥ 0. �
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