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ABSTRACT 

There has been an increasing need to incorporate human 
performance in simulation models.  Situations in which 
human performance is subject to degradation over time, 
such as vigilance tasks,  are not represented.  This article 
describes a computational model for vigilance performance 
embedded in a new cognitive framework that utilizes re-
cent advances in system neuroscience, evolutionary psy-
chology and complexity theory. The Reduced Human Per-
formance Model (RHPM) captures human errors in 
monitoring tasks to a greater degree than previous at-
tempts. RHPM is implemented as a discrete event simula-
tion using Listener Event Graph Objects (LEGOs). The 
model captures leading vigilance theories and can be used 
as a tool to improve existing vigilance theories and to im-
prove current monitoring procedures minimizing errors 
that could lead to catastrophic outcomes. 

1 INTRODUCTION 

The surprise attacks of September 11, 2001, generated a 
need for more sophisticated models for the detection of po-
tential threats. A prerequisite of such models is the ability 
to simulate reduced human performance realistically. Real-
istic human performance should include the very human 
traits of imperfect perception, imperfect cognitive process-
ing, and imperfect behavior. Imperfect or lowered per-
formance caused by lack of information, lack of percep-
tion, or lack of cognitive resources, is termed “reduced 
human performance” and takes a variety of forms, which 
simulated entities must portray, if they are to be realistic.  

An unexpected event is called a surprise, and surprises 
are more likely to occur when performance is reduced. 
Thus surprises may be seen as a by-product of reduced 
human performance. A sophisticated cognitive model 
should generate surprises and unexpected outcomes as part 
of its portrayal of complex problem domains. 
Current cognitive models often lack flexibility and re-
alism; they struggle with modeling individual behavior and 
generating a reasonable range of behavior (Tenney et al. 
2003). This research has hypothesized that reduced human 
performance, specifically vigilance performance, can be 
best modeled as a complex adaptive system implemented 
(Wellbrink 2003). The next sections explain in more detail 
human information processing, vigilance performance, and 
design and validation issues for the computational model. 

2 HUMAN INFORMATION PROCESSING 

Cognitive models or architectures try to model the human 
information process as realistic as possible. The two pre-
dominant theories for cognitive architectures are symbol-
ism (essentially producing ruled-based architectures) and 
connectionism (neural networks) . In 1998 Richard Pew 
and others discussed strengths and weaknesses of the re-
sulting cognitive architectures in a National Research 
Counsel report (Pew and Mavor 1998). The conclusion 
was rather sobering: “Even the best of them [cognitive 
models] assume ideal human behavior according to doc-
trine that will be carried out literally, and rarely take ac-
count of the vagaries of human performance capacities.” 
(Pew and Mavor 1998, p.4). 

There is a broad agreement that the human stage proc-
essing model for the human information process is well 
suited as a framework for current and future cognitive ar-
chitectures. The next figure shows this model. 

Figure 1 shows the different stages for the human in-
formation processing. A stimulus is stored in the short-
term sensory store (STSS) for a few seconds (visual stimu-
lus about 1 second, auditory stimulus about 5 sec; echoic 
memory). If it is not perceived within this timeframe, it is 
not a perception. Perceptions are sometimes matched with 
patterns, likely stored in long-term memory . This is the 
encoding stage.  
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Figure 1: Stage Model of Human Information Processing 
(Wickens,1992) 

 
Next, during the central processing stage, the percep-

tion is forwarded to the decision- and response-selection 
system, which uses the working memory to determine 
whether an action should be initiated. The last stage is the 
response-execution stage, which leads either to a vocal or 
manual response to the perceived stimuli (Wickens 1992).  

Pew and Mavor (1998) modified this model slightly to 
show the elements that should be included in an integrative 
architecture. They left out the STSS and connected the per-
ception to long-term memory via working memory. How-
ever, a major alteration to the original stage model is the 
fact that Pew did not show the attentive resources that are 
central to modeling reduced performance. 

The attentional resources are imperative when model-
ing reduced human performance caused by a lack of atten-
tional resources. There are several theories and models on 
how humans use there cognitive resources. We favored 
Wickens’ multiple resource model which suggests that 
cognitive resources can be divided into modalities and 
codes in different stages of the information process. 

Figure 2 is an adaptation of the better known cube that 
can be seen in many textbooks (Wickens 1992, Matthews et 
al. 2000, Wickens 2004). It assumes that humans have two 
main attentional resource pools: one for the perceptual and 
central-processing phase, and one for the response-selection 
and execution phase. These resources can be divided into 
verbal and spatial, or, respectively, vocal and manual. The 
structure indicates a hierarchical system. The system is adap-
tive since humans can focus their attention (selective atten-
tion) filtering information to a certain extent in context. 
Thus, humans adapt cognitive resource consciously or sub-
consciously (or both) to a changing environment. We envi-
sioned implementing this model by using reactive agents 
that compete for resources and also supply energy to others. 
We also expected that the nonlinear interactions between the 
attentive resources would have different effects on the in-
formation processing stages, which eventually result in in-
teresting human-like emergent behavior.  
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Figure 2: Multiple Resource Model (Wickens, 1992) 
 
A major design decision was using discrete event 

simulation to model human information processing. The 
stage processing model lends itself to this approach be-
cause it is conceivable that individual pieces of information 
start and finish a stage within the process. They are then 
forwarded to the next stage. A rather informal argument for 
the use of discrete event simulation would be that people 
do not usually interrupt an action in a periodic fixed inter-
val. Rather, it appears to be natural that they react continu-
ally to changes in their environment, which favors an 
event-driven approach. The next section shows essential 
design features and explains the use of LEGOs 

3 REDUCED HUMAN PERFORMANCE  
MODEL (RHPM) 

RHPM is based on the assumption that reduced human per-
formance can be modeled as a complex adaptive system. 
Complex adaptive systems have some interesting features 
that are very similar to human behavior like the non linear 
interaction of autonomous agents. Human performance 
data often show curvilinear relationships between stressors 
(like heat) and the performance. Multi agent systems are 
ideal to implement such systems. RHPM is composed of 
several separate multi-agent systems (see modules 4, 5, and 
6 in Figure 3). 
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Figure 3: RHPM Modules 

 
RHPM uses the information stage processing as a 

blueprint with one addition. It adds a module to allow for 
individual differences (Individual States and Traits (IST) 
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module). The Capacity Manager component is an imple-
mentation of Wickens MRM where resource agents and 
working agents compete for cognitive resources. The Meta 
Agent inside this manager distributes resources to the dif-
ferent stages. The Cognitive Module represents the proc-
essing stage. It consists of several reactive agents that per-
form specific tasks on perceptions. Symbolic Constructor 
Agents (1) encode knowledge and store it into the STSS 
(2). The Cognitive Module (4) selects information to proc-
ess and once it recognizes the percept it informs the Re-
sponse Selection Agent (7) about this percept. This agent 
has to decide on an appropriate action and forwards this 
action to the Response Execution (8). This process depends 
on available resource for speed and accuracy. The Ampere 
module (6) computes changes in resource flows whereas 
the Capacity Manager (5) consists of several reactive 
agents competing for resources and taking actions to re-
ceive the desired amount of resources. 

All these software components are loosely coupled us-
ing the listener pattern.  This pattern and its use are ex-
plained in greater detail in Buss and Sanchez (2002) and 
Buss (1996).  The use of listener pattern enables us to cre-
ate parallel actions within the model of the human informa-
tion process. Figure 4 shows RHPM’s data flow 
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Figure 4: Data Flow RHPM 

 
Figure 4 shows how information is processed within 

RHPM. The Symbolic Constructor Agent SCA encodes in-
formation and sends out a message containing pre-
conscious information. The STSS listens to the SCA stor-
ing the information into its queue. Only if the UpdateAgent 
(UA) sends a signal asking whether or not there are any 
stored pieces of information. STSS sends out a message by 
itself. The little grey boxes indicate special software ob-
jects that we called routers. They are used as “in-between 
listener objects” and serve several purposes. They enable 
us to use the same type of listener object listening only to 
specific messages. They are also used to split information 
to allow parallel actions. The UpdateAgent (UA) works on 
the now conscious percept. When it finishes its task the lis-
tening router object relays the information to the Percep-
tAgent (PA). PerceptAgent codifies the information such 
that the Capacity Manager knows which agents should dis-
tribute resource to this task. Parallel to that action the 
Comparison Agent (CA) looks into Working Memory 
(WM) whether or not the percept is recognized informa-
tion. Depending on the outcome a new search in Long 
Term Memory (LTM) is initiated via the Search Agent 
(SA). In any case the Storage Agent (StA) pushes the per-
ceived information into Working Memory. Next the 
Transmit Agent works on the perception. Once it is done 
the listener object relays this new information to the Re-
sponse Selection Agent from where it will go to the Re-
sponse Execution Agent. This data flow is managed by the 
inherent message system of the listener pattern. It is possi-
ble to establish and cancel connections between agents dur-
ing runtime giving us a robust and fast mean to have agents 
communicate with each other. The components can also be 
exchanged without the need of re-compiling the entire sys-
tem. The only pre-requisite is that the executive class con-
nects the new component with the associated router. 

4 VALIDATING A COMPUTATIONAL  
MODEL OF VIGILANCE 

Vigilance or sustained attention is a cognitive function that 
occurs in almost every monitoring task (auditory, visual). 
Wickens defines vigilance: “Vigilance is a state of readi-
ness to detect and respond to certain specified small 
changes occurring at random time intervals in the envi-
ronment (Wickens 1992)”. 

Unfortunately, humans are not well suited for this kind 
of task. Monitoring tasks belong to high workload tasks 
and there is evidence that within the first 30 minutes of a 
monitoring task the loss of efficiency is pronounced. This 
phenomenon is known as vigilance decrement. Vigilance 
research started in the early 1930s and was established by 
Mackworth’s work on naval recruits. Mackworth was 
tasked to research the question why so many enemy sub-
marines that were on the radar screen of radar operators 
still remained undetected. He studied the phenomenon of 
the vigilance decrement in laboratory settings. 

Figure 5 (adapted from Mackworth, 1950) shows the 
results of Mackworth clock test. It was used to establish 
the increase in misses and the increase in reaction time. 
Subjects watched a clock’s watch hand for two hours. 
Whenever the watch hand jumped two instead of one sec-
ond the subjects had to report it. Within the first 30 min-
utes the decrement in hit rate was most pronounced. After 
that the decrement leveled of and stayed at an almost con-
stant level (Mackworth 1950). There are many factors that 
influence vigilance performance. 

Figure 6 summarizes the findings of several research-
ers (Davies and Tune 1970, Davies and Parasuraman 1982, 
Warm 1984, Matthews et al. 2000). It shows the main fac-
tors that influence vigilance performance. It also shows a 
sample of the different measures of performance (MOP). 
There are three main factors that impact vigilance perform- 
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Figure 5: Mackworth’s Clock Experiment and Results 
 
ance: Task factor, environmental factor and subjective fac-
tor. These factors are determined by their identified vari-
ables (i.e. the environmental factor is determined by the 
stress level). Vigilance performance can be measured in 
reaction times, correct detection, and commission errors 
(false alarms). 
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Figure 6: Vigilance Performance Factors 

 
We conducted four experiments (low workload, high 

workload, low high low (LHL) high low high (HLH))  to 
collect data on vigilance performance. Hits, false alarms 
and reaction times were measured in 10 minute time inter-
vals. Two sets of data were used to calibrate RHPM’s rules 
and parameters with the help of genetic algorithm. The fit-
ness function’s value was computed as the sum of squared 
error difference between model and human behavior for all 
measures of performance.  

Then the model was exposed to two scenarios (namely 
LHL and HLH) with the computed parameter set up. The 
results are very encouraging as the match between human 
data and RHPM data was very close. RHPM differed in 4 
out of 36 measures and these differences can be explained 
by looking at obvious limitations of vigilance theories. 
There was no statistical evidence for a difference between 
32 of 36 measures.  
RHPM is a stochastic model and still has more poten-
tial to increase its range of behavior. However, it already 
showed variability close to human subjects. 

Figure 7 shows a comparison of the MOPs’ standard 
deviations of RHPM and human subjects in the LHL con-
dition. Human data is more dispersed, however the differ-
ences especially in misses are small. 
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Figure 7: Standard Deviation Comparison 

5 CONCLUSIONS 

The validation run results of RHPM match our expecta-
tions. The model showed reliable behavior during “nor-
mal” simulation runs. It also generated insights into apply-
ing theories to the phenomenon (e.g. the importance of the 
detectability of a signal). RHPM could be validated against 
two previously unseen scenarios. RHPM can also demon-
strate the pitfalls of certain theories. For example: it is well 
known, that an increase in signal probability leads to an 
improvement of the miss and false alarm rate. Signal detec-
tion theory does not address this phenomenon. Conse-
quently, RHPM increases the miss rate instead of decreas-
ing it. However, by looking at the design of the model and 
how different modules work with each other, there are pos-
sible solutions on how to improve the model performance. 
These improvements could potentially reflect improve-
ments in the theories. Its open architecture, using LEGOs, 
facilitates improvement at any time. 

RHPM can certainly generate surprises by simply miss-
ing signals or giving false alarms too often. The surprise fac-
tor can be increased by changing certain parameters. One 
example is the probability of a slip. The response selection 
agent passes the decision (e.g. SayYes) to the Response-
Execution agent. The response execution than depends on 
how busy this agent is. It can conduct an omission error by 
having the information fade away or simply by a slip saying 
“No” instead of a “Yes” with a given probability. This prob-
ability can be linked to the stress level to indicate an increase 
in error rates with increasing stress. 
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RHPM can help to gain more insights into the phe-
nomenon of vigilance decrement and more generally into 
human performance degradation. Implementing multi 
agent system with discrete event simulation proofed as a 
viable alternative to the often used time step method and 
there are many advantages that we did not discuss. Model-
ing reduced human performance as a complex adaptive 
system appears to be a step in the right direction. 
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