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ABSTRACT 

We study estimators for the variance parameter u 2 

of a stationary process. The estimators are based 
on weighted Cramer-van Mises statistics formed from 
the standardized time series of the process. Certain 
weightings yield estimators which are "first-order un­
biased" for u2 and which have low variance. We also 
show how the Cramer-von Mises estimators are re­
lated to the standardized time series area estimator; 
we use this relationship to establish additional esti­
mators for u 2 . 

1 INTRODUCTION 

Suppose Y1 , Y2 , ... , Yn is a stationary process with 
mean µ. The estimator of choice for µ is usually the 
sample mean Y n, which is unbiased. In order to mea­
sure the precision of Y n, one often estimates the vari­
ance parameter, u 2 = limn-+oo nVar(Y n)· There is a 
wide body of literature devoted to the topic of esti­
mating u 2 (see Bratley, Fox, and Schrage 1987). This 
paper studies estimators for u 2 based on weighted 
Cramer-von Mises (CvM) statistics formed from the 
standardized time series of the process. The stan­
dardized time series is defined as 

_ lntJ(f'n - 'f'lntJ) 
Tn(t) = r.;; for 0 :5 t :5 1, 

uyn 

where Yj = I:;{=1 Yk/j, j = 1, ... , n, and l·J is the 
greatest integer function. Schruben (1983) and Glynn 

and Iglehart (1990) show that Tn E. B, where B is a 

standard Brownian bridge and E. denotes conver­
gence in distribution as n --+ oo. 
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The present article is organized as follows. §2 re­
views the standardized time series weighted area es­
timator for u 2 • §3 presents the CvM estimators, §4 
establishes some of their properties, §5 demonstrates 
empirical work, §6 gives extensions, and §7 concludes. 

2 THE WEIGHTED AREA ESTIMATOR 

If we define 

Ao(n) = v'f2I:;~=l uTn(~) 
n 

and 

Ao = v'i2 fo 1 
uB(t) dt, 

then it can be shown (see Schruben 1983 and Glynn 
and Iglehart 1990) that 

We call Aij(n) the unweighted area estimator for u2 . 

We can generalize this estimator by setting 

A(n) = L~=l f(~)uTn(~) 
n 

and 

A:= fo 1 
f(t)uB(t) dt, 

where (among other technical conditions) f(t) is con­
tinuous and normalized so that Var( A) = u 2 . One can 
show (see Dzhaparidze 1986 and Goldsman, Meketon, 
and Schruben 1990) that 
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We call A2 (n) the weighted area estimator for u 2 . 

We denote the covariance function Rk _ 
Cov(Y1,Yi+k) and the quantities 7 = -2I:~= 1 kRk, 

r1 - r1 rt F = Jo /(s) ds, and F = Jo Jo /(s) ds dt. Then un-
der mild conditions (see Schmeiser and Song 1989, 
Foley and Goldsman 1990, and Goldsman, Meketon, 
and Schruben 1990), 

- 2 -2 

E[A2(n)] = u2 + [(F - F) + F h + o( _.!:. ). 
2n n 

Example 1 The expected value of the unweighted 
area estimator is E[A5(n)] = u 2 +37/n+o(l/n). The 
expected value of the weighted area estimator with 
weighting function f(t) = v'840(3t 2 - 3t + 1/2) is 
E[A2(n)] = u 2 + o(l/n). In this case, we say that 
A2 (n) is first-order unbiased for u 2 . 

Further, if A4 (n) is uniformly integrable, then the 
asymptotic variance of the weighted area estimator is 
Var(A2) = 2u4 . 

3 THE WEIGHTED CRAMER-von MISES 
ESTIMATOR 

In the spirit of §2, we define the unweighted CvM 
estimator for u 2 by 

One can show that 

wg(n) E. wg = 6 fo\uB(t)) 2 dt. 

Cramer (1928) and von Mises (1931) studied statistics 
nearly of the form of wg(n) for the case of indepen­
dent and identically distributed Y1, Y2, .... Anderson 
and Darling (1952) and Smirnov (1937) derived the 
distribution of W6. 

A generalization of W6( n) is the weighted CvM es­
timator, 

Under mild conditions, 

W 2 (n) E. W 2 =: fo 1 
g(t)(uB(t)) 2 dt, 

where g(t) is continuous on [O, 1] and normalized so 
that E[W2] = u2 • Anderson and Darling derived the 
distribution of W 2 with g(t) = [t(l - t)]- 1 (which 
is not continuous on [O, l]); the distribution of W 2 

with an arbitrary weighting function has not been 
explicitly determined (see Durbin 1973). 
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4 PROPERTIES OF CvM ESTIMATORS 

We can express the expected value of the CvM esti­
mator in terms of g(t) and Rk. First, we need some 
standing assumptions. 

Assumptions 

l. The constants µ and u2 satisfy Xn E. u Z, 
where Z is a standard Brownian motion and 

_ L nt J (Y L nt J - µ) 
Xn(t) = -fa , 

2. L~=-oo Rk = u 2 > 0, 

3. L~=l k 2 1Rkl < oo, 

4. g" exists and is bounded on [O, 1], and 

5. E[W2]/u2 = f0
1 g(t)t(l - t) dt = l. 

(Glynn and Iglehart 1990 list various sets of sufficient 
conditions for Assumption 1 to hold; these usually 
involve moment and mixing conditions.) 

We now state the main theorem. (All proofs are in 
Goldsman, Kang, and Seila 1991.) 

Theorem 1 Let G = f0
1 g(s) ds. Under the standing 

assumptions, 

Consider the simplest case in which g(t) is a con­
stant weighting function. 

Example 2 If g(t) = 6 for all t E [O, l], then Theo­
rem 1 implies that E[W6(n)] = u 2 + 57/n + o(l/n). 

If G = 1 (and the standing assumptions hold), The­
orem 1 says that the bias of W 2 ( n) as an estimator 
of u2 is o(l/n). In this case, W 2(n) is first-order un­
biased for u 2 . 

Example 3 Suppose g(t) = 51 - c/2 +ct - 150t2 , 

where t E [O, 1] and c is real. Then Theorem 1 implies 
that E[W2(n)] = u 2 + o(l/n). 

We can even give exact small-sample results forcer­
tain stochastic processes. 

Example 4 Consider an MA(l) process Y; = 0E;_ 1 + 
E;, i = 1, 2, ... , where the f; 's are independent nor­
mal (0, l); so Ro = 1 + 02 , R±1 = 0, and Rk = 0, 
otherwise. For the weights g(t) = 6, we have 

E[Wg(n)] 

u 2(l _ _..!:._) + 7(n - 1)(5n - 1) n2 ~~~n~3~~~ 

2 57 ( 1) u +-+o-. 
n n 
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For g(t) = 51 - 150t2 , some algebra yields 

E[W2(n)] 
u2(n 2 - l)(n2 + 5) 1(24n3 - 29n2 - 5) 

n4 +~~~-n-5~~~-

1 
u2 + o(-). 

n 

These results are in accord with Examples 2 and 3. 

The choice of weights clearly affects the variance of 
W 2 (n). In fact, the next theorem gives a useful result 
on the limiting variance. 

Theorem 2 Suppose W 4 (n) is uniformly integrable. 
Then under the standing assumptions, 

Var(W2 (n))---+ Var(W2 ) 

= 4u4 fo 1 g(t)(l - t) 211 g(s)s2 ds dt. 

Example 5 If g(t) = 6 (as in Example 2), then The­
orem 2 implies that Var(WJ) = 4u4/5. 

Example 6 Suppose g(t) = 51 - c/2 +ct - 150t2 , 

where c is real (as in Example 3). Then Var(W2 ) = 
( c2 - 300c + 26856)u4 /12600. This quantity is mini­
mized by c = 150, in which case Var(W2) = 1.729u4. 

One would like to choose a weighting function 
which minimizes the variance of the CvM estimator 
while satisfying the first-order unbiasedness and nor­
malizing constraints; i.e., find g(t) which minimizes 
Var(W2 ) subject to G = 1 = f0

1 g(t)t(l - t) dt. It is 
easy to show via Lagrangian multipliers that the opti­
mal quadratic and cubic polynomial weighting func­
tion is g(t) = -24 + l50t - 150t2 , the choice studied 
in Example 6. The best quartic is 

( ) - -1310 19270t - 25230t 2 16120t3 

g t - 21 + 21 7 + 3 

for which Var(W2 ) = l.042u4. 

5 EMPIRICAL WORK 

8060t4 

3 

We present the results of some Monte Carlo simu­
lations to evaluate the performance characteristics 
of the CvM estimators. Consider the AR(l) pro­
cess Yi+ 1 =¢Yi+ li+1, i = l, ... ,n, where the fi's 
are independent normal (0, 1 - ¢ 2) random variables, 
-1 < ¢ < 1, and Y1 is initialized as a normal (0, 1) 
random variable independent of the li 's; so the Yi 's 
are stationary with normal (0, 1) marginals and co­
variance function Rk = ¢1kl. Some algebra shows 
that the variance parameter is u2 = (1 + ¢)/(1 - ¢). 
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For each value of n = 2k, k = 3, 4, ... , 9, we ran 
10000 independent simulations of the process with 
¢ = 0.9 to estimate the expected values and variances 
of four estimators for u 2 = 19: 

• Unweighted area estimator A5(n). 

• Weighted area estimator A2(n) with first-order 
unbiased weighting function f(t) = .;840(3t2 -

3t + 1/2) (Example 1). 

• Unweighted CvM estimator W5(n). 

• Weighted Cv M estimator W 2 ( n) with first-order 
unbiased weighting function g(t) = -24 + l50t -
150t2 (Example 6). 

The results are given in Table l. The table contains 
the estimated expected values of the four estimators 
for various n; the numbers in parentheses are the as­
sociated standard errors of the entries above them. 
The standard errors allow us to estimate the vari­
ance of the estimators. We first notice that all of the 
estimators become less biased for u 2 as n increases. 
Consider the entries for "large" n, say n ~ 512. As 
predicted by Example 1, the unweighted area estima­
tor Aij(n) has comparatively high bias and variance, 
while the first-order unbiased weighted area estima­
tor A 2 (n) has much lower bias and about the same 
variance. The unweighted CvM estimator WJ(n) has 
high bias (cf. Example 2) but very low variance (cf. 
Example 5). Finally, the first-order unbiased CvM 
estimator W 2 (n) has very low bias (cf. Example 3) 
and variance which is slightly lower than those of the 
area estimators (cf. Example 6). 

6 EXTENSIONS 

We briefly suggest some extensions to the CvM esti­
mators, all of which are discussed in Goldsman, Kang, 
and Seila (1991). 

6.1 Still More Estimators 

Another class of estimators is based on the relation­
ship between the unweighted area and CvM estima­
tors. With the fact that (ov(Aij, WJ) = 6u4/5 in 
mind, we consider the estimator (cf. Durbin 1973 and 
Watson 1961) 

UJ(n) = 12 t (uTn ( ~) - Ao ( n) ) 2 

n k=l n .JI2 
2WJ(n) - A~(n) 

!!+ UJ ::: 2Wcf - A~. 
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Table 1: Sample Expectations of Variance Estimators 

n Afi(n) A""T(n) W"J(n) W"""2"°(n) 
8 0.97 0.96 0.69 0.93 

(0.01) {0.01) (0.01) {0.04) 
16 2.83 2.69 2.04 2.75 

{0.04) (0.04) (0.03) (0.07) 
32 6.50 6.36 4.90 6.52 

(0.09) (0.09) (0.06) (0.11) 
64 11.02 11.58 8.99 11.64 

{0.15) (0.16) (0.10) {0.17) 
128 14.95 16.45 13.15 16.29 

{0.21) {0.23) (0.14) {0.22) 
256 16.80 18.01 15.77 18.07 

{0.24) {0.25) (0.15) (0.24) 
512 18.12 18.86 17.41 18.89 

(0.25) (0.26) {0.16) (0.25) 
1024 18.44 18.85 18.12 18.89 

(0.26) {0.27) (0.17) {0.25) 

As before, we can generalize U5(n) to obtain addi­
tional estimators for o-2 . Define 

v --+ 

_!_ ~ h(~) (o-Tn(~) - Ao(n))2 
nL...J n n .Jl2 

k=l 

U2 :::: o-211 h(t)(B(t) - B)2 dt, 

where B = f0
1 B(t) dt and h(t) is a continuous, 

bounded weighting function on [O, 1], normalized so 
that f0

1 h(t) dt = 12. Under mild conditions, 

and 

Var(U2(n))--+ Var(U 2 ) 

= 4u411 1t h(s)h(t)c2 (s,t)dsdt, 

2 2 1 
where c(s, t) = s(l - t) - •-./ - t-.} + 12 . 

We mention in passing that it is possible to devise 
estimators for o-2 based on other functionals of Brow­
nian bridges - for instance, the Anderson-Darling 

statistic or J0
1 IB(t)I dt. 

6.2 Estimators Using Batching 

All of our work so far has assumed that we have 
one long batch of n observations. Alternatively, 
we can break the n observations into b contiguous, 
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nonoverlapping batches, each of size m (assume n = 
bm). Then, e.g., let W;2(m), i = 1, ... , b, denote 
the CvM estimator formed exclusively from the ith 
batch of observations, Y(i-l)m+1, Y{i-l)m+2, ... , Yim· 
The Cv M batch estimator for o-2 is W 2 ( m) :::: 

b 2 -2 2 
Li=l W; (m)/b. Of course, E[W (m)] = E[W (m)] 
and, if the Wl{m)'s are approximately independent, 

Var(W2(m)) ~ Var(W2(m))/b. 

6.3 Overlapping Estimators 

We can also apply the methodology of Meketon and 
Schmeiser (1984) in which then observations are bro­
ken into n-m+ 1 overlapping batches, each of size m. 
Then, e.g., let W 2(i, m), i = 1, ... , n - m + 1, denote 
the CvM estimator formed exclusively from the obser­
vations Y;, Yi+1, ... , Yi+m-1· The CvM overlapping 
estimator for o-2 is W 2(m) = I:7::-t+1 W 2 (i, m)/(n­
m + 1). Clearly, E[W2 (m)] = E[W2 (m)]; further, in 
the special case that each W 2 (i, m) uses the weight­
ing function g(t) = 6, Goldsman and Meketon (1990) 

show that Var(W2(m)) ~ ~~Var(W2 (m)). 

7 CONCLUSIONS 

In this article, we introduced a class of CvM estima­
tors for o-2 , derived expectation and variance proper­
ties, discussed some empirical results, and proposed 
extensions to the initial work. Although the esti­
mators are all asymptotically unbiased for o-2 , they 
can be quite biased for finite samples. Luckily, we 
were able to find first-order unbiased estimators hav­
ing comparatively low variance. 
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