
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2007

Composability and Component-Based

Discrete Event Simulation

Buss, Arnold

http://hdl.handle.net/10945/38583

Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

COMPOSABILITY AND COMPONENT-BASED DISCRETE EVENT SIMULATION

Arnold Buss
Curtis Blais

MOVES Institute

700 Dyer Road, Naval Postgraduate School
Monterey, CA 93943, U.S.A.

ABSTRACT

This work presents a framework and a Graphical User In-
terface, Viskit, for the creation and analysis of compo-
nent-based Discrete Event Simulation models. Two pri-
mary elements of the tool are discussed. In component
design mode, a new component is created by drawing the
Event Graph and filling in parameters, so that the simula-
tion modeler need not be a sophisticated programmer. In
component construction (assembly) mode, components
are hooked together to create a model. In analysis mode,
the models are exercised and run according to the desired
experimental design.

1 INTRODUCTION

Discrete Event Simulation (DES) methodology is a way
of modeling a situation in a stylized manner. Two ele-
ments of DES are noteworthy. First, DES models advance
time according to the Next Event rule. A list of future
events (the “Event List”) holds the pending list of sched-
uled future events at any time point. Rather than advanc-
ing time in discrete, uniform increments, the simulation
time is advanced to that of the next scheduled event. The
second identifying element is that the state variables (de-
fined below) stay constant between events, and at events
change value according to a predefined state transition
function for the occurring event. This state transition oc-
curs instantaneously in simulated time units.

Event Graph methodology is a way of formally rep-
resenting DES models (Schruben 1983). An Event Graph
model consists of four elements: A collection of parame-
ters, a collection of state variables, a collection of events
(or state transitions) and a collection of scheduling rela-
tionships between events.

Parameters are elements that do not change and do
not have the possibility of changing in the course of a sin-
gle simulation replication. Examples include the total
number of servers in a multiple queueing system, the
number of workstations in a serial production line, etc.

6941-4244-1306-0/07/$25.00 ©2007 IEEE
For modeling purposes, a sequence of values, even a
pseudo-random one, may be considered to be a single pa-
rameter. In that case, even though different values may be
generated, the sequence as a whole stays unaltered.

A state variable is an element that changes, or at least
has the possibility of changing, in the course of a single
simulation replication. As mentioned above, the rule by
which a state changes value is pre-specified by a state
transition function, which occurs when the corresponding
event “occurs” in the simulation run.

An Event is a way of labeling or identifying each
state transition function. The collection of Events de-
scribes every possible change of value in that simulation
model. State variables can only change value during the
execution of an Event, and an Event always occurs in 0
simulated time. Thus, time only passes between events,
never during an event.

Events are placed on the Event List for possible oc-
currence at some concurrent or future scheduled time in
the simulation. An Event Graph describes this scheduling
relationship by specifying which Events (if any) are sche-
duled when each Event occurs. A second scheduling rela-
tionship involves removing a previously scheduled Event
from the Event List. These scheduling relationships may
be represented as a directed graph, an Event Graph, in
which the Events are the nodes and the scheduling rela-
tionships form the edges. The two types of scheduling re-
lationships are shown in Figure 1.

Figure 1: Basic event graph constructs

Blais and Buss

The top construct in Figure 1 is a scheduling edge be-
tween Events A and B; the elements on the edge are a
boolean condition (i), a time delay t, and a parameter ex-
pression j. Event B has an argument (k), which can be
thought of in the same way as the list of formal parame-
ters in a method definition. The scheduling edge represen-
tation has the following interpretation. When Event A oc-
curs, then if boolean condition (i) is true, then Event B is
scheduled to occur t time units in the future. When Event
B occurs, then its argument(s) k are set to the value of the
parameter(s) j at the time Event B was scheduled.

There is only one special event in Event Graph meth-
odology, the Run event. Every Event Graph model has at
least one Run event, and that event is assumed to be
placed on the Event List at time 0.0. If there were no such
construct, the Event List would start empty, and the simu-
lation would immediately end. “Run” is analogous to a
“main” method in C or Java programming, providing a
starting place for the model to run. Once the Event List
algorithm starts, the Run event is processed like any other
event. Its state transition should set the initial values of all
state variables, and it should then schedule whatever
events are necessary, as determined by the specifics of the
particular model.

2 COMPOSABILITY AND COMPONENT-BASED
DES MODELING

Although Event Graph methodology can be used to build
any Discrete Event Simulation model, by itself the meth-
odology does not facilitate composability of such models.
A component framework enables such composability,
which in turn allows substantially more re-use and scal-
ability of models.

The key to composing DES models is to treat an
Event Graph as being the specification of each component.
Such components have been called “Listener Event Graph
Objects” or “LEGOs” (Buss and Sanchez 2002) because
of the prominence of the Listener pattern as a means of
loosely connecting them. Each LEGO is an instance of an
Event Graph for which the parameters and state variables
are encapsulated. Each LEGO is configured to hold its
own distinct parameters and is responsible for the events
and state transitions that modify its state variables and
produce its state trajectories. Since each LEGO compo-
nent is designed to work in conjunction with other LEGO
components, it is not necessarily complete in itself. Like a
hardware component, a LEGO may require a number of
other LEGOs to trigger its events. The Listener Pattern is
how this communication between components occurs
(Buss 2002, Buss and Sanchez 2002), and is described
next.

695
2.1 The Listener Pattern

The Listener Pattern provides the primary mechanism by
which simulation components communicate in this
framework. Two types of components are involved with a
listener pattern: the listener component and the Event
Source component. The listening component registers in-
terest in another component’s events and waits for the
other component to execute the event. When the event oc-
curs in the simulation component, the software notifies all
registered listeners of the event. Note that the term
“event” as used here is different than the simulation
events that come off the event list. No matter how many
of these events are fired, no simulated time passes. Indeed,
the firing of these events can technically be considered to
be part of the state transition function for the current si-
mulation Event.

Three entities are involved with every implementa-
tion of the Listener pattern: The Event, the Listener, and
the Event Source. The same component can serve as a
Listener to some components and be an Event Source to
other components. The Event that is fired should contain
enough information for the Listener to be able to decide
what to do without a callback to the Event Source. This
no-callback property is a critical one for maximizing the
looseness of the coupling between components since such
a callback requires the listener to have knowledge of the
event source object. Indeed, this feature distinguishes the
Listener pattern from the Observer pattern (see Gamma et
al. 1995), since the latter typically does require a callback
to the event source. For maximum flexibility the Listener
should be implemented as an interface consisting of just
the single notification method with a signature consisting
of a reference to the dispatched event. The Event Source
component has three tasks: to register Listener compo-
nents, to unregister Listener components, and to fire the
Event at the proper time. Note that the use of an interface
to implement the Listener pattern is critical to its extensi-
bility. Implementing a Listener as a class, whether con-
crete or abstract, restricts all further Listeners to be sub-
classes. In fact, there is an Interface design pattern that is
appropriate here (Gamma et al. 1995). The Interface pat-
tern is easily implemented using a Java interface, enabling
disparate classes without any is-a relationship whatsoever
to be first-class participants as Listeners.

The power of the Listener pattern stems from the fact
that the Event dispatching can be implemented generi-
cally, with the Event Source having to know only that the
receiving component implements the Listener interface.
The interface for a Listener typically consists of a single
method with one argument, a reference to the dispatched
Event. The event source uses this method to make a call-
back to each listener when the Event is dispatched. Thus,
the interface for the event source consists (at a minimum)

Blais and Buss

of methods for registering and unregistering Listeners and
at least one method to trigger an Event dispatch.

We will now discuss the two Listener patterns that
have proved very useful for Discrete Event Simulation
Modeling: the SimEventListener and the Proper-
tyChangeListener. The presentation will be oriented to-
wards its implementation in Simkit, since that forms the
underpinnings of Viskit, the visual tool for creating such
component-based models.

2.2 SimEventListener Pattern

The SimEventListener pattern involves an event that has
been executed by the Event List. It consists of the source
of the event (the SimEntity that scheduled it) multicasting
the same SimEvent to registered SimEventListeners. The
callback method from the Event List for a SimEntity is
handleSimEvent(SimEvent), which simply invokes the
processSimEvent(SimEvent) method defined by SimE-
ventListener. The SimEvent contains data (in the form of
a String) about which method is to be invoked and op-
tionally a parameter list (in the form of an array of Ob-
jects) to be passed to the method. Java’s reflection me-
chanism is used to find the desired method and to invoke
it. The invoked method is determined by prepending “do”
to the event name and matching a method of that name
with a signature consistent with the parameter list. When
processSimEvent() returns, then notifyListen-
ers(SimEvent) is called, thus multicasting the SimEvent to
all registered SimEventListeners. The SimEventListener
interface defines just the processSimEvent(SimEvent)
method, thus making it very easy for components to de-
fine different ways to respond to SimEvents. For example,
instead of the slower (but flexible) reflection used by Si-
mEntityBase, Simkit’s default SimEntity base class, the
desired method could be invoked using a switch-type
statement based on magic numbers. Another example oc-
curs when a base class that is not a SimEventListener has
already been identified. The class has only to declare that
it implements SimEventListener and then actually imple-
ment the processSimEvent(SimEvent) method. This is
typical of the way Java implements polymorphism and is
an alternative to multiple inheritance.

A SimEntity can only multicast a SimEvent it has
previously scheduled; a heard SimEvent is not dispatched
to its listeners. This enables two SimEntities having the
same Event to listen to each other without generating an
infinite loop. Of course, it is always possible to program-
matically create cycles of scheduled events, but each new
event must be explicitly scheduled.

696
2.3 PropertyChangeListener Pattern

The PropertyChangeListener pattern specifically involves
components changing a property value and notifying in-
terested listeners about that change. The Java language
provides support for this pattern with the PropertyChan-
geEvent and the PropertyChangeListener interface, part of
the “JavaBeans” conventions. A PropertyChangeEvent
instance contains the property’s name, references to both
the old and new values, and a reference to the source of
the PropertyChangeEvent to support callbacks.

Simkit adopts the convention of firing PropertyChan-
geEvents whenever state variables change value. The
PropertyChangeListener interface has a single callback
method, propertyChanged(PropertyChangeEvent) that is
invoked when a property is fired. The PropertyChange-
Support class has methods for registering and unregister-
ing PropertyChangeListeners and for firing Proper-
tyChangeEvents. An object can delegate the management
of the PropertyChangeListener pattern to an instance of
PropertyChangeSupport.

The PropertyChangeListener pattern is more useful
than a SimEventListener when the listening component is
primarily interested in the state changes rather than the
occurrence of a particular event. The property itself could
in fact be present in more than one simulation component;
and a PropertyChangeListener could be registered with all
components managing a particular property. Furthermore,
a component only concerned with the state variable would
have to make a callback to the source if it used the SimE-
ventListener pattern to hear the property changes. A Pro-
pertyChangeEvent, in contrast, contains all the necessary
state information for that variable.

3 VISKIT

Viskit is a graphical front end for creating, editing, and
composing DES simulation models using Event Graphs
and the LEGO framework. Viskit currently implements
all the basic functionality required to create the kind of
DES models described in previous sections. This section
will provide an overview of some of the basic features of
the Viskit tool and its capabilities.

3.1 Event Graph Editor

The Event Graph Editor is used to create Event Graph
components by drawing the Event Graph on a palette and
running inspectors to create parameters, state variables,
and edit the event nodes and scheduling/canceling edges.
An empty EventGraph editor is shown in Figure 2.

Blais and Buss

Figure 2: Empty event graph editor screen

The Event Graph palette is on the left, and the two

right panels are for defining state variables (top) and pa-
rameters (bottom). A new event is created by dragging the
yellow event node icon from the toolbar to the palette.
Scheduling and canceling edges are created by selecting
which type of edge to be drawn on the toolbar and then
dragging the mouse from the scheduling event to the
scheduled event. Figure 3 (following pages) shows a
completed Event Graph component.

Figure 4 (following pages) shows the Node inspector
which is used to input, display, and edit the data associ-
ated with the node. The Node inspector can be used to
change the name of the event and to define state transi-
tions. The interface for state transitions ensures that only
state variables can be modified. Variables which are local
to the event may be defined for convenience. Finally, ar-
guments to the event are also defined. An instance of the
Beanshell interpreter is used to verify that user input con-
69
sist of legitimate expressions, meaning that all variables
have been specified (parameters, state variables, or local
variables) and that all expressions are syntactically correct.

Figure 5 (following pages) shows the edge inspector,
which is used to input, display, and edit information about
the edges. The source and target events are displayed, but
cannot be edited from the edge inspector. The time delay
and boolean conditions are filled in by the user as free-
form expressions. As with the node inspector, Beanshell
is used to verify all expressions entered in free form. The
possible edge parameters and associated types are filled in
from the signature of the target event, ensuring that the
signature of the edge matches the scheduled (or cancelled)
event.

The Event Graph Editor saves its components in
XML. Simkit Java code can also be generated and saved
for separate compilation, as shown in Figure 6 (following
pages).
7

Blais and Buss

Figure 3: Server with reneges event graph

Figure 4: Event node inspector

698

Blais and Buss

Figure 5: Edge inspector

Figure 6: Generated Simkit code

699

Blais and Buss

Figure 7: Empty assembly editor window

3.2 Assembly Editor

The Assembly Editor is used to compose DES models us-
ing Event Graph components. The Assembly Editor also
uses a drawing palette and inspectors to populate the
model, but the meaning of the nodes and edges are differ-
ent. The Assembly Editor can utilize components created
using the Event Graph Editor or compiled Java classes
that have been created elsewhere. The Assembly Editor
appears empty when first opened, as shown in Figure 7.

The palette is on the right (to make it easy to distin-
guish whether one is using the Assembly or the Event
Graph Editor) and the left panels are populated by Event
Graph classes (top left) and PropertyChangeListener
classes (bottom left). Additional classes may be added or
removed by use of the ‘+’ and ‘-‘ buttons. Dragging an
item onto the palette signals an instantiation of an object
of that type. Event Graph instances (LEGOs) are con-
nected using the SimEventListener pattern described pre-
viously, and PropertyChangeListener instances listen to
SimEntities using the PropertyChangeListener pattern,
also discussed previously. An example of an Assembly is
shown in Figure 8 (following page).

The blue icons in Figure 8 represent the Event Graph
component instances (LEGOs) and the pink icons repre-
sent PropertyChangeListeners. The dark arrows represent
SimEventListening and the pink arrows represent Proper-
tyChangeListening.
700
An Assembly is also saved in XML format. As with
the Event Graph Editor, the corresponding Java code can
be generated, saved, and compiled separately. The As-
sembly editor can be used to create many different models
from the same set of components.

A created Assembly can be run using the controls at
the bottom of the window. The user can fill in the stop
time for the run and check whether the run is to be in ver-
bose or quiet mode. Verbose mode prints out each event
along with the Event List after each event is executed.

4 CONCLUSIONS AND ONGOING WORK

The need for rapid development and implementation of
DES models will be present for the foreseeable future. Ef-
fective tools are needed to support this. Simkit is a proven
platform that supports rapidly implementing DES models
in Java. The Analysis Workbench discussed in this paper
incorporates tools for even more rapid development while
reducing the dependency on programming expertise.

The use of XML as the “native” format has some in-
teresting and useful implications for further work. In-
creasingly, software applications utilize XML for data
representations and processing, and the use of stylesheets
allows XML data to be readily transformed from one
form to another. XML is a key technology in Web Ser-
vices, so the description of Event Graph components and
Assemblies in XML can help support interoperability
with web-based simulation services.

Blais and Buss

Figure 8: Example assembly

The Viskit component of the Analysis Workbench

provides a user-friendly means of creating Event Graph
components and DES simulation models by assembling
components. The application is being tested and feedback
from users will be incorporated into subsequent versions.
Other components of the Analysis Workbench not de-
scribed here include a user interface for performing de-
sign of experiments and for launching complete Simkit or
Viskit models. Viskit continues to be developed whil be-
ing employed in numerous research programs, Masters
theses, and simulation instruction at the Naval Postgradu-
ate School. Models developed using this graphical user
interface include such diverse areas as maintenance and
repair policies for aircraft engines, submarine tactics for
negotiating a minefield, analysis of the dynamic alloca-
tion of networked fires and sensors (Buss and Ahner
2006), and perimeter security scenarios for waterside and
landside anti-terrorism/force protection (Brutzman et al.
2006).

REFERENCES

Brutzman, D., C. Blais , and T. Norbraten. 2006. Model-
ing and 3D Visualization for Evaluation of Anti-
Terrorism/Force Protection Alternatives Phase II Fi-
nal Report. Technical Report NPS-MV-06-002. Na-
val Postgraduate School. Monterey, CA. 31 October.
70
Buss, A. H. 2001. Discrete Event Programming with
Simkit. Simulation News Europe. 32/33:15-24.

Buss, A. H. 2002. Component based simulation modeling
with Simkit. In Proceedings of the 2002 Winter Simu-
lation Conference, ed. E. Yücesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes.

Buss A. H. and P. J. Sanchez. 2002. Modeling very large
scale systems: building complex models with LEGOs
(Listener Event Graph Objects). In Proceedings of
the 2002 Winter Simulation Conference, ed. E. Yüce-
san, C.-H. Chen, J. L. Snowdon, and J. M. Charnes,
732-737. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers, Inc.

Buss, A. H. and P. J. Sanchez. 2005. Simple movement
and sensing in discrete event simulation. In Proceed-
ings of the 2005 Winter Simulation Conference, ed.
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, 992-1000. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Buss, A. H. and D. Ahner. 2006. Dynamic Allocation Of
Fires And Sensors (Dafs): A Low-Resolution Simula-
tion For Rapid Modeling. In Proceedings of the 2006
Winter Simulation Conference, ed. L. F. Perrone, F. P.
Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R.
M. Fujimoto, 1357-1364. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.
1

Blais and Buss

Free Software Foundation Web Site.
<http://www.fsf.org>. [accessed June 2006].

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Schruben, L. 1983. Simulation modeling with event
graphs. Communications of the ACM 26:957-963.

AUTHOR BIOGRAPHIES

CURTIS BLAIS is a Research Associate at the Naval
Postgraduate School (NPS) in the Modeling, Virtual Envi-
ronments, and Simulation (MOVES) Institute. His princi-
pal research areas include agent-based simulation of non-
traditional warfare and application of Web-based tech-
nologies for improving interoperability of Modeling and
Simulation systems and Command and Control systems.
Mr. Blais has a B.S. and M.S. in Mathematics from the
University of Notre Dame and has advanced to candidacy
in the MOVES Ph.D. program at NPS. His e-mail address
is <clblais@nps.edu>.

ARNOLD BUSS is a Research Assistant Professor in the
MOVES Institute at the Naval Postgraduate School. His
research interests include discrete event simulation mod-
eling and hybrid approaches incorporating multiple mod-
eling methodologies His e-mail address is <ab-
uss@nps.edu>.

702

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

