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ABSTRACT

The volume of messages generated by spaced based interceptors (SBI'S)

resulting from a booster launch can lead to an unacceptably large total time for

the messages to propagate through the system. In order to help relieve this

problem, one might identify the SBI's with the highest quality estimates of the

launch information. Message traffic can by sharply reduced if these SBI's can

be identified, and message transmission restricted to their messages.

Launch parameters and position are estimated using a template based

tracking algorithm. A single measure of quality based on the estimated

covariance matrix of the measured position is proposed and tested using

simulation. Results describe possible modifications to the template based

tracking algorithm that would reduce error and allow the quality of a message

to be determined.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this

research may not have been exercised for all cases of interest. While every

effort has been made, within the time available, to ensure that the programs

are free of computational and logic errors, they cannot be considered validated.

Any application of these programs without additional verification is at the risk

of the user.
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I. INTRODUCTION

A. BACKGROUND

The Strategic Defense Initiative Organization (SDIO) has developed a goal

to vigorously research and develop technology that could help to eliminate the

threat of ballistic missiles and provide increased U.S. and allied security. By

deploying a three-part phased ballistic missile defense system, incremental

strategic benefits can be realized while preparing the way for the next phase.

The first phase would reduce confidence of planners initiating a nuclear

attack against the U.S. by not allowing them to predict the outcome of a

ballistic missile attack. The second phase would negate the potential threat

government's or hostile organization's ability to destroy many of the U.S.

strategic targets, and the third phase would eliminate the threat posed by

ballistic missiles entirely (Udall, 1988).

The first phase system being proposed by SDIO includes ground and space

based BMD consisting of:

* Spaced-based hit-to-kill vehicles for attacking missile boosters and
post-boost vehicles.

* Ground based rockets designed to intercept warheads as they reenter

the atmosphere.

These spaced based hit-to-kill interceptors (SBI's) would be arranged in

a constellation of several hundred satellites at several hundred kilometers

altitude above the earth. A constellation of satellites is an organized collection
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of satellites in related orbits. Each satellite would have the capability to detect

ballistic or anti-satellites missile launches by observing the hot rocket plumes.

Once a ballistic missile has been detected, the SBI would be able to track

the booster and pass this information to the rest of the constellation. This

information sharing has two uses:

* Due to positional constraints, the SBI that is tracking a booster may
not be the SBI that has the best shot at killing the booster. Tracking
information can be passed to the SBI with the best shot
(Compaterto, 1991).

* Line of sight laser communication will be used to minimize jamming.
This requires sequential message transmission from one SBI to another
SBI and could result in large queues of messages being formed
(Comparetto, 1991).

The use of a constellation of orbiting SBIs to identify, track and engage

thrusting bodies has numerous advantages. The system can be made to

operate autonomously, provide world wide coverage, and it is flexible to

changing political situations.

A constellation of SBIs will consist of hundreds of platforms, each with

identical capability. The large number of platforms will result in multiple

coverage of any given area. Given a booster launch, more than one SBI will

obsorve the launch and commence tracking that booster. Due to different

observation angles, the position of the sun, and the individual sensor systems

themselves, the tracking quality of these SBIs will be variable. Some tracking

information will be better than others. Information of high quality should be

communicated, while poor quality information should not be passed on to other
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SBIs. This type of pruning will reduce time in queues, decrease the time for

information being transmitted throughout the constellation, and will allow the

SBI with the best shot a higher probability of kill (Comparetto, 1991).

The software developed to simulate a constellation of SBIs is one of the

Strategic Defense System (SDS) Simulators. The template based tracking

algoritb m is a function of this simulator and tracks booster and ballistic bodies

using a single optical tracker. It is this papers goal to:

0 Describe the functionalities of the template
based tracking algorithm and how it works.

* Determine if there is a reliable way to measure the
quality of a track message generated by the tracking
algorithm.

0 Make appropriate conclusions and recommendation to
improve the template based tracking algorithm.

Chapter II will give a brief description of the system simulator and how

the track algorithm works. Chapter III will describe a measure of quality for

a track message and test this measure using the tracking algorithm.

Chapter IV will show the effect of changing the azimuth and elevation variance

of the sensor (a. the tracking algorithms error. Chapter V will give the

conclusions and recommendations.
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H. DESCREPTION OF THE SDS SIMULATOR

A. OVERVIEW

The system simulator uses the template based tracking algorithm to

estimate the launch parameter state vector and the launch parameter variance-

covariance matrix of ballistic targets based on data from a single optical sensor.

This problem generaly has no unique solution unless additional information is

used. Multiple trajectories can be constructed through the same measured

angle data. Constraints are required to make the problem solvable. The

approach taken by the tracking algorithm is to utilize a priori trajectories in

the form of downrange and altitude templates which are specific for a given

booster type. These templates consist of a family of curves, each one

representative of a flight profile, and in the ensemble encompass the flight

envelope of a given booster type (Figure 2-1, Rasmussen, 1989).

Figure 2-1. Multiple trajectories constructed from measi-red angle data.

4



B. COORDINATE SYSTEM

The template based tracking algorithm uses five different coordinate

systems. The first is the Earth Centered Inertial (ECI) coordinate system.

The x axis is contained in the earth's equatorial plan and is directed through

the prime meridian, the z axis is directed through the north pole, and the y

axis is perpendicular to both completing the right-handed system. The second

system is the Earth Fixed (EF) coordinate system which is aligned to the ECI

system at epoch, but whose x and y axes rotate at the rate of the earth. The

third coordinate system is the geographic coordinates, consisting of latitude,

longitude, altitude and launch azimuth. The fourth coordinate system is the

local launch coordinate system, where the axis is contained in the local tangent

plane and is directed along the launch azimuth of the target, the z axis is

directed towards local zenith, and the y axis completes the right handed

system. The fifth coordinate system is the sensor local coordinate system

where the x axis is contained in the local tangent plane and is directed locally

north, the y axis is contained in the local tangent plane and directed locally

east, and the z axis is directed to local zenith (Rasmussen, 1989). This is a left

handed system (Figure 2-2, Rasmussen, 1989).

C. FUNCTIONALITY

The problem of estimating the trajectory of a thrusting target using only

the angle of measurement from a single optical sensor is not well defined.

5
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Multiple trajectories can be constructed through the measured angle data. To

solve this problem, trajectory information in the form of downrange and

altitude templates, which are specified per booster type, are needed.

The trajectory templates are given as the downrange and altitude of a

booster as a function of time for that booster type. Various pitch profiles are

included to take into account lofted or depressed trajectories. These curves are

used as constraints by the template based tracking algorithm. It is an implicit

assumption that any particular booster trajectory may be approximated as a

linear combination of these a priori trajectory templates. Since the trajectory

templates encompass the total dynamic behavior of a booster's trajectory, any

large deviation from the nominal shape of the altitude and downrange

templates serves to degrade the algorithm performance (Rasmussen, 1989).

As an internal function of the tracking algorithm, the trajectory templates

are represented by bicubic splines. Cubic splines are constructed to fit the

altitude and downrange templates for each flight profile independently. At any

given iteration in the launch parameter estimation, the altitude and downrange

are interpolated from the cubic splines for each flight profile based upon the

estimated time of flight. A cubic spline is then constructed at the estimated

time of flight across the flight profiles, and an interpolated value is obtained

based upon the current estimate of the pitch parameter. In order to estimate

the partial derivatives necessary to determine the gradient, altitude rate,

altitude acceleration, downrange rate, and the downrange acceleration are

7



evaluated by differentiating the cubic spline polynomials for each flight profile.

Cubic splines are then constructed across the rate and acceleration points and

evaluated at the current pitch parameter estimate.

D. LAUNCH PARAMETER ESTIMATION

The template based tracking algorithm estimates the launch parameter

using an iterative batch least-square algorithm. If X is a six dimension state

vector of the launch parameters and Z is the azimuth and elevation

measurement, then the relationship exists:

Z = h(X) + v

where the h(X) is a function dependent on the apriori booster information and

v is multivariate normal error with mean zero and a given variance-covariance

R. Taking a first order Taylor expansion about X., the fixed state vector of

the best known launch parameter gives:

Z - h(X.) + (X-X.)H(X) + v

where H is the derivative of h evaluated at X. If we let:

6Z = Z-h(X.), 5X = (X-X.)

then it follows that:

8Z - H(X)6X + v

From this equation using Least Squares, X, which is the difference between

the best known launch parameter state vector and the new estimate for the

state vector, can be estimated.
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Let the variance-covariance matrix of v be defined as R From least

squares (Mendenhall, 1989) an estimator of 6X is:

; = ((R'i2) T(R-'1 H)1 (R') T(R- 26Z)

= (HT-'H)'1HTR-Z

where R = R''R"I and H = H(X.). This only works if:

E[SZ] = H(XS)6X

but in fact:

E[SZ] = h(X) - h(X.) - H(X)6X

An estimator of X is therefore:

X , + X'

Therefore X, is the estimate of the launch parameters. Because a linear

approximation of h about X. is used, replacing X, for X, and solving the least

squares problem iteratively, the estimator of the launch parameter at the ntb

iteration is:

= X..1 + 8X'.

The position of the booster in Earth Centered Inertial (ECI) is a function of the

launch parameters, based on time, downrange and altitude given by-.

X , = Z(-(O(t-t.p))(X.(OX,h) + T(O,X,a)Xa(ho,r,8))

where:

Z(-w(t-tp)) is the transformation matrix from earth
fixed coordinates to ECI coordinates

X.(O,X,h) is the launch position vector expressed in
earth fixed coordinates

9



T(VoXa) is the transformation matrix from local
launch coordinates to earth fixed coordinates

X (ho,T,O) is the current booster position
alone the trajectory template expressed in
local launch coordinates

The covariance matrix associated with the launch parameter estimate can be

approximated in ECI coordinates by the following linearized equation:

P _(X/6y)C(6X/Sy)
T

where:
P is the covariance matrix of the ECI state vector

C is the covariance matrix of the launch parameter
vector estimate

X is the ECI state vector

Y is the launch parameter vector

6X/6Y is the Jacobian of the transformation form
launch parameters to ECI coordinates

The template based tracking algorithm computes a variety of output including.

estimated ECI position, velocity, acceleration, covariance matrix, launch

parameters and launch parameter covariance matrix for the booster.

Additionally the true ECI position of the booster, ECI position of the sensor

platform, and other parameters are available (Figure 2-3, Rasmussen 1989).
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I. MEASURE OF ERROR

A. COVARIANCE MATRIX

It was believed that the best measure of error in the system would be the

estimated ECI variance-covariance matrix itself. Initially, it was hypothesized

that large differences between the estimated position and the actual position

of the thrusting body would be reflected in the estimated launch parameter

covariance matrix and the estimated ECI variance-covariance matrix. The

launch parameter is expressed in geographical coordinates, time, altitude, pitch

and azimuth. The ECI covariance matrix is expressed in kilometers, a natural

measure of distance and error.

The version of the tracking algorithm used was the mini testbed, which

was developed as an analysis tool. As such, it is flexible in options such as scan

rate (number of samples taken of the simulation run), the initial position of

both the booster and the sensor platform, the booster type, booster data, and

simulation run time. All runs used simulation runs of 100 seconds, and the

same initial positions for the sensor and booster. A scan rate of 2 seconds was

used.

The tracking algorithm relies on the assumption that the errors are

multivariate normal. Initial runs of the tracking algorithms were conducted to

discern the distribution of the error. Plots in the ECI X, Y, and Z coordinate

12



plans were made by taking the difference in the estimated X ( or Y or Z)

position and the real X (or Y or Z) position. The shape of the distributions was

bell shaped and generally centered around 0. The distribution is not spherical.

(Figure 34).

The assumption that the distribution is multivariate normal with mean 0 and

an unknown variance, is not unreasonable (Figure 34).

The next set of runs where designed to see whether the estimated

covariance matrix actually reflects the observed error. The expected value of

the observed and estimated ECI position is approximated from the simulation

to be the observed position averaged over 50 runs and the estimated position

averaged over 50 runs. Additionally, the actual covariance matrix of the error

in position can be estimated from the simulation by computing the empirical

variance and covariance of the errors from the 50 simulation runs. The

average of the 50 estimated covariance matrices will be an unbiased estimator.

The ultimate goal is to find a single value which reflects the quality of a

sensor platform observations. Thus the total variance with respect to ECI

position was chosen to be a measure of quality of a sensor platform observation,

where the total variance is defined to be:

3 3 33

where Yj i = 1,2,3 is the ECI X, Y and Z positional variance, respectively,

and U = Yj + Y2 + Y3.
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The ECI position covariance matrix was chosen as opposed to the launch

parameter covariance because the launch parameter is expressed in geographic

coordinates, time, altitude, azimuth and pitch angle. It was felt that it would

be difficult to transform this data into a common variance. Since the estimated

total variance was chosen to represent the algorithm's error, there should a

non-decreasing relationship between the observed total variance in position and

the estimated total variance in position derived from the tracking algorithm.

The error in position (measured in radial distance from the estimated and real

booster position) should also be monotonically related to observed and

estimated total variance.

The simulation results, observed total variance (OTVAR) vs. expected total

variance (ETVAR) and radial error (Figure 3-5 and Figure 3-6) were plottedL

The estimated total variance consistently underestimates the observed

total variance. Additionally, between approximately time 20 and time 50 the

ETVAR does not represent OTVAR or the radial error. The average radial

error is fairly well estimated by OTVAR (Figure 3-7).

Additional analysis of the average values of the observed and estimated

variances indicated that the values, using paired comparisons, were not

statistically different. The estimated covariance was of the order of 10",

significantly smaller in value than the observed covariance (order of 10'). This

indicates that the tracking algorithm greatly underestimates the covariance,

and is an explanation as to why ETVAR underestimates OTVAR.

15



The non-linear relationship of ETVAR and OTVAR and the radial error

over time indicates that there was a failure in the templates to accurately

model the booster trajectory (template mis-match) or that the data set for the

trajectory was faulty (Figure 3-5).

These results were discussed with the algorithms author, Nelson

Rasmussen, Martin Marietta, and the following suggestions were made:

1. The error that was observed during the simulation run time from
approximately 20 to 50 seconds corresponds to missile pitch over in the
booster's ffight profile. It might be the case that the templates do not
model this well causing template mis-match.

2. When template mismatching occurs, the tracking algorithm might not
converge well and will produce error.

3. An experiment was run in which the initial guess of the launch parameter
was varied and the convergent points compared. Out of 12 different
initial guesses, 10 convergent points were observed.

The experiment described by Nelson Rasmussen, was again tested on the

tracking algorithm. The launch azimuth was varied from 0 to 2'r from its

initial value in 30 degree increments and the resulting estimated launch

parameter state vectors were compared. It was observed during a large

proportion of the time that the algorithm converged to different values, but

that the values were very close (the same out to 8 decimal places). The

geographic positions were for all practical purposes the same, only the

launch azimuth and pitch parameters converged to different values.

This would indicate that the algorithm is robust to slight changes and

errors in the entering arguments or initial guess of the launch parameters.

16
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Since the algorithm appears to work for most time periods, it was believed

that some template mis-matching was occurring during the time period from

20 to 50 seconds.

B. SENSOR IN A CONSTELLATION

An individual sensor platform may in many cases not give good

information. Due to differences in viewing angle, sun back-lighting and distance

from the booster, messages from different sensors - ill generate messages of

varying quality. This requires analysis of the message quality from a

constellation of sensors.

If a population of sensor platforms observe a booster launch and initiates

a track, how will the error of one sensor platform compare to the error of

another sensor tracking the same booster?

If a population of sensors is tracking a booster, it would be expected that

sensors with good track information would have smaller observed radial error,

as measured by the estimated ECI position covariance matrix (i.e. smaller

distance between the estimated position and the real position). The total ECI

(ETVAR) is again used as a single measure of information.

The hypothesis of no correlation between populations of ranked pairs of

the observed error and the estimated total variance can be tested by using

Spearman's Rank Correlation Test (Mendenhall, 1989). The rank correlation

coefficient r. is calculated by using the ranks of the paired measurements of the

20



two variables, observed error and estimated variance. Let the observed error

of the i' run be XK and estimated variance of the i ran be Y, for i = 1,..,25 the

correlation r. is calculated by:

25

1 -Y1 ) 2

25 (252-1)

Where 25 represents the number of sensors tracking the booster. This assumes

t=r , v =n-2

that there are no ties in either the Y1 or Y, observations. The statistic r. can

be used to generate a t-statistic used for hypothesis testing (Kendall, 1990).

The t-statistic can then be used to test the following hypothesis at each

time period:

1. Null Hypothesis: H: There is no association between the ranked pairs.

2. Alternative Hypothesis: H.: The correlation between the ranked pairs
is positive.

A simple constellation was constructed to test this hypothesis. To reduce

variation introduced into the simulation testing, the constellation was centered

on the ECI position of the sensor used in all pervious experiments. Each

sensor was 2 degrees off azimuth of neighbor (There are cases when the

algorithm will fail to generate a track. To minimize these errors, it was

21



decided to use a constellation in which the sensor platforms would be assured

of generating a track). This constellation is for illustrative purpose

(Figure 3-8).

The tracking algorithm was run using these initial positions. The estimated

positions, real positions and covariance matrix output data was run through a

post-processor (Appendix 2). The post processor calculated the radial error

(norm of estimated position and real position) and total estimated variance

(ETVAR) for each time period. These variables were then used for the rank

correlation test. The results indicate no correlation between the observed error

and the estimated total variance. In most cases the t-statistic did not reject the

Null Hypothesis (Table I). At the 95% level of significance the t-critical value

with 23 degrees of freedom is 2.069

An attempt was made to improve the correlation between the radial error

and the variance by modeling the error as a function of the variance covariance

matrix. If the error can be predicted by the covariance matrix, this should

improve the correlation and perhaps give an absolute measure of error.

The following model was used:

y = p0o P1X1+p2X2 P 3X3 +P4 +X4 + 5X+ 6 X6

where Y is the radial error and X j = 1,..,6 are the entries from the covariance

matrix.

22
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Least Squares regression was used to estimate the values of . The

regression will only show what are important factors in forecasting error and

estimate the coefficients.

When using the ECI covarinace matrix, the coefficients will only be

optimal for a limited geographic location (unless the coefficient are the same

for the X, Y, and Z, variance and covariance). For this reason this analysis was

additionally tested on the launch parameter variance. These coefficients should

be able to be used globally.

Three cases were looked at for the regression model. The launch parameter

variance and ECI covariance from time 0 to 100, and the ECI covariance from

time 0 to 36 and from time 38 until 100 (Table II). The time periods 0 to 36

and 38 to 100 were chosen to observe the behavior of the model prior to

booster pitch over and during the ballistic phase of the flight.

In the launch parameter covariance model, only the azimuth and pitch

variance were used. The variance for latitude and longitude were

approximately zero, the altitude variance was constant, and the use of time

variance resulted in even a lower value of K

These coefficients were then used in the post-processor to calculate the

value of ETVAR. The post processor then computed the Spearman's Rank

Correlation Test, as previously described (see Appendix 2).

This method of choosing the coefficient to calculate ETVAR did not change

the results: in most cases it was not possible to reject the Null Hypothesis

24



Table I RESULTS OF SPEARMAN'S RANK CORRELATION TEST,
ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCE MATRIX,

= 1,1,1,2,2,2

T= re t-stat d.f.

6 0.05154 0.2475 23
8 0.32462 1.6459 23

10 0.03538 0.1698 23
12 -0.06462 -0.3105 23
14 0.00000 0.0000 23
16 -0.14693 -0.7123 23
18 0.04768 0.2287 23
20 0.16846 0.8196 23
22 0.38923 2.0264 23
24 -0.03154 -0.1513 23
26 0.03692 0.1772 23
28 0.30385 1.5295 23
30 -0.29231 -1.4658 23
32 -0.09692 -0.4670 23
34 0.05000 0.2401 23
36 0.18308 0.8931 23
38 -0.23846 -1.1776 23
40 -0.05154 -0.2375 23
42 0.06769 0.3254 23
44 -0.07692 -0.3701 23
46 0.00769 0.0368 23
48 -0.06154 -0.2957 23
50 -0.15154 -0.7352 23
52 0.25385 1.2586 23
54 0.03385 0.1624 23
56 -0.35846 -1.8415 23
58 -0.06000 -2.8827 23
60 -0.17769 -0.8659 23
62 0.21000 1.0300 23
64 -0.05769 -0.2771 23
66 -0.00462 -0.0221 23
68 0.08000 0.3849 23
70 -0.27000 -1.3448 23
72 0.24077 1.1896 23
74 0.39846 2.0835 23
76 0.01385 0.0664 23
78 0.26308 1.3077 23
80 -0.01538 -0.0737 23
82 -0.29308 -1.4701 23
84 -0.10468 -0.5045 23
86 0.25385 1.2586 23
88 -0.17077 -0.8312 23
90 -0.17000 -0.8273 23
92 0.10077 0.4857 23
94 -0.07846 -0.3774 23
96 -0.19846 -0.9711 23
98 0.06615 0.3179 23
100 -0.36769 -1.8962 23
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(Tables II-ViI). Using the launch parameter covariance to forecast error

produced higher correlation and in some cases the Null Hypothesis could be

rejected.

Thus, there are cases when the launch parameter covariance matrix could

be used an indicator of the quality. However, positive correlation does not

guarantee high quality messages or the ability to forecast error. A good model

that forecast error would result in a rank correlation that is close to 1.0, and

a t-statistic that is significantly large.
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Table II RESULTS OF SPEARMAN'S RANK CORRELATION TEST,
ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCE MATRIX,

- -390,172,-69,-1024,125200,-387470

T3Nr t-Itat d.f.

6 0.04231 0.2030 23
8 -0.30615 -1.5423 23

10 0.18154 0.8853 23
12 -0.16615 -0.8088 23
14 0.11615 0.5608 23
16 0.10692 0.5157 23
18 -0.16000 -0.7774 23
20 0.32000 1.6198 23
22 0.09077 0.4371 23
24 -0.18308 -0.8931 23
26 0.11692 0.5646 23
28 -0.01692 -0.0811 23
30 0.25846 1.2831 23
32 0.21462 1.0538 23
34 0.45769 2.4687 73
36 -0.06846 -0.3291 23
38 -0.14154 -0.6857 23
40 0.17924 0.8737 23
42 -0.01462 -0.0701 23
44 -0.29846 -1.4997 23
46 -0.23000 -1.3343 23
48 -0.19231 -0.9398 23
50 -0.00077 -0.0036 23
52 0.13923 0.6743 23
54 -0.20154 -0.9867 23
56 -0.31538 -1.5939 23
58 -0.09077 -0.4371 23
60 -0.25462 -1.2627 23
62 -0.07692 -0.3700 23
64 0.17846 0.8698 23
66 0.04462 0.2141 23
68 -0.22769 -1.1214 23
70 0.35462 1.8188 23
72 0.13385 0.6477 23
74 0.02308 0.1107 23
76 0.13769 0.6667 23
78 -0.06077 -0.2919 23
80 0.14077 0.6819 23
82 0.06077 0.2919 23
84 0.09231 0.4445 23
86 0.31538 1.5938 23
88 -0.02538 -0.1217 23
90 0.12462 0.6023 23
92 -0.14308 -0.6933 23
94 -0.18923 -0.9242 23
96 -0.23923 -1.0181 23
98 0.03000 0.1439 23
100 -0.36154 -1.8597 23
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Table III RESULTS OF SPEARMAN'S RANK CORRELATION TEST,
ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCE MATRIX,
TIME 0 36, - -308,9,-370,84,-1026,243

TE t-utat d.f.

6 0.29846 1.49973 22
8 0.30769 1.55088 22

10 0.20692 1.01432 23
12 0.26077 1.29543 23
14 0.38308 1.98889 23
16 0.25615 1.27087 23
18 0.27538 1.37382 23
20 0.26692 1.32831 23
22 0.34462 1.76056 23
24 0.40385 2.11710 23
26 0.25769 1.27905 23
28 0.48154 2.63500 23
30 0.24385 1.20584 23
32 0.16923 0.82348 23
34 0.34077 1.73832 23
36 0.13462 0.65152 23
38 0.07231 0.34769 23
40 0.01385 0.06641 23
42 0.14308 0.69331 23
44 -0.06385 -0.30682 23
46 0.37462 1.93769 23
48 0.34154 1.74276 23
50 0.41538 2.18999 23
52 0.29077 1.45745 23
54 0.32231 1.63287 23
56 0.11385 0.54956 23
58 0.26308 1.30774 23
60 0.11692 0.56462 23
62 0.15692 0.76202 23
64 0.28462 1.42386 23
66 0.19615 0.95936 23
68 0.23538 1.16150 23
70 0.29923 1.50397 23
72 0.08615 0.41472 23
74 0.05692 0.27344 23
76 0.10154 0.48949 23
78 0.44615 2.39082 23
80 -0.04769 -0.22898 23
82 0.55077 3.16465 23
84 -0.09077 -0.43712 23
86 0.00154 0.00738 23
88 0.20462 1.00251 23
90 0.10308 0.49699 23
92 0.18308 0.89310 23
94 0.10231 0.49324 23
96 0.42077 2.22444 23
98 -0.10769 -0.51950 23
100 0.05923 0.28456 23
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Table IV RESULTS OF SPEARMAN'S RANK CORRELATION TEST,
ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCE MATRIX
TIME 38 100, - 663,342,2537,-1031,-4036,2080

Tr . t-stat d.f.

6 0.12769 0.61745 22
8 0.39154 2.04068 22

10 0.17538 0.85436 23
12 0.14231 0.68950 23
14 0.15615 0.75819 23
16 0.26308 1.30774 23
18 0.28308 1.41549 23
20 0.33154 1.68532 23
22 0.44846 2.40629 23
24 -0.14769 -0.71616 23
26 0.23231 1.14545 23
28 0.16385 0.79654 23
30 -0.08308 -0.39981 23
32 0.09692 0.46703 23
34 0.30077 1.51247 23
36 0.14308 0.69331 23
38 0.48462 2.65698 23
40 0.19077 0.93201 23
42 0.59000 3.50450 23
44 0.43385 2.30930 23
46 0.70231 4.73139 23
48 0.35692 1.83244 23
50 0.53385 3.02778 23
52 0.26538 1.32007 23
54 -0.03538 -0.16981 23
56 0.61692 3.75930 23
58 0.47538 2.59141 23
60 0.28462 1.42386 23
62 -0.14462 -0.70092 23
64 -0.13538 -0.65531 23
66 -0.00692 -0.03320 23
68 0.16231 0.78886 23
70 0.24923 1.23422 23
72 -0.09615 -0.46328 23
74 0.45462 2.44784 23
76 0.01615 0.07748 23
78 0.04538 0.21788 23
80 0.18846 0.92032 23
82 0.00769 0.03689 23
84 -0.03538 -0.16981 23
86 0.41000 2.15582 23
88 -0.05385 -0.25861 23
90 0.12692 0.61366 23
92 0.16923 0.82348 23
94 0.08846 0.42592 23
96 0.36308 1.86878 23
98 0.18462 0.90087 23
100 0.26385 1.31185 23
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Table V CORRELATION OF RADIAL ERROR TO LAUNCH PARAMETER
VARIANCE, REGRESSION ESTIMATES OF - 0,0,0,0,1.3,-2.6

T3E r t-stat d.f.

6 0.38615 2.00765 23
8 0.38769 2.01706 22

10 0.30308 1.52524 23
12 0.11385 0.54956 23
14 0.34846 1.78291 23
16 0.18154 0.88534 23
18 0.26077 1.29543 23
20 0.10846 0.52325 23
22 0.28077 1.40296 23
24 0.22538 1.10945 23
26 0.13769 0.66670 23
28 0.15769 0.76585 23
30 0.36231 1.86422 23
32 0.27615 1.37797 23
34 0.08385 0.40353 23
36 0.34000 1.73388 23
38 0.22385 1.10148 23
40 0.29692 1.49125 23
42 0.16846 0.81963 23
44 0.17615 0.85822 23
46 0.09462 0.45580 23
48 0.24231 1.19776 23
50 0.01923 0.09224 23
52 0.36846 1.90082 23
54 0.34154 1.74276 23
56 0.20308 0.99465 23
58 0.22692 1.11744 23
60 0.16846 0.81963 23
62 0.54154 3.08933 23
64 0.09615 0.46328 23
66 0.03154 0.15133 23
68 -0.06077 -0.29198 23
70 0.30154 1.51673 23
72 0.37154 1.91922 23
74 0.29462 1.47855 23
76 0.40077 2.09787 23
78 0.20308 0.99465 23
80 -0.10923 -0.52701 23
82 0.18462 0.90087 23
84 0.24308 1.20180 23
86 0.33923 1.72944 23
88 0.24000 1.18565 23
90 0.30154 1.51673 23
92 -0.05692 -0.27344 23
94 0.03154 0.15133 23
96 0.04462 0.21418 23
98 -0.06769 -0.32539 23

100 0.12231 0.59100 23
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Table VI CORRELATION OF RADIAL ERROR TO LAUNCH PARAMETER
VARIANCE, ESTIMATED COEFFICIENTS FOR TIME 0 - 36,

= 0,o,0,o,-92.3,0.33

I t-stat d.f.

6 0.38615 2.00765 23
8 0.38769 2.01706 22

10 0.30308 1.52524 23
12 0.11385 0.54956 23
14 0.19308 0.94372 23
16 0.26462 1.31596 23
18 0.32385 1.64158 23
20 0.51846 2.90779 23
22 0.43923 2.34477 23
24 0.52385 2.94933 23
26 0.25385 1.25863 23
28 0.17846 0.86984 23
30 0.08538 0.41099 23
32 0.18231 0.88922 23
34 0.18769 0.91643 23
36 0.31154 1.57234 23
38 0.19538 0.95545 23
40 0.50231 2.78595 23
42 0.36231 1.86422 23
44 0.15231 0.73906 23
46 0.19923 0.97502 23
48 0.26462 1.31596 23
50 0.27462 1.36967 23
52 0.09846 0.47451 23
54 0.20923 1.02615 23
56 0.34615 1.76949 23
58 0.39769 2.07872 23
60 0.45846 2.47403 23
62 0.09231 0.44459 23
64 0.15615 0.75819 23
66 0.24308 1.20180 23
68 0.10923 0.52701 23
70 0.20923 1.02615 23
72 0.25923 1.28723 23
74 0.43769 2.33460 23
76 0.41000 2.15582 23
78 0.42769 2.26915 23
80 0.54538 3.12052 23
82 0.19538 0.95545 23
84 0.62923 3.88267 23
86 0.39923 2.08828 23
88 0.28923 1.44903 23
90 0.25154 1.24641 23
92 0.24154 1.19372 23
94 0.13615 0.65911 23
96 -0.0538 -0.26602 23
98 0.34000 1.73388 23

100 0.46077 2.48983 23
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C. USE OF MODEL

In practical terms, one would like to prune messages of poor quality from

the constellation. Pruning messages could greatly reduce the time required for

the remaining messages to propagate through the constellation. The process

of message propagation will be defined as flooding.

An experiment was conducted to estimate the distribution of the quality

of messages generated in the test constellation. The model that consistently

produced the highest correlation and t-statistic was used to estimate the quality

of the messages: Q = -92.33(Var(azimuth)) + 0.33(Var(pitch)).

A level of 80 percent pruning was simulated. For each message period,

only the messages with the 5 lowest values of Q were retained. When one of

the top 5 messages was present among the pruned messages a value of 1 was

given, otherwise, 0. Twenty independent runs were conducted.

The resulting matrixes were summed together and the entries were

divided by 20. This gives the proportion of times that one of the five highest

quality messages was present at a given quality level (Figure 3-9, 3-10). If Q

forecast error well, the proportions for zero through five of Figures 3-9 and 3-10

would be 1.0, and the proportions from six to twenty five would be 0.0.

The proportions for the five highest quality messages present in the

pruned messages are less than one, indicating that lower quality messages

would be present in the pruned messages. This shows that Q does not
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Figure 3-9 Density plot of the proportion of times that the 5 best
messages are present at an estimated quality.
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estimate the error well and suggest that use of the estimated launch parameter

covariance matrix is not a good decision rule for message pruning.

The proportion of high quality messages that are present is not high or

constant, as indicated in Figures 3-9 and Figure 3-10. This indicates that using

the launch covariance matrix to estimate quality does not significantly improve

the chance of identifying a high quality message. In many cases, it is

detrimental. From scan 20 to scan 35, corresponding to time 46 to 76, the

estimated quality is worse than if messages are pruned randomly. This is

similarly reflected in the results of the rank correlation test (Table XI).

In the cases tested, the launch parameter covariance or the ECI

covariance did not well represent the observed radial error. This makes it

difficult to constantly forecast radial error or use this information to make good

decisions in message pruning.
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IV. AZIMUTH AND ELEVATION VARIANCE

A. AZIMUTH AND ELEVATION

The error generated in the tracking algorithm can be localized to two

general causes: 1. template mis-matching, 2. variance in the azimuth and

elevation. By reducing the variance in the azimuth and elevation measure one

would expect the radial error and the variance in the radial error to be reduced.

Additionally, by reducing the azimuth and elevation error, the amount of

noise in the system might be reduced to the point where it would be able to

forecast the error from the estimated ECI covariance matrix.

The variance of the sensor azimuth and elevation was changed from a

value we will call A to .33A and .16A- The tracking algorithm was then run

using the constellation of 25 sensors observing a single booster over the time

from 0 to 100 seconds.

Spearman's Rank Correlation Test was used to test the hypothesis of

correlation between observed radial error and the estimated total variance.

The analysis was similar in design to that conducted on previous runs using the

azimuth and elevation variance of A. The regression model was used to find

the estimates of the coefficients that best forecast the error.

For both the experiment using the variance set at .33A and .16A, it was

not possible to reject the Null Hypothesis (Table VIII, IX). It must be noted
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that at certain times (after time 80) the algorithm failed to report a position.

This may be caused by the information matrix becoming singular, making it

impossible to invert. This problem was more pronounced when the smaller

variance value were used.

B. MEAN RADIAL ERROR

Reducing the variance in the azimuth and elevation, all other factors being

the same, should reduce the tracking system error. This would result in

smaller radial error of the tracking system and may have implication in

choosing specification for sensor performance.

The mean radial error and standard deviation were calculated for the

three cases: variance in the azimuth and elevation set at A, .33A, and .16A.

All three cases used 25 sensors observing a single booster. The 95 percent

confidence interval for each time period was then calculated and plotted (Figure

4-9).

The graphical results show that in most cases there is a significant

difference in the mean radial error at different levels of azimuth and elevation

variance. Additionally, the
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Table IX CORRELATION OF RADIAL ERROR TO ESTIMATED
VARIANCE, AZIMUTH AND ELEVATION VARIANCE = .33A,

= 180,47,-5668,-4036,-136580,-347470

TIME r t-stat d.f.

6 0.18154 0.88534 22
8 0.18692 0.91254 23

10 -0.06692 -0.32167 23
12 0.31692 1.60252 23
14 -0.12385 -0.59855 23
16 -0.21692 -1.06570 23
18 -0.08308 -0.39981 23
20 0.20000 0.97895 23
22 -0.16692 -0.81193 23
24 0.24769 1.22610 23
26 0.16615 0.80808 23
28 -0.00462 -0.02214 23
30 -0.02769 -0.13286 23
32 0.37769 1.95625 23
34 0.26692 1.32831 23
36 0.04154 0.19938 23
38 -0.06462 -0.31053 23
40 0.05692 0.27344 23
42 -0.20385 -0.99858 23
44 0.01231 0.05903 23
46 0.10077 0.48574 23
48 0.26385 1.31185 23
50 -0.18769 -0.91643 23
52 -0.11231 -0.54204 23
54 0.02308 0.11070 23
56 -0.17231 -0.83891 23
58 -0.21308 -1.04590 23
60 0.01000 0.04796 23
62 0.01769 0.08486 23
64 0.29231 1.46588 22
66 0.20615 1.01038 22
68 0.27923 1.39462 22
70 0.05385 0.25861 22
72 0.21846 1.07364 22
74 0.19846 0.97110 22
76 0.28538 1.42804 22
78 0.24000 1.18565 22
80 0.73231 5.15736 18
82 0.86923 8.43169 16
84 model failure --
86 model failure --
88 model failure --
90 model failure --

92 model failure --
94 model failure --
96 0.85769 8.00008 13
98 0.41077 2.16068 18

100 model failure --
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Table X CORRELATION OF RADIAL ERROR TO ESTIMATE
D VARIANCE, AZIMUTH AND ELEVATION VARIANCE = .16
A,

= -193,110,-3231,-2970,179640,-643690

r. t- stat d.f.

6 -0.04769 -0.22898 23
8 -0.08692 -0.41845 23

10 0.06154 0.29569 23
12 0.25385 1.25863 23
14 0.46615 2.52694 23
16 -0.06615 -0.31796 23
18 -0.09000 -0.43338 23
20 0.18000 0.87758 23
22 0.13154 0.63637 23
24 0.36077 1.85512 23
26 0.47846 2.61314 23
28 0.06000 0.28827 23
30 -0.18846 -0.92032 23
32 0.07462 0.35884 23
34 0.28692 1.43643 23
36 0.45692 2.46353 23
38 0.20385 0.99858 22
40 0.18615 0.90864 22
42 -0.27385 -1.36552 22
44 0.06769 0.32539 22
46 0.28385 1.41967 22
48 0.30923 1.55945 22
50 0.21615 1.06174 22
52 0.24538 1.21394 22
54 0.26154 1.29953 22
56 0.64846 4.08529 19
58 0.55846 3.22868 18
60 0.74231 5.31294 15
62 0.86538 8.28212 12
64 model failure --
66 model failure --

68 model failure --

70 model failure --
72 model failure --
74 model failure --

76 model failure --

78 model failure --
80 model failure --

82 model failure --

84 model failure --
86 model failure --

88 model failure --
90 model failure --

92 model failure --
94 model failure --

96 model failure --

98 model failure --

100 model failure --
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variance in the observed radial error increases with the mean radial error.

Note that if data was not available (failure to report a position) the error was

reported as a mean of zero and a standard deviation of zero.

In practical terms, the more accurately a measurement of azimuth and

elevation can be made, the smaller the radial error. The population of

messages that result from a constellation of sensor having more accurate

measurements will have messages of less variance and of more consistent

quality. In this situation, random pruning will be more effective: the overall

message quality is higher, and at any given pruning level, the chances are that

the messages will have similar error.
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V. CONCLUSIONS AND RECOMMENDATIONS

The Template Based Tracking Algorithm is capable of estimating the

position of ballistic bodies or boosters with just a single optical sensor. An

individual sensor, if not obscured by the earth, will initiate and track a

thrusting body with a remarkable degree of accuracy.

However, the system in which the sensor is deployed will require

numerous sensors in a constellation orbiting the earth. Any launch of a booster

or thrusting body will be viewed by a number of sensors, producing a

population of launch parameter messages of varying degrees of quality.

The measure of quality of measurement was taken to be the radial error,

or the distance from the estimated position to the real position. The estimator

of message quality used was either the total estimated variance calculated from

the variance of the sum of ECI position or the total variance calculated when

using the coefficients estimated by using least square regression for both the

ECI covariance matrix and the launch parameter variance.

The correlation between the observed error and the estimator of message

quality was tested using Spearman's Rank Correlation Test. It was

hypothesized that if numerous messages are generated regarding a booster,

messages with the smallest estimated total variance will have the best quality

launch parameter information (smallest radial error).
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Spearman's Rank Correlation Test was used to test the hypothesis that

radial error and estimated total variance were positively correlated. In most

every case tested, the Null hypothesis could not be rejected.

Because the information in the ECI position covariance matrix and the

launch parameter covariance matrix did not represent the observed radial

error, a deterministic method to estimate error should be examined. If it can

be determined what is the best relative viewing angle of a booster from a given

sensor platform, an algorithm could be generated that exploits this information.

With such system, the launch parameters state vector from those sensor

platforms that were determined to have the smallest error radial would be

allowed to flood the constellation. Information from sensor platforms that were

in a poor position to generate booster tracks would not be transmitted. If

practical, this method could reduce the queuing problem by allowing only

information of high quality (determined by relative viewing angle of the booster

from a given sensor) to be transmitted and flooded through the constellation.

There exists a problem in the algorithm during the time period from

approximately 20 to 40 seconds. This failing of the tracking algorithm to

successfully estimate the quality of a message could be the result of several

things. After discussion with Nelson Rasmussen, it was noted that the a priori

information derived from the templates might not model that portion of the

flight envelope. This would cause template mis-match and result in a degraded

estimate of the position. A final point might be that the time increment for
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the templates is too coarse. Thus the cubic splines would not represent the

changes in position, velocity and acceleration adequately.

The templates have time increments of 10 seconds and a precision of 2

decimal places. The actual flight data of the boosters has 3 decimal places of

precision. Because the acceleration, altitude and downrange are so variable

during the initial phase of flight, it may be possible that the cubic splines

generated from the templates are not accurately modeling the boosters

trajectory. It is proposed that the templates be modeled in time increments of

2 seconds during the early phase of flight and that the precision be at least 3

decimal places. This alone might improve the template fit, resulting in better

estimation of the launch parameters and a corresponding reduction in radial

error.

The Template Based Tracking Algorithm operates very well. Because the

algorithm can converge quickly to a sharp answer, it is felt that the normally

unimportant second order effects would become significant. The precision and

resolution of the templates may contribute significantly to the observed error.

Additionally, the use of a second order Taylor expansion to estimate Z (azimuth

and elevation measurement) could greatly improve the ability to forecast error.

The Template Based Tracking Algorithm procedure to solve for the launch

parameters operates well. It has shown the ability to track thrusting bodies

using a single optical sensor. However, at this time, there appears to be little

relationship between either the ECI covariance matrix or the launch parameter
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variance and the radial error. Additional testing is required to resolve the

problem of the algorithm ability to track the body during the early time period

associated with pitch-over, from approximately 20 to 50 seconds. Once this

aspect of the tracking algorithm is adjusted, it may be possible to consistently

forecast radial error. At the present, determining quality of error may be

likened to a coin toss.
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APPENDIX 1

PROGRAM TVAR

" This program reads in the real eci position, estimated
" position and covariance matrix and calculates the expected
" radial error, expected value of the observed total variance
" and the expected value of the estimated total variance at
" each time interval (scan). It takes as input, 50 runs
" from a single sensor observing a booster.
" by Eric Bechhoefer, SMC 1089 NPS, Monterey Ca 93943

IMPLICIT NONE

RE.AL*8 ESTPOS(3,2500) !estimate position data
REAL*8 REALPOS(3,2500) !real position data
REAL*8 EDATA(3,2500) !estimate position data
REAL*8 RflATA(3,2500) !real position data
REAL*8 COV(3,3,2500) !covariance data
REAj*8 COVV(3,l00)
REAL*8 COVMTX(3,3,2500)
REAL*8 ECOVMTX(3,3,2500) !calculate covariance data
REAL*8 VAR(3,1O0) !observed variance data
REAL*8 EVAR(3,100) !estimated variance data
REAL*8 EYlY2(3,l0O) !for calculating covariance
REAL*8 MEAN(3,l00) !mean distance error
REAL*8 SUMSQ(3,lOO) !sum square error data
REAL*8 SUM1(3,100) !sum data of positional

error
REAL*8 TOTV(l00) !total observed variance
REAL*8 ETOTV(100) !estimated total variance
real*8 DIST(l00) !radial error
INTEGER I,J,K,L,M,N !counters
INTEGER START !start of an array
INTEGER MARKER !marker
INTEGER COUNT !a counter
INTEGER TIME !sim time
INTEGER DTIME !scan rate
PARAMETER (DTIME - 2)
INTEGER SLICES .number of observations

******be gin c ode**********************************

OPEN (20,FILE - 'EST ECI POS ', STATUS - 'OLD')
OPEN (25,FILE - 'REAL EC-IPOS 1, STATUS - 'OLD')
OPEN (50,FILE - 'ECI COV ', STATUS - 'OLD')
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OPEN (UNIT - 99, FILE - WVARS ', STATUS -'NEW')

N-O0

print*,'input count, which is the number or repetitions'
read*, count
print*,'input slices -

read*, slices
print*,'input start time
read*, time

TIME - 6 +I time
MARKER - COUNT * SLICES
DO 10 I - 1, SLICES

TOTV(I) - 0.0
ETOTV(I) - 0.0
dist(i)-0.O
DO 5 J-1,3

SUM(ij,) - 0.0

SUMSQ(J,I) - 0.0
HEAN(J,I) - 0.0
EY1Y2(J,I) - 0.0
COVV(J,I) - 0.0
EVAR(J,I) - 0.0

DO 3 M-1,3

ECOVMTX(M,J,I+N) -0.0

ECOVMTX(M,J,4-Ni-) - 0.0
ECOVMTX(M,J,I+Ni2) - 0.0

3 CONTINUE
N -N + 2

5 CONTINUE
10 CONTINUE

DO 14 I - 1,MARKER.
DO 13 1 - 1,3

RDATA(J,I) - 0.0
EDATA(J,I) - 0.0
DO 12 K - 1,3

COV(J,K,I) - 0.0
12 CONTINUE
13 CONTINUE
14 CONTINUE

CALL FIX(COUNT, SLICES ,RDATA,EDATA,COV)
**finds missing data points in the input files*************

PRINT*,'COMPLETED READING IN ESTPOS, REALPOS, AND COV'
**reorder the data ********************

DO 40 I - 1,SLICES
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DO 35 J - 0, COUNT-i
L-(COUNT * I)- (COUNT - 1) + J

DO 30 K - 1,3
ESTPOS(K, L)-EDATA(K, (I+(J*SLICES)))
REALPOS(K, L)-RDATA(K, (I+(J*SLICES)))
ESTPOS(K,L) - ESTPOS(K,L) - REALPOS(K,L)
DO 25 M - 1,3

COVMTX(K,M,L) - COV(K,M,(I+(J*SLICES)))
25 CONTINUE
30 CONTINUE
35 CONTINUE
40 CONTINUE

DO 70 I - 0, SLICES - 1
**calculate radial error and mean distance error************
**and expected value of the estimated variance**************

DO 60 J - 1, COUNT
L - J + COUNT * I
DO 50 K-1,3

DIST(1+1) - ESTPOS(k,1)**2 + DIST(II1)
SUM(K,I+I) - ESTPOS(K,L) + SUM(K,I+I)
DO 45 M - 1,3

IF(K .EQ. M)THEN
ECOVMTX(K,M,I+1) - COVMTX(K,M,L)**2 +

+ ECOVMTX(K,M,I+l)
ELSE

ECOVMTX(K,M,I+l) - (COVMTX(K,M,L)) +
+ ECOVMTX(K,M,+I1)

ENDIF

45 CONTINUE

50 CONTINUE
60 CONTINUE
70 CONTINUE

**find mean radial er************************************

DO 90 I - 1, SLICES
DIST(I) - SQRT(DIST(I) / REAL(COUNT))
DO 80 J - 1, 3

MEAN(J,I) - SUM(J,I) / REAL(COUNT)
DO 75 K - 1,3

ECOVMTX(J,K,I) - ECOVHTX(J,K,I) /
+ REAL(COUNT)

75 CONTINUE
80 CONTINUE
90 CONTINUE

DO 120 I - 0, SLICES - 1
DO 110 J - 1, COUNT
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L-J+50*I
DO 100 K-1, 3

SUMSQ(K,14-1) - (ESTPOS(K,L)-MEAN(K,I+1))**2
+ + SUMSQ(K,I+1)

100 CONTINUE
110 CONTINUE
120 CONTINUE

**find the observed variance*******************************
4 DO 140 1-i1, SLICES

DO 130 J - 1,3
VAR(J,I) - SUMSQ(J,I) / REAL(COUNT - 1)

130 CONTINUE
140 CONTINUE

**find the observed covariance*****************
DO 160 1 - 0, SLICES - 1

DO 150 J - 1, COUNT
L-%J+50*I
EY1Y2(1,1+I) - (ESTPOS(1,L)-MEAN(1,I+1)) *

+ (ESTPOS(2,L)-HEAN(2,I+1)) +
+ EY1Y2(1,1+I)

EYlY2(2,1+I) - (ESTPOS(2,L)-MEAN(2,I+1)) *
+ (ESTPOS(2,L)-HEAN(2,I+1)) +
+ EY1Y2(2, 1+I)

EY1Y2(3,1+I) - (ESTPOS(1,L)-HEAN(3,I+1)) *
+ (ESTPOS(2,L)-MEAN(2,I+1)) +
+ EY1Y2(3,1+I)

150 CONTINUE
160 CONTINUE

DO 180 1 - 1, SLICES
DO 170 J - 1, 3

COVV(J,I) - EY1Y2(J,I) / REAL(COUNT)
170 CONTINUE
180 CONTINUE

*FIND TOTAL VARIANCE AS THE SUN OF ECI X,Y,Z, V(U)
*V (X)+V (Y)+V(Z) ********************

DO 190 I - 1, SLICES
TOTV(I) - VAR(1,I) + VAR(2,I) + VAR(3,I) +

+ 2*(COVV(1,I) + COVV(2,I) + COVV(3,I))
ETOTV(I) - ECOVMTX(1,1,I) + ECOVMTX(2,2,I) +

+ ECOVMTX(3,3,I) + 2*(ECOVMTX(1,2,I) +
+ ECOVHTX(1,3,I) + ECOVMTX(2,3,I))

WRITE (99,77) TOTV(I), ETOTV(I),dist(i)
c PRINT *, TOTV(I), ETOTV(I)

77 FORMAT (F13.4,4X, F13.4,4x,f13.4)
190 CONTINUE

STOP
END
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APPENDIX 2

PROGRAM CROSS

* THIS PROGRAM WILL READ IN THE ESTIMATED POSITION, REAL
* POSITION AND THE VARIANCE COVARIANCE MATRIX FROM THE
* SIMULATOR. IT WILL THEN FIND MISSING DATA, TAKE THE ORDERED * DATA AND
CALCULATE THE RADIAL ERROR AND THE TOTAL VARIANCE, * USE SPEARMANS RAND
CORRELATION test, calculate the
* t- statistic associated with that correlation . by Eric R * Bechhoefer,
SMC 1089, NPS Monterey, Ca 93943

IMPLICIT NONE

REAL EDATA(3,2500) ! estimated position data
REAL RDATA(3,2500) ! real position data
REAL COV(3,3,2500) ! variance data
REAL EVAR(100) ! total variance from

! variance matrix
REAL T STAT ! t-statistic
REAL CORR ! correlation, r.
REAL SUM, SUMSQ, MEAN, STD ! variable for calculating

mean radial error and std.
REAL ORDER X(100) ! rank order of radial error
REAL ORDER Y(100) ! rank order of est. var
REAL DIST(lOO) ! radial error
REAL Bl,B2,B3,B4,B5,B6 ! coefficients
INTEGER I,J,K,L,m,n,MM,MRK ! counters
INTEGER STIME ! simulation time
INTEGER DTIME ! scan rate
INTEGER START ! start of array
INTEGER MARKER
INTEGER COUNT ! number of sensor
PARAMETER (COUNT - 25)

INTEGER SPACING ! number of time periods
INTEGER SLICES ! number of time periods
INTEGER BINO(48,25) ! registers a 1 if a top 5

! quality message is present

character*8 a,b,c,d
character*50 comment

PRINT*,'INPUT THE ESTPOS, REALPOS AND COV MATRIX NAME'
READ*,A,B,C
PRINT*,'WHAT IS THE NAME OF THE OUTPUT'
READ*, D
PRINT*, 'ADD ANY COMMENTS?'
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READ*, COMMENT

OPEN (20,FILE - A , STATUS - 'OLD')
OPEN (25,FILE - B , STATUS - 'OLD')
OPEN (50,FILE - C , STATUS - 'OLD')
OPEN (60,FILE - D , STATUS - 'NEW')
OPEN (71,FILE - 'DIST',STATUS - 'NEW')
SLICES - 48
STIME - 0
SPACING - SLICES
PRINT*,'READ IN BI,B2,B3,B4,B5 AND B6'
READ*,B1,B2,B3, ,4,B5,B6
PRINT*,'IF LAUGH COVARIANCE FILE, M - 1, ELSE ZERO'
READ* ,MM
WRITE(60,*) COMMENT
WRITE(60,*)'COEFFICIENTS OF B1,B2,B3,B4,B5,B6 ARE'
WRITE(60,*)'B1- ',B1,'B2-',B2
WRITE(60,*)'B3- ',B3, 'B4- ',B4
WRITE(60,*)'B5- ',B5,'B6- ',B6

62 FORMAT(1X,6F8.1)

*** INITIALIZE VARIABLES************************************
START - 1
STIME - STIME + 6
DTIME - 2
T STAT - 0.0
MARKER - COUNT * SLICES
DO 5 I - 1,SLICES

DO 3 J - 1,COUNT
BINO(I,J) - 0

3 CONTINUE
5 CONTINUE

DO 10 I - 1, COUNT
ORDERX(I) - REAL(I)
ORDER.Y(I) - REAL(I)
DIST(I) - 0.0
EVAR(I) - 0.0

10 CONTINUE
DO 14 1 - 1,MARKER

DO 13 J - 1,3
RDATA(J,I) - 0.0
EDATA(J,I) - 0.0
DO 12 K - 1,3

COV(J,K,I) - 0.0
12 CONTINUE
13 CONTINUE
14 CONTINUE

***** FIXL find missing data ****** A A A
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CALL FIXi (COUNT,SLE, RDATA, EDATA, COV)

PRINT*, 'COMPLETED READING IN ESTPOS, REALPOS, AND COW'
***reorder the radial error and total variance data***

Do 60 1 - 1,SPACING
DO 50 J -0, COUNT-I

L - I + J*SLICES
DO 40 K - 1,3

DIST(J+l) - DIST(J+1)+(EDATA(K,L)
+ -RDATA(K, L) )**2

40 CONTINUE

IF(MK .NE. 1)THEN
EVAR(Je1) -B1*C0V(1,1,L)**2 +B2*COV(2,2,L)**2

+ + B3*COV(3,3,L)**2 +B4(l)*COV(1,2,L) +
+ B5(1)*COV(1,3,L) + B6(l)*COV(2,3,L)

ELSE
EVAR(Jl-) - B1*COV(l,1,L)**2 +B2*COV(2,2,L)**2

+ +B3*COV(3,3,L)**2 + B4(1)*COV(l,2,L)**2 +
+ B5(1)*COV(1,3,L)**2 + COV(2,3,L)**2

END IF
DIST(J+l) - SQRT(DIST(J+l))

50 CONTINUE

MRK - 0
sum - 0.0
SUMSQ - 0.0
MEAN - 0.0

***missing data is identified, reduces d.f. *******

DO 56 J-1,COUNT
IF(DIST(J) Alt. 17.0)THEN

MRK - HRK + 1
DIST(MRK) - DIST(J)
EVAR(MRK) - EVAR(J)
SUM - SUM + DIST(J)

ENDIF
56 CONTINUE
***calculate mean radial error and std. **********

IF (MRK .GT. 0) MEAN - SUM/REAL(MRK)
DO 57 J - 1,MRK

SUMSQ - SUMSQ + (DIST(J) - MEAN)**2
57 CONTINUE

STD - 0.0
IF(MRK .GT. 2) THEN

STD - SQRT(SUMSQ/REAL(MRK - 1))
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ENDIF
PRINT*,'MEAN - ',MEAN, ' STD - ',STD,' KM - ',HRX
WRITE(71 ,*)HEAN, STD,MRK

CALL SORT(DIST,ORDERY,START,MRK)
CALL SORT (EVAR, ORDERX,START, RK)

***identifies where the top five quality messages are *

***present in rank order of the estimated quality ***

DO 54 J - 1,COUNT
DO 53 M - 1,5
IF(INT(ORDERY(J)) .EQ.INT(ORDER-X(M)))THEN

IF( BINO(I,J) .NE. l)THEN
BINO(I,J) - 1

END IF
ENDIF

53 CONTINUE
54 CONTINUE

***calculate the correlation coefficient ~*******
IF ( MRX CGT. 3)THEN

CALL SPEAR(ORDERX, ORDERY, CORR,T T_,R, COUNT)
PRINT*, STIME,CORR,T STAT ,MRK
ENDI F
WRITE(60,333)STIME,CORR,TSTAT,MRK

333 FORMAT(3X,I4,5X,F8.5,2X,FlO-.5,2X,I5)

STIME - STIME + DTIME

DO 55 K - l,COUNT
EVAR(K) - 0.0
DIST(K) - 0.0
ORDERX(K) - REAL(K)
ORDERY(K) - REAL(K)

55 CONTINUE
60 CONTINUE

DO 70 I - l,SLICES
WRITE(60,61)(BINO(I,J) ,J-1,25)

61 FORHAT(lX,25I2)
70 CONTINUE

STOP
END
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APPENDIX 3

SUBROUTINE FIX(COUNT,SLICES,DATA,EDATA,COVMTX)

* This subroutine opens a real position file, and finds the
* position in the input file where the simulator did not
* output a position. It then writes in the missing position.
* For the estimated position and covariance matrix, it writes
* data in for the missing data from the pervious simulation
* increment. Since only a few points failed to be written,
* this will not bias the results.
* by Eric R. Bechhoefer, SMC 1089, NPS MONTEREY, CA 93943

IMPLICIT NONE
*******shared variable***************************************

REAL*8 DATA(3,2500)!real eci positions, output
REAL*8 EDATA(3,2500)!estimated eci positions, output
REAL*8 COVMTX(3,3,2500)!estimated eci covariance matrix,

!output
REAL*8 COUNT !the number of samples, input
REAL*8 SLICES !the number of time increments,

!input
*******local variable***************

REAL*8 HOLD(3) !temporary holding variable
REAL*8 MHOLD(3,3 ) !temporary holding variable for

!covariance matrix
INTEGER PLACE(lOO)!array that hold the position of error

INTEGER ERROR !counter for error
INTEGER PTR !pointer
INTEGER MRK !counter
INTEGER I,J,K,L,N,M !counter

* *********** ******** ******** ****** ******************** ***

* Initialized the variables

PTR - 0
MRK - I
ERROR - 0
DO 15 1 - 1, 100

PLACE(I) - 0
15 CONTINUE

DO 17 1 - 1,3
HOLD(I) - 0.0
DO 16 J - 1,3

MHOLD(I,J) - 0.0
16 CONTINUE
17 CONTINUE
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" read in the first simulation run real positions *****
DO 20 I - l,SLICES

READ(25,*) DATA(l,I),DATA(2,I),DATA(3,I)
PR- pmR + 1.

20 CONTINUE

* test these positions against the remaining run positions,
" note the position error, and place the correct point in

30 CONTINUE
IF( PTR .LT. SLICES*COUNT) THEN

PTR - PTR + 1
IF(HRK .GT. SLICES) HRK - 1
READ(25,*)DATA(1,PTR),DATA(2,PTR),DATA(3,PTR)
IF(DATA(1,PTR) .NE. DATA(l,MRX))THEN

DO 40 1 - 1,3

HOLD(J) - DATA(J,PTR)
DATA(J,PTR) - DATA(J,HRK)
DATA(J,PTR+l) - HOLD(J)

40 CONTINUE
ERROR - ERROR + 1
PIACE(ERROR) - PTR
MRiK - MRK + 1

PR- PTR + 1
PRINT*,'ERROR - ',ERROR,'PTR- ',PTR

ENDI F

MRX - MRK + I
GOTO 30

END IF

*read in the estimated position data and place in missing data

pmR - 0
MRK - 1

50 CONTINUE
IF (PTR .LT. SLICES*COUNT) THEN

PTR - PTR + 1
READ(2O,*)EDATA(1,PTR),EDATA(2,PTR),EDATA(3,PTR)
IF(MRX .E. ERROR)THEN

IF(PTR .EQ. PLACE(HRK)) THEN
PRINT*, 'FOUND ERROR HERE, PTR -',PTR

DO 60 J - 1,3
HOLD(J) - EDATA(J,PTR)
EDATA(J,PTR) - EDATA(J,PTR -SLICES)

EDATA(J,PTR + 1) - HOLD(J)
60 CONTINUE

PmR - PTR + 1
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MRK - R + 1
ENDIF

END IF
GOTO 50

ENDIF
PTR - 0
MRK - 1

*read in and fix the covariance matrix*

70 CONTINUE
IF (PTR .LT. SLICES*COUNT) THEN

PTR - PTR + 1
READ(50,*)COVMTX(1,1,PTR) ,COVMTX(1,2,PTR) ,COVMrx(1,3,PTR)

READ(50,*)COVMTX(2,1,PTR),COVHTX(2,2,PTR),COVM4TX(2,3,PTR)
READ(50,*)COVMTX(3,1,PTR),COVMTX(3,2,PTR),COVMTX(3,3,PTR)

COVMTX(2,1,PTR) - COVHTX(1,2,PTR)
COVMTX(3,1,PTR) - COVMTX(1,3,PTR)
COVMTX(3,2,PTR) - COVMTX(2,3,PTR)

IF(HRX .LE. ERROR)THEN
IF(PTR .EQ. PLACE(MRK)) THEN

PRINT*, 'FOUND ERROR HERE, PTR - ', PTR
DO 90 J - 1,3

DO 80 K - 1,3
HHOLD(J,K) - COVMTX(J,K,PTR)
COVHTX(J,K,PTR) -COVHTX(J,K,PTR -+

SLICES)
COVMTX(J,K,PTR + 1) - MHOLD(J,K)

80 CONTINUE
90 CONTINUE

PTR - PTR + 1
MRI( - R + 1

ENDI F
ENDI F
GOTO 70

END IF

RETURN
END
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APPENDIX 4

SUBROUTINE FIXI(COUNT,SLICES,DATA,EDATA,COVMTX)

* This subroutine is similar to FIX, however, it is designed
* to run with the CROSS program. It identifies error by using
* a error file, which contains the real eci positions at every
* scan period. Values that can be identified are used to fill
* in for the missing data.
* by Eric R. Bechhoefer, SMC 1089, NPS Monterey, Ca 93943

IMPLICIT NONE
******shared variables****************************************

REAL DATA(3,2500) !real eci position
REAL EDATA(3,2500) !estimated eci position
REAL COVMTX(3,3,2500) !estimated eci covariance matrix
INTEGER COUNT !the number of sensors
INTEGER SLICES !the number of time periods

******local variables*****************************************
REAL D(3,2500) !raw real eci position data
REAL E(3,2500) !raw estimated eci position data
REAL C(3,3,2500) !raw estimated eci covariance
REAL X(3,48) !array of the real eci positions

! used as the check
INTEGER PLACE(500) !array containing error position

! in the data files
INTEGER ERROR !how many errors were found
INTEGER PTR !a pointer
INTEGER MRK,HK !markers
INTEGER I,J,K,L,N,M !counters

******begin c**********************************************

OPEN(66,FILE - 'ERROR',STATUS - 'old')

PTR - 1
MRK - 0
ERROR - 0

DO 15 1 - 1, 100
PLACE(I) - 0

15 CONTINUE
**read in the booster position for flight time****************

DO 20 1 - I,SLICES

READ(66,*) x(l,I),x(2,I),x(3,I)
20 CONTINUE

MRK - 1
**read in the raw, eci real position data files****************

30 READ(25,*,END - 33)(D(J,PTR),J-l,3)
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PTR - PTR + 1
GOTO 30

33 CONTINUE
PTR - 1
HK - 0

40 IF( hk .LT. SLICES*COUNT) THEN
HK - HK + 1

**check for deviation of data file position from key, note**
**position in data file of errors***************************

IF(MRK .GT. SLICES) MRK - 1
IF(D(I,PTR) .EQ. X(I,MRK)) THEN

DATA(I,HK) - D(l,PTR)
DATA(2,HK) - D(2,PTR)
DATA(3,HK) - D(3,PTR)
PTR - PTR + 1

ELSE !put in value that is easy
DATA(1,HK) - 10.0 !to identify as error
DATA(2,HK) - 10.0
DATA(3,HK) - 10.0
ERROR - ERROR + 1
PLACE(ERROR) - HK

ENDIF

MRK - MRK+l

GOTO 40
ENDI F

**finished reading in eci real position file, identified

PTR - 1
MRK - I
PRINT*, 'FINISHED READING IN REAL DATA'

50 READ(20,*,END - 55)(E(J,PTR),J-l,3)
PTR - PTR + 1

GOTO 50
**finished reading in estimated position file***************

55 CONTINUE

PTR - 0
HK- 0
PRINT*,'READ IN ESTPOS',' ERROR - ',ERROR

**reorder data to include missing data*********************

60 IF(FTR .LT. SLICES*COUNT)THEN
PTR - PTR + 1
IF(MRK .LE. ERROR)THEN

IF(PTR .EQ. PLACE(MRK)) THEN
PRINT*, 'FOUND ERROR HERE, PTR - ',PTR
DO 65 J - 1,3
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EDATA(J,PTR) - 0.0
65 CONTINUE

MRK - MRK + 1
ELSE

HK - HK + 1
EDATA(1,PTR) - E(1,HK)
EDATA(2,PTR) - E(2,HK)
EDATA(3,PTR) - E(3,HK)

ENDIF
ENDIF
GOTO 60

ENDIF
**finished reading in estimated position, start reading****
**in the covariance matrix data**************************

PTR - 1
MRK - 1
HK - 0

70 READ(50,*,END - 75)(C(1,J,PTR),J - 1,3)
READ(50,*)(C(2,J,PTR),J - 1,3)
READ(50,*,END - 75)(C(3,J,PTR),J - 1,3)

PTR - PTR + 1
GOTO 70

75 CONTINUE
PRINT*, 'READ IN THE COV MTX'
PTR - 0

80 IF (PTR .LT. SLICES*COUNT) THEN
PTR - PTR + 1
IF(MRK .LE. ERROR)THEN

IF(PTR .EQ. PLACE(MRK)) THEN
DO 90 J - 1,3

DO 85 K - 1,3
COVMTX(J,K,PTR) - 1.0

85 CONTINUE
90 CONTINUE

MRK - MRK + I
ELSE

HK - HK + I
DO 110 J - 1,3

DO 100 K - 1,3
COVMTX(J,K,PTR) - C(J,K,HK)

100 CONTINUE
110 CONTINUE

ENDIF
ENDIF
GOTO 80

ENDIF

RETURN
END
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APPENDIX 5

SUBROUTINE SORT (X, ORDER, START, COUNT)

* This subroutine takes an array, bubble sorts it in ascending
* order and returns an array ORDER that holds that order
* By Eric R. Bechhoefer, SMC 1089, NPS Monterey, Ca 93943

IMPLICIT NONE

*shared variables*********************************************

REAL*8 X(100) !the data that needs to be
!ordered, input

REAL*8 ORDER(100) !the order of the data, output
INTEGER START
INTEGER COUNT !the number of time increments

*local variables**********************************************

REAL*8 HOLD !temporary holding
REAL*8 HOLDA !temporary holding for order
INTEGER FIRST !start sorting at this part of

!the array
INTEGER LAST !sort the array to this point
INTEGER J
LOGICAL SORTED !if sorted then true

* START OF CODE *********************************************

SORTED - .FALSE.

FIRST - START

LAST - START + COUNT - 2
5 IF(.NOT. SORTED) THEN

SORTED - .TRUE.
DO 10 J -FIRST, LAST

IF(X(J).GT.X(J+I)) THEN
HOLD - X(J)
HOLDA - ORDER(J)

X(J) - X(J+l)
ORDER(J) - ORDER(J+I)
X(J+l) - HOLD
ORDER(J+l) - HOLD A
SORTED - .FALSE.

ENDIF
10 CONTINUE

LAST - LAST - 1
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GOTO 5
ENDI F
RETURN
END
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APPENDIX 6

SUBROUTINE SPEAR (X,Y,RSUBS,T_STAT,START,COUNT)

* This subroutine takes in two arrays that contain rank order,
* and calculates the rank correlation coefficient and
* t-statistic associated with it. It assumes that there are
* rela ively few ties in the rank order.
* by E-ic R. Bechhoefer, SMC 1089 NPS, Monterey, Ca 93943

IMPLICIT NONE

*shared variables********************************************

REAL*8 X(2500) !an array containing rank order
REAL*8 Y(2500) !an array containing rank order
REAL*8 RSUB S !calculated rank correlation, out REAL*8

TSTAT !calculated t-statistic, out
INTEGER START !ptr indicating the start of the

!array for calculations
INTEGER COUNT !the number of time increments

*local variables**********************************************

REAL*8 DSQAR(3000) !array that hold the difference
!squared of X and Y

REAL*8 SUMDSQAR !the sum of DSQAR

INTEGER LAST !calculate the correlation
!through last

INTEGER I

* BEGIN CODING ***********************************************
* initialize variables****************************************

LAST - START + COUNT - 1
SUM DSQAR - 0.0
DO 5 1 - START,LAST

DSQAR(I) - 0.0
5 CONTINUE

* calculate the sum of squares********************************

DO 10 1 - START, LAST
DSQAR(I) - (X(I) - Y(I))**2

10 CONTINUE

DO 20 I - START, LAST

62



SUM_-DSQAR - SUMDSQAR + DSQAR(I)
20 CONTINUE

*calculate the correlation coefficient **********

RSUBS - 1.0 - (6*SUMHDSQAR)/
+ REAL(COUNT * (COUNT**2-1)

IF(R,_SUB_S .GT. .995) RSUBS - .995

*calculate the t-statistic******************

TSTAT - RSUBS * SQRT( REAL(COUNT - 2))/
+ SQRT(l - RSUBS**2)

RETURN
END
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APPENDIX 7

PROGRAM MIX

* This program takes an ECI position of a sensor platform and
* generates 25 sensor position centered on this point, varied
* by 2 degrees
* by Eric R. Bechhoefer, SMC 1089 Monterey, Ca 93943

IMPLICIT NONE
* local variables *****************************************

REAL*8 RHO(2) I array that holds the rho for
position and velocity

REAL*8 PHE(2) ! phe for velocity and
! acceleration

REAL*8 THETA(2)
REAL*8 THETAD(2,10) I transformed data
REAL*8 PHED(2,10) I transformed phe
REAL*8 X(2),Y(2),Z(2) I eci xyz for position and accel.
REAL*8 PI I constant
PARAMETER (PI - 3.1459265359)
REAL*8 COORD(2,3,50) ! transformed eci coordinates
REAL*8 MKR
INTEGER PTR,I,J,K,M

OPEN(30, FILE - '/ POS DATA',STATUS - 'NEW')

* initialize variables ******************************

DO 10 I - 1,10
DO 5 J - 1,2

PHED(J,I) - 0.0
THETAD(J,I) - 0.0

5 CONTINUE
10 CONTINUE

DO 30 I - 1,50

DO 20 J - 1,3
DO 15 K - 1,2

COORD(K,J,I) - 0.0
15 CONTINUE
20 CONTINUE
30 CONTINUE

* ENTER THE ECI COORDINATES X,Y,Z for position and
* acceleration *

X(l) -

Y(l) -
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z (1)-
X(2)-
Y(2)-
Z(2)
MKR -2.0 * PI / 180.0

*start the transformation *************

DO 40 M - 1,2

RHO(M) - SQRT(X(M)**2 + Y(H)**2 + Z(M)**2)
PHE(M) - DACOS( Z(M)/RHO(M) )
THETA(M) -DASIN (Y(H)/ (RHO(H) * DSIN(PHE(M))))

PHED(M,1) -PHE(M) - 2*MKR
PHED(M,2) -PHE(M) - MKR
PHED(M,3) -PHE(H)

PHED(M,4) -PHE(H) + MKR
PHED(M,5) -PHE(M) + 2*MKR

THETAD(M,1) - THETA(M) - 2*MKR
THETAD(M,2) - THETA(M) - MKR
THETAD(M,3) - THETA(M)
THETAD(M,4) - THETA(M) +- MKR
THETAD(M,5) - THETA(M) + 2*MKR

40 CONTINUE
PTR - I

DO 70 I - 1,5
DO 60 J - 1,5

DO 55 M - 1,2
COORD(M,1,PTR) - RHO(M) * DSIN(PHED(M,I))

+ * DCOS(THETAD(M,J))
COORD(M,2,PTR) - RHO(M) * DSIN(PHED(M,I))

+ * DSIN(THETAD(M,I))
COORD(M,3,PTR) - P110(H) * DCOS(PHED(H,I))
PRINT*,(COORD(H,K,PTR), K- 1,3)
WRITE(30,*)(COORD(K,PI ), K- 1,3)

55 rONTINUE
PTR - PTR + 1

60 CONTINUE
70 CONTINUE

STOP
END
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