

Calhoun: The NPS Institutional Archive

An indicator of message quality for a single optical sensor using a template based tracking algorithm

Bechhoefer, Eric R.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/38539

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

11. TITLE (Including Security Classification)

An Indicator of Message Quality for a Single Optical Sensor Using a Template Based Tracking Agorithm
12 PERSONAL AUTHOR(S)
BECHHOEFER, Eric R.

13 TYPE OF REPORT	13b. TIME COVERED FROM\quad TO	14. DATE OF REPORT (Year, Month, Day) 1992, MARCH	15. Page Count Master's thesis	

16. SUPPLEMENTAL NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

17.	COSATI CODES		18. SUBJECT TERMS (Continue on reverse if neceseary and Identify by block number) Template based tracking, Single optical tracking, Balistic tracking, Statistical analysis, Least squares procedure.
FIELD	GROUP	SUB-GROUP	

19. ABSTRACT (Continue on reverse if neceseary and lidentify by block number

The volume of messages generated by spaced based interceptors (SBl's) resulting from a booster launch can lead to unacceptably great total time for the messages to propagate through the system. In order to help relieve this problem, one might identity the SB1's with the highest quality estimates of the launch information. Message traffic can be sharply reduced if these SBl's can be identified, and message transmission is restricted to their messages

Launch parameters and position are estimated using a template based tracking algorthm. A single measure of quality based on the estimated covariance matrix of the measured position is proposed and tested using simulation. Results describe possible modifications to the template based tracking algorthm that would reduce error and allow the quality of a message to be determined.

20 DISTRIBUTION/AVAILABILTIY OF ABSTRACT \mathbb{X} UNCLASSIFIED/UNLIMITED \square SAME AS RPT. \square DTIC	1a. REPORT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL Lyn R. Whitaker	22b. TELEPHONE (Include Area Codo) (408)646-3482	22e. OFFICE SYMBOL ORWh

Approved for public release; distribution is unlimited.

An Indicator of Message Quality for a
Single Optical Sensor
Using a Template Based Tracking Algorithm
by

Eric R. Bechhoefer
Lieutenant, United States Naval Reserve
B.S., University of Michigan, 1984

Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL

Author:
Eric R. Bechhoefer

Approved by:

Peter Purdue, Chairman
Department of Operations Research

Abstract

The volume of messages generated by spaced based interceptors (SBI'S) resulting from a booster launch can lead to an unacceptably large total time for the messages to propagate through the system. In order to help relieve this problem, one might identify the SBI's with the highest quality estimates of the launch information. Message traffic can by sharply reduced if these SBI's can be identified, and message transmission restricted to their messages.

Launch parameters and position are estimated using a template based tracking algorithm. A single measure of quality based on the estimated covariance matrix of the measured position is proposed and tested using simulation. Results describe possible modifications to the template based tracking algorithm that would reduce error and allow the quality of a message to be determined.

iii

THESIS DISCLAMMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
II. DESCRIPTION OF THE SDS SIMULATOR 4
A. OVERVIEW 4
B. COORDINATE SYSTEM 5
C. FUNCTIONALITY 5
D. LAUNCH PARAMETER ESTIMATION 8
III. MEASURE OF ERROR 12
A. COVARIANCE MATRIX 12
B. SENSOR IN A CONSTELLATION 20
C. USE OF MODEL 32
IV. AZIMUTH AND ELEVATION VARIANCE 36
A AZIMUTH AND ELEVATION 36
B. MEAN RADIAL ERROR 37
V. CONCLUSIONS AND RECOMMENDATIONS 42
APPENDIX 1 46
APPENDIX 2 50
APPENDIX 3 54
APPENDIX 4 57
APPENDIX 5 60
APPENDIX 6 62
APPENDIX 7 64
LIST OF REFERENCES 66
BIBLIOGRAPHY 67
INITIAL DISTRIBUTION LIST 68

1. INTRODUCTION

A. BACKGROUND

The Strategic Defense Initiative Organization (SDIO) has developed a goal to vigorously research and develop technology that could help to eliminate the threat of ballistic missiles and provide increased U.S. and allied security. By deploying a three-part phased ballistic missile defense system, incremental strategic benefits can be realized while preparing the way for the next phase.

The first phase would reduce confidence of planners initiating a nuclear attack against the U.S. by not allowing them to predict the outcome of a ballistic missile attack. The second phase would negate the potential threat government's or hostile organization's ability to destroy many of the U.S. strategic targets, and the third phase would eliminate the threat posed by ballistic missiles entirely (Udall, 1988).

The first phase system being proposed by SDIO includes ground and space based BMD consisting of:

- Spaced-based hit-to-kill vehicles for attacking missile boosters and post-boost vehicles.
- Ground based rockets designed to intercept warheads as they reenter the atmosphere.

These spaced based hit-to-kill interceptors (SBI's) would be arranged in a constellation of several hundred satellites at several hundred kilometers altitude above the earth. A constellation of satellites is an organized collection
of satellites in related orbits. Each satellite would have the capability to detect ballistic or anti-satellites missile launches by observing the hot rocket plumes.

Once a ballistic missile has been detected, the SBI would be able to track the booster and pass this information to the rest of the constellation. This information sharing has two uses:

- Due to positional constraints, the SBI that is tracking a booster may not be the SBI that has the best shot at killing the booster. Tracking information can be passed to the SBI with the best shot (Compaterto, 1991).
- Line of sight laser communication will be used to minimize jamming. This requires sequential message transmission from one SBI to another SBI and could result in large queues of messages being formed (Comparetto, 1991).

The use of a constellation of orbiting SBIs to identify, track and engage thrusting bodies has numerous advantages. The system can be made to operate autonomously, provide world wide coverage, and it is flexible to changing political situations.

A constellation of SBIs will consist of hundreds of platforms, each with identical capability. The large number of platforms will result in multiple coverage of any given area. Given a booster launch, more than one SBI will obs ${ }^{\prime}$ rve the launch and commence tracking that booster. Due to different observation angles, the position of the sun, and the individual sensor systems - themselves, the tracking quality of these SBIs will be variable. Some tracking information will be better than others. Information of high quality should be communicated, while poor quality information should not be passed on to other

SBIs. This type of pruning will reduce time in queues, decrease the time for information being transmitted throughout the constellation, and will allow the SBI with the best shot a higher probability of kill (Comparetto, 1991).

The software developed to simulate a constellation of SBIs is one of the Strategic Defense System (SDS) Simulators. The template based tracking algoritbm is a function of this simulator and tracks booster and ballistic bodies using a single optical tracker. It is this papers goal to:

- Describe the functionalities of the template based tracking algorithm and how it works.
- Determine if there is a reliable way to measure the quality of a track message generated by the tracking algorithm.
- Make appropriate conclusions and recommendation to improve the template based tracking algorithm.

Chapter II will give a brief description of the system simulator and how the track algorithm works. Chapter III will describe a measure of quality for a track message and test this measure using the tracking algorithm.

Chapter IV will show the effect of changing the azimuth and elevation variance of the sensor (a the tracking algorithms error. Chapter V will give the conclusions and recommendations.

II. DESCRIPTION OF THE SDS SIMMULATOR

A. OVERVIEW

The system simulator uses the template based tracking algorithm to estimate the launch parameter state vector and the launch parameter variancecovariance matrix of ballistic targets based on data from a single optical sensor. This problem generally has no unique solution unless additional information is used. Multiple trajectories can be constructed through the same measured angle data. Constraints are required to make the problem solvable. The approach taken by the tracking algorithm is to utilize a priori trajectories in the form of downrange and altitude templates which are specific for a given booster type. These templates consist of a family of curves, each one representative of a flight profile, and in the ensemble encompass the flight envelope of a given booster type (Figure 2-1, Rasmussen, 1989).

Figure 2-1. Multiple trajectories constructed from measıred angle data.

B. COORDINATE SYSTEM

The template based tracking algorithm uses five different coordinate systems. The first is the Earth Centered Inertial (ECI) coordinate system. The x axis is contained in the earth's equatorial plan and is directed through the prime meridian, the z axis is directed through the north pole, and the y axis is perpendicular to both completing the right-handed system. The second system is the Earth Fixed (EF) coordinate system which is aligned to the ECI system at epoch, but whose x and y axes rotate at the rate of the earth. The third coordinate system is the geographic coordinates, consisting of latitude, longitude, altitude and launch azimuth. The fourth coordinate system is the local launch coordinate system, where the axis is contained in the local tangent plane and is directed along the launch azimuth of the target, the z axis is directed towards local zenith, and the y axis completes the right handed system. The fifth coordinate system is the sensor local coordinate system where the \mathbf{x} axis is contained in the local tangent plane and is directed locally north, the y axis is contained in the local tangent plane and directed locally east, and the z axis is directed to local zenith (Rasmussen, 1989). This is a left handed system (Figure 2-2, Rasmussen, 1989).

C. FUNCTIONALITY

The problem of estimating the trajectory of a thrusting target using only the angle of measurement from a single optical sensor is not well defined.

Figure 2-2 Coordinate sysi 3 m of the tracking algorithm.

Multiple trajectories can be constructed through the measured angle data. To solve this problem, trajectory information in the form of downrange and altitude templates, which are specified per booster type, are needed.

The trajectory templates are given as the downrange and altitude of a booster as a function of time for that booster type. Various pitch profiles are included to take into account lofted or depressed trajectories. These curves are used as constraints by the template based tracking algorithm. It is an implicit assumption that any particular booster trajectory may be approximated as a linear combination of these a priori trajectory templates. Since the trajectory templates encompass the total dynamic behavior of a booster's trajectory, any large deviation from the nominal shape of the altitude and downrange templates serves to degrade the algorithm performance (Rasmussen, 1989).

As an internal function of the tracking algorithm, the trajectory templates are represented by bicubic splines. Cubic splines are constructed to fit the altitude and downrange templates for each flight profile independently. At any given iteration in the launch parameter estimation, the altitude and downrange are interpolated from the cubic splines for each flight profile based upon the estimated time of flight. A cubic spline is then constructed at the estimated time of flight across the flight profiles, and an interpolated value is obtained based upon the current estimate of the pitch parameter. In order to estimate the partial derivatives necessary to determine the gradient, altitude rate, altitude acceleration, downrange rate, and the downrange acceleration are
evaluated by differentiating the cubic spline polynomials for each flight profile. Cubic splines are then constructed across the rate and acceleration points and evaluated at the current pitch parameter estimate.

D. LAUNCH PARAMETER ESTIMATION

The template based tracking algorithm estimates the launch parameter using an iterative batch least-square algorithm. If \mathbf{X} is a six dimension state vector of the launch parameters and Z is the azimuth and elevation measurement, then the relationship exists:

$$
\mathbf{Z}=\mathbf{h}(\mathbf{X})+\boldsymbol{v}
$$

where the $h(\mathbf{X})$ is a function dependent on the a priori booster information and v is multivariate normal error with mean zero and a given variance-covariance \mathbf{R}. Taking a first order Taylor expansion about \mathbf{X}_{0}, the fixed state vector of the best known launch parameter gives:

$$
\mathbf{Z}=\mathbf{h}\left(\mathbf{X}_{0}\right)+\left(\mathbf{X}-\mathbf{X}_{0}\right) H\left(\mathbf{X}_{0}\right)+v
$$

where H is the derivative of h evaluated at X_{0}. If we let:

$$
\delta Z=\mathbf{Z}-\mathbf{h}\left(\mathbf{X}_{0}\right), \delta \mathbf{X}=\left(\mathbf{X}-\mathbf{X}_{0}\right)
$$

then it follows that:

$$
\delta Z=H\left(X_{0}\right) \delta \mathbf{X}+v
$$

From this equation using Least Squares, $\delta \mathbf{X}$, which is the difference between the best known launch parameter state vector and the new estimate for the state vector, can be estimated.

Let the variance-covariance matrix of \boldsymbol{v} be defined as \mathbf{R}. From least squares (Mendenhall, 1989) an estimator of $\delta \mathbf{X}$ is:

$$
\begin{gathered}
\delta \mathbf{X}^{\prime}=\left(\left(\mathbf{R}^{1 / 2} \mathbf{H}\right)^{\mathrm{T}}\left(\mathbf{R}^{-1 / 2} \mathbf{H}\right)^{-1 / 2}\left(\mathbf{R}^{-1 / 2} \mathbf{H}\right)^{\mathrm{T}}\left(\mathbf{R}^{-1 / 2} \delta \mathbf{Z}\right)\right. \\
=\left(\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \delta \mathbf{Z}
\end{gathered}
$$

where $\mathbf{R}=\mathbf{R}^{1 / 2} \mathbf{R}^{1 / 2}$ and $\mathbf{H}=\mathbf{H}\left(\mathbf{X}_{\mathrm{o}}\right)$. This only works if:

$$
\mathrm{E}[\delta \mathbf{Z}]=\mathbf{H}\left(\mathbf{X}_{0}\right) \delta \mathbf{X}
$$

but in fact:

$$
\mathrm{E}[\delta Z]=\mathrm{h}(\mathbf{X})-\mathrm{h}\left(\mathbf{X}_{0}\right)=\mathrm{H}\left(\mathbf{X}_{0}\right) \delta \mathbf{X}
$$

An estimator of \mathbf{X} is therefore:

$$
\mathbf{X}_{1}=\mathbf{X}_{0}+\delta \mathbf{X}^{\prime}
$$

Therefore \mathbf{X}_{1} is the estimate of the launch parameters. Because a linear approximation of h about X_{0} is used, replacing X_{1} for X_{0} and solving the least squares problem iteratively, the estimator of the launch parameter at the $\mathrm{n}^{\text {th }}$ iteration is:

$$
\mathbf{X}_{\mathrm{n}}=\mathbf{X}_{\mathrm{n}-1}+\delta \mathbf{X}_{\mathrm{D}-1}
$$

The position of the booster in Earth Centered Inertial (ECI) is a function of the launch parameters, based on time, downrange and altitude given by:

$$
\mathbf{X}_{\text {exi }}=\mathbf{Z}\left(-\omega\left(\mathbf{t}-\mathrm{t}_{e p}\right)\right)\left(\mathbf{X}_{0}\left(\phi, \lambda, \mathbf{h}_{\mathrm{o}}\right)+\mathbf{T}(\phi, \lambda, \alpha) \mathbf{X}_{\text {boad }}\left(\mathbf{h}_{\mathbf{o}}, \tau, \theta\right)\right)
$$

where:
$\mathbf{Z}\left(-\omega\left(\mathrm{t}-\mathrm{t}_{\mathrm{e}}\right)\right)$ is the transformation matrix from earth fixed coordinates to ECI coordinates
$\mathbf{X}_{0}\left(\phi, \lambda, \mathbf{h}_{\boldsymbol{o}}\right)$ is the launch position vector expressed in earth fixed coordinates
$T(\phi, \lambda, \alpha)$ is the transformation matrix from local launch coordinates to earth fixed coordinates
$\mathbf{X}_{\text {tocal }}\left(\mathrm{h}_{\mathrm{o}}, \tau, \theta\right)$ is the current booster position alone the trajectory template expressed in local launch coordinates

The covariance matrix associated with the launch parameter estimate can be approximated in ECI coordinates by the following linearized equation:

$$
\mathbf{P}=(\delta \mathbf{X} / \delta \mathbf{Y}) \mathbf{C}(\delta \mathbf{X} / \delta \mathbf{Y})^{T}
$$

where:
P is the covariance matrix of the ECI state vector
C is the covariance matrix of the launch parameter vector estimate
\mathbf{X} is the ECI state vector
\mathbf{Y} is the launch parameter vector
$\delta \mathbf{X} / \delta \mathbf{Y}$ is the Jacobian of the transformation form launch parameters to ECI coordinates

The template based tracking algorithm computes a variety of output including. estimated ECI position, velocity, acceleration, covariance matrix, launch parameters and launch parameter covariance matrix for the booster. Additionally the true ECI position of the booster, ECI position of the sensor platform, and other parameters are available (Figure 2-3, Rasmussen 1989).

Figure 2-3 Estimated errors in the tracking algorithm.

III. MEASURE OF ERROR

A. COVARIANCE MATRIX

It was believed that the best measure of error in the system would be the estimated ECI variance-covariance matrix itself. Initially, it was hypothesized that large differences between the estimated position and the actual position of the thrusting body would be reflected in the estimated launch parameter covariance matrix and the estimated ECI variance-covariance matrix. The launch parameter is expressed in geographical coordinates, time, altitude, pitch and azimuth. The ECI covariance matrix is expressed in kilometers, a natural measure of distance and error.

The version of the tracking algorithm used was the mini testbed, which was developed as an analysis tool. As such, it is flexible in options such as scan rate (number of samples taken of the simulation run), the initial position of both the booster and the sensor platform, the booster type, booster data, and simulation run time. All runs used simulation runs of 100 seconds, and the same initial positions for the sensor and booster. A scan rate of 2 seconds was used.

The tracking algorithm relies on the assumption that the errors are multivariate normal. Initial runs of the tracking algorithms were conducted to discern the distribution of the error. Plots in the ECI X, Y, and Z coordinate
plans were made by taking the difference in the estimated X (or Y or Z) position and the real X (or Y or Z) position. The shape of the distributions was bell shaped and generally centered around 0 . The distribution is not spherical. (Figure 3-4).

The assumption that the distribution is multivariate normal with mean 0 and an unknown variance, is not unreasonable (Figure 3-4).

The next set of runs where designed to see whether the estimated covariance matrix actually reflects the observed error. The expected value of the observed and estimated ECI position is approximated from the simulation to be the observed position averaged over 50 runs and the estimated position averaged over 50 runs. Additionally, the actual covariance matrix of the error in position can be estimated from the simulation by computing the empirical variance and covariance of the errors from the 50 simulation runs. The average of the 50 estimated covariance matrices will be an unbiased estimator.

The ultimate goal is to find a single value which reflects the quality of a sensor platform observations. Thus the total variance with respect to ECI position was chosen to be a measure of quality of a sensor platform observation, where the total variance is defined to be:

$$
V(U)=\sum_{i=1}^{3} V\left(Y_{i}\right)+2 \times \sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{cov}\left(Y_{i} Y_{j}\right)
$$

where $Y_{i} i=1,2,3$ is the ECI X, Y and Z positional variance, respectively, and $U=Y_{1}+Y_{2}+Y_{3}$.

Figure 3-4 Normal probability plots of the error distributions.

The ECI position covariance matrix was chosen as opposed to the launch parameter covariance because the launch parameter is expressed in geographic coordinates, time, altitude, azimuth and pitch angle. It was felt that it would be difficult to transform this data into a common variance. Since the estimated total variance was chosen to represent the algorithm's error, there should a non-decreasing relationship between the observed total variance in position and the estimated total variance in position derived from the tracking algorithm. The error in position (measured in radial distance from the estimated and real booster position) should also be monotonically related to observed and estimated total variance.

The simulation results, observed total variance (OTVAR) vs. expected total variance (ETVAR) and radial error (Figure 3-5 and Figure 3-6) were plotted.

The estimated total variance consistently underestimates the observed total variance. Additionally, between approximately time 20 and time 50 the ETVAR does not represent OTVAR or the radial error. The average radial error is fairly well estimated by OTVAR (Figure 3-7).

Additional analysis of the average values of the observed and estimated variances indicated that the values, using paired comparisons, were not statistically different. The estimated covariance was of the order of 10^{-6}, significantly smaller in value than the observed covariance (order of 10^{-1}). This indicates that the tracking algorithm greatly underestimates the covariance, and is an explanation as to why ETVAR underestimates OTVAR.

The non-linear relationship of ETVAR and OTVAR and the radial error over time indicates that there was a failure in the templates to accurately model the booster trajectory (template mis-match) or that the data set for the trajectory was faulty (Figure 3-5).

These results were discussed with the algorithms author, Nelson Rasmussen, Martin Marietta, and the following suggestions were made:

1. The error that was observed during the simulation run time from approximately 20 to 50 seconds corresponds to missile pitch over in the booster's flight profile. It might be the case that the templates do not model this well causing template mis-match.
2. When template mismatching occurs, the tracking algorithm might not converge well and will produce error.
3. An experiment was run in which the initial guess of the launch parameter was varied and the convergent points compared. Out of 12 different initial guesses, 10 convergent points were observed.

The experiment described by Nelson Rasmussen, was again tested on the tracking algorithm. The launch azimuth was varied from 0 to 2π from its initial value in 30 degree increments and the resulting estimated launch parameter state vectors were compared. It was observed during a large proportion of the time that the algorithm converged to different values, but that the values were very close (the same out to 8 decimal places). The geographic positions were for all practical purposes the same, only the launch azimuth and pitch parameters converged to different values.

This would indicate that the algorithm is robust to slight changes and errors in the entering arguments or initial guess of the launch parameters.

Figure 3-5 Plot of ETVAR vs OTVAR.

Figure 3-6 Plot of ETVAR vs OTVAR and the average radial error.

Figure 3-7 Plot of OTVAR vs average radial error.

Since the algorithm appears to work for most time periods, it was believed that some template mis-matching was occurring during the time period from 20 to 50 seconds.

B. SENSOR IN A CONSTELLATION

An individual sensor platform may in many cases not give good information. Due to differences in viewing angle, sun back-lighting and distance from the booster, messages from different sensors r ill generate messages of varying quality. This requires analysis of the message quality from a constellation of sensors.

If a population of sensor platforms observe a booster launch and initiates a track, how will the error of one sensor platform compare to the error of another sensor tracking the same booster?

If a population of sensors is tracking a booster, it would be expected that sensors with good track information would have smaller observed radial error, as measured by the estimated ECI position covariance matrix (i.e. smaller distance between the estimated position and the real position). The total ECI (ETVAR) is again used as a single measure of information.

The hypothesis of no correlation between populations of ranked pairs of the observed error and the estimated total variance can be tested by using Spearman's Rank Correlation Test (Mendenhall, 1989). The rank correlation coefficient r_{d} is calculated by using the ranks of the paired measurements of the
two variables, observed error and estimated variance. Let the observed error of the $i^{\text {th }}$ run be X_{i} and estimated variance of the $i^{\text {th }}$ run be Y_{i}, for $i=1, . ., 25$ the correlation r_{a} is calculated by:

$$
r_{s}=1-\frac{6 \sum_{i=1}^{25}\left(X_{i}-Y_{i}\right)^{2}}{25\left(25^{2}-1\right)}
$$

Where 25 represents the number of sensors tracking the booster. This assumes

$$
t=I_{s} \frac{\sqrt{n-2}}{\sqrt{1-r_{s}^{2}}}, \quad v=n-2
$$

that there are no ties in either the X_{i} or Y_{i} observations. The statistic $r_{\mathbf{i}}$ can be used to generate a t-statistic used for hypothesis testing (Kendall, 1990).

The t-statistic can then be used to test the following hypothesis at each time period:

1. Null Hypothesis: H_{o} : There is no association between the ranked pairs.
2. Alternative Hypothesis: H_{a} : The correlation between the ranked pairs is positive.

A simple constellation was constructed to test this hypothesis. To reduce variation introduced into the simulation testing, the constellation was centered on the ECI position of the sensor used in all pervious experiments. Each sensor was 2 degrees off azimuth of neighbor (There are cases when the algorithm will fail to generate a track. To minimize these errors, it was
decided to use a constellation in which the sensor platforms would be assured of generating a track). This constellation is for illustrative purpose (Figure 3-8).

The tracking algorithm was run using these initial positions. The estimated positions, real positions and covariance matrix output data was run through a post-processor (Appendix 2). The post processor calculated the radial error (norm of estimated position and real position) and total estimated variance (ETVAR) for each time period. These variables were then used for the rank correlation test. The results indicate no correlation between the observed error and the estimated total variance. In most cases the t-statistic did not reject the Null Hypothesis (Table I). At the 95% level of significance the t-critical value with 23 degrees of freedom is 2.069

An attempt was made to improve the correlation between the radial error and the variance by modeling the error as a function of the variance covariance matrix. If the error can be predicted by the covariance matrix, this should improve the correlation and perhaps give an absolute measure of error.

The following model was used:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4}+X_{4}+\beta_{5} X_{5}+\beta_{6} X_{6}
$$

where Y is the radial error and $X_{j} j=1, ., 6$ are the entries from the covariance matrix.

Figure 3-7 Simple constellation of 25 SBIs.

Least Squares regression was used to estimate the values of β. The regression will only show what are important factors in forecasting error and estimate the coefficients.

When using the ECI covarinace matrix, the coefficients will only be optimal for a limited geographic location (unless the coefficient are the same for the \mathbf{X}, Y, and Z , variance and covariance). For this reason this analysis was additionally tested on the launch parameter variance. These coefficients should be able to be used globally.

Three cases were looked at for the regression model. The launch parameter variance and ECI covariance from time 0 to 100, and the ECI covariance from time 0 to 36 and from time 38 until 100 (Table II). The time periods 0 to 36 and 38 to 100 were chosen to observe the behavior of the model prior to booster pitch over and during the ballistic phase of the flight.

In the launch parameter covariance model, only the azimuth and pitch variance were used. The variance for latitude and longitude were approximately zero, the altitude variance was constant, and the use of time variance resulted in even a lower value of \boldsymbol{R}

These coefficients were then used in the post-processor to calculate the value of ETVAR. The post processor then computed the Spearman's Rank Correlation Test, as previously described (see Appendix 2).

This method of choosing the coefficient to calculate ETVAR did not change the results: in most cases it was not possible to reject the Null Hypothesis

Table I RESULTS OF SPEARMAN'S RANR CORRELATION TEST, ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCE MATRIX, $\beta=1,1,1,2,2,2$

T128	r	t-stat	d.f.
6	0.05154	0.2475	23
8	0.32462	1.6459	23
10	0.03538	0.1698	23
12	-0.06462	-0.3105	23
14	0.00000	0.0000	23
16	-0.14693	-0.7123	23
18	0.04768	0.2287	23
20	0.16846	0.8196	23
22	0.38923	2.0264	23
24	-0.03154	-0.1513	23
26	0.03692	0.1772	23
28	0.30385	1.5295	23
30	-0.29231	-1.4658	23
32	-0.09692	-0.4670	23
34	0.05000	0.2401	23
36	0.18308	0.8931	23
38	-0.23846	-1.1776	23
40	-0.05154	-0.2375	23
42	0.06769	0.3254	23
44	-0.07692	-0.3701	23
46	0.00769	0.0368	23
48	-0.06154	-0.2957	23
50	-0.15154	-0.7352	23
52	0.25385	1.2586	23
54	0.03385	0.1624	23
56	-0.35846	-1.8415	23
58	-0.06000	-2.8827	23
60	-0.17769	-0.8659	23
62	0.21000	1.0300	23
64	-0.05769	-0.2771	23
66	-0.00462	-0.0221	23
68	0.08000	0.3849	23
70	-0.27000	-1.3448	23
72	0.24077	1.1896	23
74	0.39846	2.0835	23
76	0.01385	0.0664	23
78	0.26308	1.3077	23
80	-0.01538	-0.0737	23
82	-0.29308	-1.4701	23
84	-0.10468	-0.5045	23
86	0.25385	1.2586	23
88	-0.17077	-0.8312	23
90	-0.17000	-0.8273	23
92	0.10077	0.4857	23
94	-0.07846	-0.3774	23
96	-0.19846	-0.9711	23
98	0.06615	0.3179	23
100	-0.36769	-1.8962	23

(Tables II-VII). Using the launch parameter covariance to forecast error produced higher correlation and in some cases the Null Hypothesis could be rejected.

Thus, there are cases when the launch parameter covariance matrix could be used an indicator of the quality. However, positive correlation does not guarantee high quality messages or the ability to forecast error. A good model that forecast error would result in a rank correlation that is close to 1.0 , and a t-statistic that is significantly large.

Table II RESULTS OF SPEARMAN'S RANR CORRBLATION TEST, ESTIMATED VARIANCE CALCULATED FROM ECI COVARIANCB MATRIX, $\beta=-390,172,-69,-1024,125200,-387470$

TRES	Σ_{1}	t-stat	d.f.
6	0.04231	0.2030	23
8	-0.30615	-1.5423	23
10	0.18154	0.8853	23
12	-0.16615	-0.8088	23
14	0.11615	0.5608	23
16	0.10692	0.5157	23
18	-0.16000	-0.7774	23
20	0.32000	1.6198	23
22	0.09077	0.4371	23
24	-0.18308	-0.8931	23
26	0.11692	0.5646	23
28	-0.01692	-0.0811	23
30	0.25846	1.2831	23
32	0.21462	1.0538	23
34	0.45769	2.4687	23
36	-0.06846	-0.3291	23
38	-0.14154	-0.6857	23
40	0.17924	0.8737	23
42	-0.01462	-0.0701	23
44	-0.29846	-1.4997	23
46	-0.23000	-1.3343	23
48	-0.19231	-0.9398	23
50	-0.00077	-0.0036	23
52	0.13923	0.6743	23
54	-0.20154	-0.9867	23
56	-0.31538	-1.5939	23
58	-0.09077	-0.4371	23
60	-0.25462	-1.2627	23
62	-0.07692	-0.3700	23
64	0.17846	0.8698	23
66	0.04462	0.2141	23
68	-0.22769	-1.1214	23
70	0.35462	1.8188	23
72	0.13385	0.6477	23
74	0.02308	0.1107	23
76	0.13769	0.6667	23
78	-0.06077	-0.2919	23
80	0.14077	0.6819	23
82	0.06077	0.2919	23
84	0.09231	0.4445	23
86	0.31538	1.5938	23
88	-0.02538	-0.1217	23
90	0.12462	0.6023	23
92	-0.14308	-0.6933	23
94	-0.18923	-0.9242	23
96	-0.23923	-1.0181	23
98	0.03000	0.1439	23
100	-0.36154	-1.8597	23

Table III RESULTS OF SPEARMAN"S RANK CORRELATION TEST, ESTIMATED VARIANCE CALCULATBD FROM ECI COVARIANCE MATRIX, TIMR $0-36, \beta=-308,9,-370,84,-1026,243$

TTE	x_{1}	t-mtat	d.f.
6	0.29846	1.49973	22
8	0.30769	1.55088	22
10	0.20692	1.01432	23
12	0.26077	1.29543	23
14	0.38308	1.98889	23
16	0.25615	1.27087	23
18	0.27538	1.37382	23
20	0.26692	1.32831	23
22	0.34462	1.76056	23
24	0.40385	2.11710	23
26	0.25769	1.27905	23
28	0.48154	2.63500	23
30	0.24385	1.20584	23
32	0.16923	0.82348	23
34	0.34077	1.73832	23
36	0.13462	0.65152	23
38	0.07231	0.34769	23
40	0.01385	0.06641	23
42	0.14308	0.69331	23
44	-0.06385	-0.30682	23
46	0.37462	1.93769	23
48	0.34154	1.74276	23
50	0.41538	2.18999	23
52	0.29077	1.45745	23
54	0.32231	1.63287	23
56	0.11385	0.54956	23
58	0.26308	1.30774	23
60	0.11692	0.56462	23
62	0.15692	0.76202	23
64	0.28462	1.42386	23
66	0.19615	0.95936	23
68	0.23538	1.16150	23
70	0.29923	1.50397	23
72	0.08615	0.41472	23
74	0.05692	0.27344	23
76	0.10154	0.48949	23
78	0.44615	2.39082	23
80	-0.04769	-0.22898	23
82	0.55077	3.16465	23
84	-0.09077	-0.43712	23
86	0.00154	0.00738	23
88	0.20462	1.00251	23
90	0.10308	0.49699	23
92	0.18308	0.89310	23
94	0.10231	0.49324	23
96	0.42077	2.22444	23
98	-0.10769	-0.51950	23
100	0.05923	0.28456	23

Table IV RESULTS OF SPEARMAN'S RANK CORRELATION TEST, ESTIMATED VARIANCE CALCULATBD FROM BCI COVARIANCE MATRIX TIME $38-100, \beta=663,342,2537,-1031,-4036,2080$

TIES	$r_{\text {b }}$	t-stat	d.f.
6	0.12769	0.61745	22
8	0.39154	2.04068	22
10	0.17538	0.85436	23
12	0.14231	0.68950	23
14	0.15615	0.75819	23
16	0.26308	1.30774	23
18	0.28308	1.41549	23
20	0.33154	1.68532	23
22	0.44846	2.40629	23
24	-0.14769	-0.71616	23
26	0.23231	1.14545	23
28	0.16385	0.79654	23
30	-0.08308	-0.39981	23
32	0.09692	0.46703	23
34	0.30077	1.51247	23
36	0.14308	0.69331	23
38	0.48462	2.65698	23
40	0.19077	0.93201	23
42	0.59000	3.50450	23
44	0.43385	2.30930	23
46	0.70231	4.73139	23
48	0.35692	1.83244	23
50	0.53385	3.02778	23
52	0.26538	1.32007	23
54	-0.03538	-0.16981	23
56	0.61692	3.75930	23
58	0.47538	2.59141	23
60	0.28462	1.42386	23
62	-0.14462	-0.70092	23
64	-0.13538	-0.65531	23
66	-0.00692	-0.03320	23
68	0.16231	0.78886	23
70	0.24923	1.23422	23
72	-0.09615	-0.46328	23
74	0.45462	2.44784	23
76	0.01615	0.07748	23
78	0.04538	0.21788	23
80	0.18846	0.92032	23
82	0.00769	0.03689	23
84	-0.03538	-0.16981	23
86	0.41000	2.15582	23
88	-0.05385	-0.25861	23
90	0.12692	0.61366	23
92	0.16923	0.82348	23
94	0.08846	0.42592	23
96	0.36308	1.86878	23
98	0.18462	0.90087	23
100	0.26385	1.31185	23

Table V CORRELATION OF RADIAL RRROR TO LAUNCH PARANETER VARIANCE, REGRESSION ESTIMATES OF $\beta=0,0,0,0,1.3,-2.6$

TMR	r_{1}	t-stat	d.f
6	0.38615	2.00765	23
8	0.38769	2.01706	22
10	0.30308	1.52524	23
12	0.11385	0.54956	23
14	0.34846	1.78291	23
16	0.18154	0.88534	23
18	0.26077	1.29543	23
20	0.10846	0.52325	23
22	0.28077	1.40296	23
24	0.22538	1.10945	23
26	0.13769	0.66670	23
28	0.15769	0.76585	23
30	0.36231	1.86422	23
32	0.27615	1.37797	23
34	0.08385	0.40353	23
36	0.34000	1.73388	23
38	0.22385	1.10148	23
40	0.29692	1.49125	23
42	0.16846	0.81963	23
44	0.17615	0.85822	23
46	0.09462	0.45580	23
48	0.24231	1.19776	23
50	0.01923	0.09224	23
52	0.36846	1.90082	23
54	0.34154	1.74276	23
56	0.20308	0.99465	23
58	0.22692	1.11744	23
60	0.16846	0.81963	23
62	0.54154	3.08933	23
64	0.09615	0.46328	23
66	0.03154	0.15133	23
68	-0.06077	-0.29198	23
70	0.30154	1.51673	23
72	0.37154	1.91922	23
74	0.29462	1.47855	23
76	0.40077	2.09787	23
78	0.20308	0.99465	23
80	-0.10923	-0.52701	23
82	0.18462	0.90087	23
84	0.24308	1.20180	23
86	0.33923	1.72944	23
88	0.24000	1.18565	23
90	0.30154	1.51673	23
92	-0.05692	-0.27344	23
94	0.03154	0.15133	23
96	0.04462	0.21418	23
98	-0.06769	-0.32539	23
100	0.12231	0.59100	23

Table VI CORRELATION OF RADIAL BRROR TO LAUNCH PARAMETER VARIANCE, BSTIMATED COBFFICIENTS FOR TIME 0 - 36 , $\beta=0,0,0,0,-92.3,0.33$

TIS	r_{1}	t-stat	d.f.
6	0.38615	2.00765	23
8	0.38769	2.01706	22
10	0.30308	1.52524	23
12	0.11385	0.54956	23
14	0.19308	0.94372	23
16	0.26462	1.31596	23
18	0.32385	1.64158	23
20	0.51846	2.90779	23
22	0.43923	2.34477	23
24	0.52385	2.94933	23
26	0.25385	1.25863	23
28	0.17846	0.86984	23
30	0.08538	0.41099	23
32	0.18231	0.88922	23
34	0.18769	0.91643	23
36	0.31154	1.57234	23
38	0.19538	0.95545	23
40	0.50231	2.78595	23
42	0.36231	1.86422	23
44	0.15231	0.73906	23
46	0.19923	0.97502	23
48	0.26462	1.31596	23
50	0.27462	1.36967	23
52	0.09846	0.47451	23
54	0.20923	1.02615	23
56	0.34615	1.76949	23
58	0.39769	2.07872	23
60	0.45846	2.47403	23
62	0.09231	0.44459	23
64	0.15615	0.75819	23
66	0.24308	1.20180	23
68	0.10923	0.52701	23
70	0.20923	1.02615	23
72	0.25923	1.28723	23
74	0.43769	2.33460	23
76	0.41000	2.15582	23
78	0.42769	2.26915	23
80	0.54538	3.12052	23
82	0.19538	0.95545	23
84	0.62923	3.88267	23
86	0.39923	2.08828	23
88	0.28923	1.44903	23
90	0.25154	1.24641	23
92	0.24154	1.19372	23
94	0.13615	0.65911	23
96	-0.05538	-0.26602	23
98	0.34000	1.73388	23
100	0.46077	2.48983	23

C. USE OF MODEL

In practical terms, one would like to prune messages of poor quality from the constellation. Pruning messages could greatly reduce the time required for the remaining messages to propagate through the constellation. The process of message propagation will be defined as flooding.

An experiment was conducted to estimate the distribution of the quality of messages generated in the test constellation. The model that consistently produced the highest correlation and t-statistic was used to estimate the quality of the messages: $\mathbf{Q}=-92.33(\operatorname{Var}($ azimuth $))+0.33(\operatorname{Var}($ pitch $))$.

A level of 80 percent pruning was simulated. For each message period, only the messages with the 5 lowest values of Q were retained. When one of the top 5 messages was present among the pruned messages a value of 1 was given, otherwise, 0 . Twenty independent runs were conducted.

The resulting matrixes were summed together and the entries were divided by 20. This gives the proportion of times that one of the five highest quality messages was present at a given quality level (Figure 3-9, 3-10). If \mathbf{Q} forecast error well, the proportions for zero through five of Figures 3-9 and 3-10 would be 1.0, and the proportions from six to twenty five would be 0.0 .

The proportions for the five highest quality messages present in the pruned messages are less than one, indicating that lower quality messages would be present in the pruned messages. This shows that Q does not

PROPORTION OF TIMES THAT 5 BEST MESSAGES

 ARE PRESENT AT AN ESTIMATED QUALTY LEVEL

Figure 3-9 Density plot of the proportion of times that the 5 best messages are present at an estimated quality.
estimate the error well and suggest that use of the estimated launch parameter covariance matrix is not a good decision rule for message pruning.

The proportion of high quality messages that are present is not high or constant, as indicated in Figures 3-9 and Figure 3-10. This indicates that using the launch covariance matrix to estimate quality does not significantly improve the chance of identifying a high quality message. In many cases, it is detrimental. From scan 20 to scan 35 , corresponding to time 46 to 76 , the estimated quality is worse than if messages are pruned randomly. This is similarly reflected in the results of the rank correlation test (Table XI).

In the cases tested, the launch parameter covariance or the ECI covariance did not well represent the observed radial error. This makes it difficult to constantly forecast radial error or use this information to make good decisions in message pruning.

Figure 3-10 Contour plot of the proportion of 5 best messages are present at a quality level

IV. AZIMUTH AND ELEVATION VARIANCE

A. AZIMUTH AND ELEVATION

The error generated in the tracking algorithm can be localized to two general causes: 1. template mis-matching, 2. variance in the azimuth and elevation. By reducing the variance in the azimuth and elevation measure one would expect the radial error and the variance in the radial error to be reduced.

Additionally, by reducing the azimuth and elevation error, the amount of noise in the system might be reduced to the point where it would be able to forecast the error from the estimated ECI covariance matrix.

The variance of the sensor azimuth and elevation was changed from a value we will call \mathbf{A} to .33 A and .16 A . The tracking algorithm was then run using the constellation of 25 sensors observing a single booster over the time from 0 to 100 seconds.

Spearman's Rank Correlation Test was used to test the hypothesis of correlation between observed radial error and the estimated total variance. The analysis was similar in design to that conducted on previous runs using the azimuth and elevation variance of \mathbf{A}. The regression model was used to find the estimates of the coefficients that best forecast the error.

For both the experiment using the variance set at .33A and .16A, it was not possible to reject the Null Hypothesis (Table VIII, IX). It must be noted
that at certain times (after time 80) the algorithm failed to report a position. This may be caused by the information matrix becoming singular, making it impossible to invert. This prohlem was more pronounced when the smaller variance value were used.

B. MEAN RADIAL ERROR

Reducing the variance in the azimuth and elevation, all other factors being the same, should reduce the tracking system error. This would result in smaller radial error of the tracking system and may have implication in choosing specification for sensor performance.

The mean radial error and standard deviation were calculated for the three cases: variance in the azimuth and elevation set at $A, .33 A$, and $.16 A$. All three cases used 25 sensors observing a single booster. The 95 percent confidence interval for each time period was then calculated and plotted (Figure 4-9).

The graphical results show that in most cases there is a significant difference in the mean radial error at different levels of azimuth and elevation variance. Additionally, the

Table IX CORRELATION OF RADIAL ERROR TO ESTTMATED VARIANCE, AZIMUTH AND ELEVATION VARIANCE $=.33 \mathrm{~A}$, $\beta=180,-47,-5668,-4036,-136580,-347470$

TIETS	r_{1}	t-stat	d.f.
6	0.18154	0.88534	22
8	0.18692	0.91254	23
10	-0.06692	-0.32167	23
12	0.31692	1.60252	23
14	-0.12385	-0.59855	23
16	-0.21692	-1.06570	23
18	-0.08308	-0.39981	23
20	0.20000	0.97895	23
22	-0.16692	-0.81193	23
24	0.24769	1.22610	23
26	0.16615	0.80808	23
28	-0.00462	-0.02214	23
30	-0.02769	-0.13286	23
32	0.37769	1.95625	23
34	0.26692	1.32831	23
36	0.04154	0.19938	23
38	-0.06462	-0.31053	23
40	0.05692	0.27344	23
42	-0.20385	-0.99858	23
44	0.01231	0.05903	23
46	0.10077	0.48574	23
48	0.26385	1.31185	23
50	-0.18769	-0.91643	23
52	-0.11231	-0.54204	23
54	0.02308	0.11070	23
56	-0.17231	-0.83891	23
58	-0.21308	-1.04590	23
60	0.01000	0.04796	23
62	0.01769	0.08486	23
64	0.29231	1.46588	22
66	0.20615	1.01038	22
68	0.27923	1.39462	22
70	0.05385	0.25861	22
72	0.21846	1.07364	22
74	0.19846	0.97110	22
76	0.28538	1.42804	22
78	0.24000	1.18565	22
80	0.73231	5.15736	18
82	0.86923	8.43169	16
84	model	failure	--
86	model	failure	--
88	model	failure	--
90	model	failure	.-
92	model	failure	-
94	model	failure	-
96	0.85769	8.00008	13
98	0.41077	2.16068	18
100	model	failure	.-

Table X CORRELATION OF RADIAL ERROR TO ESTIMATE D VARIANCE, AZIMUTH AND ELEVATION VARIANCE $=.16$ A,
$\beta=-193,110,-3231,-2970,179640,-643690$
I. 13 t. t-stat d.E.

6	-0.04769	-0.22898	23
8	-0.08692	-0.41845	23
10	0.06154	0.29569	23
12	0.25385	1.25863	23
14	0.46615	2.52694	23
16	-0.06615	-0.31796	23
18	-0.09000	-0.43338	23
20	0.18000	0.87758	23
22	0.13154	0.63637	23
24	0.36077	1.85512	23
26	0.47846	2.61314	23
28	0.06000	0.28827	23
30	-0.18846	-0.92032	23
32	0.07462	0.35884	23
34	0.28692	1.43643	23
36	0.45692	2.46353	23
38	0.20385	0.99858	22
40	0.18615	0.90864	22
42	-0.27385	-1.36552	22
44	0.06769	0.32539	22
46	0.28385	1.41967	22
48	0.30923	1.55945	22
50	0.21615	1.06174	22
52	0.24538	1.21394	22
54	0.26154	1.29953	22
56	0.64846	4.08529	19
58	0.55846	3.22868	18
60	0.74231	5.31294	15
62	0.86538	8.28212	12
64	model	failure	-.
66	model	failure	--
68	model	failure	--
70	model	failure	--
72	model	failure	--
74	model	failure	--
76	model	failure	--
78	model	failure	--
80	model	failure	--
82	model	failure	--
84	model	failure	--
86	model	failure	--
88	model	failure	--
90	model	failure	--
92	model	failure	--
94	model	failure	--
96	model	failure	--
98	model	failure	--
100	model	failure	--

variance in the observed radial error increases with the mean radial error. Note that if data was not available (failure to report a position) the error was reported as a mean of zero and a standard deviation of zero.

In practical terms, the more accurately a measurement of azimuth and elevation can be made, the smaller the radial error. The population of messages that result from a constellation of sensor having more accurate measurements will have messages of less variance and of more consistent quality. In this situation, random pruning will be more effective: the overall message quality is higher, and at any given pruning level, the chances are that the messages will have similar error.

Figure 4-9 95 percent confidence interval for radial error at $\operatorname{Var}=A$, 0.33 A and 0.16 A .

V. CONCLUSIONS AND RECOMMENDATIONS

The Template Based Tracking Algorithm is capable of estimating the position of ballistic bodies or boosters with just a single optical sensor. An individual sensor, if not obscured by the earth, will initiate and track a thrusting body with a remarkable degree of accuracy.

However, the system in which the sensor is deployed will require numerous sensors in a constellation orbiting the earth. Any launch of a booster or thrusting body will be viewed by a number of sensors, producing a population of launch parameter messages of varying degrees of quality.

The measure of quality of measurement was taken to be the radial error, or the distance from the estimated position to the real position. The estimator of message quality used was either the total estimated variance calculated from the variance of the sum of ECI position or the total variance calculated when using the coefficients estimated by using least square regression for both the ECI covariance matrix and the launch parameter variance.

The correlation between the observed error and the estimator of message quality was tested using Spearman's Rank Correlation Test. It was hypothesized that if numerous messages are generated regarding a booster, messages with the smallest estimated total variance will have the best quality launch parameter information (smallest radial error).

Spearman's Rank Correlation Test was used to test the hypothesis that radial error and estimated total variance were positively correlated. In most every case tested, the Null hypothesis could not be rejected.

Because the information in the ECI position covariance matrix and the launch parameter covariance matrix did not represent the observed radial error, a deterministic method to estimate error should be examined. If it can be determined what is the best relative viewing angle of a booster from a given sensor platform, an algorithm could be generated that exploits this information.

With such system, the launch parameters state vector from those sensor platforms that were determined to have the smallest error radial would be allowed to flood the constellation. Information from sensor platforms that were in a poor position to generate booster tracks would not be transmitted. If practical, this method could reduce the queuing problem by allowing only information of high quality (determined by relative viewing angle of the booster from a given sensor) to be transmitted and flooded through the constellation.

There exists a problem in the algorithm during the time period from approximately 20 to 40 seconds. This failing of the tracking algorithm to successfully estimate the quality of a message could be the result of several things. After discussion with Nelson Rasmussen, it was noted that the a priori information derived from the templates might not model that portion of the flight envelope. This would cause template mis-match and result in a degraded estimate of the position. A final point might be that the time increment for
the templates is too coarse. Thus the cubic splines would not represent the changes in position, velocity and acceleration adequately.

The templates have time increments of 10 seconds and a precision of 2 decimal places. The actual flight data of the boosters has 3 decimal places of precision. Because the acceleration, altitude and downrange are so variable during the initial phase of flight, it may be possible that the cubic splines generated from the templates are not accurately modeling the boosters trajectory. It is proposed that the templates be modeled in time increments of 2 seconds during the early phase of flight and that the precision be at least 3 decimal places. This alone might improve the template fit, resulting in better estimation of the launch parameters and a corresponding reduction in radial error.

The Template Based Tracking Algorithm operates very well. Because the algorithm can converge quickly to a sharp answer, it is felt that the normally unimportant second order effects would become significant. The precision and resolution of the templates may contribute significantly to the observed error. Additionally, the use of a second order Taylor expansion to estimate \mathbf{Z} (azimuth and elevation measurement) could greatly improve the ability to forecast error.

The Template Based Tracking Algorithm procedure to solve for the launch parameters operates well. It has shown the ability to track thrusting bodies using a single optical sensor. However, at this time, there appears to be little relationship between either the ECI covariance matrix or the launch parameter
variance and the radial error. Additional testing is required to resolve the problem of the algorithm ability to track the body during the early time period associated with pitch-over, from approximately 20 to 50 seconds. Once this aspect of the tracking algorithm is adjusted, it may be possible to consistently forecast radial error. At the present, determining quality of error may be likened to a coin toss.

APPENDIX 1

PROGRAM TVAR
**木少

* This program reads in the real eci position, estimated * position and covariance matrix and calculates the expected * radial error, expected value of the observed total variance
* and the expected value of the estimated total variance at * each time interval (scan). It takes as input, 50 runs
* from a single sensor observing a booster.
* by Eric Bechhoefer, SMC 1089 NPS, Monterey Ca 93943

IMPLICIT NONE
t*

REAL*8 ESTPOS $(3,2500)$	lestimate position data
REAL*8 REALPOS $(3,2500)$!real position data
REAL*8 EDATA $(3,2500)$!estimate position data
REAL*8 RDATA $(3,2500)$!real position data
REAL*8 $\operatorname{COV}(3,3,2500)$! covariance data
REAL*8 $\operatorname{COVV}(3,100)$	
REAL*8 COVMTX $(3,3,2500)$	
REAL*8 ECOVMTX 3 3,3,2500)	!calculate covariance data
REAL*8 VAR 3 (100)	! observed variance data
REAL*8 $\operatorname{EVAR}(3,100)$!estimated variance data
REAL*8 EY1Y2 3 (100)	! for calculating covariance
REAL* $8 \mathrm{MEAN}(3,100)$!mean distance error
REAL*8 SUMSQ 3 (100)	!sum square error data
REAL*8 $\operatorname{SUM}(3,100)$!sum data of positional
	! error
REAL*8 TOTV (100)	!total observed variance
REAL*8 ETOTV(100)	!estimated total variance
real*8 DIST(100)	! radial error
INTEGER I,J,K,L,M,N	! counters
INTEGER START	!start of an array
INTEGER MARKER	! marker
INTEGER COUNT	!a counter
INTEGER TIME	!sim time
INTEGER DTIME	!scan rate
PARAMETER (DTIME - 2)	
INTEGER SLICES	! number of observations

OPEN (20,FILE = 'EST_ECI_POS ', STATUS = 'OLD')
OPEN (25,FILE = 'REAI_ECĪ_POS ', STATUS - 'OLD')
OPEN (50,FILE - 'ECI_COV ${ }^{-} \quad$ ', STATUS - 'OLD')

```
OPEN (UNIT = 99, FILE = 'VARS ', STATUS = 'NEW')
N=0
print*,'input count, which is the number or repetitions'
read*,count
print*,'input slices ='
read*, slices
print*,'input start time '
read*,time
TIME = 6 + time
MARKER = COUNT * SLICES
DO 10 I = 1, SLICES
    TOTV(I) = 0.0
    ETOTV(I) = 0.0
    dist(i)=0.0
    DO 5 J=1,3
        SUM(J,I) = 0.0
        SUMSQ(J,I) = 0.0
        MEAN (J,I) = 0.0
        EY1Y2(J,I) = 0.0
        COVV(J,I) = 0.0
        EVAR(J,I) = 0.0
            DO 3 M=1,3
                ECOVMTX (M,J,I+N) = 0.0
                ECOVMTX(M,J,I+N+1) =0.0
                ECOVMTX(M,J,I+N+2) = 0.0
            CONTINUE
            N = N + 2
        CONTINUE
    CONTINUE
    DO 14 I = 1,MARKER
        DO 13 J = 1,3
            RDATA(J,I) = 0.0
            EDATA(J,I) = 0.0
            DO 12 K = 1,3
                COV(J,K,I)=0.0
            CONTINUE
        CONTINUE
        CONTINUE
            CALL FIX(COUNT,SLICES,RDATA,EDATA,COV)
**finds missing data points in the input files**************
    PRINT*,' COMPLETED READING IN ESTPOS, REALPOS, AND COV'
**reorder the data **********************************************
    DO 40 I = 1,SLICES
```

```
            DO 35 J = 0, COUNT-1
            L=(COUNT * I)- (COUNT - 1) + J
            DO 30 K = 1,3
                        ESTPOS (K,L)=EDATA(K, (I+(J*SLICES)))
                        REALPOS (K,L)=RDATA(K,(I+(J*SLICES)))
                        ESTPOS (K,L) = ESTPOS (K,L) - REALPOS (K,L)
                        DO 25 M = 1,3
                        COVMTX(K,M,L) = COV (K,M,(I+(J*SLICES)))
                        CONTINUE
                    CONTINUE
        CONTINUE
    CONTINUE
DO \(70 \mathrm{I}=0\), SLICES -1
**calculate radial error and mean distance error************
**and expected value of the estimated variance****************
            DO 60 J = 1, COUNT
                    L - J + COUNT * I
                    DO 50 K=1,3
                        DIST(1+1)= ESTPOS(k,1)**2 + DIST(I+1)
                    SUM(K,I+1)=\operatorname{ESTPOS}(K,L) + SUM(K,I+1)
                    DO 45 M = 1,3
                IF (K .EQ. M)THEN
                    ECOVMTX(K,M,I+1) - COVMTX(K,M,L)**2 +
                                    + ECOVMTX(K,M,I+1)
                ELSE
                    ECOVMTX (K,M,I+1) = (COVMTX (K,M,L)) +
                        + ECOVNTX(K,M,I+1)
                ENDIF
    45 CONTINUE
    50 CONTINUE
    60 CONTINUE
    70 CONTINUE
**find mean radial error*****************************************
    DO 90 I = 1, SLICES
        DIST(I) = SQRT(DIST(I) / REAL(COUNT))
        DO 80 J = 1, 3
                        MEAN(J,I) = SUM(J,I) / REAL(COUNT)
                        DO 75 K = 1,3
                        ECOVMTX(J,K,I) = ECOVMTX (J,K,I)/
                        REAL(COUNT)
    75 CONTINUE
    80 CONTINUE
    90 CONTINUE
    DO 120 I = 0, SLICES - 1
        DO 110 J = 1, COUNT
```

```
            L=N+50*I
            DO 100 K=1,3
                SUMSQ(K,I+1) = (ESTPOS(K,L)-MEAN(K,I+1))**2
                                    + SUMSQ(K,I+1)
                    CONTINUE
                    contINUE
CONTINUE
**find the observed variance*************************************
            DO 140 I = 1, SLICES
                DO 130 J = 1,3
                    VAR(J,I) = SUMSQ(J,I) / REAL(COUNT - 1)
    130 CONTINUE
    140 CONTINUE
**find the observed covariance*********************************
            DO 160 I = 0, SLICES - 1
            DO 150 J = 1, COUNT
                    L=J+50*I
                        EY1Y2(1,1+I) = (ESTPOS(1,L)-MEAN(1,I+1)) *
            + (ESTPOS (2,L)-MEAN (2,I+1)) +
                                    EY1Y2(1,1+I)
                    EY1Y2(2,1+I) = (ESTPOS (2,L)-MEAN(2,I+1)) *
                        (ESTPOS (2,L)-MEAN (2,I+1)) +
                                    EY1Y2(2,1+I)
                    EY1Y2(3,1+I) = (ESTPOS(1,L)-MEAN(3,I+1)) *
                                    (ESTPOS(2,L)-MEAN(2,I+1)) +
                                    EY1Y2(3,1+I)
    150 CONTINUE
    160 CONTINUE
    DO 180 I = 1, SLICES
            DO 170 J = 1, 3
                    COVV(J,I) = EY1Y2(J,I) / REAL(COUNT)
    170 CONTINUE
    180 CONTINUE
** FIND TOTAL VARIANCE AS THE SUM OF ECI X,Y,Z, V(U) = ***
** V(X)+V(Y)+V(Z) ***********************************************
            DO 190 I = 1, SLICES
            TOTV(I) = VAR(1,I) + VAR(2,I) + VAR(3,I) +
            + 
    + ECOVMTX (3,3,I) + 2*(ECOVMTX (1,2,I) +
    + ECOVMTX(1,3,I) + ECOVMTX (2,3,I))
            WRITE (99,77) TOTV(I), ETOTV(I),dist(i)
                    PRINT *, TOTV(I), ETOTV(I)
                    77 FORMAT (F13.4,4X, F13.4,4x,f13.4)
    190 CONTINUE
        STOP
        END
```


APPENDIX 2

PROGRAM CROSS

* THIS PROGRAM WILL READ IN THE ESTIMATED POSITION, REAL
* POSITION AND THE VARIANCE COVARIANCE MATRIX FROM THE * SIMULATOR. IT WILL THEN FIND MISSING DATA, TAKE THE ORDERED * DATA AND CALCULATE THE RADIAL ERROR AND THE TOTAL VARIANCE, * USE SPEARMANS RAND CORRELATION test, calculate the * t- statistic associated with that correlation. by Eric R * Bechhoefer, SMC 1089, NPS Monterey, Ca 93943
*

IMPLICIT NONE

REAL EDATA $(3,2500)$! estimated position data
REAL RDATA $(3,2500)$! real position data
REAL $\operatorname{COV}(3,3,2500)$! variance data
REAL EVAR(100) ! total variance from
! variance matrix
REAL T_STAT ! t-statistic
REAL CORR ! correlation, r_{s}
REAL SUM, SUMSQ, MEAN, STD ! variable for calculating
! mean radial error and std.
REAL ORDER_X(100) ! rank order of radial error
REAL ORDER_Y(100) ! rank order of est. var
REAL DIST($\overline{1} 00$) ! radial error
REAL B1, B2, B3, B4, B5, B6 ! coefficients
INTEGER I,J,K,L,m,n,MM,MRK ! counters
INTEGER STIME ! simulation time
INTEGER DTIME ! scan rate
INTEGER START ! start of array
INTEGER MARKER
INTEGER COUNT ! number of sensor
PARAMETER (COUNT = 25)
INTEGER SPACING ! number of time periods
INTEGER SLICES ! number of time periods
INTEGER BINO $(48,25) \quad$! registers a 1 if a top 5
! quality message is present
character*8 a,b,c,d
character*50 comment

PRINT*,'INPUT THE ESTPOS, REALPOS AND COV MATRIX NAME'
READ*, A, B, C
PRINT*,' WHAT IS THE NAME OF THE OUTPUT'
READ*, D
PRINT*,'ADD ANY COMMENTS?'

READ*, COMMENT

```
        OPEN (20,FILE = A , STATUS = 'OLD')
OPEN (25,FILE = B , STATUS = 'OLD')
OPEN (50,FILE = C , STATUS - 'OLD')
OPEN (60,FILE = D , STATUS - 'NEW')
OPEN (71,FILE = 'DIST',STATUS = 'NEW')
SLICES - 48
STIME = 0
SPACING = SLICES
PRINT*,'READ IN B1,B2,B3,B4,B5 AND B6'
READ*,B1,B2,B3,54, B5,B6
PRINT*,'IF LAUGH COVARIANCE FILE, M = 1, ELSE ZERO'
READ*,MM
WRITE(60,*) COMMENT
WRITE(60,*)'COEFFICIENTS OF B1,B2,B3,B4,B5,B6 ARE'
WRITE(60,*)'B1= ',B1,'B2=',B2
WRITE(60,*)'B3= ',B3,'B4= ',B4
WRITE(60,*)'B5= ',B5,'B6- ',B6
62 FORMAT(1X,6F8.1)
*** INITIALIZE VARIABLES********************************************
START = 1
STIME = STIME + 6
DTIME - 2
T_STAT = 0.0
MARKER = COUNT * SLICES
DO 5 I = 1,SLICES
            DO 3 J - 1,COUNT
                    BINO(I,J) = 0
    3 CONTINUE
    5 CONTINUE
    DO 10 I = 1, COUNT
            ORDER_X(I) = REAL(I)
            ORDER_Y(I) = REAL(I)
            DIST(I) = 0.0
            EVAR(I) = 0.0
10 CONTINUE
    DO 14 I = 1,MARKER
        DO 13 J = 1,3
            RDATA(J,I) = 0.0
            EDATA(J,I) = 0.0
            DO 12 K = 1,3
                COV(J,K,I) = 0.0
            CONTINUE
    13 CONTINUE
    14 CONTINUE
***** FIXL find missing data ******************************
```


CALL FIX1(COUNT, SLICES, RDATA, EDATA, COV)

PRINT*,' COMPLETED READING IN ESTPOS, REALPOS, AND COV' ***** reorder the radial error and total variance data*** DO 60 I $=1$,SPACING

DO $50 \mathrm{~J}=0$, COUNT-1
L - I + J*SLICES
DO $40 \mathrm{~K}=1,3$
$\operatorname{DIST}(\mathrm{J}+1)=\operatorname{DIST}(\mathrm{J}+1)+(\operatorname{EDATA}(\mathrm{K}, \mathrm{L})$
$+\quad-\operatorname{RDATA}(\mathrm{K}, \mathrm{L})) * * 2$
40
continue
IF (MM .NE. 1)THEN
$\operatorname{EVAR}(\mathrm{J}+1)=\mathrm{B} 1 * \operatorname{COV}(1,1, \mathrm{~L}) * * 2+\mathrm{B} 2 * \operatorname{COV}(2,2, \mathrm{~L}) * * 2$ $+\mathrm{B} 3 * \operatorname{COV}(3,3, \mathrm{~L}) * * 2+\mathrm{B} 4(1) * \operatorname{COV}(1,2, \mathrm{~L})+$ $\mathrm{B} 5(1) * \operatorname{COV}(1,3, \mathrm{~L})+\mathrm{B} 6(1) * \operatorname{COV}(2,3, \mathrm{~L})$
ELSE
$\operatorname{EVAR}(\mathrm{J}+1)=\mathrm{B} 1 * \operatorname{COV}(1,1, \mathrm{~L}) * * 2+\mathrm{B} 2 * \operatorname{COV}(2,2, \mathrm{~L}) * * 2$
$+\quad+\mathrm{B} 3 * \operatorname{COV}(3,3, \mathrm{~L}) * * 2+\mathrm{B} 4(1) * \operatorname{COV}(1,2, \mathrm{~L}) * * 2+$
$+\quad \mathrm{B} 5(1) * \operatorname{COV}(1,3, \mathrm{~L}) * * 2+\operatorname{Cov}(2,3, \mathrm{~L}) * * 2$
ENDIF
$\operatorname{DIST}(\mathrm{J}+1)=\operatorname{SQRT}(\operatorname{DIST}(\mathrm{J}+1))$ CONTINUE

MRK = 0
SUM $=0.0$
SUMSQ $=0.0$
MEAN $=0.0$
**** missing data is identified, reduces d.f. ***************
DO $56 \mathrm{~J}=1$, COUNT
IF(DIST(J) .lt. 17.0)THEN

```
MRK = MRK + 1
DIST(MRK) = DIST(J)
EVAR(MRK) = EVAR(J)
SUM = SUM + DIST(J)
```

ENDIF
56 CONTINUE
**** calculate mean radial error and std. $* ~$

```
IF (MRK .GT. 0) MEAN = SUM/REAL(MRK)
DO 57 J = 1,MRK
    SUMSQ = SUMSQ + (DIST(J) - MEAN)**2
```

57 CONTINUE
STD $=0.0$
IF (MRK .GT. 2) THEN
STD - SQRT(SUMSQ/REAL(MRK - 1))

```
            ENDIF
            PRINT*,'MEAN = ',MEAN, ' STD = ',STD,' MRK = ',MRK
                WRITE(71,*)MEAN,STD,MRK
            CALL SORT(DIST,ORDER_Y,START,MRK)
            CALL SORT(EVAR,ORDER_X,START,MRK)
**** identifies where the top five quality messages are ***
**** present in rank order of the estimated quality ********
        DO 54 J = 1,COUNT
            DO 53 M = 1,5
                IF(INT(ORDER_Y(J)).EQ.INT(ORDER_X(M)))THEN
                    IF( BINO(I,J) .NE. 1)THEN
                        BINO(I,J) = 1
                ENDIF
                ENDIF
            CONTINUE
        CONTINUE
**** calculate the correlation coefficient ********************
        IF ( MRK .GT. 3)THEN
        CALL SPEAR(ORDER_X,ORDER_Y,CORR,T_STAT,START,COUNT)
        PRINT*,STIME,CORR,T_STAT ,MRK
        ENDIF
        WRITE (60,333)STIME,CORR,T_STAT,MRK
        FORMAT(3X,I4, 5X, F8.5, 2X, F10.5, 2X,I5)
        STIME = STIME + DTIME
        DO 55 K = 1,COUNT
            EVAR(K) = 0.0
            DIST(K) = 0.0
            ORDER_X(K) = REAL(K)
            ORDER_Y(K) = REAL(K)
    CONTINUE
    55 CONTIN
        DO 70 I = 1,SLICES
        WRITE(60,61)(BINO(I,J) ,J=1,25)
        FORMAT(1X, 25I2)
        CONTINUE
```

 STOP
 END

APPENDIX 3

SUBROUTINE FIX(COUNT, SLICES, DATA, EDATA, COVMTX)

* This subroutine opens a real position file, and finds the * position in the input file where the simulator did not * output a position. It then writes in the missing position. * For the estimated position and covariance matrix, it writes * data in for the missing data from the pervious simulation * increment. Since only a few points failed to be written, * this will not bias the results. * by Eric R. Bechhoefer, SMC 1089, NPS MONTEREY, CA 93943

IMPLICIT NONE
 REAL*8 DATA $(3,2500)$!real eci positions, output REAL*8 EDATA(3,2500)!estimated eci positions, output REAL*8 COVMTX $(3,3,2500)$!estimated eci covariance matrix, !output
REAL*8 COUNT ! the number of samples, input REAL*8 SLICES ! the number of time increments,
!input

REAL*8 HOLD(3) !temporary holding variable
REAL*8 MHOLD (3,3) !temporary holding variable for
!covariance matrix
INTEGER PLACE(100) !array that hold the position of error
INTEGER ERROR ! counter for error
INTEGER PTR !pointer
INTEGER MRK ! counter
INTEGER I, J, K,L,N,M ! counter

* Initialized the variables

PTR $=0$
MRK $=1$
ERROR = 0
DO $15 \mathrm{I}=1,100$
PLACE(I) $=0$
CONTINUE
DO $17 \mathrm{I}=1,3$
$\operatorname{HOLD}(I)=0.0$
DO $16 \mathrm{~J}=1,3$
MHOLD $(I, J)=0.0$
CONTINUE
CONTINUE

```
* read in the first simulation run real positions ************
    DO 20 I = 1,SLICES
        READ(25,*) DATA(1, I),DATA(2,I),DATA(3,I)
        PTR = PTR + 1
    20
        CONTINUE
* test these positions against the remaining run positions,
* note the position error, and place the correct point in
    30 CONTINUE
    IF( PTR .LT. SLICES*COUNT) THEN
                PTR = PTR + 1
            IF(MRK .GT. SLICES) MRK = 1
            READ(25,*)DATA(1, PTR), DATA(2, PTR), DATA(3,PTR)
            IF(DATA(1,PTR) .NE. DATA(1,MRK))THEN
                    DO 40 J = 1,3
                    HOLD(J) = DATA(J,PTR)
                    DATA(J,PTR) = DATA(J,MRK)
                    DATA(J,PTR+1) = HOLD(J)
    40 CONTINUE
            ERROR = ERROR + 1
            PLACE(ERROR) = PTR
            MRK = MRK + 1
            PTR = PTR + 1
            PRINT*,'ERROR = ',ERROR,'PTR = ',PTR
            ENDIF
            MRK = MRK + 1
            GOTO }3
        ENDIF
* read in the estimated position data and place in missing data
    PTR = 0
    MRK = 1
    50 CONTINUE
    IF (PTR .LT. SLICES*COUNT) THEN
        PTR = PTR + 1
        READ(20,*)EDATA(1, PTR), EDATA(2, PTR), EDATA(3,PTR)
        IF(MRK .LE. ERROR)THEN
            IF(PTR . EQ. PLACE(MRK)) THEN
                PRINT*,'FOUND ERROR HERE, PTR = ',PTR
                DO 60 J = 1,3
                    HOLD(J) = EDATA(J,PTR)
                EDATA(J,PTR) = EDATA(J,PTR - SLICES)
                EDATA(J,PTR + 1) = HOLD(J)
            CONTINUE
                PTR = PTR + 1
```

```
                        MRK = MRK + 1
                ENDIF
            ENDIF
            GOTO 50
    ENDIF
    PTR = 0
    MRK = 1
* read in and fix the covariance matrix*
    70 CONTINUE
    IF (PTR .LT. SLICES*COUNT) THEN
        PTR = PTR + 1
        READ(50,*)COVMTX(1, 1,PTR),COVMTX(1, 2,PTR),COVMTX(1, 3, PTR)
READ (50,*) COVMTX (2, 1, PTR), COVMTX (2, 2, PTR), COVMTX (2 , 3,PTR)
READ (50,*) COVMTX (3,1, PTR) , COVMTX (3, 2, PTR), COVMTX(3, 3, PTR)
            COVMTX(2,1,PTR) = COVMTX(1,2,PTR)
            COVMTX( 3,1,PTR) = COVMTX(1, 3,PTR)
    COVMTXX(3,2,PTR) = COVMTX(2,3,PTR)
    IF(MRK .LE. ERROR)THEN
        IF(PTR .EQ. PLACE(MRK)) THEN
            PRINT*,'FOUND ERROR HERE, PTR = ',PTR
            DO 90 J = 1,3
                DO 80 K = 1,3
                    MHOLD(J,K) = COVMTX(J,K,PTR)
                    COVMTX(J,K,PTR) = COVMTX(J,K,PTR -
                                    SLICES)
                                    COVMTX(J,K,PTR + 1) = MHOLD(J,K)
                    CONTINUE
            CONTINUE
            PTR = PTR + 1
            MRK = MRK + 1
            ENDIF
        ENDIF
        GOTO }7
    ENDIF
    RETURN
    END
```


APPENDIX 4

SUBROUTINE FIXI(COUNT,SLICES,DATA, EDATA, COVMTX) ***) * This subroutine is similar to FIX, however, it is designed * to run with the CROSS program. It identifies error by using * a error file, which contains the real eci positions at every * scan period. Values that can be identified are used to fill * in for the missing data.

* by Eric R. Bechhoefer, SMC 1089, NPS Monterey, Ca 93943 *

IMPLICIT NONE
 REAL DATA $(3,2500) \quad$!real eci position REAL EDATA $(3,2500)$!estimated eci position REAL COVMTX $(3,3,2500)$!estimated eci covariance matrix INTEGER COUNT \quad the number of sensors INTEGER SLICES ! the number of time periods

REAL D $(3,2500)$
REAL E $(3,2500)$
REAL C(3, 3, 2500)
REAL X $(3,48)$
INTEGER PLACE(500) !array containing error position ! in the data files
INTEGER ERROR !how many errors were found
INTEGER PTR !a pointer
INTEGER MRK,HK !markers
INTEGER I,J,K,L,N,M ! counters
******begin code***)
OPEN (66,FILE = 'ERROR',STATUS = 'old')
PTR $=1$
MRK = 0
ERROR $=0$
DO $15 \mathrm{I}=1,100$
PLACE (I) $=0$
15 CONTINUE
read in the booster position for flight time**************
DO $20 \mathrm{I}=1$,SLICES

$$
\operatorname{READ}(66, *) x(1, I), x(2, I), x(3, I)
$$

20 CONTINUE
MRK = 1
read in the raw, eci real position data files************** $30 \operatorname{READ}(25, *, \operatorname{END}=33)(\mathrm{D}(\mathrm{J}, \mathrm{PTR}), \mathrm{J}=1,3)$

```
        PTR = PTR + 1
    GOTO }3
    33 CONTINUE
        PTR = 1
        HK = 0
    40 IF( hk .LT. SLICES*COUNT) THEN
        HK = HK + 1
**check for deviation of data file position from key, note**
**position in data file of errors*******************************
    IF(MRK .GT. SLICES) MRK = 1
    IF(D(1,PTR) .EQ. X(1,MRK)) THEN
        DATA(1,HK) = D(1,PTR)
        DATA(2,HK) = D(2,PTR)
        DATA(3,HK) = D(3,PTR)
        PTR = PTR + 1
    ELSE !put in value that is easy
        DATA(1,HK) = 10.0 !to identify as error
        DATA(2,HK) = 10.0
        DATA(3,HK) = 10.0
        ERROR = ERROR + 1
        PLACE(ERROR) = HK
    ENDIF
    MRK = MRK+1
    GOTO 40
ENDIF
**finished reading in eci real position file, identified
**errors*****************************************************
    PTR = 1
    MRK = 1
    PRINT*,'FINISHED READING IN REAL DATA'
        READ(20,*, END = 55)(E(J, PTR) ,J=1,3)
            PTR = PTR + 1
            GOTO 50
**finished reading in estimated position file****************
    55 CONTINUE
        PTR = 0
            HK=0
            PRINT*,'READ IN ESTPOS',' ERROR - ',ERROR
**reorder data to include missing data************************
    60 IF(PTR .LT. SLICES*COUNT)THEN
            PTR = PTR + 1
            IF(MRK .LE. ERROR)THEN
                IF(PTR .EQ. PLACE(MRK)) THEN
                    PRINT*,'FOUND ERROR HERE, PTR = ',PTR
                    DO 65 J = 1,3
```

EDATA(J, PTR) $=0.0$

CONTINUE

$\mathrm{MRK}=\mathrm{MRK}+1$
ELSE
$\mathrm{HK}=\mathrm{HK}+1$
$\operatorname{EDATA}(1, P T R)=E(1, H K)$
$\operatorname{EDATA}(2, P T R)=E(2, H K)$
$\operatorname{EDATA}(3, \mathrm{PTR})=E(3, H K)$ ENDIF
ENDIF
GOTO 60
ENDIF
finished reading in estimated position, start reading** **in the covariance matrix data************************************) PTR = 1
MRK = 1
$\mathrm{HK}=0$
$70 \operatorname{READ}(50, *, \operatorname{END}=75)(C(1, \mathrm{~J}, \mathrm{PTR}), \mathrm{J}=1,3)$
$\operatorname{READ}(50, *)(C(2, J, P T R), J=1,3)$
$\operatorname{READ}(50, *, \operatorname{END}=75)(\mathrm{C}(3, \mathrm{~J}, \mathrm{PTR}), \mathrm{J}=1,3)$
PTR $=\mathrm{PTR}+1$
GOTO 70
75 CONTINUE
PRINT*, 'READ IN THE COV MTX'
PTR = 0
80 IF (PTR .LT. SLICES*COUNT) THEN
PTR $=$ PTR +1
IF (MRK . LE. ERROR) THEN
IF (PTR .EQ. PLACE (MRK)) THEN
DO $90 \mathrm{~J}=1,3$
DO $85 \mathrm{~K}=1,3$
COVMTX $(J, K, P T R)=1.0$
CONTINUE
CONTINUE
MRK = MRK + 1 ELSE
$H K=H K+1$
DO $110 \mathrm{~J}=1,3$
DO $100 \mathrm{~K}=1,3$
$\operatorname{COVMTX}(J, K, P T R)=C(J, K, H K)$
CONTINUE
CONTINUE
ENDIF
ENDIF
GOTO 80
ENDIF
RETURN
END

APPENDIX 5

SUBROUTINE SORT (X, ORDER, START, COUNT)

* This subroutine takes an array, bubble sorts it in ascending * order and returns an array ORDER that holds that order
* By Eric R. Bechhoefer, SMC 1089, NPS Monterey, Ca 93943 IMPLICIT NONE

REAL*8 X(100) ! the data that needs to be
!ordered, input

REAL*8 ORDER(100) ! the order of the data, output INTEGER START INTEGER COUNT ! the number of time increments

REAL*8 HOLD !temporary holding

REAL*8 HOLD_A ! temporary holding for order INTEGER FIRST ! start sorting at this part of ! the array
INTEGER LAST !sort the array to this point
INTEGER J
LOGICAL SORTED !if sorted then true

```
* START OF CODE *****************************************************
    SORTED = .FALSE.
    FIRST = START
    LAST = START + COUNT - 2
    5 IF(.NOT. SORTED) THEN
            SORTED = .TRUE.
            DO 10 J =FIRST, LAST
                    IF(X(J).GT.X(J+1)) THEN
                    HOLD = X(J)
                    HOLD A = ORDER(J)
                    X(J) = X(J+1)
                    ORDER(J) = ORDER (J+1)
                    X(J+1) = HOLD
                        ORDER(J+1) = HOLD_A
                        SORTED = .FALSE.
                ENDIF
    10 CONTINUE
    LAST = LAST - 1
```

```
    GOTO }
ENDIF
RETURN
END
```


APPENDIX 6

SUBROUTINE SPEAR (X,Y,R_SUB_S,T_STAT, START, COUNT)

* This subroutine takes in two arrays that contain rank order, * and calculates the rank correlation coefficient and
* t-statistic associated with it. It assumes that there are
* rela ively few ties in the rank order.
* by E-ic R. Bechhoefer, SMC 1089 NPS, Monterey, Ca 93943
*

IMPLICIT NONE
*shared variables**)

DO 20 I - START, LAST
SUM_DSQAR = SUM_DSQAR + DSQAR (I) CONTINUE

* calculate the correlation coefficient *********************

$$
\begin{aligned}
\text { R_SUB_S }=1.0- & \left(6 * S U M _D S Q A R\right) / \\
+ & \text { REAL }(\text { COUNT } *(\text { COUNT } * * 2-1))
\end{aligned}
$$

$$
\text { IF (R_SUB_S .GT. .995) R_SUB_S }=.995
$$

RETURN
END

$$
\begin{aligned}
& \text { T_STAT = R_SUB_S * SQRT(REAL(COUNT - 2)) / } \\
& +\quad \text { SQRT (1 - R_SUB_S**2) }
\end{aligned}
$$

APPENDIX 7

PROGRAM MIX
 * This program takes an ECI position of a sensor platform and * generates 25 sensor position centered on this point, varied * by 2 degrees

* by Eric R. Bechhoefer, SMC 1089 Monterey, Ca 93943

IMPLICIT NONE

* local variables ***) REAL*8 RHO(2) ! array that holds the rho for position and velocity
REAL*8 PHE(2) ! phe for velocity and
! acceleration
REAL*8 THETA(2)
REAL*8 THETAD $(2,10)$! transformed data
REAL*8 PHED $(2,10)$! transformed phe
REAL*8 X(2),Y(2), $\mathrm{Z}(2)$! eci xyz for position and accel.
REAL*8 PI ! constant
PARAMETER (PI = 3.1459265359)
REAL*8 $\operatorname{COORD}(2,3,50)$! transformed eci coordinates
REAL*8 MKR
INTEGER PTR,I,J,K,M
OPEN(30, FILE = '/ POS DATA',STATUS = 'NEW')
* initialize variables ******************************

DO $10 \mathrm{I}=1,10$
DO $5 \mathrm{~J}=1,2$
$\operatorname{PHED}(J, I)=0.0$
$\operatorname{THETAD}(\mathrm{J}, \mathrm{I})=0.0$
CONTINUE
10 CONTINUE
DO $30 \mathrm{I}=1,50$
DO $20 \mathrm{~J}=1,3$
DO $15 \mathrm{~K}=1,2$
$\operatorname{COORD}(\mathrm{K}, \mathrm{J}, \mathrm{I})=0.0$
CONTINUE CONTINUE
CONTINUE

```
ENTER THE ECI COORDINATES X,Y,Z for position and
acceleration *
    X(1) =
    Y(1) =
```

```
    Z(1) =
    X(2) =
    Y(2) =
    Z(2) =
    MKR = 2.0 * PI / 180.0
* start the transformation ******************************
    DO 40M=1,2
        RHO(M)=SQRT(X(M)**2 + Y(M)**2 + Z(M)**2)
        PHE(M) = DACOS( Z(M)/RHO(M) )
        THETA(M) = DASIN (Y(M)/ (RHO(M) * DSIN(PHE(M))))
        PHED(M,1) = PHE(M) - 2*MKR
        PHED(M,2) = PHE(M) - MKR
        PHED(M,3) = PHE(M)
        PHED(M,4) = PHE(M) + MKR
        PHED(M,5) = PHE(M) + 2*MKR
        THETAD(M,1) = THETA(M) - 2*MKR
        THETAD(M, 2) = THETA(M) - MKR
        THETAD(M, 3) = THETA(M)
        THETAD(M,4) = THETA(M) + MKR
        THETAD(M,5) = THETA(M) + 2*MKR
    40 CONTINUE
    PTR = 1
    DO 70 I = 1,5
        DO 60 J = 1,5
        DO 55 M = 1,2
            COORD(M,1,PTR) = RHO(M) * DSIN(PHED(M,I))
                                    * DCOS(THETAD(M,J))
            COORD(M, 2,PTR) = RHO(M) * DSIN(PHED(M,I))
                        * DSIN(THETAD(M,I))
                COORD(M, 3,PTR) = RHO(M) * DCOS(PHED(M,I))
                PRINT*,(COORD(M,K,PTR), K= 1,3)
                WRITE(30,*)(COORD(K, PTR), K= 1,3)
        CONTINUE
        PTR - PTR + 1
            CONTINUE
        CONTINUE
        STOP
    END
```


LIST OF REFEDANCES

Chatterjee, S., and Price, B., Regression Analysis by Example, John Wiley \& Sons, New York, 1977.

Comparetto, G. M., and others, Algorithm Working Group 2 Memo, The MIIRE Corporation, 25 June 1991.

Kendall, M., and Gibbons, J. D., Rank Correlation Methods, p. 70, Oxford University Press, New York, 1990.

Mendenhall, W.,Wackerly, D. D., Scheaffer, R. L., Mathematical Statistics with Applications, pp. 715-719, PWS-KENT Publishing Company, Inc., 1989.

Rasmussen, N., Functional Specifications for the Strategic Defense System (SDS) Phase One System Simulator (Version 2.3) Tracking Algorithm, Martin Marietta Corporation, 16 June 1989.

Telephone conversation between Rasmussen, N, Martin Marietta Information System Group, (719) 372 2265, and the author, 10 December 1991.

Udall, H.G., and others, SDI Technology, Survivability and Software, U.S. Government Printing Office, Washington, D.C. May 1988.

BIBLIOGRAPEY

Burden, R. L., Faires, J. D., Reynolds, A. C., Numerical Analysis, Prindle, Weber \& Schmidt, 1981.

Comparetto, G. M., Communication Networking Within The Context of Shout-and-Shoot, The MITRE Corporation, 1991.

Lakoff, S., and York, H. F., A Shield in Space?, University of California Press, Ca., 1989.

Rasmussen, N., Template-Based Tracking Algorithm, Memo, Martin Marietta Corporation, 23 January 1991.

Schuldes, M., Minutes of Algorithm Working Group Meeting Number 1, Memo, NTBJPO, 30 January 1991.

INITIAL DISTRIBUTIOS LIST

1. Defense Technical Information Center Cameron Station
Alexandria, VA 22304-6145 2 22304-6145
2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002
3. Nelson Rasmussen 1
Martin Marietta Information Systems Group Simulation Systems
Mail Stop ONTF 3101P1
Falcon AFB, CO 80912-5000
4. Chris Hogg
Martin Marietta Information Systems Group Simulation Systems
Mail Stop ONTF 3101N1
Falcon AFB, CO 80912-5000
5. Technical Information Center 1
Martin Marietta Information Systems Group Simulation Systems
Mail Stop ONTF N8500
Falcon AFB, CO 80912-5000
6. Commander 1
Naval Space Command
Attn: Code N3
Dahlgren, VA 22448
7 United States Space Command 1
Attn: J3S
Peterson AFB, CO 80914
7. LT Eric R. Bechhoefer 2
2510 Virginia Ave N.M. Washington, D.C. 20037
