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ABSTRACT 
THRUPUT II is a linear programming 

model developed at the Naval Post- 
graduate School for the U.S. Air 

Force Studies and Analyses Agency (AF- 
SAA) to help improve the efficiency of the 
airlift mobility system. It determines the 
maximum on-time throughput of cargo 
and passengers that can be transported 
with a given aircraft fleet over a given net- 
work, subject to appropriate physical and 
policy constraints. THRUPUT II was used 
in the analysis provided by AFSAA to the 
C-17 Defense Acquisition Board in Novem- 
ber, 1995. This paper reviews the model's 
formulation, describes its use in the C-17 
analysis, and reports extensions that have 
been developed since the model's first ap- 
pearance. 

1 INTRODUCTION 
This paper is a status report on a multi- 

year research effort to apply optimization 
modeling technology to the analysis of stra- 
tegic airlift mobility. The purpose of the 
research is to help the U.S. Air Force im- 
prove logistical efficiency. Optimization is 
used to determine the maximum on-time 
throughput of cargo and passengers that 
can be transported with a given aircraft 
fleet over a given network, subject to ap- 
propriate physical and policy constraints. 
The model can be used to help answer 
questions about selecting airlift assets and 
about investing or divesting in airfield in- 
frastructure. 

The primary model discussed in this 
paper is called THRUPUT II, which was 
introduced in a Naval Postgraduate School 
(NPS) Masters thesis [Lim, 1994] and fur- 
ther developed in a Military Operations Re- 
search article [Morton, Rosenthal, and Lim, 
1996]. Since those earlier publications were 
written, THRUPUT II provided inputs to 
the C-17 Defense Acquisition Board deci- 
sion of November 1995. This experience 
and other subsequent developments are 
covered here. A new model is currently 
under joint development between NPS and 
the RAND Corporation [Melody et dl, 
1996]. The distinguishing features of this 
new model are discussed in the conclusion. 

The progenitors of THRUPUT II were 
the first THRUPUT, developed at the Air 
Force Studies and Analyses Agency [Yost, 
1994]; and the Mobility Optimization 
Model  (MOM),  developed  at  the  Joint 

Staff's Force Structure Resource, and As- 
sessment Directorate 08) [Wing et al, 1991]. 
All of these models are implemented with 
the General Algebraic Modeling System 
(GAMS) [Brooke, Kendrick and Meeraus, 
1992]. 

Examples of the types of mobility ques- 
tions that can be analyzed with optimiza- 
tion are: For a given fleet and a given net- 
work, 

• Are the aircraft and airfield assets ade- 
quate for the deployment scenario? 

• What are the impacts of shortfalls in air- 
lift capability? 

• Where are the system bottlenecks and 
when will they become noticeable? 

This type of analysis can be used to 
help answer questions about selecting air- 
lift assets and about investing or divesting 
in airfield infrastructure. Such analyses are 
accomplished through repeated runs of the 
model. Each run assumes a particular sce- 
nario as defined by a given set of time- 
phased movement requirements and a 
given set of available aircraft and airfield 
assets. It is then solved for optimal values 
for the number of missions flown, and the 
amounts of cargo and passengers carried, 
for each unit, by each aircraft type, via each 
route, in each time period. 

After describing the optimization 
model in Sections 2 and 3, Sections 4 and 5 
discuss analyses performed in the recent 
non-developmental airlift aircraft (NDAA)/ 
C-17 study. A special-purpose algorithm 
for solving large problem instances and a 
modeling extension to incorporate aircraft 
reliability are described in Section 6. Sec- 
tion 7 presents conclusions and ongoing 
research. 

2 OVERVIEW OF MODEL 
In this section we give a conceptual 

overview of the airlift optimization model. 
Then, Section 3 provides a detailed mathe- 
matical formulation. Sections 2 and 3 can be 
skipped by readers familiar with [Morton, 
Rosenthal, and Lim, 1996]. 

2.1 Model Features 
The model has been designed to handle 

many of the airlift system's particular fea- 
tures and modes of operation. For example, 
the payload an aircraft can carry depends 
on the maximum leg distance of a mission 
(shorter mission legs allow greater pay- 
loads), and aircraft with heavy loads may 
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be required to make frequent enroute stops. 
Also, there is a need to ensure cargo-to-carrier 
compatibility since some military hardware is 
too bulky to fit into certain aircraft. These fea- 
tures have been incorporated in the model to 
make it as realistic as possible. Others, such as 
the use of tanker aircraft for aerial refueling of 
airlift aircraft, incorporating crews, and model- 
ing intra-theater shuttles and ground transpor- 
tation are the subject of the follow-on model 
mentioned earlier. The major features of the 
airlift system currently captured by the model 
include: 

• Multiple origins and destinations: In contrast 
to MOM, the current model allows the airlift 
to use multiple origin, enroute and destina- 
tion airfields. 

• Flexible routing structure: The air route 
structure supported by the model includes 
delivery and recovery routes with a variable 
number of enroute stops (usually between 
zero and three). This provision allows for a 
mixture of short-range and long-range air- 
craft. The model can thus analyze trade-offs 
between higher-payload, shorter-range 
flights and lower-payload, longer-range 
flights. For further routing flexibility, the 
model also allows the same aircraft to fly 
different delivery and recovery routes on op- 
posite ends of the same mission. 

• Aircraft-to-route restrictions: The user may 
impose aircraft-to-route restrictions; e.g., 
only military aircraft may use military air- 
fields for enroute stops. This particular pro- 
vision arises because the USAF Air Mobility 
Command (AMC) may call upon civilian 
commercial airliners to augment USAF air- 
craft in a deployment, under the Civil Re- 
serve Airfleet (CRAF) program. The model 
distinguishes between USAF and CRAF air- 
craft. 

• Aircraft assets can be added over time: This 
adds realism to the model, because CRAF 
and other aircraft may take time to mobilize 
and are typically unavailable at the start of a 
deployment. 

• Delivery time windows: In a deployment, a 
unit is ready to move on its available-to-load 
date (ALD) and has to arrive in the theater 
by its required-delivery-date (RDD). This as- 
pect of the problem has been incorporated in 
the model through user-specified time win- 
dows for each unit. The model treats the time 
windows as "elastic" in that cargo may be 
delivered late, subject to a penalty. 

2.2 Conceptual Model Formulation 
The primary decision variables are the 

number of missions flown, and the amounts of 
cargo and passengers carried, for each unit, by 
each aircraft type, via each available route, in 
each time period. Additional variables are de- 
fined for the recovery flights, for aircraft inven- 
toried at airfields, and for the possibility (at 
high penalty cost) of not delivering required 
cargos or passengers. 

2.2.1 Objective Function 
The purpose of the optimization model is 

to maximize the effectiveness of the given airlift 
assets, subject to appropriate physical and pol- 
icy constraints. The measure of effectiveness is 
the minimization of total weighted penalties 
incurred for late deliveries and non-deliveries. 
The penalties are weighted according to two 
factors: the priority of the unit whose move- 
ment requirement is not delivered on time, and 
the degree of lateness. The penalty increases 
with the amount of time late, and non-delivery 
has the most austere penalty. 

The anticipated use of the model is for sit- 
uations when the given airlift resources are in- 
sufficient for making all the required deliveries 
on time. On the other hand, if there are enough 
resources for complete on-time delivery, then 
the model's secondary objective function is to 
choose a feasible solution that maximizes un- 
used aircraft. The motivation of the secondary 
objective is that if the available aircraft are used 
as frugally as possible, while still meeting the 
known demands and observing the known con- 
straints, then the mobility system will be as 
well prepared as it can be for unplanned break- 
downs and unforeseen requirements, such as 
additional contingencies. 

2.2.2 Constraints 
The model's constraints can be grouped 

into the five categories: demand satisfaction, 
aircraft balance, aircraft capacity, aircraft utili- 
zation, and aircraft handling capacity at air- 
fields. 

• Demand Satisfaction Constraints: The cargo 
demand constraints attempt to ensure for 
each unit that the correct amounts of cargo 
move to the required destination within the 
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specified time window. The passenger de- 
mand constraints do the same for each unit's 
personnel. The demand constraints have 
elastic variables for late delivery and non- 
delivery. The optimization will seek to avoid 
lateness and non-deliveries if it is possible 
with the available assets, or to minimize 
them if not. 

• Aircraft Balance Constraints: These con- 
straints keep physical count of aircraft by 
type (e.g., C-17, C-5, C-141, etc.) in each time 
period. They ensure that the aircraft assets 
are used only when they are available. 

• Aircraft Capacity Constraints: There are 
three different kinds of constraints on the 
physical limitations of aircraft—troop car- 
riage capacity, maximum payload, and cabin 
floor space—which must be observed at all 
times. 

• Aircraft Utilization Constraints: These con- 
straints ensure that the average flying hours 
consumed per aircraft per day are within 
AMC's established utilization rates for each 
aircraft type. 

• Aircraft Handling Capacity at Airfields: 
These constraints ensure that the number of 
aircraft routed through each airfield each 
day is within the airfield's handling capacity. 

2.3 Assumptions 
Some major assumptions of the model are 

listed below. These are known to be sacrifices of 
realism, but such assumptions are needed in 
modeling most real-world problems due to the 
limitations of data availability or the need to 
avoid computational intractability. 

• Air Force planners use a measure called 
Maximum-on-Ground (MOG) to represent 
airfield capacity. The literal translation of 
MOG as the maximum number of planes 
that can be simultaneously on the ground at 
an airfield is somewhat misleading, because 
the term MOG means more than just the 
number of parking spaces at an airfield. In 
actuality, airfield capacity depends on many 
dimensions in addition to parking, including 
material handling equipment, ground ser- 
vices capacity and fuel availability. Some Air 
Force planners use the terms parking MOG 
and working MOG to distinguish between 
parking space limits and servicing capability. 
Working MOG is always smaller than park- 
ing MOG, and is the only MOG for which we 

have data. Working MOG is an approximate 
measure because it attempts to aggregate the 
capacities of several kinds of services into a 
single, unidimensional figure. Disaggrega- 
tion of airfield capacity into separate capac- 
ities for parking spaces and for each of the 
specific services available would yield a 
more accurate model. Ongoing projects at 
AMC [Schubert, Whisman, and Steppe, 1996] 
and RAND [Stucker, 1996] involve stochastic 
and deterministic simulations, respectively, 
whose purpose is to determine appropriate, 
and possibly multidimensional, MOG val- 
ues. The model presented here will benefit 
from these investigations. 

• Inventoried aircraft at origin and destination 
airfields are considered not to affect the air- 
craft handling capacity of the airfield. This 
assumption is not strictly valid since an in- 
ventoried aircraft takes up parking space, 
but, as noted, working MOG dominates 
parking MOG. 

• Deterministic ground time: Aircraft turn- 
around times for onloading and offloading 
cargo and enroute refueling are assumed to 
be known constants, although they are nat- 
urally stochastic. This ignores the fact that 
deviations from the given service time can 
cause congestion on the ground. To offset the 
optimism of this assumption, an efficiency 
factor is used in the formulation of aircraft 
handling capacity constraints to cushion the 
impact of randomness. Then, in Section 6, we 
describe a stochastic optimization formula- 
tion that explicitly models stochastic ground 
times and indicate how this optimization 
model has been linked with a discrete-event 
simulation. 

Other approximations of reality employed 
in the model for computational tractability are 
aggregation of airfields, discretization of time, 
and continuous decision variables. A limitation 
on the scope of the model is that it considers 
only inter-theater, not intra-theater deliveries. 

3 OPTIMIZATION MODEL 
This section gives a mathematical formula- 

tion of the conceptual model outlined above. 
The airlift optimization model is formulated as 
a multi-period, multi-commodity network- 
based linear program (LP) with a large number 
of side constraints. Two key concepts are em- 
ployed in the model. The first is the use of a 
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time index to track the locations of aircraft for 
each time period. The modeling advantages of 
knowing when an aircraft will arrive at a par- 
ticular airfield are that it enables us to model 
aircraft handling capacity at airfields and to 
determine unit closure (i.e., the time when all of 
a unit's deliveries are complete). This approach 
is in contrast to the THRUPUT model of [Yost, 
1994], which takes a static-equilibrium or 
steady-state approach. 

The second key concept is model reduction 
through data aggregation and the removal of 
unnecessary decision variables and constraints 
prior to optimization. This is necessary as the 
airlift problem is potentially very large. With- 
out this model reduction step, the number of 
decision variables would run into the millions, 
even for a nominal deployment. The unneces- 
sary decision variables and constraints are re- 
moved by extensive checking of logical condi- 
tions, performed by GAMS during model 
generation. This is discussed in greater detail in 
Section 5. 

3.1 Indices 

u       indexes units, e.g., 82nd Airborne 
a       indexes aircraft types, e.g., C-17, C-5, 

C-141 
t,t'       indexes time periods 

b       indexes all airfields (origins, enroutes, 
and destinations) 

i       indexes origin airfields 
k       indexes destination airfields 
r       indexes routes 

3.2 Index Sets 
Airfield Index Sets 

B       set of available airfields 
I QB       origin airfields 

K C B       destination airfields 

A        C A flauer — **-bulk 

A      C A 

aircraft capable of hauling 
over-sized cargo 
aircraft capable of hauling 
out-sized cargo 

Aircraft Index Sets 

A       set of available aircraft 
types 

Abulk C A       aircraft capable of hauling 
bulk-sized cargo 

Bulk cargo is palletized on 88 X 108 inch 
platforms (84 X 104 usable) and can fit on any 
military aircraft (as well as cargo-configured 
CRAF) [Merrill, 1997]. Over-sized cargo is non- 
palletized rolling stock; it is larger than bulk 
cargo and can fit on a C-141, C-5 or C-17. Out- 
sized cargo is very large non-palletized cargo 
that can fit into a C-5 or C-17 but not a C-141. 

oute Index Sets 

R set of available routes 
RaCR permissible routes for aircraft 

Kb Q K 

type a 
permissible routes for aircraft 
type a that use airfield b 

Rau Q Ra permissible routes for aircraft 
type a carrying cargo or troops 
for unit u 

Ki c Ra 

Rak Q Ra 

permissible routes for aircraft 
type a that use origin airfield i 
permissible routes for aircraft 
type a that use destination 
airfield k 

DRt c R 

RRk C R 

delivery routes that originate 
from origin i 
recovery routes that originate 
from destination k 

A delivery route is a route flown from a 
specific unit's origin to its destination for the 
purpose of delivering cargo and/or passengers. 
A recovery route is a route flown from a unit's 
destination to that unit's or some other unit's 
origin, for the purpose of making another de- 
livery. Since recovery flights carry much less 
weight than deliveries, the recovery routes 
from k to i may have fewer enroute stops than 
the delivery routes from i to k. 

Time Index Sets 

T       set of time periods 
Tuar C T       possible start times for aircraft of 

type a flying a mission for unit u 
on route r 

The set Tuar covers the allowed time win- 
dow for unit u, which starts on the unit's avail- 
able-to-load date and ends on the unit's re- 
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quired delivery date, plus some extra time up 
to the maximum allowed lateness for the unit. 

3.3 Given Data 
Movement Requirements Data 

ACSqFta 

LoadEffa 

MovePAXu 

MovelIEu 

ProBulku 

ProOveru 

ProOutu 

Penalty Data 

LatePenUE,, 

Troop movement requirement 
for unit u 
Equipment movement 
requirement in short tons 
(stons) for unit u 
Proportion of unit u cargo that 
is bulk-sized 
Proportion of unit u cargo that 
is over-sized 
Proportion of unit u cargo that 
is out-sized 

Lateness penalty (per ston 
per day) for unit u 
equipment 

LatePenPAXu       Lateness penalty (per 
soldier per day) for unit u 
troops 

NoGoPenlIEu       Non-delivery penalty (per 
ston) for unit u equipment 

NoGoPenPAXu       Non-delivery penalty (per 
soldier) for unit u troops 

MaxLate       Maximum allowed lateness 
(in days) for delivery 

Preserveat       Penalty (small artificial 
cost) for keeping aircraft 
type a in mobility system 
at time t 

Cargo Data 

UESqFtu 

PAXWt 

Aircraft Data 

Supplyat 

MaxPAXa 

PAXSqPta 

Average cargo floor space (in sq. 
ft.) per ston of unit u equipment 
Average weight of a soldier 
inclusive of personal equipment 

Number of aircraft of type a 
that become available at time t 
Maximum troop carriage 
capacity of aircraft type a 
Average cargo space (in sq. ft.) 
consumed by a soldier for 
aircraft type a 

URatea 

Airfield Data 

MOGCapbt 

MOGReqab 

MOGEff 

Cargo floor space (in sq. ft.) of 
aircraft type a 
Cargo space loading efficiency 
(<1) for aircraft type a. This 
accounts for the fact that it is 
not possible in practice to fully 
utilize the cargo space. 
Established utilization rate 
(flying hours per day) for an 
aircraft of type a 

Aircraft capacity (in narrow- 
body equivalents) at airfield b 
in time t 
Conversion factor to a narrow- 
body equivalent for an aircraft 
of type a at airfield b 
MOG efficiency factor (<1), to 
account for the fact that it is 
impossible to fully utilize 
available MOG capacity due 
to randomness of ground 
times 

Aircraft Route Performance Data 

Maxhoadar       Maximum payload (in stons) 
for aircraft type a flying route 
r 

GTimeabr       Aircraft ground time (due to 
onload or offload of cargo, 
refueling, maintenance, etc.) 
needed for aircraft type a at 
airfield b on route r 

DTimeabr       Cumulative time (flight time 
plus ground time) taken by 
aircraft type a to reach airfield 
b along route r 

FHTimear       Total flying hours consumed 
by aircraft type a on route r 

Ctimear       Cumulative time (flight time 
plus ground time) taken by 
aircraft type a on route r 

DaysLateuart       Number of days late unit u's 
requirement would be if 
delivered by aircraft type a 
via route r with mission start 
time t 
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3.4 Decision Variables 
Mission Variables 

Xuart       Number of aircraft of type a that 
airlift unit u via route r with mission 
start time t 

Yart       Number of aircraft of type a that 
recover from a destination airfield 
via route r with start time t 

Aircraft Allocation and De-allocation Variables 

Allot* 

Release* 

Number of aircraft of type a that 
are allocated to origin i at time t 
Number of aircraft of type a that 
were allocated to origin i prior to 
time t but are not scheduled for 
any missions from time t on 

Aircraft Inventory Variables 

Hait 

HP, akt 

Nplanesa 

Number of aircraft of type a 
inventoried at origin i at time t 
Number of aircraft of type a 
inventoried at destination k at 
time t 
Number of aircraft of type a in 
the air mobility system at time t 

Airlift Quantity Variables 

TonsUE,, 

TPAX,, 

Total stons of unit u equipment 
airlifted by aircraft of type a 
via route r with mission start 
time during period t 
Total number of unit u troops 
airlifted by aircraft of type a 
via route r with mission start 
time during period t 

Elastic (Nondelivery) Variables 

UENoGou       Total stons of unit u 
equipment not delivered in the 
prescribed time frame 

PAXNoGou       Number of unit u troops not 
delivered in the prescribed 
time frame 

Each of the decision variables is constrained to 
be non-negative. 

3.5 Formulation of the Objective 
Function 

minimize: 

5353 53 53 LatePenUEv 
u      a   r€Ra t€Tuar 

■ DaysLateuart • TonsUEuart 

+ 5353 53   53  LatePenPAX" 
u       a    r&Ra t€Tuar 

■DaysLateuart ■ TPAXuart 

+ YJ{N°GoPenUEu- UENoGou 

U 

+NoGoPenPAXu ■ PAXNoGou) 

+ y~" y2 Preserveat-NPlaneSat 
a      t 

The DaysLateuart penalty parameter has 
value zero if t + CTimear is within the pre- 
scribed time window for unit u. Thus, the first 
two terms of the objective function take effect 
only when a delivery is late. The third term in 
the objective function corresponds to cargo and 
passengers that cannot be delivered even 
within the permitted lateness. Late delivery 
and non-delivery occur only when airlift assets 
are insufficient for on-time delivery. 

The reason for including elastic variables 
that allow late delivery and non-delivery is to 
ensure that the model produces useful informa- 
tion even when the given assets are inadequate 
for the given movement requirements. The al- 
ternative of using an inelastic model (i.e., a 
model with hard constraints that insist upon 
complete on-time delivery) is inferior because it 
would report infeasibility without giving any 
insight about what can be done with the assets 
available. 

A useful modeling excursion that is made 
possible by the elastic variables is to vary the 
number of time periods. As the horizon is 
shortened, it is interesting to observe the in- 
crease in lateness and non-delivery. 

As noted, the model's anticipated use is in 
cases when the airlift assets are insufficient for 
full on-time delivery. In the opposite case, the 
model will be governed by the fourth term of 
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the objective function, which rewards asset 
preservation for the reasons given in Section 2. 

Some care must be taken in selecting the 
lateness and non-delivery penalties and the air- 
craft preservation rewards to ensure consis- 
tency. Late delivery should be preferred to non- 
delivery. The weights will be consistent with 
this preference provided the late penalty (per 
ston per day) is less than the corresponding 
non-delivery penalty (per ston) divided by the 
maximum allowed lateness (in days). 

3.6 Formulation of the Constraints 
As noted in the conceptual model, there are 

five categories of constraints. Their mathemat- 
ical formulations are as follows. 

3.6.1 Demand Satisfaction 
Constraints 

There are four different kinds of demand 
constraints, corresponding to troops and the 
three classes of cargo (bulk, over-sized and out- 
sized). Separate constraints are required for the 
different cargo types to ensure cargo-carrier 
compatibility. For example, a carrier of over- 
sized cargo cannot be used to carry the larger 
out-sized cargo. On the other hand, it is possi- 
ble to use a carrier of out-sized cargo to carry 
over-sized cargo. The model accounts for this 
asymmetry. 

The demand constraints also account for 
the desired delivery time-windows by use of 
the index sets Tuar and the lateness parameters 
DaysLateuart. 

3.6.2 Aircraft Balance Constraints 
There are five kinds of aircraft balance con- 

straints enforced for each aircraft type in each 
time period. At origin airfields, they ensure that 
the number of aircraft assigned for delivery 
missions plus those inventoried for later use 
plus those put in the released status equal the 
number inventoried from the previous period 
plus recoveries from earlier missions and the 
new supply of aircraft that is allocated to the 
origin. 

The meaning of releasing, or de-allocating, 
an airplane in period t is that it is not flown on 

Demand Satisfaction Constraints for 
All Classes of Cargo: 

Y^     Yl    S   TonsUEuart + UENoGou 

= MoveUEu   Vu with MoveUEU > 0 

Demand Satisfaction Constraints for 
Out-Sized Cargo: 

Y    Y    S   TonsUEuart + UENoGou 

aeAout r£Rau t£Tuar 

> ProOutu ■ MoveUEu 

Vu with MoveUEu > 0 

Demand Satisfaction Constraints for 
Over-Sized Cargo: 

J2       S      J2   TonsUEuart + UENoGOu 
aeAovr. reRau t€Tuar 

> (ProOveru + ProOutu) ■ MoveUEu 

Vu with MoveUEu > 0 

Demand Satisfaction Constraints for 
Troops: 

YJ2Y1    TPAXuart + PAXNoGOu 

a     rERau teTuar 

= MovePAXu   Vu with MovePAXu > 0 

any missions from period t through the end of 
the horizon. In practice, the analyst can inter- 
pret a release in the model's solution in a vari- 
ety of ways. It can mean, as in the case of the 
civilian CRAF aircraft, that the plane is literally 
sent back to its owner, but not necessarily. The 
aircraft can also be kept in the mobility system, 
available as a replacement in case of break- 
downs or for unforeseen demands. 

The second kind of aircraft balance con- 
straints concerns destinations. They are similar 
to the first kind except releases are not allowed 
and the roles of delivery and recovery missions 
are reversed. The third kind of aircraft balance 
constraint ensures that if any new planes be- 
come available in period t, they are allotted 
appropriately among the origins. There is a 
potential gain in efficiency to allow the opti- 
mizer to make these allocation decisions, rather 
than relying on the user to pre-assign them to 
origin airfields. The fourth type of aircraft bal- 
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ance constraints is a set of accounting equations 
for defining the NPlanesat variables based on 
cumulative allocations and releases. 

In the following constraints we use the no- 
tation [Ctimear] to denote Ctimear rounded to the 
nearest integer. 

Aircraft Balance Constraints 
at Origin Airfields: 

y^   y^  XUart + Hait + Releaseait 

u   r€DRi 

= Hai,t-1 + Allotait 

+ y^ ^ Yarv   Va,i,t 
rERai t'+[CTimear]=t 

Aircraft Balance Constraints 
at Destination Airfields: 

y  J    Yart + HPakt= HPak,t-l 
reRRic 

+X] y3     y^    xuarV va, 
■"  reRak       t'eTuar 

t' + [CTimear]=t 

Aircraft Balance Constraints 
for Allocations to Origin Airfields: 

t t 

y^ y^ AllotaW < y^ Supplyat,   Va, t 

k,t 

t'=l    i t'=i 

The above constraint is in the cumulative 
form, rather than in the simpler form 2i Allotait 

< Supplyat to allow aircraft that become avail- 
able in period t to be put into service at a later 
period. 

error that can result from rounding Ctimear to 
[Ctimear], the nearest integer, in the other bal- 
ance constraints. For example, suppose Ctimear 

is less than half a day for some aircraft a and 
route r. When this time is rounded to zero in 
the balance constraints of the route's origin and 
destination, these constraints unrealistically 
permit an unlimited number of missions per 
day on that route. Solving the model with this 
deficiency would yield overly optimistic re- 
sults. 

One way to fix this problem would be to 
insist that Ctimear be rounded up to a higher 
integer. Then the model would be overly pes- 
simistic, because it would rule out the possibil- 
ity of an aircraft flying two or more missions in 
a day even when this is possible. This sort of 
problem is common in mathematical modeling 
whenever time is discretized. The approach 
taken here is to enforce the following additional 
constraints, based on the cumulative plane- 
days available. 

Cumulative Aircraft Balance Constraints: 

t 

/        /  j / J Kgrtt' Xuart> 

r&Ra t'=l   u 

t t 

+  y^   yj Kartt'Yart' +z2z-/ ^ait' 
r£Ra t'-l i    t'=l 

t t 

NPlaneSaf   Va, t 

whereKartt' 

(t-tf + 1     lit' <t<t' 
\ CTimear     itt>t' + C 

+ CTimear - 1 
CTimear — 1 

Aircraft Balance Constraints Accounting 
for Allocations and Releases: 

t 

NPlanesat = yj yj Allotaiti 
t'=l    i 

y^ y^ Releaseau<   Va, t 
t'=l    i 

The fifth and final set of aircraft balance 
constraints helps to correct the discretization 

The right-hand-side indicates the cumula- 
tive number of plane-days available for type a 
aircraft up to day t. The left-hand-side accounts 
for all possible plane activities up to day t, 
whether flying or inventoried. The inventory 
terms are straightforward. The delivery and 
recovery terms work as follows: if a delivery 
initiated on day t' is completed by the end of 
day t, then the entire time Ctimear (which may 
be integer or fractional) is included in the left- 
hand-side of the cumulative balance constraint 
for day t. On the other hand, if a delivery 
initiated on day t' is not completed by the end 
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of day t, then only the time expended so far, 
t — t' + 1, is counted in the day t constraint. 

An experiment attesting to the value of the 
cumulative aircraft balance constraints is re- 
ported in [Morton, Rosenthal, and Lim, 1996]. If 
the Ctimejs were all integer, these constraints 
would be redundant and could be omitted. 

Y^ XI    IC   FltTimear ■ Xuart 
u reRa teTuar 

+ J2 J2FltTimear'Yart 
r€Ra    t 

< y^yURateg ■ NPlanesat   Va 

3.6.3 Aircraft Capacity Constraints 

Troop Carriage Capacity Constraints: 

TPAXuart < MaxPAXa ■ Xuart 

VM, a,r,t: te Tuar 

Maximum Payload Constraints: 

TonsUEuart + PAXWt- TPAXuart 

< MaxLoadar ■ Xuart   Vu,a,r,t : t € T„ 

Cargo Floor-Space Constraints: 

PAXSqFta ■ TPAXuart 

+ UESqFtu ■ TonsUEuart 

< ACSqFta ■ LoadEffa ■ Xuart 

Vu,a,r,t: t € Tuar 

3.6.4 Aircraft Utilization Constraints 
The aircraft utilization constraints ensure 

that the total flying hours consumed by the 
fleets of each aircraft type over the planning 
horizon are within AMC's established utiliza- 
tion rates [Wilson, 1985; Gearing et ah, 1988]. 
These rates are meant to capture spares avail- 
ability, aircraft reliability, crew availability, and 
other factors. The utilization constraints are for- 
mulated by comparing the flying hours con- 
sumed by an aircraft fleet in delivery and re- 
covery flights to the maximum achievable 
flying hours for the fleet according to the utili- 
zation rate. 

As an illustration of the above constraint, 
consider a fleet of five aircraft of the same type 
made available from day 11. If the utilization 
rate for this aircraft type is 10 flying hours per 
aircraft per day and the horizon is 30 days, then 
the maximum achievable flight time 1000 hours 
(10 hours/plane-day X 20 days X 5 planes). 
This total may not be exceeded for the whole 

fleet over the entire planning horizon, however, 
it is not unusual for a subset of aircraft to ex- 
ceed utilization rates over a subset of the hori- 
zon, particularly during the early (surge) stage 
of a deployment. 

3.6.5 Aircraft Handling Capacity at 
Airfields (M0G Constraint) 

The aircraft handling constraints at air- 
fields, commonly called MOG constraints, are 
perhaps the most difficult to model. This is 
because of two complicating factors that neces- 
sitate approximations. First, there is no airfield 
capacity data available that provides separate 
accounting of parking spaces and all the vari- 
ous services (refueling, maintenance, etc.). The 
MOG data provided by the Air Force is an 
approximation, attempting to aggregate all 
these services. Thus, the units of MOGCapbi are 
an idealized notion of airfield parking spaces 
(normalized to narrow-body sized aircraft), not 
a precisely defined physical quantity. 

The second complicating factor in model- 
ing airfield capacity is the congestion caused by 
the uncertainty of arrival times and ground 
times. A deterministic, time-discretized optimi- 
zation model cannot accurately treat events oc- 
curring within a time period. For example, sup- 
pose the time period of the model is one day 
and an airfield has 20 landings per day. How 
much congestion occurs depends on when the 
landings occur during the day, a phenomenon 
not captured in the daily model. The MOG 
efficiency factor MOGEff is introduced to cush- 
ion the effect of not explicitly modeling uncer- 
tainty. In Section 6.2, we describe a stochastic 
programming model that more directly handles 
aircraft reliability and its effect on airfield ca- 
pacity. The MOG constraints are formulated for 
each airfield and time period (as before, we use 
the notation [Dtimeabr] to denote Dtimeabr 

rounded to the nearest integer). 
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EEE     E 
u      a   r€K« t't^T 

t'+ [DTimeabr]=t 

{MOGReqab ■ GTimeabr/24) ■ XuaTt> 

+EE     E 
a    r€Rat' + [DTimeabr]=t 

{MOGReqab ■ GTimeabr /24) ■ YarV 

<MOGEff-MOGCaPbt   V6,t 

Dimensional analysis is useful for under- 
standing these constraints. The right-hand-side 
is in the units of narrow-body parking spaces, 
because MOGCapbt is in those units and 
MOGEff is dimensionless. The first term on the 
left-hand-side accounts for airfield capacity 
consumed by all delivery missions that pass 
through airfield b during period t. The second 
term on the left does the same thing for recov- 
ery missions. The dimension of MOGReqab is 
narrow-body parking spaces per plane, the di- 
mension of Gtimeabr/24 is days, and the dimen- 
sions of XuarV and Yarr are planes per day; thus, 
the MOG constraints are dimensionally bal- 
anced. 

Aircraft inventoried at origin or destination 
airfields do not consume any MOG capacity in 
the above formulation. This is not a mathemat- 
ical limitation, but rather a modeling choice 
taken because inventoried planes do not con- 
sume ground services. It can be easily modified 
if data for "parking space MOG" and various 
"ground service MOGs" become available. 

3.6.6 Initial Conditions 

Hait = 0 \/a,i,t:t<0 

HPakt=0 \/a,k,t:t<0 

XUart =0 Vu, a, r, t: t < 0 

YaTt=0 Va,r,t:t<0 

4 FLEET-MIX TRADEOFF ANALYSIS 
Prior to the C-17 Defense Acquisition Board 

(DAB) decision in November, 1995, there were 
a number of fleet options being considered as 

replacements for the aging C-141 fleet. These 
included "pure" C-17 fleets, as well as mixed 
fleets that included not only C-17s, but also a 
number of Non-Developmental Airlift Aircraft 
(NDAA), a Boeing 747-400F assigned the USAF 
designation C-33. THRUPUT II's first "opera- 
tional" test supported the analysis required by 
the C-17 DAB. 

Although many criteria must be considered 
when designing a fleet mix, a principal consid- 
eration is the ability to deliver the U.S. mobility 
requirements in support of our National De- 
fense Strategy—currently two nearly-simulta- 
neous Major Regional Contingencies (2-MRCs). 
Since THRUPUT II was designed to study stra- 
tegic airlift, a two theater mobility study was a 
natural application of the model. 

In the 2-MRC scenario, much of the cargo 
being flown from CONUS to the theaters is 
considered "out-sized" equipment, such as 
tanks or helicopters. Out-sized cargo is prob- 
lematic, since it can only fit on certain wide- 
body aircraft, such as the C-5 or C-17. The C-33 
is a hybrid in this regard; it can carry some, but 
not all types of out-sized cargo. THRUPUT II's 
features are well suited to contrast the capabil- 
ities of the long range, high payload C-33, with 
the more versatile, but smaller C-17. It was 
conceivable that THRUPUT II would show the 
lifting capability of a modest C-33 fleet could 
move most of the bulk and over-size cargo, 
allowing C-5s to satisfy the out-size require- 
ment. Alternatively, the results might show 
that the demand for out-sized cargo movement 
dominates, and that the C-5 must be supple- 
mented with C-17s to meet that requirement. 

An additional fleet mix tradeoff involves 
the consumption of ground resources. The C-17 
is designed to onload and offload quickly in an 
austere environment, while the C-33 is princi- 
pally an airliner, and requires longer runways 
and a more robust support infrastructure. 
However, unless refueled in flight, the C-17 
needs to stop more frequently than a C-33, 
which could offset any advantage derived from 
its reduced ground requirements. These two 
contrasting aspects of C-17 and C-33 resource 
utilization could interplay so as to give one 
aircraft considerable advantage in a contin- 
gency. 

Cargo loading and airfield utilization are 
just two of a myriad of issues surrounding the 
procurement of any new airlifter. Without de- 
tailed modeling and simulation, the C-17 DAB 
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could not hope to make an informed choice 
based on objective criteria. However, unlike 
previous boards, this time the analysis included 
results provided by a detailed optimization 
model. 

4.1 Input 
THRUPUT II's input requirements are gen- 

eralized into four categories: 1) unit, 2) airfield, 
3) aircraft, and 4) route data. The source of the 
unit movement requirements is called the 
Time-Phased Force Deployment Data, or 
TPFDD. This highly detailed list of equipment 
and personnel requirements is intended to 
identify everything necessary to carry out our 
national strategy. Consequently, it can be quite 
detailed and extremely long. In fact, the TPFDD 
used in this analysis initially consisted of more 
than 21,000 entries. Modeling each of these en- 
tries as a THRUPUT II unit was unthinkable, 
given current computational limitations. 
Through careful screening and consolidation 
(see Section 5), the TPFDD was reduced to just 
over 200 entries, each of which was read into 
THRUPUT II as a unit. From the pared TPFDD, 
we examined the origins (Aerial Ports of Em- 
barkation—APOEs), and destinations (Aerial 
Ports of Debarkation—APODs) and attempted 
to set up a realistic enroute basing scheme that 
could support the movement. 

The primary guidance for this airfield and 
TPFDD information was the Joint Chiefs of 
Staff, J8, force structure analysis called the Mo- 
bility Requirements Study, Bottom-Up Review 
Update, MRS-BURU [Joint Chiefs of Staff, 
1995]. Its results were driven by a specific 
2-MRC TPFDD, considered to be the most 
widely accepted requirements listing in exis- 
tence. This report not only identified the who, 
what, when, and where of every movement 
requirement, but also listed the available air- 
fields, including their relative capacities for air 
cargo traffic flow. MRS-BURU is credited for 
providing the motivation for upgrading the 
U.S. airlift fleet. 

Compared with unit and airfield informa- 
tion, aircraft and route data were relatively 
straightforward to gather. Although an air- 
craft's effect on the airlift system is contentious, 
its performance characteristics are largely ob- 
jective and easily derived. Route data presented 
a more difficult, yet not insurmountable chal- 
lenge. Relying only on currently established 

AMC routing condemns the model to favor 
aircraft whose payload-range characteristics re- 
semble the current fleet. Allowing THRUPUT II 
the latitude to choose new routes based on an 
aircraft's unique capabilities was preferable, so 
we offered many more route-aircraft combina- 
tions than might seem necessary at first glance. 
The tradeoff between making sufficient routes 
available and model tractability is discussed in 
[Toy, 1996]. 

In addition to the airlift system parameters, 
there were several subjective factors to consider 
when setting up the scenario. One such factor 
was the MaxLate parameter, which establishes 
how late cargo and passengers can arrive be- 
fore incurring an extremely large nondelivery 
(no-go) penalty. Increasing MaxLate naturally 
allows more overall cargo to be delivered, but 
has the unfortunate effect of dramatically in- 
creasing the size of the model, since there are 
more feasible movement options. However, the 
need to keep the model small must be balanced 
with a reasonable estimate of when "late" be- 
comes "too late" from an operational stand- 
point. For the purposes of this work, MaxLate 
was set at eight days, meaning any cargo or 
passengers that could not be moved by the 
Required Delivery Date (RDD) + 8 would be 
considered not delivered and cause the maxi- 
mum penalty to be charged. Fortunately, the 
eight-day maximum affected all excursions 
similarly, thus mitigating any relative advan- 
tage attributable to this subjectivity when com- 
paring fleet mixes. 

As with all analyses, preparing the above 
inputs took vast amounts of time. However, we 
believe many of these inputs are not scenario 
specific, and can be re-used with little adjust- 
ment in a variety of studies. 

4.2 Analysis 
THRUPUT II's C-17/NDAA analysis was 

conducted parametrically by running each pro- 
posed fleet mix as a separate excursion. The 
performance of each fleet was evaluated pri- 
marily by how much of the movement require- 
ment (cargo and passengers) was delivered in a 
timely manner. Examining unit "closure" in 
this way, we were able to identify several sig- 
nificant differences between fleets. One such 
difference is illustrated by Figures 1A and IB. 
In these figures, days from the "kickoff" of the 
first contingency are given on the horizontal 
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Figure 1. Tons delivered (vertical axis) versus contingency day (horizontal axis). The difference between the 
requirement and delivery lines in each scenario indicates that the aircraft fleet used in Excursion 2 performs 
better than the baseline. 

axis. The two plots show the cumulative 
amount of cargo moved to date (stons), con- 
trasted with the cumulative amount of cargo 
required to date. Figure 1A corresponds to the 
baseline fleet mix for the study. Figure IB cor- 
responds to one of the alternative fleet options 
under consideration. 

Ideally, the airlift fleet should be able to 
accommodate the entire demand on time. How- 
ever, given the non-uniform nature of the 
TPFDD requirements, all of the fleets examined 
had difficulty recovering from extremely large 
spikes in demand. The fleet used in the baseline 
case falls behind early and experiences great 
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difficulty catching up with the requirement. 
However, the fleet used in Excursion 2 experi- 
ences only brief lags in the cargo delivery. It 
was more able to move cargo early, and hence 
stayed ahead of the imminent demand surges. 

Another key metric used to evaluate the 
different fleets was the relative proportions of 
on-time, late, and undelivered cargo and pas- 
sengers. Figures 2A and 2B detail the results for 
the five cases examined. While all of the cases 
delivered similar amounts of on-time cargo, to- 
tal cargo delivered (including late deliveries) 
varied significantly—notably between Excur- 
sion 1, and Excursions 2,3, and 4. Interestingly, 
a comparison of the two figures shows that as 
the airlift fleet was tailored to improve cargo 
delivery, the number of passengers delivered 
went down. As a result, it appears that none of 
the proposed fleets dominate with respect to 
both cargo and passenger delivery. 

During the course of our output analysis, 
we were unexpectedly enlightened by what 
began as a casual look at the marginals, or 
"shadow prices" associated with an optimal 
solution. Although not a key aspect of the 
study, airfield size played an enormous role in 
the overall performance of each of the fleets. 
The output revealed that relatively small 
changes in the airfield's capacity at key enroute 
and destination airfields would yield dispro- 
portionate changes in system performance. 
Moreover, these key bases differed depending 
on which fleet mix was under consideration. 
For example, fleets with many C-17s stressed 
enroute airfields considerably more than fleets 
with many C-33s. Conversely, excursions with 
a large number of C-33s relied heavily on des- 
tination airfield size, but did not require as 
extensive an enroute infrastructure due to their 
longer range. Given the performance character- 
istics of the two aircraft, this insight is not sur- 
prising, but the quantification of an airfield's 
marginal value is a great benefit of optimiza- 
tion that is unavailable in simulation. More- 
over, this discovery clearly emphasized that a 
fleet mix decision is not one to be made in 
isolation. All aspects of the airlift system, in- 
cluding such factors as airfield infrastructure 
must be considered when choosing a mix of 
aircraft. They are not independent; treating 
them as such risks providing decision makers 
with skewed information about a critical piece 
of our nation's mobility force. 

The analysis described here, performed by 
the THRUPUT II team in support of the 1995 

C-17/NDAA DAB decision, is indicative of the 
type of insight that can be provided by this 
optimization model to a decision maker. We 
have elected to emphasize this theme rather 
than delve into the scenario and excursion spe- 
cific details such as fleet composition and bas- 
ing structure. However, one aspect of this 
project that does demand closer description in- 
volves the methods used to reduce such a large 
(indeed initially intractable) model to a man- 
ageable size. 

5 MODEL REFINEMENTS FOR 
IMPLEMENTATION 

5.1 Model Reduction 
One of the key issues regarding implemen- 

tation of optimization modeling, particularly in 
military applications, is the balancing of real- 
ism vs. tractability. 

No mathematical model can ever be totally 
realistic. The optimization modeling process is 
itself a constrained optimization problem. The 
objective of the process is to maximize the 
amount of realism achieved, subject to the lim- 
itations on computational tractability. Regard- 
less of the rapid rate of advances in computing, 
we will always be faced with finite limits on 
tractability and hence never achieve total real- 
ism. The question is: how much realism can one 
achieve with the resources at hand? 

THRUPUT II has decision variables with as 
many as four indices, such as Xuart, so the crux 
of the balancing problem is the number of (u, a, 
r, £)-tuples included in any real instance of the 
model. In general, the more tuples allowed, the 
more realistic the model, but the more difficult 
it is to solve. The number of tuples depends on, 
first, how many of each index type exists (how 
many units, aircraft types, routes and time pe- 
riods are modeled), and, second, what rules are 
used for allowing or prohibiting any (u, a, r, t) 
combination from being considered. These two 
aspects of model reduction are discussed next. 

5.1.1 Aggregation 
The number of units, aircraft types, routes 

and time periods in the instances we ran of the 
model were chosen with a great deal of atten- 
tion to the issues raised above. Distasteful as it 
may seem, a certain amount of aggregation of 
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Figure 2. On time, late, and undelivered cargo for various airlift fleets. 
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entities is needed in any real-world modeling 
project. In this case, the most significant aggre- 
gation took place in the generation of airfields, 
units and time periods. Aggregation of airfields 
implies, in turn, a limit on the number of avail- 
able routes. 

We developed a location-theoretic optimi- 
zation model for airfield aggregation, but in the 
case of the C-17/NDAA study, the USAF avia- 
tors on our team just used military judgement 
to decide which airfields to aggregate [Turker, 
1995]. In the end, the infrastructure of the 
2-MRC scenario was represented by 29 air- 
fields. 

The routes generated over the selected air- 
fields were the product of a combination of the 
location-theoretic optimization model and the 
oversight of the aviators. The program used a 
tree structure to consider possible routes and 
screened them for inclusion based on various 
rules. The rules included: critical leg length of 
the aircraft, required crew rest or crew change, 
deviation of route length from great circle dis- 
tance, aircraft/airfield compatibility (the civil- 
ian reserve fleet has landing restrictions not 
imposed on military aircraft and vice versa), 
and others. The oversight step was particularly 
intriguing, because the location and routing 
model was developed by a Turkish naval offi- 
cer, who had no access to the real names and 
locations of the airfields during development 
and testing. Some routes had to be added or 
deleted based on understanding of the actual 
situation. The final result of this process was 
the inclusion of 313 routes for the entire sce- 
nario. 

As stated in Section 4, the TPFDD file we 
were given for the C-17/NDAA analysis had 
over 21,000 movement requirements. This data 
set was first screened for the deletion of ex- 
tremely small requirements. Then it was aggre- 
gated by assuming two movement require- 
ments could be merged if the following 
conditions held: they had the same type of 
cargo (or passengers) to be moved, they had the 
same origin and destination (after airfield ag- 
gregations), and they had nearly simultaneous 
RDDs. The definition of "nearly simultaneous 
RDDs" was governed by a set of user-supplied 
parameters, which enforced simultaneity less 
rigorously as we went further out towards the 
horizon. 

Aggregation of time is always a delicate 
issue in optimization modeling. Time has to be 
discretized, and nothing has a more direct ef- 

fect on model size than the choice of time dis- 
cretization units. For the C-17/NDAA study, 
we chose to divide time into two-day time pe- 
riods, of which there were 47. Using 94 one-day 
time periods was intractable. See [Morton, 
Rosenthal, Lim, 1996] for an experiment on a 
single-MRC scenario, which showed that the 
cumulative aircraft balance constraints in Sec- 
tion 3.6.2 help lessen the effect of time discreti- 
zation. 

5.1.2 Variable Elimination and 
Sparsity 

An algebraic modeling language such as 
GAMS is very conducive to implementing rules 
for limiting the number of admissible combina- 
tions of indices. In the case of the (u, a, r, t) 
tuples mentioned above, an Xuart variable is 
allowed to exist if all the following conditions 
hold: 

• Route r flies from unit u's origin to its desti- 
nation 

• Aircraft type a can fly on route r with an 
acceptable payload 

• The start time, t, of the mission is after unit 
u's available-to-load date 

• The arrival time, if the mission starts at time 
t, is on or before RDD(u) + MaxLate 

• There is a match between some cargo type 
(or passengers) that aircraft type a can carry 
and unit u's movement requirement 

• Aircraft of type a must be available at the 
origin of route r at time t 

These rules are evaluated once for each 
tuple and stored in a GAMS dynamic set. This 
set is referenced when the constraints are gen- 
erated in order to achieve as much model spar- 
sity as possible. The set is also used to eliminate 
other variables. For example, the aircraft inven- 
tory variables at destination airfields, HPakt, 
cannot exist unless some aircraft of type a can 
potentially arrive at airfield k prior to time t. 

There were other dynamic sets in THRU- 
PUT II. In our experience with real-world opti- 
mization models, a serious investment of devel- 
opment time in the fme-tuning of dynamic sets 
for implementing model reduction rules can 
have a big payoff in tractability. 
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5.2 Computational Experience 
After using the aggregations and reduc- 

tions noted above, the model runs required for 
the C-17/NDAA study had the following prob- 
lem dimensions: 200 units, seven (or fewer) 
aircraft types, 313 routes, 47 time periods and 
29 airfields. The resulting model sizes and so- 
lution times are given below: 

Scenario    Rows    Cols      Non-      Solve 
(000) (000) zeros Time 

Baseline 161 183 1.9 mil 2.98 hrs 
Exl 124 142 1.5 mil 1.95 hrs 
Ex 2 154 177 1.9 mil 2.57 hrs 
Ex 3 154 177 1.9 mil 3.14 hrs 
Ex 4 154 177 1.9 mil 2.48 hrs 

new ideas for interesting summary reports 
while analyzing the old ones. Among the most 
widely used reports were: 

• Total number of delivery missions flown, by 
aircraft type. 

• Total number of missions flown, by route. 
• For each unit, the closure date (date of last 

delivery if unit is fully delivered) displayed 
next to the ALD and RDD, along with the 
total amounts delivered on-time, late and not 
at all. 

• For each MRC and time period, cumulative 
deliveries vs. requirements, separated by 
bulk, over-size, out-size and passengers. 

• For each airfield, a report on MOG utiliza- 
tion, summarized as the number of days 
when MOG use exceeds P percent of capac- 
ity for P = 10, 25, 50, 75, 90, 95, and 100. 

These runs were performed with GAMS as 
the problem generator and CPLEX 3.0 [CPLEX 
Optimization Inc., 1994] as the solver on an IBM 
RS6000/590 workstation. These rather large- 
scale optimization models presented a chal- 
lenge. There were, in fact, several unsuccessful 
early attempts. We were very fortunate to be 
able to get advice from CPLEX Optimization, 
Inc. [Lowe, 1995] on solver settings. We sent 
them, via FTP over the Internet, a file contain- 
ing a 3 million non-zero instance of the model, 
which they were able to solve. (This was when 
most but not all of the variable eliminations and 
sparsity refinements were implemented, so 
they have solved an even larger problem than 
the ones reported above.) The key advice from 
the CPLEX people was to use the barrier (inte- 
rior point) algorithm, with tolerances and op- 
tions tuned for this particular model. 

5.3 Output 
Each run of THRUPUT II for the C-17/ 

NDAA study produced large amounts of out- 
put data. This profusion of information was too 
much for an analyst to absorb, so it had to be 
organized in relevant summary reports of the 
optimal solution. Since each case took a long 
time to solve, we made sure that all the optimal 
solution information was stored in readily ac- 
cessed files. Then, a separate GAMS reporting 
program could be run many times against the 
same optimal solution. This proved to be useful 
because the AFSAA analysts often thought of 

6 MODEL EXTENSIONS 

6.1 Solution by Cascade 
Although the difficulties associated with 

solving a large THRUPUT II model can be par- 
tially redressed by the model reduction tech- 
niques just described, ongoing research at the 
Naval Postgraduate School demonstrates that 
THRUPUT II may be solved in a piecemeal 
manner, thus greatly increasing the allowable 
problem size. This section describes that effort. 

Consider how a scheduler would approach 
the 2-MRC scenario. Meticulously optimizing 
all aircraft, loading, and route decisions over 
the entire scenario length is impossible for at 
least two reasons: 1) future uncertainty makes 
gathering accurate data for the latter periods of 
a scenario problematic, and 2) a sufficiently 
long contingency overloads the scheduler's 
ability to reconcile the myriad of decisions. A 
modeler formulating a linear program faces the 
same difficulties, namely incorporating the in- 
creasing problem size with decreasing certainty 
as the length of the scenario grows. For either 
scheduler or modeler, perhaps the most 
straightforward way of dealing with the diffi- 
culties incurred by a large scenario is to focus 
sequentially on a subset of the scenario's peri- 
ods, then move forward in time to a new sub- 
set. This temporal "myopia" degrades the solu- 
tion quality, but makes the problem simpler to 
solve. Moreover THRUPUT II, which is used to 
mimic scheduling but does not produce sched- 
ules, is more "accurate" if it can incorporate the 
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realism of nearsighted scheduling. For exam- 
ple, when choosing fleet size or infrastructure 
for use in future mobility contingencies, THRU- 
PUT II ideally wishes to optimize given the 
current scheduling capabilities, instead of a Uto- 
pian capability. A truly optimal schedule gen- 
erated by THRUPUT II might alter decisions 
made at the outset of a contingency based on 
specific delivery requirements several weeks 
later. This is unrealistic, and can be avoided by 
reducing the ability of the formulation to look 
so far ahead. 

The proximal cascade heuristic applied to 
THRUPUT II proceeds by solving for all vari- 
ables and constraints whose domain is defined 
for the first 20 (for example) periods. Thus mis- 
sions are flown so as to minimize delivery pen- 
alties in the first 20 periods, subject to the con- 
straints applicable in those periods. Then, the 
process is cascaded forward in time to solve for 
a later set of periods. Mathematically, this im- 
plies generating a feasible solution by succes- 
sively solving for only a subset of rows and 
columns, then moving to a set of rows and 
columns corresponding to later time periods. 
Each of these subproblems should overlap the 
previously solved subproblem in order to min- 
imize the end effects caused by the former's 
temporal limitation. Fortunately, this method- 
ology is facilitated by the structure of THRU- 
PUT II. Variables and constraints in this model 
directly affect only nearby time periods. For 
example, missions flown on day 5 of a scenario 
have a large impact on the missions that can be 
flown on day 7, but only a minor impact on the 
missions that can be flown on day 25. This 
characteristic manifests itself as an overlapping 
"staircase" along the main diagonal of an LP's 
constraint coefficient matrix. The width of the 
overlap gives the number of time periods di- 
rectly affected by the decisions (variable levels) 
made in a given time period. The rest of the 
coefficient matrix is relatively sparse, since 
variables (columns) associated with the early 
time periods rarely appear in constraints (rows) 
corresponding to the later time periods. This 
well known methodology is known as either 
the rolling horizon, or proximal cascade heuristic. 
However, the heuristic is sparsely documented, 
and is theoretically incomplete, since no 
scheme to bound the solution quality has been 
offered. 

The quality of the solution produced by the 
proximal cascade heuristic is dependent on many 
scenario specific factors, and cannot be stated 

theoretically for most problems. However, a 
bound on the solution quality may be derived 
by exploiting information derived from this 
heuristic solution. Since a given time period is 
only directly linked to a few adjacent time pe- 
riods, relaxing the rows associated with these 
nearby periods can separate subproblems out 
of an otherwise linked model. As with most 
decompositions however, the success of this 
scheme is dependent on the ability to compute 
accurate prices for resource consumption of the 
relaxed constraints. With such prices, a La- 
grangian penalty can be applied to the sub- 
problems, and a lower bound can be derived. 
Often, price selection is computationally inten- 
sive, which makes Lagrangian methods unde- 
sirable. However, in this case, reasonable prices 
are readily available from the proximal cascade 
heuristic just computed. 

The proximal cascade heuristic offers a way 
to produce a more realistic schedule than an 
unencumbered optimization model. It also 
greatly reduces the tractability problems asso- 
ciated with the large models demanded by mo- 
bility planners. Finally, the cost of scheduling 
myopia may be estimated by solving a series of 
relaxed subproblems. For these reasons, the 
method shows great promise for use with 
THRUPUT II [Baker, 1997]. 

6.2 Incorporating Aircraft Reliability 
Aircraft reliability is an important factor in 

the ability of the airlift system to deliver troops 
and materiel in a timely fashion. The current 
fleet has a mix of planes with differing reliabil- 
ity characteristics. For example, the C-5 re- 
quires unscheduled maintenance on approxi- 
mately 15% of its landings while the rate for the 
newer (and smaller) C-17 fleet is under 7% 
(1994 peace-time data, AMC). Broken aircraft 
reduce the lift capability of the system by re- 
ducing the size of the effective fleet. In addi- 
tion, aircraft requiring unscheduled mainte- 
nance and repairs reduce throughput by 
consuming scarce resources (e.g., maintenance, 
crew-duty hours, ramp space) that might oth- 
erwise contribute to on-time deliveries. 

Simulation models for airlift systems are 
attractive because they can incorporate high 
levels of detail such as tracking individual air- 
craft and incorporating unscheduled mainte- 
nance and repairs. However, simulation mod- 
els typically use naive aircraft routing and 
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scheduling rules; as a result, it is possible to 
provide a simulation model with additional re- 
sources (e.g., more aircraft or routing options) 
and yet have system performance degrade. Lin- 
ear programming models use more aggregate 
representations of the airlift fleet and infra- 
structure and do not incorporate uncertainty. 
However, due to optimal scheduling and rout- 
ing, linear programming models better lend 
themselves to analysis of system bottlenecks by 
providing marginal values on specific re- 
sources, and in some cases, LP models may be 
more appropriate for comparing system perfor- 
mance under different sets of resources. 

A stochastic optimization model for strategic 
airlift combines the ability of a simulation to 
include uncertain aircraft ground times with an 
LP's ability to optimally schedule and route 
aircraft. However, the resulting stochastic opti- 
mization model is typically very large and re- 
quires special-purpose optimization software. 
We have extended the LP model of Section 3 to 
incorporate aircraft reliability [Goggins, 1995]. 
The model is identical to the deterministic 
model except that the ground time GTimeabr 

which appears in the airfield capacity con- 
straint (Section 3.6.5) is replaced with a discrete 
random variable and the modified constraint 
includes an elastic decision variable which al- 
lows the constraint to be violated at a certain 
cost. 

Mathematically, these modifications can be 
summarized as follows. Let w denote a specific 
ground-time scenario (such as a scenario where 
a C-5A breaks, and its repair time is seven 
hours), and let pbi be the probability of observ- 
ing scenario <o for a particular base b and time t. 
GTime™br represents the "effective ground-time" 
spent by aircraft a at base b when flying route r 
under ground time scenario &>, and MOGPenbt 

is the unit penalty for violating the airfield ca- 
pacity at base b in time t. The elastic decision 
variable Rbt 2= 0 denotes the amount by which 
capacity is exceeded at airfield b in time t under 
scenario w. The new airfield capacity con- 
straints and the additional objective function 
term are specified in the following two equa- 
tions. 

The stochastic optimization model has been 
solved for the modest-sized data set in [Lim, 
1994] which has 20 units, seven aircraft types, 
17 airfields, and 30 time periods. Three of the 
seven aircraft were modeled as having random 
ground times (C-5, C-17, and C-141) and we 
assumed each aircraft type breaks indepen- 

Airfield Capacity Constraint when Aircraft 
have Random Ground Times: 

EEE       E 
u      a   r£Ra    t'+ [DTimeabr] = t 

{MOGReqab ■ GTime»hr/24) ■ Xuart> 

+EE     E 
a   r£Rat'+[DTimeabr]=t 

(MOGReqab ■ GTime^/24) ■ Yart, - R& 

<MOGCapbt   \/b,t,u> 

Additional Objective Function Term 
to Discourage Capacity Violations: 

h       t      u> 

dently. Ground times were approximated by 
discrete distributions with 9 realizations for 
each aircraft type, resulting in 93 = 729 realiza- 
tions for each base b and time t combination. 
The resulting stochastic model increases the 
number of airfield capacity constraints by a 
factor of 729 over the deterministic model from 
30 X 17 = 510 to 371790. There are an equal 
number of additional decision variables of type 
Rbt. We solved the stochastic model with a 
Benders' decomposition algorithm. While the 
total number of constraints in the stochastic 
model is greater by a factor of more than 50, the 
increase in running time over the deterministic 
model is a factor of 12 (20 minutes to 100 sec- 
onds on an IBM RS6000 590 workstation) [Gog- 
gins, 1995]. 

Since the linear and stochastic program- 
ming models contain more aggregate represen- 
tations of the airlift system, we examined 
whether the schedules proposed by these opti- 
mization models were "flyable" in a more de- 
tailed simulation. We developed a discrete- 
event stochastic simulation model that took as 
input the output of these mathematical pro- 
grams; specifically, the simulation model at- 
tempts to execute a proposed aircraft routing 
schedule. The strategy of coupling optimization 
and simulation models in this way is very at- 
tractive. Confidence can be gained in the opti- 
mization model as certain parameters are tuned 
(as we describe below) and the performance of 
the simulation can be improved since naive 
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scheduling rules are replaced with those pro- 
posed by an optimization model. 

Our experimental results on the modest- 
sized data set of [Lim, 1994] compared sched- 
ules proposed by the linear and stochastic pro- 
gramming models. During the peak demand 
periods, we observed a 10% increase in cargo 
and troop deliveries when the simulation 
model executed schedules proposed by the sto- 
chastic program. Because the stochastic optimi- 
zation model is larger and more difficult to 
solve (and cannot currently be solved within 
algebraic modeling languages such as GAMS), 
it is desirable to "tune" the deterministic opti- 
mization model so that it yields delivery sched- 
ules that are achievable in the simulation 
model. As described in Section 3.6.5, control- 
ling the "MOG efficiency value" MOGEffis one 
way to achieve this. We empirically determined 
that a MOGEff value of 0.80 gave deterministic 
optimization schedules that were "flyable" in 
the stochastic simulation. 

7 CONCLUSIONS AND ONGOING 
RESEARCH 

THRUPUT II is an optimization model of 
the airlift mobility system that has proven use- 
ful to Air Force analysts in an important acqui- 
sition study. The Air Force analytical commu- 
nity has in the past put much more reliance on 
simulation than on optimization. This is in con- 
trast to civilian industries, such as petroleum, 
electronics, airlines, forestry and many others, 
where optimization is very widely used. 

While we were developing THRUPUT II, a 
similar and concurrent effort was under way at 
the RAND Corporation. The CONOP model of 
[Killingsworth and Melody, 1994] is also a 
GAMS-based, multi-period linear program- 
ming model for airlift optimization. It has some 
features not found in THRUPUT II. In May, 
1996, the NPS and RAND groups started a joint 
effort to develop a new optimization model 
with the best features of both THRUPUT II and 
CONOP. The new model is called the NPS/ 
RAND Mobility Optimizer (NRMO). Among 
NRMO's features that are not modeled in 
THRUPUT II are: 

• The use of tankers for aerial refueling, and 
the facility for some tankers to change roles 
between refueling and cargo hauling. 

• The modeling of shuttle flights and ground 
transportation in theater: some units have 

the option of direct delivery vs. transship- 
ment, and some aircraft have the option of 
changing roles between strategic carriers and 
shuttlers. 

• Detailed flow balance and utilization con- 
straints for crews. 

• The modeling of recovery bases, so that air- 
craft arriving in theater have the option of 
receiving services and crew changes at some 
other airfield besides the MRC's main port of 
debarkation. 

The NRMO model is currently in use in a 
study of airfield infrastructure and in a large 
Pacific scenario. The detailed formulation of 
NRMO and the results of these studies will be 
given in a future report [Melody et al., 1996]. 
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ERRATUM: BENCHMARKING AND EFFICIENT PROGRAM DELIVERY 
FOR THE DEPARTMENT OF DEFENSE'S BUSINESS-LIKE ACTIVITIES 

In the article "Benchmarking and Efficient Program Delivery for the Department of Defense's 
Business-like Activities" that appeared in the Spring 1996 issue of Military Operations Research there 
is an error in the DEA model (2) presented on page 24. The formulation as it appears in the article 
is as follows: 

maximize hn 

usS0 
10     vwyWY0 + vsqftSQFT0 + vapfAPF0 

 U£l         Ußj,  
subject to: ^^ + V^SQFTI + VapfAPF1     vwyWY2 + vsqftSQFT2 + vapfAPF2 

+  . 
vwyWY237 + vsqftSQFT237 + vapfAPF237 

<1 

vwyWY0 + vsqftSQFT0 + vapfAPF0 
s e 

'wy 
3i e 

s e 

vayWY0 + vsqftSQFTQ + vapfAPFQ 

 V_?tf_  
vwyWY0 + vsqftSQFT0 + vavfAPF0 
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This formulation shows each ratio of weighted outputs to weighted inputs to be summed and 
that the sum must be less than or equal to one. This is incorrect. The correct formulation is to have 
each ratio to be less than or equal to one. Following is the corrected model (2) as it should have 
appeared in the article. 
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In the corrected model there would be 241 constraints—one for each commissary (237 commis- 
saries) plus one for each output and input variable. In the incorrect model that appeared in the article 
there would have been only five constraints. 

I would like to note that the error did not affect the results of the research presented in the article. 
The model as used in the actual analysis was correct. Only the presentation of the model in the paper 
was incorrect. 

I would like to thank Major Greg Hoscheit of the Army Recruiting Command for noticing the 
error and pointing it out. 
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