
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

2012

An element-based spectrally-optimized

approximate inverse preconditioner for

the Euler equations

Carr, L.E. III

http://hdl.handle.net/10945/38323

AN ELEMENT-BASED SPECTRALLY-OPTIMIZED APPROXIMATE INVERSE
PRECONDITIONER FOR THE EULER EQUATIONS

L.E. CARR III , C.F. BORGES , AND F.X. GIRALDO ∗

Abstract. We introduce a method for constructing an element-by-element sparse approximate inverse (SAI)
preconditioner designed to be effective in a massively-parallel spectral element modeling environment involving non-
symmetric systems. This new preconditioning approach is based on a spectral optimization of a low-resolution pre-
conditioned system matrix (PSM). We show that the local preconditioning matrices obtained via this element-based,
spectrum-optimized (EBSO) approach may be applied to arbitrarily high-resolution versions of the same system matrix
without appreciable loss of preconditioner performance. We demonstrate the performance of the EBSO precondition-
ing approach using 2-D spectral element method (SEM) formulations for a simple linear conservation law and for
the fully-compressible 2-D Euler equations with various boundary conditions. For the latter model running at suffi-
ciently large Courant number, the EBSO preconditioner significantly reduces both iteration count and wall-clock time
regardless of whether a generalized minimum residual (GMRES) or a stabilized biconjugate gradient (BICGSTAB)
iterative scheme is employed. To assess the value added by this new preconditioning approach, we compare its perfor-
mance against two other equally-parallel SAI preconditioning methods: low-order Chebyshev generalized least-squares
polynomials and an element-based variant of the well-known Frobenius norm optimization preconditioner which we
also develop herein. The EBSO preconditioner significantly out-performs both the Chebyshev polynomials and the
element-based Frobenius-norm-optimized (EBFO) preconditioner regardless of whether the GMRES or BICGSTAB
iterative scheme is employed. Moreover, when the EBSO preconditioner is combined with the Chebyshev polynomial
method dramatic reductions in iterations per time-step can be achieved while still achieving a significant reduction in
wall-clock time.

Key words. preconditioning; sparse approximate inverse; element-based; spectral elements; Galerkin methods;
Euler Equations; nonhydrostatic atmospheric model

AMS subject classifications. 65M60, 65M70, 35L65, 86A10

1. Introduction.

1.1. Modeling Context and Preconditioner Requirements. A recent paper by Giraldo
et al. [7] studies a number of semi-implicit (i.e., implicit-explicit, hereafter IMEX) spectral element
(SE) formulations of the compressible Navier Stokes equations with a view towards application to
operational nonhydrostatic atmospheric modeling over both regional and global domains [9]. The
combination of the high-resolution associated with nonhydrostatic modeling and the large domain
size associated with global modeling requires as many as O(107) elements and Ng = O(109) grid
points (nodes). As a result, at each time-step in the IMEX time integration process there is a need
to iteratively solve a very large, but sparse, linear system of the form

Aqn+1 = R(qn), (1.1)

where q is a state vector, R is a right-hand side operator, and the matrix A is fixed, square, invertible,
nonsymmetric and in general has a complex eigenspectrum.1 As discussed in [7, 9], at a minimum
the size of A is Ng ×Ng if a Schur form is derived for A, and at worst the size of A is 4Ng × 4Ng
for 2-D modeling and 5Ng × 5Ng for 3-D modeling if A is left in the non-Schur form.

The combination of very large (and increasing) system sizes and the hard wall-clock time con-
straints imposed on operational atmospheric prediction models (run every 6 hours with typically less
than an hour allotted to the time integration phase) has not only necessitated parallel processing for
some years, but also is rapidly heading into the realm of massively parallel processing. For example,
the development work on the explicitly integrated Nonhydrostatic Unified Model of the Atmosphere
(NUMA) reported in [9] is currently approaching O(105) processors.

The motivation for pursuing the IMEX approach to solve such a challenging problem is that
IMEX methods permit time-steps that can be as much as 100 times (or more) the maximum allowable
explicit time-step. As a result, IMEX-based models can actually run faster than explicit models

∗Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA
1The real spectra shown in Fig. 4.5 of [7] is a special case arising from the combination of using identical square

elements and a Schur form for A. The Schur form eigenspectrum becomes complex when other element geometries
are employed, and the non-Schur form always possesses a complex spectrum.

1

2 L.E. Carr, C.F. Borges and F.X. Giraldo

provided that the number of iterations needed to solve Eq. (1.1) is kept under control by a sufficiently
effective preconditioner.

To summarize the preconditioned iterative approach to solving Eq. (1.1) at each time-step in
the model integration, we first rewrite Eq. (1.1) using the standard symbology

Ax = b, (1.2)

and then proceed to obtain its solution by instead solving either the equivalent left-preconditioned
system

(KA)x = Kb (1.3)

or equivalent right-preconditioned system

(AK)y = b (1.4a)

Ky = x (1.4b)

or sometimes a combination of the above two approaches.
In general, the large variety of preconditioning methods in existence can be divided into two

classes that have been described as explicit and implicit [4, p. 970]. If explicit preconditioning is
used, then K is a sparse matrix that is designed to approximate A−1 in some sense, and thus is often
called a sparse approximate inverse (SAI). In this case, application of the preconditioner during the
iterative solution process involves only matrix-vector products, which in general tends to be more
amenable to parallel implementation. On the other hand, if implicit preconditioning is being used,
then K = M−1, where M is a sparse matrix that approximates A. In this case, Eq. (1.4a) becomes

A(M−1y) = b, (1.5)

where to calculate the parenthetical expression during the iterative process we instead solve the
sparse system

M ỹ = y. (1.6)

Strategies to efficiently solve Eq. (1.6) involve various factoring methods such as incomplete LU
(ILU) [2] and various multigrid methods [15], which can be made highly parallel, but compared to
matrix-vector products represent a more challenging and complex problem.

If we define the residual vector associated with the ith approximate solution to Eq. (1.2) to be

ri = b−Axi, (1.7)

then an important distinction between Eq. (1.3) and (1.4) is that the stopping criterion for a left-
preconditioned algorithm is based on ||Kr|| as opposed to ||r|| for a right-preconditioned algorithm.
Thus, if K is ill-conditioned, then the magnitude of ||x − xi|| obtained via a left-preconditioning
algorithm may not be accurately reflected by the magnitude of ||Kri||. Conversely, if the condition
number of K is small, as is the case for problems solved in this paper, then either Eq. (1.3) or
Eq. (1.4) can be used, and the choice of which to use simply depends on what works best for a
particular problem [12, p. 272]. The results shown in Section 5 are for a left EBSO preconditioner
(and comparison preconditioners) since we have found that left-preconditioning provides the best
results for the modeling problems addressed herein.

Given the above modeling context, an effective preconditioned iterative approach to solving Eq.
(1.1) must meet the following general requirements:

1. The iterative scheme must be able to handle a system matrix A that is non-symmetric with
potentially a complex spectrum.

2. The preconditioner must have an application cost that is low in relation to the effectiveness
of the preconditioner in reducing the number of iterations so that the wall-clock time for

An Element-Based, Spectrally-Optimized Preconditioner 3

the preconditioned model is significantly smaller than for the unpreconditioned model.2

Ideally this net speed up should occur when running the model in serial mode (i.e., before
parallelization is considered).

3. The preconditioner must provide no barrier to iterative method scalability in a massively
parallel computing environment involving potentially millions of processors.

4. The preconditioner should preferably be based on the same SE-based parallelism employed
when operating on a vector by the system matrix A to facilitate the simplest and maximally
parallel implementation possible.3

1.2. Paper Format. Having laid out the modeling context of our preconditioning problem,
the format of the remainder of the paper is as follows. In Section 2 we briefly survey the basic
types of iterative methods and preconditioners currently available, and identify those suitable for
our purposes. In particular we describe the preconditioners we will use both as baselines for assessing
EBSO performance, and in one case for combining with the EBSO preconditioner to enhance its
performance. In Section 3 we provide the mathematical basis for the particular global structure of
the matrix K employed in the EBSO preconditioning approach, and in Section 4 we describe the
process by which the local matrices of the EBSO and EBFO preconditioners are actually computed.
In Section 5 we illustrate and analyze the results of applying the EBSO preconditioning approach
to both a linear 2-D conservation law and a 2-D version of NUMA run in serial mode. Section 6
concludes the paper with a summary and outline of planned future work in this area.

2. Iterative Methods and Comparison Preconditioners.

2.1. Iterative Methods. Criterion 1 in the list in Section 1.1 above rules out the use of
the highly efficient conjugate gradient (CG) method, for which convergence is guaranteed only if
the matrix is symmetric positive definite (SPD). The results we show in this paper are based on
both the generalized minimum residual (GMRES) scheme [13] based on the Arnoldi process [12,
p. 165] and the transpose-free, stabilized biconjugate gradient (BICGSTAB) scheme [16] based on
the Lanczos process [12, p. 234]. GMRES applies the system matrix once per iteration, whereas
transpose-free BICGSTAB applies the system matrix twice. By contrast, if n is the number of
iterations, then the number of dot-products performed by GMRES is n2/2, as opposed to 6n for
BICGSTAB. Thus, in general which method will perform better depends on the particular problem.
Other things being equal, problems with a relatively large system size and relatively small number
of iterations should tend to favor GMRES. By contrast, relatively small system size and a larger
number of iterations would favor BICGSTAB, especially as the processor count increases due to the
increasing communication penalty for each dot product.

2.2. Comparison Preconditioners. Before turning to the explicit preconditioners discussed
below, we should make brief mention of why, at least in our current work, we are excluding con-
sideration of implicit preconditioners. The justification is basically pragmatic. Per Criteria 3 and
4 above, the explicit preconditioners we consider are more naturally parallel and very simple to
implement in a SE modeling environment. By contrast, efficient parallel implementation of implicit
preconditioners requires considerably more effort and sophistication as discussed at length in [2, 12].
Although ILU methods in particular can be very powerful in serial computing, and have been shown
to scale up to several hundred processors [2], whether they can be scalable in massively parallel
computing environments remains to be seen. Since we are able to obtain considerable performance
improvements with simple-to-implement explicit preconditioners, deferring consideration of implicit
methods seems justified for the time being.

2Ironically, the need for a low application cost is contrasted by a loose constraint on the initial set-up or construc-
tion cost of a preconditioner to be used in our modeling problem. A potentially high construction cost is acceptable
because the same preconditioner can be used not only in hundreds of time-steps in each model run, but also for
potentially years-worth of runs in a particular version of an operational weather model (typically run four times a
day).

3Preconditioners that may be simply implemented are particularly desirable in atmospheric prediction systems
which already involve highly complex and massive code structures. Preconditioners requiring more complex parallel
implementation schemes should be considered only if necessary to achieve adequate performance.

4 L.E. Carr, C.F. Borges and F.X. Giraldo

2.2.1. Polynomial Preconditioners. The polynomial preconditioner concept is an old idea
that continues to find application [10, 11], and a concise summary of the pros and cons of the
approach can be found in [5, p. 306]. Because all such preconditioners consist of a polynomial
of the system matrix A and preconditioner application involves only matrix-vector products, they
have the advantage of being very amenable to parallel implementation. In the case of a spectral
element modeling environment, the advantage becomes considerable since any polynomial in A is
itself element-based, which means it can be implemented using precisely the same highly parallel
approach used to apply the system matrix. Moreover, polynomial preconditioners have a virtually
non-existent storage requirement (i.e., a few scalars).

The principal disadvantages are that:

1. These preconditioners usually do not perform well on matrices with complex spectra.
2. Even for system matrices with real spectra the reduction in iterations is usually offset by

the cost of application.
3. Prior knowledge of the spectrum of A is necessary.

With regard to disadvantages 1) and 2), we will later show that a polynomial preconditioner
can perform exceedingly well when combined with the EBSO preconditioner (which creates a KA
with a complex spectrum), significantly reducing both number of iterations and wall-clock time. As
discussed in [12, p. 383, 387], disadvantage 3) means that for problems that are solved only once the
polynomial preconditioner must be embedded in a Krylov space method such as GMRES and not
used in the iterative process until the spectrum of A can be estimated by using the QR method for
finding the extremal eigenvalues of the Hessenberg matrix generated as part of the Arnoldi process
[14]. This requirement normally makes effective implementation of polynomial preconditioners a
significant challenge. However, in an atmospheric IMEX model the structure of A is fixed, and
thus we have the luxury of estimating the spectrum of A to whatever accuracy we need prior to
commencing the time integration of the model. Having explained how we will overcome principal
disadvantages, we now explain the particular polynomial preconditioner we will employ.

As mentioned earlier, all SAI preconditioning methods seek to create a sparse matrix K such
that K ≈ A−1. For example, if the spectrum of A lies on the real interval [λmin, λmax] where
λmin > 0 (as is the case for the Schur form matrices employed in [7]), then the spectrum of A−1 lies
on the interval [1/λmax, 1/λmin]. In view of this fact, it is desirable that an explicit preconditioner
K have a spectrum that is distributed over the interval [1/λmax, 1/λmin] in a manner similar to
A−1. Least-squares polynomial preconditioners attempt to satisfy this criterion by specifying that
K be a kth-order polynomial in A

K = s(A) =

k∑
i=0

ciA
i, (2.1)

so that the left preconditioned system in Eq. (1.3) becomes

s(A)Ax = s(A)b, (2.2)

and then requiring s(A) to satisfy the optimization problem

s() = min ‖1− λs(λ)‖w ‖p(λ)‖w ≡
∫
E

p 2(λ)w(λ)dλ, (2.3)

where w(λ) is a weighting function that is nonnegative over region E on the complex plane, and E
encloses the spectrum of A (e.g., E = [λmin, λmax] if the spectrum of A is real).

If we temporarily assume that λmin = 0 and λmax = 1 and require the weighting function to
have the form

w(λ) = λµ−1(1− λ)ν , (2.4)

and further specify that µ = 1
2 and ν = − 1

2 , then the polynomial s(λ) can be assembled recursively
from Chebyshev polynomials of the first kind as explained in Saad [12, p. 383-5]. These polynomials

An Element-Based, Spectrally-Optimized Preconditioner 5

c0 c1 c2 c3 c4 c5
s1 5 -2
s2 14 -14 4
s3 30 -54 36 -8
s4 55 -154 176 -88 16
s5 91 -364 624 -520 208 -32

Table I
Coefficient values for the first five Chebyshev-based polynomial preconditioners when the spectrum of the system

matrix lies within the real interval [0, 2].

can then be rescaled to apply to the interval [0, λmax] for arbitrary real λmax > 0 by replacing λ
with 4λ/λmax. For reasons explained in the next paragraph, we have chosen to let λmax = 2, which
results in the polynomial coefficients shown in Table I.

We then accurately estimate the extremal real eigenvalues λmin and λmax of a Schur form A
using the Arnoldi process to create a Hessenberg matrix4, whose eigenvalues are then determined via
the QR algorithm. Once we have the extremal eigenvalues of A, we can then compute the mid-point
value

λ̃ =
λmax + λmin

2
, (2.5)

which may then be used to define the scaling transformations

A = λ̃Ã b = λ̃b̃, (2.6)

where the scaled system matrix Ã now has a spectrum that lies centered in the interval [0, 2].
Substituting Eq. (2.6) into Eq. (2.2) results in the equivalent preconditioned system

s(Ã)Ãx = s(Ã)b̃,

for which the coefficients in Table I are applicable regardless of the values of λmin and λmax for any
particular Schur form system matrix.

Before concluding this section, we emphasize that use of the above-described Chebyshev poly-
nomial preconditioner is not strictly confined to matrices with real spectra. Chebyshev polynomial
preconditioners can be constructed for non-symmetric system matrices with complex spectra as
discussed in [12, p. 386]. In Section 5.2 we show that the preconditioners constructed using the
coefficients in Table I are quite effective for system matrices KA, where K is the EBSO precondi-
tioner, which exhibit complex spectra confined to a highly elliptical region with a semi-major axis
that lies along the real interval [0, 2].5

2.2.2. Frobenius Norm Optimization (FNO) Preconditioners. As discussed in [4, 5, 8],
what we are terming a FNO preconditioner is the solution to linear least-squares optimization
problems

K = min
K∈S
‖I −KA‖F or K = min

K∈S
‖I −AK‖F , (2.7)

depending on whether a left or right preconditioner is to be constructed. The set S consists of all
matrices of some user-specified sparsity pattern, which is usually based on the sparsity pattern of A.

Notice that whereas least-squares polynomial preconditioners based on Eq. (2.3) attempt to
make the spectrum of the preconditioned system matrix (PSM) similar to I in a spectral sense, the
FNO method instead attempts to make the PSM similar to I in an entry-by-entry sense. Despite

4The size of the matrix needed varies with Courant No. (i.e., time-step). Via some experimentation we have
found that 300× 300 is sufficient to ensure that λmin and λmax are accurate to 1 percent for Courant Nos. ≤ 32.

5In this case, Eq. (2.5) is replaced with λ̃ = (|λmin| + |λmax|)/2, where |λmin| and |λmax| are the smallest and
largest moduli of the spectrum of KA.

6 L.E. Carr, C.F. Borges and F.X. Giraldo

this indirect approach, the spectrum of an FNO-derived PSM (computable for smaller test systems)
typically exhibits a tighter grouping around (1,0) on the complex plane than does the spectrum
of A itself and accelerates iterative method convergence. Although Eq. (2.7) represents a global
optimization problem, it can be recast into a set of Ng independent linear least-squares problems
[5, p. 308] that can be solved by direct (i.e., QR) or iterative means [12, p. 323]. Via such methods
the entries of K are determined in a column-by-column fashion: a process which is amenable to
parallelization, and thus makes FNO preconditioner construction tractable for very large systems.

Various strategies exist for parallel implementation of the FNO preconditioner when the sparsity
pattern is based on the system matrix A. However, to exploit the highly parallel nature of the SE
modeling environment, we show in Section 4.2 how an element-based FNO preconditioner (EBFO)
can be constructed provided that we replace the sparsity pattern of A with another sparsity pattern
that naturally arises during the so-called direct stiffness summation (DSS) process that is an inherent
part of SE modeling and is discussed in detail in Section 3.2.

3. EBSO Preconditioner Development.

3.1. Overview of EBSO Preconditioner Concept. Recall from Section 2.2.1 that polyno-
mial preconditioners are solutions to the optimization problem (2.3), which is based on a weighted
L2 norm. The key idea underlying the EBSO preconditioning approach is to replace (2.3) with the
optimization problem

K = min
K∈S
‖σ(I)− σ(KA)‖p,w , (3.1)

where:

* S is the set of matrices satisfying some user-specified sparsity pattern,
* σ is a vector-valued function whose components are the eigenvalues of the argument,
* subscript p denotes a modified form of a Euclidean p-norm,
* subscript w represents an imaginary-component weighting factor that is unrelated to the

weighting function seen in Eq. (2.3).

The details of p-norm modification and the purpose of the factor w are explained in Section 4.1. For
a large A associated with typical operational models, the above problem is intractable as it stands.
However, we can transform Eq. (3.1) into a tractable non-linear least squares (NLLS) problem via
the following set of observations and assumptions.

Firstly, as in all SE formulations, the global system matrix A is effectively assembled from local
element matrices as indicated by the notation

A =

Ne∧
e=1

Ae (3.2)

where Ne is the number of elements and
∧

denotes the usual DSS required by all continuous element-
based Galerkin methods. Secondly, based on the observation that in certain types of SE problems
many of the Ae matrices have related or even identical entries (e.g., when all elements are the same
size and shape), we now assume that a useful global preconditioner K also might be assembled via

K =

Ne∧
e=1

Ke (3.3)

where large groups of the elemental matrices Ke’s are identical. In fact, in the case of a two-
dimensional model, we will see that a highly effective global K can be assembled from as few
as three unique Ke matrices. By substituting Eqs. (3.2) and (3.3) into Eq. (3.1) we obtain the
optimization problem

min
K∈S

∥∥∥∥∥σ(I)− σ

([
Ne∧
e=1

Ke

][
Ne∧
e=1

Ae

])∥∥∥∥∥
p,w

(3.4)

An Element-Based, Spectrally-Optimized Preconditioner 7

where the output of the optimization process is a few small matrices that determine K via Eq. (3.3).
Computationally speaking, Eq. (3.4) is a significant improvement over Eq. (3.1), since the unknowns
we are seeking are the optimal entries for a few small (but potentially full) matrices rather than all
the non-zero entries of a global K.

Despite being an improvement over Eq. (3.1), solving Eq. (3.4) is still intractable for large A
since it requires us to repeatedly compute the complete spectrum of the global matrix KA inside
some NLLS algorithm. The solution to this problem is our observation that:

• if we reduce Ne to a tractable size (e.g., Ne = 25) so that a Ke matrix set can be created
for a low-resolution version of a SE problem

• then we can utilize the same Ke matrix set for a high-resolution version of our SE problem
(e.g., a 1000-fold increase in Ne) without appreciable loss of preconditioner performance.

3.2. EBSO Preconditioner Structure Formulation.

3.2.1. 1-D Analysis. The rationale for the chosen structure of the EBSO preconditioner is
most clearly demonstrated within the context of using the SE method combined with implicit time-
integration to solve a simple 2-D linear conservation law. For reasons that will become clear, we
begin with the 1-D linear conservation law

∂q

∂t
+ c

∂q

∂x
= 0 x ∈ Ω (3.5)

where for our purposes here we can set the basic state advective speed c to unity without any loss
of generality. As in all SE formulations, we assume that the domain Ω is composed of elements

Ω =

Ne⋃
e=1

Ω(e) (3.6)

and that the physical coordinate (x) and a standard reference coordinate (ξ) are related by the
invertible mapping

x = fe(ξ) ξ ∈ [−1,+1]. (3.7)

If we focus on the eth element and recall that c = 1, then Eq. (3.5) becomes

∂q

∂t
+
∂q

∂x
= 0 x ∈ Ω(e). (3.8)

Using an N th order Lagrange polynomial basis

{φj(x)}N+1
j=1

we can express q(x, t) as

q(x, t) =

N+1∑
j=1

qj(t)φj(x) + εq(x, t) (3.9)

where εq is a residual function arising from approximating q(x, t) using a finite set of basis functions.
Substituting Eq. (3.9) into (3.8) results in

N+1∑
j=1

dqj
dt
φj +

N+1∑
j=1

qj
dφj
dx

= −∂εq
∂t
− ∂εq
∂x
≡ ε(x, t). (3.10)

Next, we multiply Eq. (3.10) by any one of the basis functions (i.e., test function) and integrate over
the element domain

N+1∑
j=1

(∫
Ω(e)

φiφjdx

)
dqj
dt

+

N+1∑
j=1

(∫
Ω(e)

φiφ
′
jdx

)
qj =

∫
Ω(e)

φiεdx i = 1, . . . , N (3.11)

8 L.E. Carr, C.F. Borges and F.X. Giraldo

where φ′ denotes the derivative of φ with respect to x. If we now require the residual function ε to
be orthogonal to the space spanned by the Lagrange polynomial set, then using matrix notation Eq.
(3.11) becomes the normal system

Me
1

dq

dt
+De

1q = 0 (3.12)

where the mass matrix (Me
1), differentiation matrix (De

1), and state vector q are given by

Me
1 =

∫
Ω(e)

φiφjdx (3.13a)

De
1 =

∫
Ω(e)

φiφ
′
jdx (3.13b)

q = [q1 · · · qN+1]
T
.

The subscript “1” on the left-hand sides of Eq. (3.13) denotes that the matrices are associated with
a 1-D SE formulation, and are needed to distinguish these matrices from their 2-D counterparts that
appear later. Integral formulas equivalent to Eq. (3.13), but expressed with respect to the element
reference coordinate, are

Me
1 =

∫ +1

−1

φi(ξ)φj(ξ)J
e(ξ)dξ (3.14a)

De
1 =

∫ +1

−1

φi(ξ)φ
′
j(ξ)dξ (3.14b)

where Je(ξ) represents the Jacobian

Je(ξ) =
d

dξ
fe(ξ)

and φ′ now represents the derivative of φ with respect to ξ.
In general, the Jacobian is a non-linear function of ξ. However, if there is an affine relationship

between the physical and reference coordinates system variables, then the Jacobian is a constant for
each element and is simply the ratio of the physical and reference coordinate domains of the element

Je =
∆xe

2
∆xe = length

(
Ω(e)

)
.

In such a case, Eqs. (3.14) can be written

Me
1 = JeM1 (3.15a)

M1 =

∫ +1

−1

φiφjdξ (3.15b)

De
1 = D1 (3.16a)

D1 =

∫ +1

−1

φiφ
′
jdξ (3.16b)

where M1 and D1 are the mass and differentiation matrices for the 1-D reference element, respec-
tively. From Eq. (3.15) it is clear that for a constant Jacobian the mass matrix of each element is
just the reference mass matrix scaled by the Jacobian for that element. From Eq. (3.16a) it is clear
that every element differentiation matrix is identical to the reference element differentiation matrix
since the Jacobian is absent in Eq. (3.14b). These properties will have important implications later
on.

An Element-Based, Spectrally-Optimized Preconditioner 9

Whereas Eq. (3.12) applies to a single element, the analogous form that is defined globally on
the domain Ω is

M
dq

dt
+Dq = 0

where the global mass and differentiation matrices are obtained via the DSS operations

M =

Ne∧
e=1

Me
1 =

Ne∧
e=1

JeM1 D =

Ne∧
e=1

De
1 =

Ne∧
e=1

D1.

3.2.2. 2-D Analysis. With the above 1-D analysis in mind, we now consider the 2-D linearized
conservation law analogous to Eq. (3.5), which is

∂q

∂t
+
∂q

∂x
+
∂q

∂y
= 0 (x, y) ∈ Ω. (3.17)

In general, the relationships between the global and elemental domains and the associated physical
and reference coordinate systems are given by Eq. (3.6) and

x = fe(ξ, η) y = ge(ξ, η) ξ, η ∈ [−1,+1] (3.18)

Je(ξ, η) =

∣∣∣∣∂fe∂ξ ∂ge∂η − ∂ge
∂ξ

∂fe
∂η

∣∣∣∣ . (3.19)

However, if all elements are rectangular and the physical and reference coordinate systems are again
related in an affine manner, then Eqs. (3.18) and (3.19) simplify to

x = fe(ξ) y = ge(η)

Je(ξ, η) =

∣∣∣∣∂fe∂ξ ∂ge∂η
∣∣∣∣ =

∆xe

2

∆ye

2
= JexJ

e
y

where the product of the two Jacobians is simply the ratio of the element area in the physical and
reference coordinate systems.

If we again focus on the eth element, then Eq. (3.17) becomes

∂q

∂t
+
∂q

∂x
+
∂q

∂y
= 0 (x, y) ∈ Ω(e). (3.20)

We now define a N2-member multivariate basis

{ψk(x, y)}N2

k=1

and expand q(x, y, t) in terms of these 2-D basis functions

q(x, y, t) =

N2∑
k=1

qk(t)ψk(x, y) + εq(x, y, t) (3.21)

where again eq is a residual function. Substituting Eq. (3.21) into (3.20) results in

N2∑
k=1

dqk
dt
ψk +

N2∑
k=1

qk
∂ψk
∂x

+

N2∑
k=1

qk
∂ψk
∂y

= −(εq)t − (εq)x − (εq)y ≡ ε(x, y, t). (3.22)

As in the 1-D example, we now multiply Eq. (3.22) by any one of the 2-D basis functions
and integrate over the element domain, and require the residual to be orthogonal to all the basis
functions. The resulting equation set, expressed in matrix notation, is

Me
2

dq

dt
+De,x

2 q +De,y
2 q = 0 (3.23)

10 L.E. Carr, C.F. Borges and F.X. Giraldo

where the 2-D element mass matrix and differentiation matrices are

Me
2 =

∫
Ωe

ψlψkdxdy (3.24a)

De,x
2 =

∫
Ω(e)

ψl(ψk)xdxdy (3.24b)

De,y
2 =

∫
Ω(e)

ψl(ψk)ydxdy (3.24c)

with k, l = 1, . . . N2.

In order to make use of our earlier 1-D analysis, we rewrite the above matrices for the 2-D
conservation law in terms of the matrices for the 1-D conservation law by

• requiring the number of 2-D basis functions N2 to be (N + 1)2,

• writing the 1-D basis functions in terms of the vector φ(x) = [φ1(x) · · · φN+1(x)]
T

• equating each 2-D basis function with the appropriate entry of the outer product of φ with
itself via a column-wise bijective rule for associating the index k with the indices i and j: ψk=1 · · · ψN(N+1)+1

↓ · · · ↓
ψN+1 · · · ψ(N+1)2

 =

 φi=1(x)φj=1(y) · · · φ1(x)φN+1(y)
...

. . .
...

φN+1(x)φ1(y) · · · φN+1(x)φN+1(y)

 .
It will be convenient to represent the above basis-function-association rule using the concise notations

ψk = (φiφj)k = (φi)k (φj)k (3.25)

where

• the value of the outer index k determines the values of the inner indices i and j
• the index i implies that φ depends on x
• the index j implies that φ depends on y.

Substituting Eq. (3.25) into (3.24) and exploiting the fact that the double integrals are separable
gives:

Me
2 =

∫
Ω(e)

(φi)k(φi)ldx

∫
Ω(e)

(φj)k(φj)ldy (3.26a)

De,x
2 =

∫
Ω(e)

(φi)k(φ′i)ldx

∫
Ω(e)

(φj)k(φj)ldy (3.26b)

De,y
2 =

∫
Ω(e)

(φi)k(φi)ldx

∫
Ω(e)

(φj)k(φ′j)ldy (3.26c)

where k, l = 1, . . . , (N + 1)2.

Comparing the right hand sides of Eq. (3.26) with Eq. (3.13) reveals that all entries in the 2-D
element mass and differentiation matrices are Kronecker products of the 1-D mass and differentiation
matrices, which we denote by

Me
2 = Me

1 ⊗Me
1 De,x

2 = De
1 ⊗Me

1 De,y
2 = Me

1 ⊗De
1. (3.27)

By making use of Eq. (3.15a) and (3.16a), we can re-express Eq. (3.27) in terms of the 1-D reference
mass and differentiation matrices

Me
2 = JexJ

e
y

(
M1 ⊗M1

)
(3.28a)

De,x
2 = Jey

(
D1 ⊗M1

)
(3.28b)

De,y
2 = Jex

(
M1 ⊗D1

)
. (3.28c)

An Element-Based, Spectrally-Optimized Preconditioner 11

Note that whereas Eq. (3.23) applies to a single element, the analogous form that is defined
globally on the domain Ω is

M
dq

dt
+ (Dx +Dy) q = 0 (3.29)

where the global mass and differentiation matrices above are obtained via the assembly operations

M =

Ne∧
e=1

Me
2 (3.30a)

Dx =

Ne∧
e=1

De,x
2 (3.30b)

Dy =

Ne∧
e=1

De,y
2 (3.30c)

or equivalently, after substituting Eq. (3.28) into Eq. (3.30)

M =

Ne∧
e=1

JexJ
e
y

(
M1 ⊗M1

)
Dx =

Ne∧
e=1

Jey
(
D1 ⊗M1

)
Dy =

Ne∧
e=1

Jex
(
M1 ⊗D1

)
. (3.31)

The last step toward identifying the desired structure of the EBSO preconditioner is to discretize
Eq. (3.29) in time using a simple two-level implicit time differencing scheme:

M
qm+1 − qm

∆t
+ (Dx +Dy)

(
αqm + βqm+1

)
= 0 (3.32)

where α+ β = 1. Solving Eq. (3.32) for the unknown state vector gives us

[M + β∆t (Dx +Dy)] qm+1 = [M − α∆t (Dx +Dy)] qm (3.33)

which has the form of the standard Ax = b matrix equation with

A = [M + β∆t (Dx +Dy)] (3.34a)

b = [M − α∆t (Dx +Dy)] qm. (3.34b)

Combining Eq. (3.34a) with (3.31), we can express the global system matrix A as

A =

Ne∧
e=1

[
JexJ

e
y

(
M1 ⊗M1

)
+ β∆tJey

(
D1 ⊗M1

)
+ β∆tJex

(
M1 ⊗D1

)]
(3.35)

where we see that the global system matrix A is an assemblage of Kronecker products of local
1-D reference mass and differentiation matrices that have been scaled by the Jacobians relating
the physical and reference variable coordinate systems. Notice in particular that for a given grid
structure (which determines the Jacobians) and a fixed time-step ∆t the structure of the system
matrix A is fixed, and thus does not change throughout the course of the model time integration
phase. Furthermore, the Schur form system matrix employed in both the 2-D and 3-D versions of
NUMA has the exact same structure since it is a second order operator involving two applications
of the DSS process. The point here is that the preconditioning strategy we develop for the 2-D
problem can be directly applied to 3-D.

Based on the structure of the system matrix A that we see in Eq. (3.35), we will now assume
that a global preconditioner K constructed according to the rule

K =

Ne∧
e=1

JexJ
e
y

(
K1 ⊗K1

)
, (3.36)

will have the potential to be an effective preconditioner for accelerating the iterative solution to Eq.
(3.33). We emphasize here that K1 is in principle a single small and local preconditioner matrix
analogous to M1 in Eq. (3.31), and thus is distinctly different from the existing implicit element-
by-element (EBE) preconditioning approach in which the local preconditioner matrix is necessarily
different for every element [1, 12, 17].

12 L.E. Carr, C.F. Borges and F.X. Giraldo

4. EBSO and EBFO Preconditioner Construction and Application.

4.1. EBSO Preconditioner. In this initial investigation into the EBSO preconditioning ap-
proach we will restrict our focus to cases in which all domain elements are of equal size. Under
this restriction the Jacobian factors in Eq. (3.36) are the same for all elements, and scale all entries
(and thus all eigenvalues) of the global preconditioner K to the same degree. As a result, we can
incorporate the Jacobian factors into the reference matrices in Eq. (3.36) and assemble a functionally
equivalent global preconditioner according to the rule

K =

Ne∧
e=1

(K1 ⊗K1) . (4.1)

We now turn our attention in the next section to the scheme for computing and applying the set of
K1 matrices.

Here we assume that some combination of SE spatial discretization and IMEX time differencing
generates the need to iteratively solve the left preconditioned matrix equation

KAqm+1 = Kb (4.2)

where the global system matrix A and global preconditioner K are assembled according to Eqs.
(3.35) and (4.1), respectively. Based on the structure of K as specified by Eq. (4.1), the spectral
optimization problem (3.1) now takes the form:

K1 = min
K∈S
‖σ(I)− σ(KA)‖p,w (4.3)

where, were it not for the presence of boundary conditions, a single local K1 matrix could con-
ceivably be used to construct the global preconditioner K. However, since we must contend with
the effect of boundary conditions on the global system matrix A, we must include a way to let the
structure of the preconditioner K vary in response to boundary conditions, while at the same time
keeping the number of independent variables to be computed to a manageable number. Via some
experimentation we have found that a feasible strategy is to limit the number of unique local K
matrices to three using the element-based assignment rule

K1 =

 KI if element e is in the domain interior

KS if element e includes a domain side

KC if element e includes a domain corner

. (4.4)

We have found that this strategy gives sufficient degrees of freedom for handling not only the same
boundary condition on all sides of the domain, but also various combinations such as no-flux on the
top and bottom and periodic on the left and right sides.6 As a result of assignment rule (4.4), Eq.
(4.3) is transformed into

{KI ,KS ,KC} = min
K∈S
‖σ(I)− σ(KA)‖p,w . (4.5)

The norm on the right-hand side of Eq. (4.5) is obtained via the formula

‖σ(I)− σ(KA)‖p,w =

 Ng∑
k=1

(|ak − 1|p + w |bk|p)

1/p

, (4.6)

where Ng = size(KA), and ak = Re(λk) and bk = Im(λk), where λk is an eigenvalue of KA. This
formula is basically a p-norm that has been modified so that the imaginary component of each
eigenvalue can be weighted independently (in practice, more heavily) of the real component via the

6We also investigated using different matrices for each side and each corner, but the resulting number of unknowns
was so large that NLLS algorithm would not reliably converge to a sufficiently optimal local minimum.

An Element-Based, Spectrally-Optimized Preconditioner 13

factor w. Notice that if we choose p = 2 and w = 1, then the kth term of the sum in Eq. (4.6) is the
square of the distance of the kth eigenvalue from (1,0) on the complex plane.

We have experimented with various NLLS algorithms to iteratively solve Eq. (4.5). The best
results occur when we use a Gauss-Newton (GN) algorithm coupled with a golden section line
search that terminates when the relative error estimate for the function minimum is < 10−3. We
also employ as first guesses for KI , KS , KC the identity matrix scaled so that eigenvalues of KA
start out very close to the origin. Through experimentation, we have found that letting p = 8 has the
dual benefit of improving the convergence rate of the GN algorithm7 and improving the convergence
rate of GMRES and BICGSTAB by more tightly clustering the eigenvalues of KA about (1,0) on the
complex plane. Again through experimentation, we have found that an adequate NLLS algorithm
stopping criterion is a change in relative residual of less than 10−3. To ensure that the NLLS
algorithm has found a robust local minimum, we restart the algorithm several times with the values
of KI , KS , KC matrices perturbed by 5 percent. For an SE interpolation order N = 5, the GN
algorithm running on a current desktop PC takes about an hour to compute the 3× (N + 1)2 = 108
unknowns that comprise the EBSO preconditioner matrices KI , KS , KC .

Once the matrices KI , KS , KC have been computed, the global EBSO preconditioner can be
assembled via

K =

Ne∧
e=1

(Ki ⊗Ki) , i = I, S, C (4.7)

where index i is set to I, S, or C depending where element e is located in the model domain per
(4.4). For examples of the global sparsity pattern that results from (4.7), we refer the reader to Figs.
5.1b and 5.2b.

Finally, since the matrices KI , KS , KC are fixed, their Kronecker products are also fixed and
need not be recomputed at every iteration. Thus, before running the preconditioned model we
compute and store the three (N + 1)2 by (N + 1)2 matrices

(KI ⊗KI) (KS ⊗KS) (KC ⊗KC ,)

to maximize the implementation efficiency of the EBSO preconditioner.

4.2. EBFO Preconditioner. To create a EBFO preconditioner that is basically comparable
to the EBSO preconditioner, we begin with a knowledge of the global sparsity pattern resulting from
the DSS process as illustrated in Figs. 5.1b and 5.2b for Ne = 25 and Ne = 100, respectively. We
then perform the following steps:

1. Construct a global FNO-based preconditioner K using the column-by-column process de-
scribed in Section 2.2.2 using a low-resolution system (e.g., Ne = 100).

2. Disassemble the global FNO-based K by reversing the DSS process to obtain Ne individual
elements matrices of size (N + 1)2 by (N + 1)2.

3. Average all the interior element matrices to create a single KI .
4. Average the element matrices of each side to create four distinct KS matrices.
5. Average the element matrices of each corner to create four distinct KC matrices.

To assemble a global EBFO preconditioner we use

K =

Ne∧
e=1

Ki, i = I, S, C

in which case no Kronecker products are necessary since the Ki matrices here are already size
(N + 1)2 by (N + 1)2.

We emphasize that steps 3-5 are not required for a functional EBFO preconditioner, but are
included both to drastically reduce the number of local matrices that must be stored, as well as to

7We note in passing that the GN algorithm requires the objective function to be differentiable and thus, for
example, would preclude the use of p = 1.

14 L.E. Carr, C.F. Borges and F.X. Giraldo

(a)
 K

C
 K

S
 K

S
 K

S
 K

C

 K
S

 K
I

 K
I

 K
I

 K
S

 K
S

 K
I

 K
I

 K
I

 K
S

 K
S

 K
I

 K
I

 K
I

 K
S

 K
C

 K
S

 K
S

 K
S

 K
C

(b)

 size(A) = 441
 Courant No = 8

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

(c)

NONE
EBSO

Figure 5.1. (a) Distribution of local EBSO preconditioner matrices within a model domain of 5-by5 elements
(Ne = 5× 5). (b) Sparsity pattern of global matrices A and K. (c) Relative residual versus number of iterations for
the unpreconditioned (NONE) and preconditioned GMRES (EBSO).

make the EBFO and EBSO preconditioners basically comparable in form. We have verified that
the averaging process in steps 3-5 does not impair the effectiveness of the EBFO preconditioner.
GMRES convergence graphs resulting from using an EBFO preconditioner based on steps 1-2 and
EBFO preconditioner using steps 1-5 are visually indistinguishable.

5. Results. In Section 5.1 we show how the EBSO preconditioner improves the convergence
of GMRES for the simple linear dynamical model on which the structure of the preconditioner was
based. We also show why the imaginary component weighting factor w is necessary. In Section 5.2
we show and discuss the results of using the preconditioner to accelerate both GMRES-based and
BICGSTAB-based solutions to the fully non-linear and non-hydrostatic Euler Equations.

5.1. Preconditioning the Linear 2-D Conservation Law Model. Here we show how the
EBSO preconditioner facilitates the solution of Eq. (4.2) where A and b are as given by Eqs. (3.34)
and the previous state vector qm is a random vector with normally distributed components supplied
by MATLAB’s randn(). We employ trapezoidal implicit time differencing (α = β = 1/2) with the
time-step ∆t selected so as to produce a Courant Number of 8, which is large enough to result in
an unacceptably slow GMRES convergence rate. We also use 4th-order spatial discretization and
doubly periodic boundary conditions on a model domain of (x, y) ∈ [0, 10]2 meters2.

To construct a local KI , KS , KC matrix set, we set the number of elements to Ne = 5 × 5
(i.e., in a 5-by-5 grid) and specify that the local preconditioner matrices be assigned to the domain
elements according to the pattern shown in Fig. 5.1a. We then perform the optimization problem
represented by Eq. (4.5) with p = 8 and w = 1 to obtain local matrices KI , KS , KC . The sparsity
patterns for both global matrices A and K appear in Fig. 5.1b. In Fig. 5.1c we provide a comparison
of the GMRES convergence rates exhibited for the unpreconditioned (NONE) and preconditioned
(EBSO) problems for a single right-side qm vector. The significantly more rapid and geometric
GMRES convergence provided by the EBSO preconditioner is readily apparent.

In Fig. 5.2 we summarize the results of applying the same EBSO preconditioner used in Fig. 5.1
to a higher resolution version of the conservation law model in which we have increased Ne = 10×10,
but have reduced ∆t sufficiently to maintain the same Courant Number. By comparing Fig. 5.2a
with Fig. 5.1a, the reader can see how the same set of local KI , KS , KC matrices are assigned to
the larger number of domain elements in the higher resolution model. The representative examples
of the GMRES convergence rates (for one of the randomly selected right-side qm vectors) that we
provide in Fig. 5.2c provide a quick visual indication that the EBSO preconditioner created using
a lower resolution version of the model still provides a considerable improvement in the GMRES
convergence rate for the higher resolution model. In Table I we provide a statistical summary of
how the EBSO preconditioner described above performs in response to changes in Courant No. and
number of elements (Ne). By comparing the parenthetical numbers along rows we can see that the
reduction in the number of GMRES iterations is relatively insensitive to significant changes in the

An Element-Based, Spectrally-Optimized Preconditioner 15

(a) K
C

 K
S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

C
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

S
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

I
 K

S
 K

C
 K

S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

S
 K

C

(b)

 size(A) = 1681
 Courant No = 8

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

(c)

NONE
EBSO

Figure 5.2. As in Fig. 5.1, except for a model domain with Ne = 10× 10.

Courant Number
Ne and size(A) 8 16 24

52 441
57.4 80.0 90.3
16.3 (3.52) 22.7 (3.53) 27.0 (3.35)

102 1681
57.8 82.2 93.8
19.6 (2.95) 22.3 (3.01) 32.6 (2.88)

152 3721
57.8 81.7 93.4
20.9 (2.76) 30.5 (2.68) 36.6 (2.55)

Table I
Average number of unpreconditioned (upper), preconditioned (lower) GMRES iterations and their quotient (in

parentheses) for the linear conservation law as a function of number of elements (Ne) and Courant Number. Results
are based on a sample size of 20, a stopping relative residual of 10−2, and the EBSO preconditioner shown in Fig.
5.1.

Courant Number. However, by comparing the parenthetical numbers along columns we can discern
a significant and unsatisfactory reduction in the effectiveness of the EBSO preconditioner in response
to relatively modest increases in the size of the system matrix.

To discern the source of the problem just identified, we show in Fig. 5.3 the spectra of the
system matrices A and KA corresponding to the Courant No. 8 column of Table I. Notice that the
effect of K is to transform the vertically-distributed spectrum of the matrix A in Fig. 5.3a, which
is associated with the slow unpreconditioned GMRES convergence rate (Fig. 5.1c; NONE) into the
disk-shaped spectrum of KA in Fig. 5.3a, which is confined well within the unit circle, and which is
associated with the significantly faster EBSO-preconditioned GMRES convergence rate seen in Fig.
5.1c.

However, notice in Figs. 5.3b and c that as model resolution is increased the spectra of KA
develop an increasingly dense, vertically-oriented line of eigenvalues that extends outside the unit
circle. Conjecturing that this vertical spreading of the spectrum of KA is the source of the degra-
dation of GMRES performance with increasing matrix size, we decided to repeat the process of
computing the KI , KS , and KC matrices using a model resolution of Ne = 5× 5, but this time with
the imaginary component weighting factor increased to w = 103 in Eq. (4.5). This change results
in the horizontally-oriented, quasi-elliptical spectrum distribution for the matrix KA shown in Fig.
5.4a.

Now notice that as we increase the number of elements to Ne = 10 × 10 (Fig. 5.4b) and Ne =
15× 15 (Fig. 5.4c), while again using the same set of local preconditioner matrices KI , KS , KC , the
spectrum expands only slightly in the imaginary direction. In Figs. 5.4d-f we show that a similar
behavior occurs when the same preconditioner is applied to various model resolutions with the time-
step increased to give a Courant No. of 16. Notice that although the spectra extend outside the unit
circle in the direction of the positive real axis in Fig. 5.4d-f, nevertheless the shape of the spectra
retains the same sort of elliptical character as seen in Fig. 5.4a-c. We note in passing that in Fig.

16 L.E. Carr, C.F. Borges and F.X. Giraldo

(a)

 N
e
 = 5×5

 size(A) = 441

 κ (K) = 27 (b)

 N
e
 = 10×10

 size(A) = 1681

 κ (K) = 28.1 (c)

 N
e
 = 15×15

 size(A) = 3721

 κ (K) = 28.3

Figure 5.3. Spectra of the global system matrices A (red, vertically-oriented pattern) and KA (green, disk-
shaped pattern) resulting from Courant No. of 8 and number of elements shown in the lower left of each panel. The
2-norm condition number (κ) of matrix K appears in the upper left of each panel to verify that the global EBSO
left-preconditioner K remains well-conditioned with increasing size.

(a)

 N
e
 = 5×5

 size(A) = 441
 Cour. No. = 8

 κ (K) = 55.9 (b)

 N
e
 = 10×10

 size(A) = 1681
 Cour. No. = 8

 κ (K) = 66.1 (c)

 N
e
 = 15×15

 size(A) = 3721
 Cour. No. = 8

 κ (K) = 67.5

(d)

 N
e
 = 5×5

 size(A) = 441
 Cour. No. = 16

 κ (K) = 55.9 (e)

 N
e
 = 10×10

 size(A) = 1681
 Cour. No. = 16

 κ (K) = 66.1 (f)

 N
e
 = 15×15

 size(A) = 3721
 Cour. No. = 16

 κ (K) = 67.5

Figure 5.4. Comparison of the spectra of the global system matrices A (red, vertically-oriented pattern) and
KA (green, ellipse-shaped pattern) as the number of elements is increased from 5-by-5 to 15-by-15 for a Courant No.
of 8 (Panels a-c) and Courant No. of 16 (Panels d-f). See Fig. 5.3 for the meaning of κ(K).

5.4a-c, for the which the Courant No. is fixed at 8, the distribution of the spectrum of A is visually
virtually unchanged in Fig. 5.4a compared to Fig. 5.4c. The insensitivity of the interval over which
the spectrum is distributed to increases in system size (model resolution) probably plays a key factor
in the insensitivity of the EBSO preconditioner to changes in system size.

In Table II we summarize the performance of the above EBSO preconditioner created via a
weighted NLLS optimization process. By comparing the parenthetical numbers along columns we
can see that there is now no significant decrease in preconditioner performance as the number of
elements is increased. By comparing the parenthetical numbers along rows we can see that there is
now actually a tendency for preconditioner performance to improve as the Courant No. is increased.

An Element-Based, Spectrally-Optimized Preconditioner 17

Courant Number
Ne and size(A) 8 16 24

52 441
57.5 79.3 89.8
16.5 (3.48) 21.4 (3.71) 24.0 (3.73)

102 1681
58.2 83.0 94.0
17.0 (3.42) 22.1 (3.75) 25.1 (3.75)

152 3721
58.2 81.8 93.1
17.3 (3.37) 22.1 (3.70) 24.9 (3.74)

Table II
As in Table I, except for the EBSO preconditioner described by the text associated with Fig. 5.4.

5.2. Preconditioning the Non-Linear 2-D Euler Equations. Here we show how the
EBSO preconditioner facilitates the solution of a particular formulation of the 2-D Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0

∂θ

∂t
+ u · ∇θ = 0

∂u

∂t
+ u · ∇u+

1

ρ
∇P + gk = 0 P = PA

(
ρRθ

PA

)γ
(5.1)

where ρ is the density, θ is the potential temperature, u = (u,w)T is the velocity field, P is the
pressure, PA is the surface pressure, R is the ideal gas constant, and γ = 1.4. Giraldo et al. [7]
present a detailed development of a SE model employing IMEX time integration and utilizing a
Schur complement form of Eq. (5.1) so that the perturbation state variables may be obtained in a
sequential fashion beginning with the pressure.8

The three dynamical test cases (i.e., inertia gravity wave, density current, and mountain wave)
employed in [7] to evaluate the performance of the model did not result in a large number of
GMRES iterations, and thus did not necessitate preconditioning. Therefore, we will employ a
fourth standard test case here that does result in an excessive number of unpreconditioned GMRES
iterations; namely, a rising thermal bubble [6]. The problem domain is (x, z) ∈ [0, 1000]2 meters2

with reflecting boundary conditions (no flux) on all four sides. The basic state is a motionless air
mass that has a potential temperature of 300oK and that is in hydrostatic balance. The initially
motionless bubble has a perturbation potential temperature θ′ given by:

θ′ =

{
0 if r > rc

θc
2

[
1 + cos

(
πr
rc

)]
if r ≤ rc

r =
√

(x− xc)2 + (z − zc)2 (5.2)

where θc = 0.5oC, rc = 250m, (xc, zc) = (500,350). For all the results that follow we employ 5th-
order spatial interpolation. We also use the same 10−2 relative residual as the stopping criterion for
GMRES, and the same 2nd-order backward time differencing scheme (BDF2) and serial computing
environment as used in [7].

Figure 5.5 provides a visual comparison of the evolution of the bubble out to 650 seconds for a
short time-step reference run (Fig. 5.5a), a large time-step unpreconditioned run (Fig. 5.5b) and large
time-step EBSO preconditioned runs (Fig. 5.5c). Notice that the warmest potential temperature
perturbation found anywhere (Tmax) at t = 650s in the two large time-step runs is the same to
6 decimal places, which indicates that the EBSO preconditioner introduces no significant error to
the GMRES computations. That Tmax in the two large time-step runs varies from the short time-
step reference run by 1 percent is consistent with the 10−2 relative residual stopping criterion for
GMRES, and confirms that the BDF2 time-differencing scheme can handle the very long time-step
(≈ 100 times the maximum explicit time-step) associated with a model run at Courant No. = 28.

In order to construct the EBSO preconditioner employed in the rising bubble problem, we again
used Ne = 5 × 5, p = 8, and w = 103 based on the results in Section 5.1. However, this time we
set the Courant Number at 18 to obtain a similar unpreconditioned GMRES convergence rate as in

8For more details, see the portion of [7] dealing with Eq. set (5.1), which they term SE2NC.

18 L.E. Carr, C.F. Borges and F.X. Giraldo

Figure 5.5. Perturbation potential temperature fields at 650s from rising thermal bubble problem using a small
∆t (panel a), a large ∆t and no preconditioner (panel b), and the same large ∆t and the EBSO preconditioner. For
all runs Ne = 402, and the Tmax number in the upper left of each figure gives the warmest temperature at any node
in the domain. The ∆t and associated Courant No. appear in the lower left of each panel.

Section 5.1. Using the same Courant No., we also constructed an EBFO preconditioner using the
procedure described in Section 4.2, but using a higher resolution model with Ne = 10× 10 since the
preconditioner is easy to compute for the larger system, and to improve its competitiveness with
EBSO. For a model size of Ne = 10 × 10, the global sparsity pattern of both preconditioners are
shown in Fig. 5.6a, and that of the system matrix A is illustrated in Fig. 5.6b.

Notice that in contrast to the linear conservation law problem, here the bandwidth of the
Schur form system matrix (Fig. 5.6b) is precisely twice that of the global preconditioner (Fig. 5.6a),
regardless of the size of the problem. This difference exists because the Schur form involves a product
of discretized DSS-based operators (i.e., divergence × gradient). Despite the narrower bandwidth,
the preconditioner K has 1.22 times as many non-zero entries as the matrix A, which is explained
by the fact that the EBSO preconditioner employs the same relatively dense sparsity pattern that
would arise from computing a mass matrix using exact quadrature, whereas the Schur form sparsity
pattern is relatively less dense due to the use of inexact (collocated) quadrature. Even though the
preconditioner K is slightly less sparse than the system matrix A, timing tests have shown that the
cost in CPU time for applying K is approximately half the cost of applying A at each time-step.
This difference is explained by the fact that whereas K employs the DSS operator only once, the
Schur form A must use the DSS process twice, and must include within each DSS operation multiple
additional loops associated with the collocated quadrature that occurs at each time-step.

The spectra of the PSM’s KA when K is the EBSO preconditioner and EBFO preconditioner
are shown in Fig. 5.6c and e, respectively. Notice that whereas the spectrum of the system matrix
A is real and spread over the interval [1, 1082] (see Fig. 5.6b lower left), the spectra of the global
KA matrices are complex and confined within the unit circle. The KA spectrum due to the EBSO
preconditioner (Fig. 5.6c) is centered within the circle as in Fig. 5.4a, whereas the KA spectrum
due to the EBFO preconditioner (Fig. 5.6e) has a dense cluster of eigenvalues centered on unity
and a line of eigenvalues trailing off toward the origin. Notice that based on the condition numbers
shown in 5.6c and e, both preconditioners are well-conditioned, as required to justify the use of a
left-preconditioner as discussed in Section 1.1.

The impact of the EBSO and EBFO preconditioners on the GMRES convergence rate for one
representative time-step early in the evolution of the rising bubble problem for Ne = 10×10 is shown
in Fig. 5.6d and f, respectively. The relative residual graphs for EBSO-preconditioned GMRES and
EBFO-preconditioned GMRES9 both reach 10−2 at about 25 iterations, but thereafter the EBSO
graph descends more quickly. A relative residual graph for a more traditional FNO preconditioner
constructed using the sparsity pattern of A (Fig. 5.6b) has been included in Fig. 5.6f (FNO) to show
that the EBFO preconditioner is competitive out to 60 iterations, and actually reaches a residual of
10−2 faster, despite the fact that the EBFO preconditioner K has half the bandwidth of the FNO

9The curve labeled EBFO represents the EBFO preconditioner with and without the averaging process discussed
in Section 4.2. The two curves are visually indistinguishable.

An Element-Based, Spectrally-Optimized Preconditioner 19

(a) (c) κ (K) = 205 (e) κ (K) = 55.7

(b) κ (A)=1803

 λ
max

 = 1082
 λ

min
 = 1

 size(A) = 2601
 Courant No = 18

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

(d)

NONE
EBSO

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

(f)

NONE
FNO
EBFO

Figure 5.6. (a) Sparsity pattern for both the EBSO and EBFO preconditioners for the rising bubble problem
model using Ne = 10 × 10 and 5th order spatial interpolation. (b) As in (a), except for the Schur form global
system matrix A. (c) The spectrum of preconditioned system matrix KA when K is the EBSO preconditioner with
the 2-norm condition number κ(K) shown. (d) Representative examples of GMRES convergence trends without a
preconditioner (NONE) and with the EBSO preconditioner (EBSO). (e) As in (c), except for an EBFO preconditioner
(EBFO) based on the sparsity pattern shown in (a). (f) As in (d), except for an EBFO preconditioner (EBFO) and
a traditional FNO preconditioner (FNO) based the system matrix sparsity pattern in (b).

preconditioner.

The results of using both GMRES and BICGSTAB to run a comparatively low-resolution model
(Ne = 25 × 25) of the the rising bubble problem for 100 seconds of model time using various
combinations of Courant No. and preconditioning are summarized in Fig. 5.7. By comparing the
upper panels it is evident that BICGSTAB requires substantially fewer iterations than GMRES at
all Courant Numbers, and regardless of which iterative method is considered all the preconditioners
achieve a substantial reduction in the number of iterations. If we focus on the larger Courant
numbers (where IMEX models tend to run), then we can see that the iteration-reducing power of
the EBSO preconditioner (inherently first order) falls in between the 1st and 2nd order Chebyshev
polynomial preconditioner if either GMRES or BIGSTAB is employed. The EBFO preconditioner
performs the poorest, except for Courant No. 32 where it is better then CHEB1.

By comparing the lower panels of Fig. 5.7, we can immediately see that for low values of Courant
No. all the preconditioners slow the model down, regardless of the iteration method used, because the
number of iterations per time-step is simply too small to justify preconditioning. As Courant No. in-
creases, we see a somewhat more complex relationship between GMRES and BICGSTAB with regard
to wall-clock time owing to their relative efficiency in applying the system matrix and performing dot-
products. Wall-clock time for unpreconditioned GMRES falls and then rises with increasing Courant
No. due to a non-linear growth in the number of dot-products per iteration. By contrast, unprecon-
ditioned BICGSTAB wall-clock time steadily decreases with increasing Courant No. due to only a
linear growth in the number of dot-products per iterations. Preconditioning GMRES with CHEB1
and CHEB2 avoids the slow-down with increasing Courant No., but preconditioning BICGSTAB
with CHEB1 and CHEB2 moderately degrades wall-clock time performance at all Courant Num-

20 L.E. Carr, C.F. Borges and F.X. Giraldo

4 8 12 16 24 32
0

10

20

30

40

50

60

70

Courant Number

A
ve

ra
ge

 It
er

at
io

ns
 P

er
 T

im
e

S
te

p

(a)
GMRES Iterations (N

e
 = 25×25)

 NONE

 EBSO
 EBFO
 CHEB1

 CHEB2

1.21
1.76
2.47

0.884

1.64
1.76
2.48
1.13

1.84
1.77
2.52
1.37

1.94
1.78
2.53
1.42

2.05
1.78
2.54
1.8

2.15
1.78
2.53
1.99

EBSO
CHEB1
CHEB2
EBFO

↑ Iteration Reduction Factors ↑

4 8 12 16 24 32
20

30

40

50

60

70

80

Courant Number

(c)
GMRES WallClock Time (N

e
 = 25×25)

W
al

l C
lo

ck
 T

im
e(

se
c)

 NONE

 EBSO

 EBFO

 CHEB1

 CHEB2

0.874
0.918
0.851
0.724

1.1
0.966
0.915
0.835

1.31
1.04
1.01
1.02

1.45
1.1
1.09
1.13

1.7
1.2
1.23
1.5

1.92
1.27
1.33
1.79

EBSO
CHEB1
CHEB2
EBFO

↑ Wall−Clock Time Reduction Factors ↑

4 8 12 16 24 32
0

10

20

30

40

50

60

70

Courant Number

(b)
BICGSTAB Iterations (N

e
 = 25×25)

 NONE

 EBSO

 EBFO
 CHEB1

 CHEB2

1.02
1.79
2.45

0.829

1.54
1.8
2.57
1.06

1.81
1.82
2.67
1.25

1.89
1.8
2.63
1.31

2.03
1.8
2.63
1.49

2.1
1.8
2.61
1.7

EBSO
CHEB1
CHEB2
EBFO

↑ Iteration Reduction Factors ↑

4 8 12 16 24 32
20

30

40

50

60

70

80

Courant Number

(d)
BICGSTAB WallClock Time (N

e
 = 25×25)

 NONE

 EBSO
 EBFO

 CHEB1
 CHEB2

0.772
0.9
0.83

0.696

0.993
0.91
0.86

0.768

1.14
0.92
0.89

0.862

1.19
0.91
0.87

0.895

1.27
0.91
0.89

0.998

1.33
0.91
0.88
1.13

EBSO
CHEB1
CHEB2
EBFO

↑ Wall−Clock Time Reduction Factors ↑

Figure 5.7. A comparison of unpreconditioned (NONE) and preconditioned GMRES and BICGSTAB iterations
per time-step (upper panels) and wall-clock time (lower panels) for a rising bubble problem integrated for 100s at
Courant Numbers ranging from 4 to 32 using 5th order spatial interpolation and Ne = 25× 252 resulting in size(A)
= 15,876. Preconditioners included are 1st and 2nd order Chebyshev polynomials (CHEB1, CHEB2), the element-
based spectrally-optimized preconditioner (EBSO), and the element-based Frobenius-norm-optimized preconditioner
(EBFO). Tabular data at the top of upper panels give the ratio of unpreconditioned to preconditioned iterations for
the preconditioners listed. Tabular data at the top of lower panels give the ratio of unpreconditioned to preconditioned
wall-clock time for the preconditioners listed.

bers. Due to its low application cost, the EBSO preconditioner results in a significant reduction in
wall-clock time for Courant Nos. greater than 8 using either iterative scheme, and the amount of
model acceleration rises to 1.92 for GMRES and 1.33 for BICGSTAB at Courant No. 32. Notice also
that EBSO-preconditioned GMRES runs slightly faster than EBSO-preconditioned BICGSTAB at
Courant No. 32, due to the combined effect of the significant reduction in preconditioned-GMRES
dot-products and the fact that BICGSTAB must use the system matrix twice per iteration. Thus,
the model acceleration factor when comparing unpreconditioned BICGSTAB (fastest unprecondi-
tioned algorithm) and EBSO-preconditioned GMRES (fastest preconditioned method) is actually
1.41. Interestingly the EBFO preconditioner, which performs the poorest for lower Courant Nos.,
actually becomes competitive with EBSO above Courant No. 24.

To see if the results shown in Fig. 5.7 will scale with increasing model resolution, we repeated all
the model runs at double the resolution (Fig. 5.8, see caption concerning EBFO). It is immediately
clear that the iteration results in the upper panels of Fig. 5.8 are quantitatively very similar to
the results in Fig. 5.7. The fact that the unpreconditioned iterations are insensitive to changes in
problem size indicates that fixing the Courant No. creates a resolution-independent scalable iterative
problem at each time-step. The entries in the tables of ratios of unpreconditioned to preconditioned

An Element-Based, Spectrally-Optimized Preconditioner 21

4 8 12 16 24 32
0

10

20

30

40

50

60

70

Courant Number

A
ve

ra
ge

 It
er

at
io

ns
 P

er
 T

im
e

S
te

p

(a)
GMRES Iterations (N

e
 = 50×50)

 NONE

 EBSO
 EBFO

 CHEB1

 CHEB2

1.11
1.79
2.53

0.875

1.66
1.78
2.53
1.17

1.86
1.79
2.54
1.29

2.02
1.78
2.51
1.47

2.14
1.78
2.52

2.17
1.79
2.54

EBSO
CHEB1
CHEB2
EBFO

↑ Iteration Reduction Factors ↑

4 8 12 16 24 32
20

30

40

50

60

70

80

Courant Number

(c)
GMRES WallClock Time (N

e
 = 50×50)

W
al

l C
lo

ck
 T

im
e(

se
c

x
10

)

 NONE

 EBSO

 EBFO
 CHEB1

 CHEB2

0.889
0.929
0.867
0.777

1.16
0.968
0.926
0.913

1.34
1.02

0.983
1.01

1.53
1.06
1.03
1.17

1.79
1.15
1.15

1.95
1.23
1.26

EBSO
CHEB1
CHEB2
EBFO

↑ Wall−Clock Time Reduction Factors ↑

4 8 12 16 24 32
0

10

20

30

40

50

60

70

Courant Number

(b)
BICGSTAB Iterations (N

e
 = 50×50)

 NONE

 EBSO
 EBFO CHEB1

 CHEB2

0.984
1.82
2.57

0.789

1.55
1.82
2.59
1.01

1.83
1.83
2.65
1.17

1.94
1.82
2.63
1.35

2.05
1.82
2.61
1.73

2.11
1.81
2.61
1.84

EBSO
CHEB1
CHEB2
EBFO

↑ Iteration Reduction Factors ↑

4 8 12 16 24 32
20

30

40

50

60

70

80

Courant Number

(d)
BICGSTAB WallClock Time (N

e
 = 50×50)

 NONE

 EBSO
 EBFO

 CHEB1
 CHEB2

0.818
0.92
0.86

0.724

1.07
0.93
0.88

0.799

1.22
0.94
0.9

0.885

1.31
0.94
0.9

0.992

1.39
0.94
0.9
1.23

1.45
0.94
0.9
1.3

EBSO
CHEB1
CHEB2
EBFO

↑ Wall−Clock Time Reduction Factors ↑

Figure 5.8. As in Fig. 5.7, except for Ne = 50× 50 resulting in size(A) = 63,001. The premature termination
of the graphs for EBFO-preconditioned GMRES reflect the fact that the model would not run to completion unless
the relative residual stopping criterion was reduced from 10−2 to 10−3. Thus, EBFO is a less robust preconditioner
when used with GMRES.

iterations provided at the top of Figs. 5.7 and 5.8 indicate that the performance of the SE-based
preconditioners is independent of model scale.

Although, the wall-clock time results in Fig. 5.8c-d exhibit basically the same relative perfor-
mance patterns as in Fig. 5.7c-d, notice that the quantitative values in Fig. 5.8c-d are approximately
ten times larger than those in 5.7c-d. This behavior is explained as follows. Fixing the Courant No.
means that the time-step must be proportionally reduced as resolution is increased, which in turn
means that that the number of time-steps must be increased by the same proportion. As a result,
the total number of iterations doubles with every doubling of model resolution, despite the fact that
the number of iterations per time-step can be held constant.

Doubling model resolution again using Ne = 100× 100 resulting in size(A) = 251,001 produced
results (not shown) that were again qualitatively similar to Figs. 5.7 and 5.8, other than the fact
that wall-clock times again increased by a factor of about ten. However, we note an interesting trend
with regard to EBSO wall-clock time reduction at Courant No. 32. Recall that we previously noted
that the ratio of unpreconditioned BICGSTAB to EBSO-preconditioned GMRES wall-clock time
in Fig. 5.7c-d was 1.41 for a problem with Ne = 25 × 25. This ratio increases to 1.51 for a higher
resolution problem with Ne = 50 × 50, and further increases to 1.60 for a still higher resolution
problem with Ne = 100× 100.

A final very promising result is shown in Fig. 5.9, which: i) repeats the GMRES iteration
and wall-clock time curves from Fig. 5.7a and c (with EBFO omitted), and ii) adds the curves for

22 L.E. Carr, C.F. Borges and F.X. Giraldo

preconditioners EBSO1 and EBSO2 which are 1st and 2nd order Chebyshev polynomials in which
s(A) is replaced by s(KA), where K is the EBSO preconditioner. At Courant No. 32, the EBSO1
and EBSO2 preconditioners achieve up to a 5-fold reduction in GMRES iterations (Fig. 5.9a) while
retaining most of the wall-clock time reduction power of the EBSO preconditioner (Fig. 5.9b). The
EBSO2 preconditioner reduces the number of iterations so greatly that the number of dot-products
in GMRES per time-step is actually at or below the number in BICGSTAB (12 iterations is the
break even point).

4 8 12 16 24 32
0

10

20

30

40

50

60

70

Courant Number

A
ve

ra
ge

 It
er

at
io

ns
 P

er
 T

im
e

S
te

p

(a)
GMRES Iterations (N

e
 = 25×25)

 NONE

 EBSO

 CHEB1

 CHEB2

 EBSO1
 EBSO2

1.21
2.1
2.83

1.64
2.84
3.88

1.84
3.13
4.44

1.94
3.33
4.69

2.05
3.56
4.97

2.15
3.7
5

EBSO
EBSO1
EBSO2

↑ Iteration Reduction Factors ↑

4 8 12 16 24 32
20

30

40

50

60

70

80

Courant Number

(b)
GMRES WallClock Time (N

e
 = 25×25)

W
al

l C
lo

ck
 T

im
e(

se
c)

 NONE

 EBSO

 CHEB1

 CHEB2

 EBSO1
 EBSO2

0.874
0.746
0.684

1.1
0.985
0.889

1.31
1.17
1.1

1.45
1.34
1.25

1.7
1.63
1.53

1.92
1.87
1.72

EBSO
EBSO1
EBSO2

↑ Wall−Clock Time Reduction Factors ↑

Figure 5.9. As in Fig. 5.7a and c, except that the EBFO preconditioner plots have been omitted, and plots for
the EBSO1 and EBSO2 preconditioners have been added.

6. Summary and Concluding Remarks. We have provided an initial development and
demonstration of a preconditioning method for accelerating the iterative solution of the system
Ax = bi that arises at the ith time-step in any spectral element method (SE) fluid dynamics model
that employs IMEX time integration. By means of this preconditioning method the large and sparse
global approximate inverse preconditioner K in the equivalent left-preconditioned system

(KA)x = Kbi (6.1)

is effectively assembled from a set of a few small and full local matrices whose entries result from an
optimization problem that seeks to make the matrixKA the best approximation of I in an eigenvalue-
by-eigenvalue sense (i.e., spectrally) rather than in an entry-by-entry sense as in the Frobenius
norm method. Thus, we have assigned the preconditioning method the descriptor ”element-based,
spectrum-optimized” (EBSO).

Using both a 2-D linear conservation law and the 2-D fully compressible, non-linear Euler
equations, we have demonstrated that after the local matrices of the EBSO preconditioner are created
using a low resolution version of the applicable SE model, the preconditioner then may be applied
to arbitrarily high-resolution versions of the same model without appreciable loss of preconditioner
performance. In a test case in which the Euler equations are used to model a rising thermal bubble,
the number of iterations per time-step is cut in half for Courant numbers of 16 and greater regardless
of whether GMRES and BICGSTAB is used, and the model wall-clock time is significantly reduced
using either iterative method. The wall-clock time reducing power of the EBSO preconditioner is
significantly better than either conventional low-order Chebyshev polynomials or an element-based
Frobenius norm optimized (EBFO) preconditioner specifically developed herein for the purpose of a
fair head-to-head comparison with the EBSO preconditioner. For large Courant No., the wall-clock
time reduction factor for the EBSO preconditioner was found to be as large as 2.1 for GMRES
and 1.45 for BICGSTAB. Importantly, when the EBSO and Chebyshev polynomial methods are
combined up to a 5-fold reduction in iterations is achieved while still achieving significant reductions
in wall-clock times.

An Element-Based, Spectrally-Optimized Preconditioner 23

All results presented herein have been accomplished using relatively small problem sizes to fa-
cilitate completion of the extremely large number of model runs required to do all the comparative
analysis in a serial SE computing environment. However, the performance of the EBSO precondi-
tioner and comparison preconditioners was found to be independent of problem size, and the relative
performance of the preconditioners remained the same as problem size increased. Moreover, since
the EBSO preconditioner and comparison preconditioners presented herein are all explicit and use
exactly the same spectral element approach to accomplishing matrix-vector products, they are all
equally amenable to implementation in a massively parallel SE computing environment. Thus, they
are all highly parallelizable and their relative performances should remain the same, which means
the EBSO (and EBSO1 and EBSO2) preconditioner should continue to produce substantially better
reductions in iterations per time-step and model wall-clock time. Although the EBSO precondi-
tioner does have a relatively high construction cost, the eventual target application is operational
weather prediction models that run for years without modification, and involve hundreds to thou-
sands of time-steps during each run of the model, and thus making high construction cost of little
consequence.

Our future work will include incorporating the EBSO and comparison preconditioners into
the IMEX version of the 3-D NUMA model that is currently under development for use within a
massively parallel computing environment. We will also look into extending the EBSO methodology
to include variable domain elements sizes and geometries.

Acknowledgments. The authors gratefully acknowledge the support of the Computational
Mathematics program of the Air Force Office of Scientific Research. F.X.G also gratefully acknowl-
edges the support of the Office of Naval Research through program element PE-0602435N. We
also thank J.F. Kelly and two anonymous reviewers for providing thorough reviews of the draft
manuscript and offering many helpful suggestions.

REFERENCES

[1] C.E. Augarde, A. Ramage, and J. Stauchacher, An element-based displacement preconditioner for linear elas-
ticity problems, Computers and Structures, 84 (2006) pp. 2306-2315.

[2] M. BENZI, Preconditioning Techniques for Large Linear Systems: A Survey, J. Comput. Phys., 182 (2002),
418-477.

[3] M. BENZI, J.C. Haws, and M. Tuma, Preconditioning Highly Indefinite and Nonsymmetric Matrices, SIAM J.
Sci. Comput., 22 (2000) pp. 1333-1353.

[4] M. BENZI and M. Tuma, A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., 19 (1998) pp. 968-994.

[5] M. BENZI and M. Tuma, A Comparative Study of Sparse Approximate Inverse Preconditioners, Appl. Numer.
Math., 30 (1999) pp. 305-340.

[6] F.X. GIRALDO and M. Restelli, A Study of Spectral Element and Discontinuous Galerkin Methods for the
Navier-Stokes Equations in Nonhydrostatic Mesoscale Atmospheric Modeling: Equation Sets and Test
Cases, J. Comp. Phys., 227 (2008), pp. 3849-3877.

[7] F.X. GIRALDO, M. Restelli, and M. Lauter, Semi-Implicit Formulations of the Navier-Stokes Equations: Ap-
plications to Nonhydrostatic Atmospheric Modeling, SIAM J. Sci. Comput., 32 (2010), pp. 3394-3425.

[8] M.J. GROTE and T. Huckle, Parallel preconditionings with sparse approximate inverses, SIAM J. Sci. Comput.,
18 (1997), pp. 838-853.

[9] J. F. KELLY and F.X. GIRALDO, Continuous and Discontinuous Galerkin Methods for a Scalable 3D Nonhy-
drostatic Atmospheric Model: Limited Area Mode, J. Comp. Phys., in review.

[10] Y. LIANG, Generalized Least-Squares Polynomial Preconditioners for Symmetric Indefinite Linear Equations,
Parallel Comput., 28 (2002), 323-341.

[11] Y. LIANG, Polynomial Preconditioner for the Solution of Linear Equations, Ph.D. dissertation, University of
Ulster, 2005.

[12] Y. SAAD, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia PA, 2003.
[13] Y. SAAD and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear

systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
[14] L.N. TREFETHEN and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia PA, 1997.
[15] P. S. VASSILEVSKI, Multilevel Block Factorization Preconditioners, Springer, New York NY, 2008.
[16] H.A. van der VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
[17] H.A. van der VORST, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, New

York NY, 2003.

