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ALGORITHM 686 
FORTRAN Subroutines for Updating the 
QR Decomposition 

L. REICHEL 
Bergen Scientific Center 
and 
W. B. GRAGG 
Naval Postgraduate School 

Let the matrix A E R”““, m 2 n, have a QR decomposition A = QR, where Q E R”“” has orthonormal 
columns, and R E R”“” is upper triangular. Assume that Q and R are explicitly known. We present 
FORTRAN subroutines that update the QR decomposition in a numerically stable manner when A 
is modified by a matrix of rank one, or when a row or a column is inserted or deleted. These 
subroutines are modifications of the Algol procedures in Daniel et al. [5]. We also present a subroutine 
that permutes the columns of A and updates the QR decomposition so that the elements in the lower 
right corner of R will generally be small if the columns of A are nearly linearly dependent. This 
subroutine is an implementation of the rank-revealing QR decomposition scheme recently proposed 
by Chan [3]. 

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra; 
G.4 [Mathematics of Computing]: Mathematical Software 

General Terms: Algorithms 

Additional Key Words and Phrases: QR decomposition, subset selection, updating 

1. INTRODUCTION 

We present several FORTRAN subroutines for updating the QR decomposition 
of a matrix. Let A E R”““, m 1 n, have a QR decomposition A = QR, where 
Q E R”“” has orthonormal columns, and R E R”“” is upper triangular. Assume 
that the elements of Q and R are explicitly known. Let A E Rpxq, p 2 q, be 
obtained from A by inserting or deleting a row or a column, or let A be a rank- 
one modification of A (i.e., A = A + uuT, where u E R”, u E R”). Then, a -- -- 
QR-decomposition of A, A = QR, where B E R pxq has orthonormal columns and 
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R E Rqxq is upper triangular, can be computed in O(rnlz) arithmetic operations 
by updating Q and R; see Daniel et al. [5]. The updating is done by applying 
Givens reflectors. The operation count for updating Q and R compares favorably 
with the O(mn’) arithmetic operations necessary to compute a QR decomposition 
of a general m X n matrix. 

Algol procedures for computing Q and R from Q and R are presented by 
Daniel et al. [5]. Buckley [2] translated these procedures into FORTRAN. Our 
FORTRAN subroutines implement modifications of the algorithms in [5]. These 
modifications reduce the operation count. Also, the structure of our code differs 
from [2]. We use subroutines such as the Basic Linear Algebra Subprograms 
(BLAS), described in [12], for simple matrix and vector operations. This makes 
it fairly easy to adapt the frequently executed parts of the code in order to achieve 
faster execution. The subroutines run quickly on an IBM 3090 VF vector 
computer. 

Several program libraries, such as LINPACK [6] and NAG [15], provide 
subroutines for updating R, but contain no routines for updating the complete 
QR decomposition. Two advantages of updating both Q and R are that 
QR decomposition can be modified stably when a row or a column is deleted 
from A, and that the individual elements of projections are easily accessible; 
see LINPACK [6, p. 10.231, Daniel et al. [5], and Stewart [ 181. 

The first comprehensive survey of updating algorithms was presented by Gill 
et al. [8]; and a recent discussion with references to applications can be found in 
Golub and Van Loan [lo, Ch. 12.61. The applications include linear least squares 
problems, regression analysis, and the solution of nonlinear systems of equations. 
(See Allen [ 11, Goldfarb [9], Gragg and Stewart [ 111, More and Sorensen [ 141.) 
The algorithms also appear to be applicable to recursive least squares problems 
of signal processing; see Ling et al. [ 131. 

We also present a subroutine that implements the rank-revealing QR decom- 
position method recently proposed by Chan [3]. In this method the QR de- -- 
composition A = QR is updated to yield the QR decomposition A = QR, where 
x is obtained from A by column permutation. This permutation is selected 
so that, in general, the element(s) in the lower right corner of fi are small if A 
has nearly linearly dependent columns. The subroutine can be used to solve 
the subset selection problem; see Golub and Van Loan [lo]. Table I lists the 
FORTRAN subroutines for updating the QR decomposition. All subroutines 
use double precision arithmetic and are written in FORTRAN 77. Sec- 
tion 2 contains programming details for the subroutines of Table I and for 
certain auxiliary subprograms. For all subroutines of Table I, except DRRPM, 
the numerical method as well as Algol procedures have been presented in [5]. 
For these subroutines we discuss differences between our FORTRAN subroutines 
and the Algol procedures only. 

Section 3 discusses programming details for the subroutines for simple matrix 
and vector operations. These subroutines have been written to vectorize well on 
an IBM 3090 VF vector computer when the vectorizing compiler VS FORTRAN 
2.3.0 is used. The last section, Section 4, contains some timing results for our 
subroutines and comparisons with the code [2]. 
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Table I. Subroutines for Updating a QR Decomposition 
A = QR to Yield a QR Decomposition ,& = QR 

Subroutine Purpose 

DDECL 
-- 

Computes Q, R from Q, R when ?i is obtained from A by deleting a column; see [5]. -- 
DDELR Computes Q, R from Q, R when A is obtained from A by deleting a row; see [5]. -- 
DINSC Computes Q, R from Q, R when A is obtained from A by inserting a column; see [5]. -- 
DINSR Computes Q, R from Q, R when A is obtained from A by inserting a row; see (51. -- 
DRNKl Computes Q, R from Q, R when A is a rank-one modification of A; see [5]. -- 
DRRPM Computes Q, R from Q, R when A is obtained by permuting the columns of A in a 

manner that generally reveals if columns of A are nearly linearly dependent; see [3]. 

2. THE UPDATING SUBROUTINES 

We consider the subroutines of Table I in order. These subroutines use auxiliary 
subroutines, which we need to introduce first. They are listed in Table II. 

2.1 Subroutines DORTHO and DORTHX 

Given a matrix Q E R”““, m 2 n, with orthonormal columns and a vector 
w E R”, the subroutine DORTHO computes the Fourier coefficients s := Q’w 
and the orthogonal projection of w into the null space of QT, u := (I - QQ’r)w. 
At most one reorthogonalization is carried out. Since the subroutine DORTHO 
differs from the corresponding Algol procedure “orthogonalize” in [5], we discuss 
DORTHO and its use in some detail. 

Subroutine DORTHO is called by routine DINSC, which updates the QR 
factorization of a matrix A = QR E R”““, m > n, when a column w is inserted 
into A. Updating may not be meaningful if w is a nearly linear combination of 
the columns of Q. Therefore, DORTHO computes the condition number of 
the matrix Q := [Q, wl II w II 1 E Rmxcn+l’, where ]] ]I is the Euclidean norm. 
Using Q’Q = I, we obtain the following expressions for the singular values 
u1 2 uz > . . . 2 u~+~ of Q: 

~1 = (1 + II QTw II /II w II T”, 

Uj = 1, 25jSn, 

u n+~ = (1 - II QTw II /II w II Y”. 
Further, for u := (I - QQt)w/ I( w /I, 

(2.la) 

(2.lb) 

(2.lc) 

II u II = ~1~,+1* (2.2) 

Since 15 u, 5 & , u”+~ is also an accurate estimate of the length of the orthogonal 
projection of w/ ]I w ]I into the null space of QT. In order to avoid severe cancel- 
lation of significant digits in (2.lc), we first determine u1 from (2.la) and then 
u,+~ from (2.2). 

Subroutines DINSC and DORTHO have an input parameter RCOND 
which is a lower bound for the reciprocal condition number. The computa- 
tions are discontinued and an error flag is set if RCOND > u”+~/u~. On exit, 
RCOND := un+Jul. 
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Table II. Auxiliarv Subroutines 

Auxiliary Called by 
subroutine subroutine Purnose 

DORTHO DINSC, DRNKl Compute s := Q’w, u := (I - QQ’)w with reorthogonalization 
for arbitrary vector W. 

DORTHX DDELR Compute s := QTe,, u := (I - QQ’)e,, with reorthogonalization 
for axis vector e,. 

DINVIT DRRPM Compute approximation of a right singular vector 
corresponding to a least singular value of R. A first 

. . . 

DTRLSL 

DTRUSL 

DINVIT 

DINVIT 

approximation is obtamed from the LINPACK condition 
number estimator DTRCO, and is improved by inverse 
iteration. 

Solve lower triangular system of equations with frequent 
resealings in order to avoid overflow. Similar to part of 
DTRCO. 

Solve upper triangular linear system of equations with 
frequent resealings in order to avoid overflow. Similar to 
part of DTRCO. 

Assume now that the input value of RCOND I gn+Jgl. Then DORTHO 
computes s := & Tw and v := (I - QQT)w by a scheme analogous to the method 
described by Parlett [E, p. 1071 for orthogonalizing a vector against another 
vector. For definiteness, we present the orthogonalization scheme. References to 
gl, (T,+~, and RCOND are neglected for simplicity. 

Orthogonalization Algorithm. Input Q E R”“” (Q has orthonormal 
columns), m, n. (m > n), w E R” (w # 0); output u (u = (I - QQ’)w), 
s(s=Q=w); 

ti := w/II w II; 
s:=QTW; v := 5 - Qs; 
if 11 v II 2 0.707 then 

(2.3) 

v:=v/llvll; s:=sllwll; exit; * 11~11 =l, QTu=O* 
s’ := QTU; vJ := u - Qs’; 

if II v’ II 5 0.707 II v II then 
* w lies in span(Q] numerically * 

(2.4) 

v:=O; s:=(s+s’)JJwJJ; setflag; exit; 
u:=(u+v’)/llv+v’II; s:=(s+s’)llwll; exit; * l(v(1 =l, QTv=O* 

The proof in Parlett [16, pp. 107-1081, that one reorthogonalization suffices, 
carries over the present algorithm, using Q’Q = 1. 

We note that there are other ways to carry out the computations on lines 
(2.3)-(2.4). In [5], u and u ’ are updated immediately after a component of s is com- 
puted. Our scheme has the advantage of being faster on vector computers 
because it allows matrix vector operations; it is also, generally, more accurate, 
since there is less accumulation of rounding errors. The latter advantage can be 
shown easily, but we omit the details. 

We turn to subroutine DORTHX. This is a faster version of subroutine 
DORTHO. DORTHX assumes that w in the orthogonalization algorithm is an 
axis vector. This simplifies the computations in (2.3). DORTHX may perform 
nearly twice as fast as DORTHO. 
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2.2 Subroutines DINVIT, DTRLSL, and DTRUSL 

Given a nonsingular upper triangular matrix U = [pjk] E R”“” and a vector 
b = [pj] E R”, DTRUSL solves Ux = bp, where ] p ] 5 1 is a scaling factor such 
that ( pj p/pjj ] I 1 for allj. The scaling factor is introduced in order to avoid over- 
flow when solving very ill-conditioned linear systems of equations. DTRLSL 
is an analogous subroutine for lower triangular systems. 

DTRLSL and DTRUSL are called by DINVIT, a subroutine for computing an 
approximation of a right singular vector belonging to a least singular value of a 
right triangular matrix R. If R is singular, then such a singular vector is computed 
by solving a triangular linear system of equations. Otherwise an initial approxi- 
mate right singular vector a”’ = (a~“)~,, is obtained by the LINPACK condition 
number estimator DTRCO, and inverse iteration with RrR is used to obtain 
improved approximations a”‘, j = 1, 2, . . . , NMBIT, where NMBIT is an input 
parameter to DINVIT and DRRPM. On exit from DINVIT and DRRPM, 
IPOS(j) contains the least index h such that ] (~2) ] > ] ai’) I, 1 5 1 5 n, 
0 5 j 5 NMBIT. On return from DINVIT and DRRPM, the parameter DELTA 
is given by DELTA : = ]] R~Ru’~~~‘~’ ]] / ]] ucNMBIT) ]] . Hence, DELTA is an upper 
bound for the least singular value of R. 

2.3 Updating Subroutines 

We are now in a position to consider the subroutines of Table I. The vectorization 
is done mainly in the subroutines for simple matrix and vector operations, 
discussed in Section 3, but some loops of the subroutines of Table I vectorize as 
well. Comments in the source code reveal which loops vectorize or are eligible for 
vectorization on an IBM 3090 VF computer with compiler VS FORTRAN 2.3.0 
when the default vectorization directives are used. For applications to particular 
problem classes, changing the default vectorization by compiler directives may 
decrease execution time. 

We list the differences between the subroutines of Table I and the correspond- 
ing Algol procedures of [5]. Some of these modifications are suggested in [5], but 
not implemented in the Algol procedures. In subroutine DDELC, the column 
deleted in A := QR is determined optionally. Not computing this column saves 
O(mn) arithmetic operations. In subroutine DDELR, the auxiliary subroutine 
DORTHX is used instead of DORTHO. As indicated in Section 2.1, the former 
subroutine may perform nearly twice as fast. In subroutine DINSC, a column w 
is inserted into A := QR only if the reciprocal condition number of the matrix 
[Q, w/ ]] w ]] ] is larger than a bound given by the parameter RCOND on entry. 
The parameter RCOND can be used to prevent updating when w/ ]] w ]] is nearly 
in the range of Q. Finally, DRNKl performs slightly faster if the updated matrix 
A + uur is such that u lies numerically in the range of A. 

The subroutine DRRPM implements an algorithm presented by Chan [3]. The 
computation of an approximate right singular vector corresponding to a least 
singular value is done by subroutine DINVIT, and has already been discussed. 
The position of the component of largest magnitude of this singular vector has 
to be determined, and we found, in agreement with Chan’s suggestion [3], that 
two inverse iterations suffice. In fact, in all computed examples, one inverse 
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iteration was sufficient, even for problems with multiple or close least singular 
values. The subroutine permutes the order of columns 1 through k of Ail where 
k is an input parameter, A E R""", m 2 n, and II is a permutation matrix. 
Typically, DRRPM is called with k = n, n - 1, n - 2, . . . until no further 
permutation is made or until the computer upper bound DELTA for the least 
singular value of the matrix consisting of the first k columns of AII is not small. 

The subroutines of Table I neither require nor produce a factorization with 
nonnegative diagonal elements of the upper triangular matrix. 

3. SUBROUTINES FOR SIMPLE MATRIX AND VECTOR OPERATIONS 

Much computational experience on a variety of computers led Dongarra and 
Sorensen [7] to conclude that nearly optimal performance of numerical linear 
algebra code can be achieved if the subroutines for simple matrix and vector 
operations, such as BLAS [12], are written to perform on the computer at hand. 
We have written these subroutines so that they run efficiently on an IBM 3090 
VF vector computer when the compiler VS FORTRAN 2.3.0 with parameter 
vlev = 2 is used. No vectorization directives are required in the code. In partic- 
ular, we note that when implementing the code for updating the QR decom- 
position of a matrix on other (vector) computers, it may be possible to gain 
execution speed by modifying the subroutines for simple linear algebra tasks. 
We illustrate this with an example that describes a partricular feature of the 
VS FORTRAN 2.3.0 compiler. By introducing a temporary scalar variable, 
denoted ACC in the subroutine DAPX in Example 3.1 below, this compiler 
generates code that avoids unnecessary loads and stores. 

During execution, ACC should be thought of as a vector variable stored in a 
vector register. Timings for DAPX and comparison with code with explicitly 
unrolled loops have been carried out by Robert and Squazzero [ 171. These timings 
show subroutine DAPX to perform better than equivalent subroutines with 
explicitly unrolled loops. However, when implemented on other computers with 
other compilers, the subroutine DAPX might perform better if the order of the 
DO-loops is interchanged. 

Example 3.1 Subroutine for Matrix Vector Multiplication 

SUBROUTINE DAPX(A,LDA,M,N,X,Y) 
C 
C DAPX COMPUTES Y := A*X. 
C 

INTEGER LDA,M,N,I,J 
REAL*8 A(LDA,N), X(N), Y(M), ACC 

C 
C OUTER LOOP VECTORIZES. 
C 

DO 10 1=1, M 
ACC=ODO 
DO 20 J=l, N 

ACC=ACC+A(I,J)*X(J) 
20 CONTINUE 

Y(I)=ACC 
10 CONTINUE 

RETURN 
END 
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Table III. Timings for DDELCO 

m 

10 
20 
30 
50 
15 

128 
1024 
1280 

n 

10 
10 
10 
10 
10 
10 
10 
10 

CPU time in seconds 

Scalar Vector 
Scalar time 

arithmetic arithmetic Vector time 

4 . lo-* 4 . 1o-4 1 
4 1o-4 4 10-d 1 
5 . 1o-4 4 lo-” 1.5 
6 . 1O-4 4 . lo-’ 1.5 
8 1o-4 4 . 10-d 2 
1 . 1o-3 5 . 1o-4 2 
7 . 1o-3 2 . 1o-3 3.5 
9 1o-3 3 lo+ 3.5 

Table IV. Timings for DRNKl 

m 

16 
32 
64 

128 
1024 
1250 

CPU time in seconds 

Scalar Vector 
Scalar time 

n arithmetic arithmetic Vector time 

12 1 . 1o-3 1 1o-3 1 
25 4 . 1o-3 3 1o-3 1.5 
50 2 . 10-Z 7 1o-3 2 

100 6 . lo-’ 2 10-Z 2.5 
100 4 . 10-I 8 lo-* 4.5 
100 5 . 10-l 9 10-l 5 

4. COMPUTED EXAMPLES 

Example 4.1 Execution times for subroutines DDELCO and DRNKl are 
compared for scalar and vector arithmetic. The measured CPU times differ 
somewhat between different executions of the same code. The times reported are 
therefore rounded to one significant digit and the quotient of measured CPU 
times rounded to the nearest multiple of i. 

Table III shows the CPU times for DDELCO. This routine and its subroutines 
are compiled with the VS FORTRAN 2.3.0 compiler. The times for vector 
arithmetic are obtained from code generated with compiler option vlev = 2, which 
makes the compiler generate code that utilizes the vector registers and arithmetic. 
The times for scalar arithmetic are obtained from code generated with compiler 
option vlev = 0, which makes the compiler generate code that does not use vector 
instructions. Given a QR decomposition of a matrix A E R”““, Table III shows 
the CPU time required by DDELCO to compute the QR decomposition of 
A E Rmxcnml) obtained by deleting column one of A. 

Table IV is similar to Table III, and contains execution times for DRNKl. 
The reduction in execution time obtained by using vector instructions is of the 
same order of magnitude for the other updating routines, too. 

Example 4.2 Execution times for subroutines written by Buckley [2] and those 
of Table I are compared. The vectorized and scalar codes were generated as 
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Table V. The First Row of A = QR is Deleted. CPU Times for 
Vectorized Code for Updating Q and R are Given in Seconds; 

n = 10. 

Time for Time for 
Time for DELROW [2] 

m DDELR DELROW (21 Time for DDELR 

10 3 lo-” 9 lo+ 3.5 . 10’ 
64 7 1o-5 2 1o-3 2 . 10’ 

128 8 . lo-” 3 lo+ 3 
1024 4 lo+ 2 lo-* 4 

Table VI. The Last Column of A = QR is deleted. CPU Times 
for Vectorized Code for Updating Q and R are Given in Seconds. 

DDELC Does Not Compute the Last Column of A. 
(IFLAG = 0 on Entry). 

Time for Time for 
Time for DELCOL [2] 

n n DELC DELCOL 121 Time for DDELC 

1024 10 1 lo+ 2 . 1o-4 2 
1024 100 1 . 1O-4 7 lo-$ 7.5 10’ 
1280 100 1 1o-4 9 1o-3 9.5 . 10’ 

Table VII. A New First Column is Inserted into A = QR. 
CPU Times for Vectorized Code for Updating Q and R are 

Given in Seconds; II = 10. 

Time for Time for 
Time for INSCOL [2] 

m DINSC INSCOL 121 Time for DINSC 

64 1 . 10-S 2 lo+ 2 
128 1 1o-3 3 1o-3 2 

1024 7 1o-3 2 1o-2 2.5 

Table VIII. The First Row of A = QR is Deleted. CPU Times for 
Scalar Code for Updating Q and R are Given in Seconds; n = 10. 

Time for Time for 
Time for DELROW [2] 

m DDELR DELROW [2] Time for DDELR 

10 2 1o-5 6 . lo-’ 3 . 10’ 
64 1 1o-3 2 . 1o-3 1.5 

128 2 f 10-a 3 f 10-a 1.5 
1024 1 . lo-* 2 . lo-* 1.5 

explained in Example 4.1. We found that vectorization of the subroutines in [2] 
did not change the execution times significantly, generally less than 20%. In all 
computed examples the vectorized subroutines in [2] required at least twice as 
much execution time as the vectorized subroutines of Table I. For certain 
problems, our vectorized code executed up to 95 times faster than the vectorized 
code in [2]. For scalar code the differences in execution time often decreased 
with increasing matrix size. Tables V-VIII present some sample timings. 
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Tables V-VII present timings for vectorized code. The next table shows timings 
for scalar code for the same updatings as in Table V. Table VIII shows that, 
without vectorization, DELROW [2] requires 50% more CPU time then DDELR 
for moderately large problems. 

ACKNOWLEDGMENTS 

One of the authors (L.R.) would like to thank Jack Dongarra and Pat Gaffney 
for valuable discussions, and Aladin Kamel for help in handling the computer. 

REFERENCES 

1. ALLEN, D. M. Mean square error of prediction as a criterion for selecting variables. Techno- 
metrics 13 (1971), 469-475. 

‘2. BUCKLEY, A. Algorithm 580, QRUP: A set of FORTRAN routines for updating QR factoriza- 
tions. ACM Trans. Math. Softw. 7 (1981), 548-549 and 8 (1982), 405. 

3. CHAN, T. F. Rank revealing QR factorizations. Lin. Alg. Appl. 88/89 (1987), 67-82. 
4. CLINE, A. K., MOLER, C. B., STEWART, G. W., AND WILKINSON, J. H. An estimate for the 

condition number of a matrix. SIAM J. Numer. Anal. 16 (1979), 368-375. 
5. DANIEL, J. W., GRAGG, W. B., KAUFMAN, L., AND STEWART, G. W. Reorthogonalization and 

stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput. 30 (1976), 
772-795. 

6. DONGARRA, J. J., BUNCH, J. R., MOLER, C. B., AND STEWART, G. W. Linpack Users’ Guide. 
SIAM, Philadelphia, 1979. 

7. DONGARRA, J. J., AND SORENSEN, D. C. Linear algebra on high performance computers. In 
Applications of Supercomputers, D. F. Lockhart, and D. L. Hicks, Eds., Elsevier, Amsterdam, 
1986,57-88. 

8. GILL, P. E., GOLUB, G. H., MURRAY, W., AND SAUNDERS, M. A. Methods for modifying martrix 
factorizations. Math. Comput. 28 (1974), 505-535. 

9. GOLDFARB, D. Factorized variable metric methods for unconstrained optimization. Math. Com- 
put. 30 (1976), 796-811. 

10. GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins University Press, 
Baltimore, Md., 1983. 

11. GRAGG, W. B., AND STEWART, G. W. A stable variant of the secant method for solving nonlinear 
equations. SIAM J. Numer. Anal. 13 (1976), 889-903. 

12. LAWSON, C., HANSON, R., KINCAID, D., AND KROGH, F. Basic linear algebra subprograms for 
FORTRAN usage. ACM Trans. Math. Softw. 5 (1979), 308-323. 

13. LING, F., MANOLAKIS, D., AND PROAKIS, J. G. A recursive modified Gram-Schmidt algorithm 
for least-squares estimation. IEEE Trans. Acoustics, Speech and Signal Process. ASSP-34 (1986), 
829-835. 

14. MORI?, J. J., AND SORENSEN, D. C. Newton methods. In Studies in Numerical Analysis, G. H. 
Golub, Ed., The Mathematical Association of America, Washington, D.C., 1984, 29-82. 

15. NAG FORTRAN Library Manual, Mark 12. Numerical Algorithms Group, 1987. 
16. PARLETT, B. N. The Symmetric Eigenualue Problem. Prentice-Hall, Englewood Cliffs, N.J., 

1980. 
17. ROBERT, Y., AND SGUAZZERO, P. The LU decomposition algorithm and its efficient FORTRAN 

implementation on the IBM 3090 vector multiprocessor. Tech. Rep. ICE-0006, IBM European 
Center for Scientific and Engineering Computing, Rome, 1987. 

18. STEWART, G. W. The effect of rounding error on an algorithm for downdating a Cholesky 
factorization. J. Inst. Math. Applic. 23 (1979), 203-213. 

Received October 1988; revised August 1989; accepted September 1989 

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990. 


