
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1990

ALGORITHM 686, FORTRAN

Subroutines for Updating the QR Decomposition

Reichel, L.

http://hdl.handle.net/10945/38295

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36730698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ALGORITHM 686
FORTRAN Subroutines for Updating the
QR Decomposition

L. REICHEL
Bergen Scientific Center
and
W. B. GRAGG
Naval Postgraduate School

Let the matrix A E R”““, m 2 n, have a QR decomposition A = QR, where Q E R”“” has orthonormal
columns, and R E R”“” is upper triangular. Assume that Q and R are explicitly known. We present
FORTRAN subroutines that update the QR decomposition in a numerically stable manner when A
is modified by a matrix of rank one, or when a row or a column is inserted or deleted. These
subroutines are modifications of the Algol procedures in Daniel et al. [5]. We also present a subroutine
that permutes the columns of A and updates the QR decomposition so that the elements in the lower
right corner of R will generally be small if the columns of A are nearly linearly dependent. This
subroutine is an implementation of the rank-revealing QR decomposition scheme recently proposed
by Chan [3].

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: QR decomposition, subset selection, updating

1. INTRODUCTION

We present several FORTRAN subroutines for updating the QR decomposition
of a matrix. Let A E R”““, m 1 n, have a QR decomposition A = QR, where
Q E R”“” has orthonormal columns, and R E R”“” is upper triangular. Assume
that the elements of Q and R are explicitly known. Let A E Rpxq, p 2 q, be
obtained from A by inserting or deleting a row or a column, or let A be a rank-
one modification of A (i.e., A = A + uuT, where u E R”, u E R”). Then, a -- --
QR-decomposition of A, A = QR, where B E R pxq has orthonormal columns and

This research was supported by NSF grant DMS-8704196 and by the Foundation Research Program
of the Naval Postgraduate School.
Authors’ addresses: L. Reichel, Bergen Scientific Center, Thormdhlensgaten 55, 36, N-5008,
Bergen, Norway and Department of Mathematics, University of Kentucky, Lexington, KY 40506;
W. B. Gragg, Department of Mathematics, Naval Postgraduate School, Monterey, CA 93943.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 009%3500/90/1200-0369 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990, Pages 369-377.

370 * L. Reichel and W. 8. Gragg

R E Rqxq is upper triangular, can be computed in O(rnlz) arithmetic operations
by updating Q and R; see Daniel et al. [5]. The updating is done by applying
Givens reflectors. The operation count for updating Q and R compares favorably
with the O(mn’) arithmetic operations necessary to compute a QR decomposition
of a general m X n matrix.

Algol procedures for computing Q and R from Q and R are presented by
Daniel et al. [5]. Buckley [2] translated these procedures into FORTRAN. Our
FORTRAN subroutines implement modifications of the algorithms in [5]. These
modifications reduce the operation count. Also, the structure of our code differs
from [2]. We use subroutines such as the Basic Linear Algebra Subprograms
(BLAS), described in [12], for simple matrix and vector operations. This makes
it fairly easy to adapt the frequently executed parts of the code in order to achieve
faster execution. The subroutines run quickly on an IBM 3090 VF vector
computer.

Several program libraries, such as LINPACK [6] and NAG [15], provide
subroutines for updating R, but contain no routines for updating the complete
QR decomposition. Two advantages of updating both Q and R are that
QR decomposition can be modified stably when a row or a column is deleted
from A, and that the individual elements of projections are easily accessible;
see LINPACK [6, p. 10.231, Daniel et al. [5], and Stewart [181.

The first comprehensive survey of updating algorithms was presented by Gill
et al. [8]; and a recent discussion with references to applications can be found in
Golub and Van Loan [lo, Ch. 12.61. The applications include linear least squares
problems, regression analysis, and the solution of nonlinear systems of equations.
(See Allen [11, Goldfarb [9], Gragg and Stewart [111, More and Sorensen [141.)
The algorithms also appear to be applicable to recursive least squares problems
of signal processing; see Ling et al. [131.

We also present a subroutine that implements the rank-revealing QR decom-
position method recently proposed by Chan [3]. In this method the QR de- --
composition A = QR is updated to yield the QR decomposition A = QR, where
x is obtained from A by column permutation. This permutation is selected
so that, in general, the element(s) in the lower right corner of fi are small if A
has nearly linearly dependent columns. The subroutine can be used to solve
the subset selection problem; see Golub and Van Loan [lo]. Table I lists the
FORTRAN subroutines for updating the QR decomposition. All subroutines
use double precision arithmetic and are written in FORTRAN 77. Sec-
tion 2 contains programming details for the subroutines of Table I and for
certain auxiliary subprograms. For all subroutines of Table I, except DRRPM,
the numerical method as well as Algol procedures have been presented in [5].
For these subroutines we discuss differences between our FORTRAN subroutines
and the Algol procedures only.

Section 3 discusses programming details for the subroutines for simple matrix
and vector operations. These subroutines have been written to vectorize well on
an IBM 3090 VF vector computer when the vectorizing compiler VS FORTRAN
2.3.0 is used. The last section, Section 4, contains some timing results for our
subroutines and comparisons with the code [2].

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Algorithm 686: FORTRAN Subroutines for Updating * 371

Table I. Subroutines for Updating a QR Decomposition
A = QR to Yield a QR Decomposition ,& = QR

Subroutine Purpose

DDECL
--

Computes Q, R from Q, R when ?i is obtained from A by deleting a column; see [5]. --
DDELR Computes Q, R from Q, R when A is obtained from A by deleting a row; see [5]. --
DINSC Computes Q, R from Q, R when A is obtained from A by inserting a column; see [5]. --
DINSR Computes Q, R from Q, R when A is obtained from A by inserting a row; see (51. --
DRNKl Computes Q, R from Q, R when A is a rank-one modification of A; see [5]. --
DRRPM Computes Q, R from Q, R when A is obtained by permuting the columns of A in a

manner that generally reveals if columns of A are nearly linearly dependent; see [3].

2. THE UPDATING SUBROUTINES

We consider the subroutines of Table I in order. These subroutines use auxiliary
subroutines, which we need to introduce first. They are listed in Table II.

2.1 Subroutines DORTHO and DORTHX

Given a matrix Q E R”““, m 2 n, with orthonormal columns and a vector
w E R”, the subroutine DORTHO computes the Fourier coefficients s := Q’w
and the orthogonal projection of w into the null space of QT, u := (I - QQ’r)w.
At most one reorthogonalization is carried out. Since the subroutine DORTHO
differs from the corresponding Algol procedure “orthogonalize” in [5], we discuss
DORTHO and its use in some detail.

Subroutine DORTHO is called by routine DINSC, which updates the QR
factorization of a matrix A = QR E R”““, m > n, when a column w is inserted
into A. Updating may not be meaningful if w is a nearly linear combination of
the columns of Q. Therefore, DORTHO computes the condition number of
the matrix Q := [Q, wl II w II 1 E Rmxcn+l’, where]]]I is the Euclidean norm.
Using Q’Q = I, we obtain the following expressions for the singular values
u1 2 uz > . . . 2 u~+~ of Q:

~1 = (1 + II QTw II /II w II T”,

Uj = 1, 25jSn,

u n+~ = (1 - II QTw II /II w II Y”.
Further, for u := (I - QQt)w/ I(w /I,

(2.la)

(2.lb)

(2.lc)

II u II = ~1~,+1* (2.2)

Since 15 u, 5 & , u”+~ is also an accurate estimate of the length of the orthogonal
projection of w/]I w]I into the null space of QT. In order to avoid severe cancel-
lation of significant digits in (2.lc), we first determine u1 from (2.la) and then
u,+~ from (2.2).

Subroutines DINSC and DORTHO have an input parameter RCOND
which is a lower bound for the reciprocal condition number. The computa-
tions are discontinued and an error flag is set if RCOND > u”+~/u~. On exit,
RCOND := un+Jul.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

372 * L. Reichel and W. B. Gragg

Table II. Auxiliarv Subroutines

Auxiliary Called by
subroutine subroutine Purnose

DORTHO DINSC, DRNKl Compute s := Q’w, u := (I - QQ’)w with reorthogonalization
for arbitrary vector W.

DORTHX DDELR Compute s := QTe,, u := (I - QQ’)e,, with reorthogonalization
for axis vector e,.

DINVIT DRRPM Compute approximation of a right singular vector
corresponding to a least singular value of R. A first

. . .

DTRLSL

DTRUSL

DINVIT

DINVIT

approximation is obtamed from the LINPACK condition
number estimator DTRCO, and is improved by inverse
iteration.

Solve lower triangular system of equations with frequent
resealings in order to avoid overflow. Similar to part of
DTRCO.

Solve upper triangular linear system of equations with
frequent resealings in order to avoid overflow. Similar to
part of DTRCO.

Assume now that the input value of RCOND I gn+Jgl. Then DORTHO
computes s := & Tw and v := (I - QQT)w by a scheme analogous to the method
described by Parlett [E, p. 1071 for orthogonalizing a vector against another
vector. For definiteness, we present the orthogonalization scheme. References to
gl, (T,+~, and RCOND are neglected for simplicity.

Orthogonalization Algorithm. Input Q E R”“” (Q has orthonormal
columns), m, n. (m > n), w E R” (w # 0); output u (u = (I - QQ’)w),
s(s=Q=w);

ti := w/II w II;
s:=QTW; v := 5 - Qs;
if 11 v II 2 0.707 then

(2.3)

v:=v/llvll; s:=sllwll; exit; * 11~11 =l, QTu=O*
s’ := QTU; vJ := u - Qs’;

if II v’ II 5 0.707 II v II then
* w lies in span(Q] numerically *

(2.4)

v:=O; s:=(s+s’)JJwJJ; setflag; exit;
u:=(u+v’)/llv+v’II; s:=(s+s’)llwll; exit; * l(v(1 =l, QTv=O*

The proof in Parlett [16, pp. 107-1081, that one reorthogonalization suffices,
carries over the present algorithm, using Q’Q = 1.

We note that there are other ways to carry out the computations on lines
(2.3)-(2.4). In [5], u and u ’ are updated immediately after a component of s is com-
puted. Our scheme has the advantage of being faster on vector computers
because it allows matrix vector operations; it is also, generally, more accurate,
since there is less accumulation of rounding errors. The latter advantage can be
shown easily, but we omit the details.

We turn to subroutine DORTHX. This is a faster version of subroutine
DORTHO. DORTHX assumes that w in the orthogonalization algorithm is an
axis vector. This simplifies the computations in (2.3). DORTHX may perform
nearly twice as fast as DORTHO.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Algorithm 686: FORTRAN Subroutines for Updating - 373

2.2 Subroutines DINVIT, DTRLSL, and DTRUSL

Given a nonsingular upper triangular matrix U = [pjk] E R”“” and a vector
b = [pj] E R”, DTRUSL solves Ux = bp, where] p] 5 1 is a scaling factor such
that (pj p/pjj] I 1 for allj. The scaling factor is introduced in order to avoid over-
flow when solving very ill-conditioned linear systems of equations. DTRLSL
is an analogous subroutine for lower triangular systems.

DTRLSL and DTRUSL are called by DINVIT, a subroutine for computing an
approximation of a right singular vector belonging to a least singular value of a
right triangular matrix R. If R is singular, then such a singular vector is computed
by solving a triangular linear system of equations. Otherwise an initial approxi-
mate right singular vector a”’ = (a~“)~,, is obtained by the LINPACK condition
number estimator DTRCO, and inverse iteration with RrR is used to obtain
improved approximations a”‘, j = 1, 2, . . . , NMBIT, where NMBIT is an input
parameter to DINVIT and DRRPM. On exit from DINVIT and DRRPM,
IPOS(j) contains the least index h such that] (~2)] >] ai’) I, 1 5 1 5 n,
0 5 j 5 NMBIT. On return from DINVIT and DRRPM, the parameter DELTA
is given by DELTA : =]] R~Ru’~~~‘~’]] /]] ucNMBIT)]] . Hence, DELTA is an upper
bound for the least singular value of R.

2.3 Updating Subroutines

We are now in a position to consider the subroutines of Table I. The vectorization
is done mainly in the subroutines for simple matrix and vector operations,
discussed in Section 3, but some loops of the subroutines of Table I vectorize as
well. Comments in the source code reveal which loops vectorize or are eligible for
vectorization on an IBM 3090 VF computer with compiler VS FORTRAN 2.3.0
when the default vectorization directives are used. For applications to particular
problem classes, changing the default vectorization by compiler directives may
decrease execution time.

We list the differences between the subroutines of Table I and the correspond-
ing Algol procedures of [5]. Some of these modifications are suggested in [5], but
not implemented in the Algol procedures. In subroutine DDELC, the column
deleted in A := QR is determined optionally. Not computing this column saves
O(mn) arithmetic operations. In subroutine DDELR, the auxiliary subroutine
DORTHX is used instead of DORTHO. As indicated in Section 2.1, the former
subroutine may perform nearly twice as fast. In subroutine DINSC, a column w
is inserted into A := QR only if the reciprocal condition number of the matrix
[Q, w/]] w]]] is larger than a bound given by the parameter RCOND on entry.
The parameter RCOND can be used to prevent updating when w/]] w]] is nearly
in the range of Q. Finally, DRNKl performs slightly faster if the updated matrix
A + uur is such that u lies numerically in the range of A.

The subroutine DRRPM implements an algorithm presented by Chan [3]. The
computation of an approximate right singular vector corresponding to a least
singular value is done by subroutine DINVIT, and has already been discussed.
The position of the component of largest magnitude of this singular vector has
to be determined, and we found, in agreement with Chan’s suggestion [3], that
two inverse iterations suffice. In fact, in all computed examples, one inverse

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

374 * L. Reichel an3 W. B. Gragg

iteration was sufficient, even for problems with multiple or close least singular
values. The subroutine permutes the order of columns 1 through k of Ail where
k is an input parameter, A E R""", m 2 n, and II is a permutation matrix.
Typically, DRRPM is called with k = n, n - 1, n - 2, . . . until no further
permutation is made or until the computer upper bound DELTA for the least
singular value of the matrix consisting of the first k columns of AII is not small.

The subroutines of Table I neither require nor produce a factorization with
nonnegative diagonal elements of the upper triangular matrix.

3. SUBROUTINES FOR SIMPLE MATRIX AND VECTOR OPERATIONS

Much computational experience on a variety of computers led Dongarra and
Sorensen [7] to conclude that nearly optimal performance of numerical linear
algebra code can be achieved if the subroutines for simple matrix and vector
operations, such as BLAS [12], are written to perform on the computer at hand.
We have written these subroutines so that they run efficiently on an IBM 3090
VF vector computer when the compiler VS FORTRAN 2.3.0 with parameter
vlev = 2 is used. No vectorization directives are required in the code. In partic-
ular, we note that when implementing the code for updating the QR decom-
position of a matrix on other (vector) computers, it may be possible to gain
execution speed by modifying the subroutines for simple linear algebra tasks.
We illustrate this with an example that describes a partricular feature of the
VS FORTRAN 2.3.0 compiler. By introducing a temporary scalar variable,
denoted ACC in the subroutine DAPX in Example 3.1 below, this compiler
generates code that avoids unnecessary loads and stores.

During execution, ACC should be thought of as a vector variable stored in a
vector register. Timings for DAPX and comparison with code with explicitly
unrolled loops have been carried out by Robert and Squazzero [171. These timings
show subroutine DAPX to perform better than equivalent subroutines with
explicitly unrolled loops. However, when implemented on other computers with
other compilers, the subroutine DAPX might perform better if the order of the
DO-loops is interchanged.

Example 3.1 Subroutine for Matrix Vector Multiplication

SUBROUTINE DAPX(A,LDA,M,N,X,Y)
C
C DAPX COMPUTES Y := A*X.
C

INTEGER LDA,M,N,I,J
REAL*8 A(LDA,N), X(N), Y(M), ACC

C
C OUTER LOOP VECTORIZES.
C

DO 10 1=1, M
ACC=ODO
DO 20 J=l, N

ACC=ACC+A(I,J)*X(J)
20 CONTINUE

Y(I)=ACC
10 CONTINUE

RETURN
END

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Algorithm 686: FORTRAN Subroutines for Updating - 375

Table III. Timings for DDELCO

m

10
20
30
50
15

128
1024
1280

n

10
10
10
10
10
10
10
10

CPU time in seconds

Scalar Vector
Scalar time

arithmetic arithmetic Vector time

4 . lo-* 4 . 1o-4 1
4 1o-4 4 10-d 1
5 . 1o-4 4 lo-” 1.5
6 . 1O-4 4 . lo-’ 1.5
8 1o-4 4 . 10-d 2
1 . 1o-3 5 . 1o-4 2
7 . 1o-3 2 . 1o-3 3.5
9 1o-3 3 lo+ 3.5

Table IV. Timings for DRNKl

m

16
32
64

128
1024
1250

CPU time in seconds

Scalar Vector
Scalar time

n arithmetic arithmetic Vector time

12 1 . 1o-3 1 1o-3 1
25 4 . 1o-3 3 1o-3 1.5
50 2 . 10-Z 7 1o-3 2

100 6 . lo-’ 2 10-Z 2.5
100 4 . 10-I 8 lo-* 4.5
100 5 . 10-l 9 10-l 5

4. COMPUTED EXAMPLES

Example 4.1 Execution times for subroutines DDELCO and DRNKl are
compared for scalar and vector arithmetic. The measured CPU times differ
somewhat between different executions of the same code. The times reported are
therefore rounded to one significant digit and the quotient of measured CPU
times rounded to the nearest multiple of i.

Table III shows the CPU times for DDELCO. This routine and its subroutines
are compiled with the VS FORTRAN 2.3.0 compiler. The times for vector
arithmetic are obtained from code generated with compiler option vlev = 2, which
makes the compiler generate code that utilizes the vector registers and arithmetic.
The times for scalar arithmetic are obtained from code generated with compiler
option vlev = 0, which makes the compiler generate code that does not use vector
instructions. Given a QR decomposition of a matrix A E R”““, Table III shows
the CPU time required by DDELCO to compute the QR decomposition of
A E Rmxcnml) obtained by deleting column one of A.

Table IV is similar to Table III, and contains execution times for DRNKl.
The reduction in execution time obtained by using vector instructions is of the
same order of magnitude for the other updating routines, too.

Example 4.2 Execution times for subroutines written by Buckley [2] and those
of Table I are compared. The vectorized and scalar codes were generated as

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

376 * L. Reichel and W. 6. Gragg

Table V. The First Row of A = QR is Deleted. CPU Times for
Vectorized Code for Updating Q and R are Given in Seconds;

n = 10.

Time for Time for
Time for DELROW [2]

m DDELR DELROW (21 Time for DDELR

10 3 lo-” 9 lo+ 3.5 . 10’
64 7 1o-5 2 1o-3 2 . 10’

128 8 . lo-” 3 lo+ 3
1024 4 lo+ 2 lo-* 4

Table VI. The Last Column of A = QR is deleted. CPU Times
for Vectorized Code for Updating Q and R are Given in Seconds.

DDELC Does Not Compute the Last Column of A.
(IFLAG = 0 on Entry).

Time for Time for
Time for DELCOL [2]

n n DELC DELCOL 121 Time for DDELC

1024 10 1 lo+ 2 . 1o-4 2
1024 100 1 . 1O-4 7 lo-$ 7.5 10’
1280 100 1 1o-4 9 1o-3 9.5 . 10’

Table VII. A New First Column is Inserted into A = QR.
CPU Times for Vectorized Code for Updating Q and R are

Given in Seconds; II = 10.

Time for Time for
Time for INSCOL [2]

m DINSC INSCOL 121 Time for DINSC

64 1 . 10-S 2 lo+ 2
128 1 1o-3 3 1o-3 2

1024 7 1o-3 2 1o-2 2.5

Table VIII. The First Row of A = QR is Deleted. CPU Times for
Scalar Code for Updating Q and R are Given in Seconds; n = 10.

Time for Time for
Time for DELROW [2]

m DDELR DELROW [2] Time for DDELR

10 2 1o-5 6 . lo-’ 3 . 10’
64 1 1o-3 2 . 1o-3 1.5

128 2 f 10-a 3 f 10-a 1.5
1024 1 . lo-* 2 . lo-* 1.5

explained in Example 4.1. We found that vectorization of the subroutines in [2]
did not change the execution times significantly, generally less than 20%. In all
computed examples the vectorized subroutines in [2] required at least twice as
much execution time as the vectorized subroutines of Table I. For certain
problems, our vectorized code executed up to 95 times faster than the vectorized
code in [2]. For scalar code the differences in execution time often decreased
with increasing matrix size. Tables V-VIII present some sample timings.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Algorithm 686: FORTRAN Subroutines for Updating * 377

Tables V-VII present timings for vectorized code. The next table shows timings
for scalar code for the same updatings as in Table V. Table VIII shows that,
without vectorization, DELROW [2] requires 50% more CPU time then DDELR
for moderately large problems.

ACKNOWLEDGMENTS

One of the authors (L.R.) would like to thank Jack Dongarra and Pat Gaffney
for valuable discussions, and Aladin Kamel for help in handling the computer.

REFERENCES

1. ALLEN, D. M. Mean square error of prediction as a criterion for selecting variables. Techno-
metrics 13 (1971), 469-475.

‘2. BUCKLEY, A. Algorithm 580, QRUP: A set of FORTRAN routines for updating QR factoriza-
tions. ACM Trans. Math. Softw. 7 (1981), 548-549 and 8 (1982), 405.

3. CHAN, T. F. Rank revealing QR factorizations. Lin. Alg. Appl. 88/89 (1987), 67-82.
4. CLINE, A. K., MOLER, C. B., STEWART, G. W., AND WILKINSON, J. H. An estimate for the

condition number of a matrix. SIAM J. Numer. Anal. 16 (1979), 368-375.
5. DANIEL, J. W., GRAGG, W. B., KAUFMAN, L., AND STEWART, G. W. Reorthogonalization and

stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput. 30 (1976),
772-795.

6. DONGARRA, J. J., BUNCH, J. R., MOLER, C. B., AND STEWART, G. W. Linpack Users’ Guide.
SIAM, Philadelphia, 1979.

7. DONGARRA, J. J., AND SORENSEN, D. C. Linear algebra on high performance computers. In
Applications of Supercomputers, D. F. Lockhart, and D. L. Hicks, Eds., Elsevier, Amsterdam,
1986,57-88.

8. GILL, P. E., GOLUB, G. H., MURRAY, W., AND SAUNDERS, M. A. Methods for modifying martrix
factorizations. Math. Comput. 28 (1974), 505-535.

9. GOLDFARB, D. Factorized variable metric methods for unconstrained optimization. Math. Com-
put. 30 (1976), 796-811.

10. GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins University Press,
Baltimore, Md., 1983.

11. GRAGG, W. B., AND STEWART, G. W. A stable variant of the secant method for solving nonlinear
equations. SIAM J. Numer. Anal. 13 (1976), 889-903.

12. LAWSON, C., HANSON, R., KINCAID, D., AND KROGH, F. Basic linear algebra subprograms for
FORTRAN usage. ACM Trans. Math. Softw. 5 (1979), 308-323.

13. LING, F., MANOLAKIS, D., AND PROAKIS, J. G. A recursive modified Gram-Schmidt algorithm
for least-squares estimation. IEEE Trans. Acoustics, Speech and Signal Process. ASSP-34 (1986),
829-835.

14. MORI?, J. J., AND SORENSEN, D. C. Newton methods. In Studies in Numerical Analysis, G. H.
Golub, Ed., The Mathematical Association of America, Washington, D.C., 1984, 29-82.

15. NAG FORTRAN Library Manual, Mark 12. Numerical Algorithms Group, 1987.
16. PARLETT, B. N. The Symmetric Eigenualue Problem. Prentice-Hall, Englewood Cliffs, N.J.,

1980.
17. ROBERT, Y., AND SGUAZZERO, P. The LU decomposition algorithm and its efficient FORTRAN

implementation on the IBM 3090 vector multiprocessor. Tech. Rep. ICE-0006, IBM European
Center for Scientific and Engineering Computing, Rome, 1987.

18. STEWART, G. W. The effect of rounding error on an algorithm for downdating a Cholesky
factorization. J. Inst. Math. Applic. 23 (1979), 203-213.

Received October 1988; revised August 1989; accepted September 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

