View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

alhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1991

Normal Forms for Algebraic
Specifications of Reusable Ada Packages

Steigerwald, Robert

Monterey, California: Naval Postgraduate School.

http://hdl.handle.net/10945/38288

‘: D U DLEY Calhoun is a project of the Dudley Enox Library at NP5, furthering the precepts and
goals of open government and government transparency. All information contained
m‘ KNOX herein has been approved for release by the NPS Public Affairs Officer.
LIBRARY Dudley Knox Library / MNaval Postgraduate School

411 Dyer Road / 1 University Circle

http:/ fwww.nps.edu/library Monterey, California USA 93943

https://core.ac.uk/display/36730691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Normal Forms for
Algebraic Specifications of Reusable Ada Packages

Robert Steigerwald
Valdis Berzins

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract. This paper introduces the concept of
normal forms for algebraic specifications of Ada
packages defining abstract data types. The
normal form is used in the process of reusable
software component retrieval via formal
specifications. We review the use of algebras for
the specification of abstract data types. Then,
using a concrete example, we define normal
forms and present the details of algorithms to
automate the normalization process.

L Introduction

A. Proposed Solution to the Component Retrieval
Problem. This paper addresses the problem of
using algebraic specifications as a key for
reusable software component retrieval. Given a
database (software base) of software components,
each with a corresponding formal algebraic
specification, and given a software base query in
the form of a specification, we would like to search
the database to find the component(s) whose
specification(s) best match the query
specification. Fundamental to our approach is
normalization of specifications. Using normal
forms for the specifications reduces the variability
in the representation and diminishes the effort
required for the search.

The representation methodology we use for
specifications is a combination of the Prototype
System Description Language (PSDL) [LBY88]
and OBJ3 [GW88]. PSDL is an executable
specification language that allows one to model
the interface and timing requirements of real-
time gcystems. ORJI2 is alss an executable
specification language, used here to augment the
PSDL description of a package or procedure by

1991 ACM 0-89791-445-7/91/1000-0248

248

providing formal axioms which describe the
semantics of components.

Our approach to reusable component retrieval is
three-phased. The first phase focuses on the
numbers and types of parameters within each
operator in the PSDL portion of the query. This
information is used to form a search key which
partitions the software base, quickly ruling out
those components which cannot possibly satisfy
the query because of type incompatibilities. This
phase, called the syntactic search phase, provides
a set of components to the subsequent semantic
search phases [SLM91]l. We do not discuss
syntactic search or syntactic normalization in
this paper.

The second phase, called query by consistency,
relies on the formal OBJ3 specification for each
component. Query by consistency formulates
example terms from a stored component's algebra
and passes the terms as parameters to its
operators. The set of outputs obtained is compared
against the outputs from similar tests performed
in the domain of the query. This phase reduces
further the set of candidate components,
eliminating components which cannot possibly
satisfy the query because of behavioral
incompatibilities. Query by consistency requires
a form of normalization we call interface
normalization.

The final phase of the search process, based on
theorem proving, attempts to find candidates that
can be shown to satisfy the query, or to order the
ones that partially satisfy the query if none of the
candidates is completely satisfactory. This phase
requires axiom normalization.

B. Related Work. In [RT89], the authors describe
a method of retrieving software components by
polymorphic type. A two phased approach to
retrieving components via specifications is

described in [RW90]. That system, written in
Lambda Prolog, retrieves ML components
(functions) with Lambda Prolog specifications by
first matching on signature and then on function
pre- and post-conditions. Another approach
employing both syntax and semantics of a
component but not necessarily its specification
may be found in [WS88], which describes a system
that performs component retrieval using
descriptor frames based on Schank's theory of
conceptual dependency.

C. Overview. Section II describes some of the
details of OBJ3, the algebraic specification
language we have chosen to write formal
specifications. Section III describes interface
normalization and how the normal form is used
in query by consistency. Section IV describes
axiom normalization and how it supports the
theorem proving process in axiom matching., In
section V, we provide an additional example of
both forms of normalization and describe how
matching takes place. Section VI contains our
conclusions and some suggestions for future
work.

IL Representation of Specifications

OBJ3 is the language we have chosen to augment
PSDL to write our formal specifications. This
section provides an example of a specification and
describes some of the important constructs of
OBJ3. Figure 1 shows an example of an OBJ3
specification which defines an abstract data type
that can be used to keep track of values bound to
variables.

OBJ3 is a functional programming language
rigorously based on order sorted logic [GWSS,
Wink91]. The dominant construct is the module.
Modules can be objects or theories. An object
completely determines the behavior of a type or
parameterized set of types and a theory partially
constrains the behavior of a set of types. Objects
are fully executable and theories are partially
executable because the theory may not contain
enough constraints to fully determine the values
of some of the operations. We focus here on objects
which consist of a signature and a set of axioms
because our retrieval mechanism requires the
specifications to be fully executable.

An OBJ3 definition of an abstract data type
introduces a new set of values, which contains all

249

the instances of the type. The principal sort of the
abstract data type is the name of this set of values.
The form of the signature, which defines the
syntax of the object's interface, is a set of "op”
definitions defining the name, domain sorts, and
range sort of each operatorl. The sorts2 of the
object defined in Figure 1 are {Env, Item, Key},
with the principal sort Env, and two parameterized
sorts Item and Key. An operation whose range is
the same as the principal sort is called a
constructor. An operation whose range is a sort
other than the principal sort is called an accessor.

obj ENVIRONMENT{Item Key :: TRIV] is

sort Env .

protecting BOOL .

op null : -> Env ,

op default : -> Elt.Item .

op bind : Elt.Item Elt.Key Env -> Env .

op lookup : Elt.Key Env -> Elt.Item .

op combine : Env Env -> Env .

var E1 E2 : Elt.Item .

var K1 K2 : Elt.Key .

var Envl Env2 : Env .

eq lookup(K1,null) = default .

eq lookup(K1,bind(E1, K1, Envl)) = E1,

cq lookup(K1,bind(E1, K2, Envl)) =
lookup(K1,Envl) if K1 =/= K2

eq combine(null, Envl) = Envl .

eq combine(Envl, null) = Envl ,

¢q combine(bind(E1,K1,Env1),Env2) =
combine(Envl,bind(E1,K1,Env2))
if lookup(K1,Env2) == default .

¢q combine(bind(E1,K1,Envl),Env2) =
combine(Envl,Env2)
if lookup(K1,Env2) =/= default .

endo

Figure 1 - OBJ3 Specification for an Abstract Data
Type

The axioms (or equations) portion of an object
define the semantics of the object. Expressions are
of the form eq <Expl> = <Exp2>, or ¢q <Expl> =
<Exp2> if <Bexp>, where both sides of each
equation are well formed expressions with respect
to the signature and previously declared

1Since OBJ3 is a functional programming
language, all operators are functions.

20rder sorted logic uses the term “sort” rather
than "type".

variables. The axioms are written declaratively
and interpreted operationally as rewrite rules.

Objects may import operations and sorts from
other objects using the protecting statement. In the
object defined in Figure 1, we import another
object Bool, which affords us the ability to use the
operations and, or and not (among others) in
Boolean expressions.

It is easy to see parallels between OBJ3 objects and
Ada packages. An OBJ3 signature is analogous to
an Ada package specification and the axioms to a
package body. The protecting statement is much
like an Ada with. In our approach to reusable
software component retrieval, each Ada package
in the software base has a corresponding OBJ3
specification. To find a desired component, an
OBJ3 query is compared to specifications of stored
components to identify components that can
possibly satisfy the query. Because of the infinite
variety possible in writing specifications, normal
forms become an important means to diminish the
effort applied to finding a match.

IIL Normalizing Interface Descriptions

The signature of an OBJ3 specification is an
interface description. One of the first tasks
required in searching for candidate components
is to find a correspondence or mapping between the
query and a stored component by comparing their
interfaces. In order to simplify the mapping
process, we normalize the interface, transforming
it to a suitable representation for performing the
mapping. This kind of normalization involves
expansion, renaming, and transformations.

A. Expansion and Renaming. Expansion and
renaming in normalization was developed in the
context of the Algebraic Specification Formalism
(ASF) [BHKS89]. In this approach, a normal form is
achieved when all imports to a specification have
been eliminated and as many parameters as
possible have been eliminated. ASF's textual
normalization expands a module by fully
incorporating the sorts and functions of imports
and by binding parameters to the greatest extent
possible. The purpose of this normalization in
ASF is to assign a semantics to the complete
specification and to each module within the
specification. In the process of normalizing, the
algorithm renames sorts and functions to avoid

250

conflicts; establishes the origin of each sort,
function and variable, creating an attribute
collocated with each definition; and binds formal
with actual parameters.

In the process of normalizing an OBJ3 interface
description, we also expand the module and
perform renaming to avoid conflicts. The
expansion is necessary because the module will be
considered an atomic unit during the matching
process. We illustrate this concept using an
interface description for a list (see Figure 2) and
one for a BiTuple (see Figure 3). (Note: The three
dots that appear in many of the example
specifications mean that there is more to the
specification than is actually being shown.)

obj LIST[Item :: TRIV] is sort List .
protecting NAT .
protecting BOOL .
op nil : -> List .
op cons : Item List -> List .
op length : List -> Nat .
op head : List -> Item .
op tail : List -> List .
op append : List List -> List .
op reverse : List -> List .
op member : Item List -> Bool .

endo

Figure 2 - Interface Description for a List

obj BITUPLE[C1 :: TRIV, C2 :;: TRIV] is
sort BiTuple .
op make : Elt.C1 Elt.C2 -> BiTuple .
op first : BiTuple -> Elt.C1.
op second : BiTuple -> EIt.C2 .

end;). .

Figure 3 - Interface Description for a BiTuple
Suppose one used the List defined in Figure 2 in the
following way:

obj LIST-OF-BITUPLE is
protecting LIST{BITUPLE[NAT,NAT]] .
op member : Nat List -> Nat .

endo

The user has defined his own object which is
composed of the List object and an object called
BiTuple which defines a relation of 2 elements.
The user has also defined a member function
which returns the second argument of a tuple in
the list given the first argument. The expanded
version of the object is shown in Figure 4. It was
necessary to rename3 the imported member
function and to instantiate the sort Item in object
List as BiTuple and the elements of BiTuple as
Nat.

obj LIST-OF-BITUPLE is sort List .
sort BiTuple .
protecting NAT .
protecting BOOL .
op nil : -> List .
op cons : BiTuple List -> List .
op make : Nat Nat -> BiTuple .
op length : List -> Nat .
op head : List -> BiTuple .
op tail : List -> List .
op append : List List -> List .
op reverse : List -> List .
op memberl : BiTuple List -> Bool .
op first : BiTuple -> Nat .
op second : BiTuple -> Nat .
op member : Nat List -> Nat .

endo

Figure 4 - Interface Description for a List of
BiTuple

B. Transformation. Having performed
expansion and renaming we now define an
alternative representation of the signature to
simplify mapping. Since we use Prolog as the tool
to find the mappings between a query and a
candidate component, we transform each
operation definition in the signature into a set of
Prolog predicate expressions. To guide this
transformation, it is necessary to have more
information about the operations than is provided
in the specification. We must know which of the
operations the user wants considered.

For example, if the specification shown in Figure
4 were used as query to the software base, the user

3In OBJ3, as in Ada, the overloading of an
operator name is permitted, however, to simplify
matching in our system, we prefer to rename.

251

may not want all of the operations that come with
the List object. A more general query with fewer
"op” definitions would certainly offer better recall
from the software base. Also, the user may have
defined hidden or local operations in his object
which he does not intend for the stored component
to have. We therefore leave it up to the user to
specify the operations he wishes to have
considered. A specification used for query may
have only a few of the operations identified,
whereas a specification accompanying a
component to be stored may have all operations
identified. Figure 5 shows an example of the
LIST-OF-BITUPLE used as a query and Figure 6
shows it used as part of a component to be stored.

***(operations nil cons make member length)
obj LIST-OF-BITUPLE is sort List .

sort BiTuple .

protecting NAT .

protecting BOOL .

endo

Figure 5 - List of BiTuple as a Query

***(goperations nil cons tail append reverse
make length head memberl first second
member)

obj LIST-OF-BITUPLE is sort List .
sort BiTuple .
protecting NAT .
protecting BOOL .

end;).
Figure 6 - List of BiTuple for Storage

The specifications in Figures 4 and 5 have been
augmented with OBJ3 comment blocks,
**¥(comment), to indicate the operations the user
wants considered. From this information and
that contained in the signature, the necessary
Prolog predicate expressions may be generated.
For each operation specified in the signature we
define a corresponding "operation” predicate, and
for each input parameter in the operation we
define an "argument" predicate. The set of
predicates for the specification in Figure 5 is:

operation(Sortl, 0, OplName)
operation(Sort1, 2, Op2Name)

argument(Op2Name, Sort2, Op2Pos1)
argument(Op2Name, Sortl, Op2Pos2)
operation(Sort2, 2, Op3Name)
argument(Op3Name, nat, Op3Pos1)
argument(Op3Name, nat, Op3Pos2)
operation(nat, 2, Op4Name, 2)
argument(Op4Name, nat, Op4Posl)
argument(Op4Name, Sortl, Op4Pos2)
operation(nat, 1, Op5Name)
argument(Op5Name, Sort1,0p5Pos1)

Each operation predicate expression has 3
arguments: a variable to bind to the range sort of a
stored component's operation, the number of
domain (input) parameters in the operation, and a
variable to bind to the name of a stored
component's operation. Each argument predicate
expression has 3 arguments: a variable bound to
an operation name, the sort of this particular
parameter, which may be a constant or a variable,
and the position of the parameter in the domain of
the operation. The example predicates above
contain many variables because the specification
in Figure 5 is meant to be a query and we want our
query to bind to the operation names and sorts of a
stored component.

The choice of the arguments in the predicate
expressions reflect some of our assumptions about
what constitutes a match between specifications.
For instance, the number of parameters present in
the operations must match precisely even though
we can conceive of possibilities where an
operation with two variable parameters, for
example, could match to an operation with two
variable parameters and a constant parameter. A
rule we use in finding a match is that all of the
operations of the query must bind to unique
operation in the component. This is based on the
assumption that an engineer will not define
identical semantics for any two operations in the
same specification.

The order of the arguments in the predicate
expressions is important for efficiency. Quintus
Prolog® hashes on the first argument of a
predicate expression when that argument is
bound. Using the range sort of an operation as the
first argument of the operation predicate partitions
the operations into smaller sets. Once a particular
range sort variable has been bound, the search for
subsequent matches will be very fast. The first
argument of the argument predicate is the name of
the operation because this variable is always

252

bound in the operation predicate that precedes it.
Thus, the search for appropriate arguments is also
fast.

The set of predicate expressions for the
specification in Figure 6 is:

operation(list, 0, nil)
operation(list, 2, cons)
argument(cons, bituple, 1)
argument(cons, list, 2)
operation(bituple, 2, make)
argument(make, nat, 1)
argument(make, nat, 2)
operation(nat, 1, length)
argument(length, list, 1)
operation(bituple,1, head)
argument(head, list, 1)
operation(list, 1, tail)
argument(tail, list, 1)
operation(list, 2, append)
argument(append, list, 1)
argument(append, list, 2)
operation(list, 1, reverse)
argument(reverse, list, 1)
operation(bool, 2, member1)
argument(memberl, bituple, 1)
argument(memberl, list, 2)
operation(nat, 1, first)
argument(first, bituple, 1)
operation(nat, 1, second)
argument(second, bituple, 1)
operation(nat, 2, member)
argument(member, nat, 1)
argument(member, list, 2)

C. Using Interface Normalization for Matching

Expansion and renaming are required to make a
component an atomic unit for both storage in the
software base and for comparison with the query
by consistency algorithm. Operation definition
transformation to Prolog predicates is necessary
to give us the means to map a query to a candidate
stored component using Prolog. To find a
matching candidate in Prolog, we combine the
predicate expressions provided by the query to
form a Prolog rule. To that rule, we also add
predicate expressions to ensure that all bound
operation names are unique and that for each
operation, all parameter positions are unique. We
use use the predicate expressions provided by a
candidate component as our database and then
attempt to satisfy the query.

We have written the program to map component
signatures given correct Prolog predicate
expressions. In the above example, the query in
Figure 5 can map only one way to the component of
Figure 6. It should be clear, however, that with
some combinations, many mappings will be
possible, but only one might be meaningful. This
complicates the task of the overall query by
consistency algorithm. For each candidate
component, the algorithm must check every
possible mapping. In the worst case, this task is
exponential based on the number of operations
with identical domain and range sorts. If we
allow variables in stored components, which is the
case when we store generic components, the
problem is exacerbated. In practice, we hope that
this will be a rare problem. We defer our
judgement until the this portion of the system has
been completed.

Given one or more mappings between a query and
a candidate component, we use query by
consistency to check the semantics of the query
against the semantics of the stored component.
Query by consistency creates a set of terms called
a test set from the constructors for the sorts being
defined and uses the terms to generate a list of
input-output pairs called an I/ O list. The input part
of each pair in the I/0 List is submitted to the
axioms for reduction (term rewriting) and the
result is stored as the output part of the pair. We
perform the reductions in both the query and the
stored component and then compare
corresponding pairs in the respective I/O Lists.
We use this comparison to compute a score of
semantic similarity and then eliminate
components whose score does not exceed a certain
threshold. This portion of our system is not yet
implemented.

IV. Normalization for Theorem Proving

The objective of the second phase of the component
retrieval process, query by consistency, is to
reduce further the set of candidate components that
would have to be considered in phase three. Phase
three involves theorem proving, a process that is
potentially open-ended, so we would like as small
a set of candidates as possible to check in this
phase. In this phase, we focus on the axioms of the
specification. To diminish the effort applied in
theorem proving, a normal form for the axioms is
warranted.

253

The form of theorem proving we use is
inductionless induction, described in [Gogu88].
Because each formal specification consists of a set
of axioms, the axioms may be treated as a theory.
Given a set of axioms from a query and a set from
axioms from a candidate stored component, we
find the set mappings between the query and the
stored component specification. We use each
possible mapping to express the axioms of the
query in terms of the signature of the stored
component specification. We then treat the
axioms of the stored component specification as a
theory and try to prove that each axiom from the
query is satisfied in the theory.

The chosen proof technique treats the axioms of the
stored component as rewrite rules, which are used
to reduce both sides of each query axiom (equation)
to normal form. If both sides of the equation
reduce to the same term, then the query axiom is
satisfied in the theory of the stored component.
This proof procedure is sound and fast, but not
complete. We plan to evaluate the effectiveness of
such a weak procedure via experimental
benchmarks when the implementation is
complete.

If all axioms in the query are satisfied in the
theory of the stored component specification, then
we have proven that the stored component
specification semantically matches the query. If
some but not all of the axioms of the query are
satisfied in the theory of the stored component,
then the number of query axioms that are satisfied
becomes a basis for ranking partial matches.

In the context of prototyping, it is feasible to
combine the results of several components that
partially satisfy a query to synthesize a
component that completely satisfies the query. If
we can find several components such that every
component provides all of the constructor
operations and each accessor operation is provided
by at least one of the components, then we ecan
satisfy the query using a record containing an
instance of each representation, where different
components are used to realize different
accessors. This is acceptable in the context of
prototyping because efficiency is not an
overriding concern.

If the set of axioms in the theory is canonical, the
chances for success in theorem proving are
improved. A canonical set of axioms is both

Church-Rosser and terminating. We therefore
normalize the axioms of a theory by performing
Knuth-Bendix completion on the axioms to obtain
the desired properties. This normalization is
done just once for each component, at the time it is
added to the software base.

V. Example

To illustrate our normalization techniques, we
offer an additional example based on the
specification in Figure 1. Figure 7 shows the
specification of Figure 1 with the generic
parameters instantiated to Nat and augmented
with a normalized interface description. Note that
we are treating this specification as a query to the
software base. Figure 8 shows a candidate stored
component specification with two generic
parameters, also containing a normalized
interface description.

¥(operations null bind default export
lookup combine)

***(predicates
operation(Sortl, 0, Op1Name)
operation(Sortl, 3, Op2Name)
argument(Op2Name, nat, Op2Pos1)
argument(Op2Name, nat, Op2Pos2)
argument(Op2Name, Sortl, Op2Pos3)
operation(nat, 0, Op3Name)
operation(nat, 2, Op4Name)
argument(Op4Name, nat, Op4Pos1)
argument(Op4Name, Sortl, Op4Pos2)
operation(Sort1, 2, Op5Name)
argument(Op5Name, Sortl, Op5Pos1)
argument(Op5Name, Sortl, Op5Pos2))

obj ENVIRONMENT is sort Env .
protecting BOOL .
protecting NAT .
op null : -> Env .
op default : -> Nat .
op bind : Nat Nat Env -> Env .
op loockup : Nat Env -> Nat .
op combine : Env Env -> Env .

endo

Figure 7 - OB.J3 Query for an Environment

254

***(operations create store exception
retrieve join equal)
***(predicates
operation(map, 0, create)
operation(map, 3, store)
argument(store, map, 1)
argument(store, _, 2)
argument(store, _, 3)
operation(_, 0, exception)
operation(_, 2, retrieve)
argument(retrieve, _, 1)
argument(retrieve, map, 2)
operation(map, 2, join)
argument(join, map, 1)
argument(join, map, 2)
operation(bool, 2, equal)
argument(equal, map, 1)
argument(equal, map, 2))
obj MAP[In Out :: TRIV] is sort Map .
protecting BOOL .
op create : -> Map .
op store : Map Elt.In Elt.Out -> Map .
op retrieve : Elt.In Map -> Elt.Out .
op join : Map Map -> Map .
op equal: Map Map -> Bool .
op remove: Elt.In Map -> Map .
op exception : -> Elt.Out .
var D1 D2 : Elt.In .
var R1 R2 : Elt.Out .
var Mapl Map2 : Map .
eq retrieve(D1,create) = exception .
eq retrieve(D1,store(Mapl, D1, R1)) = R1.
cq retrieve(D1,store(Mapl, D2, R1)) =
retrieve(D1,Map1) if D1 =/=D2.
eq join(create, Mapl) = Map1 .
eq join(Map1, create) = Mapl .
eq join(store(Map1, D1, R1), Map2) =
if (retrieve(D1, Map2) == exception)
then join(Mapl, store(Map2, D1, R1))
else join(Map1, Map2) fi .
eq equal(create, create) = true .
eq equal(create,store(Map1,D1,R1))=false.
eq equal(store(Map1,D1,R1),create)=false.
eq equal(store(Map1l, D1, R1), Map2) =
retrieve(D1, Map2) == R1 and
equal(Map1, remove(D1, Map2)) .
eq remove(D1, create) = create .
eq remove(D1,store(Map1,D1,R1)) = Mapl .
cq remove(D1, store(Map1, D2, R2)) =
store(remove(D1, Map1l), D2, R2)
if D1 =/=D2.
endo

Figure 8 - OB.J3 Specification for a Map

Figure 9 shows the axioms of Figure 8 after axiom
normalization4.

obj MAP[In Qut :: TRIV] is sort Map .
op f1: -> Bool.

eq retrieve(D1,create) = exception .

eq retrieve(D1,store(Mapl, D1, R1)) = R1.

cq retrieve(D1,store(Mapl, D2, R1)) =
retrieve(D1,Mapl) if D1 =/= D2 .

eq join(create, Mapl) = Map1l .

eq join(Map1, create) = Mapl .

eq join(store(Mapl, D1, R1), Map2) =
if (retrieve(D1, Map2) == exception)
then join(Map1l, store(Map2, D1, R1))
else join(Mapl, Map2) fi .

eq equal(create, create) = true .

eq equal(create, store(Map1,D1,R1)) = false .

eq equal(store(Map1,D1,R1), create) = false .

eq equal(store(Map1, D1, R1), Map2) =
retrieve(D1, Map2) == R1 and
equal(Map1l, remove(D1, Map2)) .

eq remove(D1, create) = create .

eq remove(D1, store(Map1, D1, R1)) = Map1.

cq remove(D1, store(Map1l, D2, R2)) =
store(remove(D1, Map1), D2, R2)

ifD1=/=D2.

cq store(remove(D1, Mapl), D2, R2) =
remove(D1, store(Map1l, D2, R2))
if D2 =/=D1.

eq retrieve(D1, Map2) == R1 and
equal(Map1, remove(D1, Map2)) = f1.

eq equal(store(Mapl, D1, R1), Map2) = f1 .

eq f1 and retrieve(D1, Map2) == R1=f1.

eq f1 and equal(Map1l, remove(D1, Map2))
=fl.

endo

Figure 9 - OBJ3 Specification for a Map with
Normalized Axioms

VI. Conclusion

We believe that retrieval of reusable components
based on their formal specifications is both useful
and feasible. Manual approaches do not scale up
to large software bases, because the effort to find a
component tends to increase with the number of

4We used the automatic Knuth-Bendix completion
feature of the Rewrite Rule Laboratory [KZ89] to

normalize the axioms.

255

components in the software base. Informal
approaches to automatic retrieval, such as
keyword search, can help to mitigate the size
problem somewhat, but they are also limited in
scale because the precision of a query is not very
good:; only a small fraction of the retrieved
components is usually relevant to the problem,
requiring a manual search in the final phase. In
contrast, formal specification enables queries to
achieve very high precision.

Query by specification does require the designer to
formulate a formal specification of the properties
of the desired software component, and this does
require some effort. However, in the context of
rapid prototyping and high-precision software
development, such specifications must be
developed anyway for purposes of documenting the
required properties of proposed designs, and to
support computer-aided verification, either via
proofs or via automated testing. We believe that
producing the specifications early in the project,
rather than as an afterthought, has a low
marginal cost, and may reduce the overall effort
required for development.

Since theorem proving is known to be slow, many
people have held the opinion that retrieval based on
formal specifications cannot be done within
practical resource limits. In this paper we outline
our approach to overcome this problem, based on a
layered set of techniques for reducing the size of
the set of candidate components.

Our layered approach can be summarized as
follows. First, we partition the software base
using an indexing structure based on signatures.
This ensures that components whose types are not
compatible with the query are not even considered.
Second, we use test cases to quickly rule out the
majority of the remaining components based on
behavioral considerations. This leaves us with a
set of plausible components that should be
relatively small. Finally, we use a limited but
fast method for theorem proving to attempt to
conclusively and automatically demonstrate that
one of the plausible components will in fact meet
all of the requirements in the theory.

Final and conclusive demonstrations of the
practical feasibility of this approach depend on
experimental evaluations. We are currently in
the process of implementing the techniques

described in this paper, and plan to carry out such
experimental evaluations within the next year.

REFERENCES

[BHKS89] J.A. Bergstra, J. Heering, and P.
Klint, The Algebraic Specification
Formalism ASF, Addison-Wesley,

New York,1989.
[Gogu88] J. A. Goguen, "OBJ as a Theorem
Prover with Applications to Hardware
Verification”, SRI International
Report SRI-CSL-88-4R2, August 1988.
[GW88] J. A. Goguen, and Timothy Winkler,
"Introducing OBJ3", SRI In-
ternational Report SRI-CSL-88-9,
August 1988,
[KZ89] Kapur, D., and Zhang, H., "RRL:
Rewrite Rule Laboratory User's
Manual", Department of Computer
Science, State University of New York
at Albany, May 1989.
[LBY88] Lugqi, Valdis Berzins, and Raymond
T. Yeh, "A Prototyping Language for
Real-Time Software”, IEEE Trans-
actions on Software Engineering, Vol.
14, No. 10, Oct 1988, pp. 1409-1423.
[RT89] Colin Runciman, and Ian Toyn,
"Retrieving re-usable software com-
ponents by polymorphic type", in

1 -
C&nimm—mmw 1 C I Archi
(FPCA '89), New Orleans, 1989, pp.

166-173.
[RW90] Eugene J. Rollins, and Jeanette M.
Wing, "Specifications as Search Keys
for SW Libraries: A Case Study using

Lambda Prolog", Carnegie Mellon
University, CMU-CS-90-159, 26 Sep 90.

[SLM91] Robert A. Steigerwald, Luqi, and John
K. McDowell, "A CASE Tool for
Reusable Component Storage and

Retrieval in Rapid Prototyping", in

Conf Sof Engincer]

256

and Knowledge Engineering, Skokie,

IL, June 1991.

[Wink91] Timothy Winkler, "Introducing
OBJ3's New Features", SRI In-
ternational Report (preliminary
version provided by the author), March
1991.

[WS88] Murray Wood, and Ian Sommerville,

"An Information Retrieval System for
Software Components”, SIGIR Forum,
22, 3&4, Spring/Summer, 1988, pp. 11-
28.

BIOGRAPHIES

Robert A. Steigerwald is a PhD student at the
Naval Postgraduate School, Monterey,
California, and is currently performing research
in the area of reusable software component
retrieval. He is sponsored by the U.S. Air Force
Academy and the Air Force Institute of
Technology. Upon completion of his degree
program, he will join the faculty at the Air Force
Academy.

Steigerwald received his bachelor's degree in
computer science in 1981 from the U.S. Air Force
Academy, Colorado Springs, Colorado and his
master's degree in computer science in 1985 from
the University of Illinois, Urbana, Illinois.

Dr. Valdis Berzins is an Associate Professor of
Computer Science at the Naval Postgraduate
School. His research interests include software
engineering and computer aided design. His
recent work includes papers on software
merging, specification languages, VLSI design,
and engineering databases. He received B.S.,
M.S,, E.E., and Ph.D. degrees from MIT, served
as an Assistant Professor at the University of
Texas, and as an Associate Professor the
University of Minnesota. He has developed a

number of specification languages and software
tools. His current address is NPS 052, Monterey,
CA 93943.

