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PLATE BENDING ANALYSES OF COMPOSITES 

Y. W. KWON 
Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943, USA 

ABSTRACT 
A formulation has been developed for thermo-elastoviscoplastic finite element analyses of continuous 
fibre-reinforced composite plates subject to bending loading using a generalized continuum mechanics 
approach. Such an approach is used to model the non-homogeneity in a composite, which is constituted 
by fibres embedded in a matrix material. The present formulation computes the respective stresses occurring 
in each constituent so that the respective yield criterion and flow rule of each constituent may be used if 
there is a material yielding in any constituent. Thermo-elastic deformation of fibre and thermo-
elastoviscoplastic deformation of matrix are considered in the present study because the yield strength of 
fibre is substantially higher than that of matrix in many cases. Both constituents are assumed to be isotropic 
so that the von-Mises yield criterion may be used for viscoplastic yielding of matrix. As numerical examples, 
a parametric study is performed for thermo-elastoviscoplastic deformations of laminated composite plates 
subject to thermal bending loads. 

KEY WORDS FE plate bending analyses Composite plates Bending loads 

INTRODUCTION 

Most materials exhibit a more or less viscoplastic phenomenon. However, significance of such 
a phenomenon is quite different depending on materials and/or given environmental conditions. 
The same thing holds for composite materials. In particular, thermoplastic composites and 
metal-matrix composites exhibit quite a significant viscoplastic phenomenon at elevated 
temperatures. Temperature changes also induce thermal stresses in continuous fibre-reinforced 
composites, which consist of fibres embedded in matrix. The fibre and matrix, in general, have 
quite distinctive material properties. For example, fibre may have elastic deformation while 
matrix undergoes elastoviscoplastic deformation. This is a common phenomenon in fibre-
reinforced composites because fibre has substantially quite higher yield strength than matrix. In 
such cases, elastoviscoplastic analysis of composite structures is not an easy task because of 
non-homogeneity of deformations. Furthermore thermal stresses in composities due to thermal 
loading make the analysis even more complicated. 
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Thermal stresses in composites can be investigated in terms of both micromechanical and 
macromechanical points of view. For instance, a unidirectional fibre-reinforced composite plate 
subject to a temperature change does not experience any stress at the macromechanical level if 
there is no constraint on the movement of the plate. However, at the micromechanical level 
there are thermal stresses in fibre and matrix, the resultant force of which is zero. It is due to 
a difference of thermal expansion coefficients of the two constituents. Therefore, thermal 
analyses of composites can be performed using either the micromechanical approach or the 
macromechanical approach. The macromechanical study is useful to determine deformed shapes 
of unsymmetrically laminated composite plates. An anticlastic warping of an unsymmetric 
cross-ply composite plate, with free edges and subject to a temperature change, was studied in 
Reference 1 using the classical plate bending theory. An anticlastic deformation of a composite 
was measured using an experimental technique, and the residual thermal stresses were measured 
by means of embedded strain gauges2. Hyer and his coworker3-5 studied a bifurcation 
phenomenon of thermally deformed shapes of unsymmetric cross-ply composite plates. They 
found that an anticlastic shape of deformation in an unsymmetric cross-ply composite plate was 
stable under certain conditions and it was not stable under other conditions. For those cases, 
a deformed shape of cylindrical bending was the stable configuration. Thermoelastic deformations 
of symmetric and antisymmetric laminated plates with constrained edges were studied by Wu 
and Tauchert6,7. They computed transverse deflections of clamped and simply supported plates 
subject to a general three-dimensional temperature field. 

Residual thermal stresses were also studied by many researchers8"12. Most of them calculated 
thermal stresses at the macromechanical level. These stresses are average stresses occurring in 
both fibre and matrix, and they were useful for the study of macromechanical failures of laminated 
composite plates. A macromechanical failure of a composite is related to micromechanical failures 
of fibre and matrix. For instance, a buckling failure of a composite structure is related to, more 
or less, to a micro-buckling or kinking of fibres13-15. Therefore, knowledge of stresses at 
the micromechanical level is also very important to study the strength of composites. However, the 
micromechanical study is usually limited to a very small local scale. As a result, 
both macromechanical and micromechanical approaches have their own merits as well as 
limitations. 

Some analysis models were proposed in References 16-20, which filled a gap between the two 
approaches. Dvorak and his coworkers used the composite cylinder assemblage model16,17 for 
composities under axisymmetric loads and the periodic hexagonal array model18 for 
two-dimensional analyses of composites. Instantaneous stiffnesses of a composite plate were 
computed using the periodic hexagonal model at the micromechanics level. Since analytical 
computations were not easily obtainable, the finite element method was utilized to calculate the 
composite stiffnesses at material sampling points. It was an elaborate work. However, the 
formulation was computationally too expensive to be applied to a general composite structure. 
On the other hand, the analysis model used a generalized continuum mechanics19,20. The model 
assumed uniform stresses and strains in each constituent like the shear lag model21. Stresses 
and strains at the micromechanical level were related directly to those at the macromechanical. 
It was not as elaborate as the periodic hexagonal model, but it was computationally much more 
efficient. 

All those papers considered two-dimensional problems. Because plates and shells are very 
common structural components, this paper presents a formulation for thermo-elastoviscoplastic 
analyses of composite plates under bending loads using a three-dimensional generalized 
continuum mechanics approach. A three-dimensional model is degenerated into an analysis 
model for a composite plate under a bending load, which is made of thermo-elastic fibres 
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embedded in a thermo-elastoviscoplastic matrix material. A thermo-elastoviscoplastic analysis 
is also an alternative way to solve a thermo-elastoplastic problem because the steady-state 
solution of a non-linear thermo-elastoviscoplastic problem is the thermo-elastoplastic solution 
of the same problem. The following section shows the mathematical formulation and the 
derivation of the corresponding finite element matrix equation. The resultant plate bending 
element has only translational degrees of freedom at nodes. This element was developed and 
tested in References 22-24. Numerical examples, which show a parametric study of 
thermo-elastoviscoplastic deformations of unidirectional composite plates and unsymmetrically 
laminated composite plates subject to thermal bending loads, and conclusions are followed. 

MATHEMATICAL DERIVATION OF ANALYSIS MODEL 
A three-dimensional solid becomes a plate if the size in one dimension is much smaller than 
those in the other two dimensions. Consequently, a theory of plate bending can be derived from 
the theory of three-dimensional solid. In the classical plate bending theory, normal stress and 
strain components in the thickness direction as well as transverse shear stress and strain 
components are neglected even if some modified plate bending theories include some of those 
components. In the following derivation the normal stress and strain components are neglected, 
but the transverse shear deformation is included because it is quite important in laminated 
composite plates except for very thin plates. 

The free body diagram of a three-dimensional solid element of a continuous fibre-reinforced 
composite is shown in Figure 1. Stress components on hidden sides of the element are not shown 
in the Figure. It is based on the following assumptions. The size of each fibre is infinitesimally 
small, fibres are embedded in a matrix material with uniform spacing, and the total volume of 
fibres constitutes a finite volume fraction of the composite. With body forces neglected, the 
equations of equilibrium are: 

where subscripts 1 and 2 indicate longitudinal and transverse directions of fibres, subscript 3 
indicates the thickness direction, superscripts f and m denote fibre and matrix respectively, and 
ν denotes a volume fraction. Stress component σ3 is neglected in (1c). Similar equations can be 
also written for incremental stress components. 

Total stress rates are related to total elastic strain rates by: 

for fibre and 

for matrix, where 
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Superscript Τ indicates the transpose, and [Em
e] and [Ef

e] are elastic material property matrices 
of matrix and fibre, respectively. The size of material property matrices is 5 χ 5. Because the 
matrix has a thermo-elastoviscoplastic deformation, the total strain rate for the matrix is assumed 
to be decomposed into: 
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where subscripts e, t, and vp denote elastic, thermal, and viscoplastic strains. The generalized 
Duhamel-Neumann form of Hooke's law is used to relate thermo-elastic strain rates to stress 
rates. The viscoplastic strain rate of matrix may be written as: 

for the associated viscoplastic flow. Here μ is a fluidity parameter controlling the viscoplastic 
flow rate, and Y is a scaler yield function of the matrix. The flow function <Φ(Y)> is a positive 
monotonic increasing function for positive values of Υ only. For negative values of Υ, <Φ(Y)> 
is zero. A typical form: 

is selected for the present study, where Y0 is a uniaxial yield strength and b is an arbitrarily 
prescribed constant. For fibre, the total strain rate is assumed to consist of elastic and thermal 
strain rates without viscoplastic deformation in the present formulation. 

A stress increment in the matrix during Δtn is: 

in which {Δεm}n is a total strain increment, and a stress increment in the fibre is: 

A viscoplastic strain increment in the matrix is: 

during a time interval Δtn = tn+1 - tn, in which α is a parameter for time integration schemes. 
If α is zero, it results in fully explicit time integration scheme known as the Euler time integration 
scheme. A fully implicit time integration scheme is obtained for α = 1. On the other hand, α = 0.5 
results in the Crank-Nicolson integration scheme. Numerical stability of the time integration 
schemes was discussed in detail by Owen and his coworkers25,26. The viscoplastic strain rate 
at time tn+1 may be approximated as: 

where 

Owen and Hinton27 gave a detailed expression for matrix [Hn] using the von Mises yield 
criterion for a three-dimensional solid. Matrix [Hn] for plate bending can be obtained from 
that for a three-dimensional solid. Substitution of (9a) into (8) yields: 

For the explicit time integration scheme, the second term on the right-hand side of (10) vanishes. 
Substituting (10) into (6) gives an expression for a stress increment in terms of incremental 

strains as shown below: 
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where 

and [I] is the identity matrix. In order to relate strain increments Δεf
2 and Δεm

2 in the fibre and 
matrix respectively to the global strain increment Δε2, the following equation is used: 

The transverse normal stress increment Δσ2 is, from (7) and (11): 

where subscript n is dropped for convenience, and stresses with subscripts t and vp are stress 
components in the transverse direction, which are associated with thermal and viscoplastic strains 
in (7) and (11). Solving (13) and (14) for Δεf

2 and Δεm
2 results in the following expressions for 

the local strains: 

Similar expressions can be obtained for strains Aγf
12 and Aγm

12 like the following: 

Substitution of (15a)-(16b) into (7) and (11) results in an expression relating micromechanical 
stress increments, to macromechanical 
strain increments, 

PLATE BENDING FINITE ELEMENT 
In order to derive the corresponding finite element matrix equation, the Galerkin method is 
applied to (la)-(lc) for incremental stresses {Δσf} and {Δσm} using displacements as test 
functions. These stress increments are expressed in terms of a global strain increment {Δε}, 
which was obtained in the previous derivation. Finally, the global strain increment is replaced 
by a global displacement increment. 

The plate bending element, which was developed and used in References 22-24, is used for 
the present study. The element has translational displacement components as nodal degrees of 
freedom but it has no rotational component as nodal degrees of freedom. Two inplane 
displacements, u1 and u2, vary linearly through the thickness, and the transverse displacement 
u3 remains constant through the thickness. Therefore, interpolations of those displacements can 
be written as: 
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and 

where ˉ and ˆ imply nodal displacements on top and bottom surfaces of a single unidirectional 
layer of a plate bending element, Ni is a two-dimensional isoparametric shape function, and Hi 
is the linear isoparametric shape function. The element stiffness matrix for a single layer of a 
plate bending element is: 

[J?] is the matrix relating strain increments to nodal displacement increments, and [D] is the 
material property matrix relating {Δσ} to {Δε} as explained in the previous section. The element 
stiffness matrix for a single layer is assembled over the total number of layers through the plate 
thickness. Reference 22 explains the assembly of element matrices and a condensation technique, 
to reduce the number of nodal degrees of freedom of plate elements, in detail. 

NUMERICAL EXAMPLES 

The first set of examples is thermo-elastic deformations of unsymmetrically laminated plates 
with free edges subject to thermal loads. No mechanical loading is applied. Material properties 
used in the present study are given in Table 1, and the geometry of plates considered is shown 
in Figure 2. A deformed shape of a square, cross-ply composite plate with layers [90/0], subject 
to a temperature rise, is shown in Figure 3. The plate has the same size of thickness for each 
layer. The deformed surface is an anticlastic surface as well known in References 1-5. 
Deformations of rectangular plates with the same kind of layers are also illustrated in Figure 4. 
As aspect ratio L1/L2 becomes smaller, the curvature in one direction becomes smaller than 

Table I Material properties of fibre and matrix 

Elastic modulus of fibre 
Elastic modulus of matrix 
Poisson's ratio of fibre 
Poisson's ratio of matrix 
Yield strength of matrix 
Thermal exp. coef. of fibre 
Thermal exp. coef. of matrix 
Fluidity parameter of matrix 

60 × 106 lb/in2 

10 × 106 lb/in2 

0.2 
0.33 

12 × 103 lb/in 
2.8 × 1 0 - 6 ° C - 1 

22.5 × 1 0 - 6 ° C - 1 

0.2 × 1 0 - 3 h - 1 
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that in the other direction. As a result, the deformed surface becomes closer to that of cylindrical 
bending as shown in Figure 4. Centres of the plates are assumed to have no displacement to 
prevent them from rigid body motions. 

A unidirectional composite plate with free edges, subject to thermal loading, experiences thermal 
stresses at the micromechanical level. The micromechanical thermo-elastic stresses occurring in 
fibre and matrix can be computed from the following equations as given in Reference 1. 

and subscript L indicates the longitudinal direction. Table 2 shows the micromechanical 
thermo-elastic stresses in the longitudinal direction occurring in fibre and matrix of a 
unidirectional composite plate subject to a unit temperature change and with various fibre 
volume fractions. Analytical solutions computed from (19a)-(19c) agree very well with the 
numerical solutions from the present model. For a temperature rise, fibre is in tension while 
matrix is in compression because the thermal expansion coefficient of matrix is larger than that 
of fibre in the present study. As shown in Table 2, the magnitude of matrix stress increases as 
the fibre volume fraction increases and the opposite is true for the fibre stress. 

Table 3 shows longitudinal, micromechanical stresses occurring in the unsymmetric, cross-ply 
composite plate considered above. Thermo-elastic stresses in the cross-ply composite are 
normalized with respect to those in a unidirectional composite with the same fibre volume 
fraction. The fibre stress is much larger near the middle surface (i.e. interface of layers) of the 
plate than near the top or bottom surface (i.e. free surface). However, the matrix stress is larger 
near the free surface. The variation of stress through the plate thickness is larger for fibre than 
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Table 2 Longitudinal thermal stresses in unidirectional 
composite plate due to unit temperature rise 

Fibre vol. fraction 

0.4 
0.45 
0.5 
0.55 
0.6 

Fibre 

236.4 
200.0 
168.9 
141.8 
118.2 

Matrix 

-157.6 
-163.7 
-168.9 
-173.4 
-177.3 

Table 3 Longitudinal thermal stresses in fibre and matrix 
of cross-ply composite plate 

Fibre vol. 
fraction 

0.4 
0.45 
0.5 
0.55 
0.6 

Fibre 

Free 
surface 

0.677 
0.646 
0.619 
0.585 
0.559 

Interface 

1.803 
1.887 
1.975 
2.071 
2.168 

Matrix 

Free 
surface 

1.070 
1.062 
1.056 
1.049 
1.043 

Interface 

0.896 
0.915 
0.933 
0.947 
0.959 
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for matrix. A large fibre volume fraction makes a larger change in the fibre stress as the plate 
changes from a unidirectional plate to a cross-ply plate. The opposite is true for the matrix 
stress. The change of matrix stress due to the change of layer orientation is not large compared 
to that of the fibre stress as shown in Table 3. 

Figure 5 illustrates deformed surfaces of two angle-ply composites. Centrepoints of the plates 
are again constrained to prevent them from rigid body motions. They are shown from the same 
view point. As shown in the Figure, the two plates have very similar deformed shapes even if 
there is a some difference in the magnitude of deformation. Variation of longitudinal fibre and 
matrix stresses is given in Figure 6 with a change of layer angle in angle-ply composites with 
layers of [0/—0]. Those stresses are normalized with respect to the stresses in a unidirectional 
composite. The fibre stress increases near the interface of the two layers and it decreases near 
the free surface as the angle, 0, increases from 0° to 45°. On the other hand, the matrix stress 
decreases near the interface and it increases near the free surface as the angle increases. There 
is a large variation in fibre stresses than in matrix stresses. The fibre stress near the interface 
has the largest variation. 

The next set of examples is thermo-elastoviscoplastic deformation of a cross-ply composite 
plate with simply supported edges. A square plate is considered. The deformed shape of the 
elastic plate due to a uniform temperature rise is shown in Figure 7. A quarter of the plate is 
shown because of symmetry. The characteristic of the deformed shape is the same as that given 
in Reference 7 with zero deflection along the diagonal. Figure 8 is the progress of the maximum 
transverse deflection of the plate, subject to a temperature rise of 50°, as time elapses. Cases 
with three different fibre volume fractions are compared in the Figure. The maximum deflection 
is normalized such that the normalized deflection is (u3)maxD/MpL2, in which D is the plate 
rigidity in terms of the matrix material, Mp is the plastic bending moment, and L is a side length 
of the square plate. The normalized time is 5000 μt, in which t is time. As expected, the smaller 
fibre volume fraction yields a larger deflection. The deflections approach the steady-state solutions. 
The characteristic deformed shape throughout the thermo-elastoviscoplastic deformation remains 
the same as that of the thermo-elastic deformation as shown in Figure 7. 

Von Mises equivalent stresses occurring in matrix with a fibre volume fraction of 0.5 are given 
in Figure 9. The stresses are normalized with respect to the matrix yield strength, and they are 
computed very near the corner of the boundary. Figure 10 shows the normalized, longitudinal 
matrix stress at location D of Figure 2. The yielding zone in the matrix material at the steady-state 
is located near and along the boundary edges, which are parallel to the fibre direction in each 
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Table 4 Normalized longitudinal fibre stress in 90 degree 
ply of cross-ply composite with simply supported edges 

Fibre 
volume 
fraction 

0.4 

0.5 

0.6 

Free surf. 
Interface 
Free surf. 
Interface 
Free surf. 
Interface 

Location in Figure 2 

A 

3.226 
4.969 
2.564 
4.031 
2.032 
3.251 

Β 

3.412 
5.087 
2.689 
4.128 
2.140 
3.333 

C 

3.254 
4.547 
2.550 
3.660 
2.022 
2.942 

D 

0.950 
1.261 
0.640 
0.905 
0.408 
0.627 

layer. The longitudinal fibre stresses in the 90 degree-ply are tabulated in Table 4 for different 
fibre volume fractions. Those stresses are also normalized with respect to the matrix yield strength. 
It shows that the fibre stress is relatively small near the free edges, which are parallel to y-axis. 

CONCLUSIONS 
A mathematical formulation has been developed for thermo-elastoviscoplastic analyses of 
fibre-reinforced composite plates under bending loads, along with its finite element formulation. 
The formulation considered thermo-elastically deformed fibres embedded in a thermo-
elastoviscoplastically deformed matrix material. The formulation was derived from the equations 
for a three-dimensional solid. A three-dimensional solid element type of plate bending element 
was also used for the finite element formulation. Advantage of the present formulation is that 
the two distinct material behaviours of fibre and matrix can be easily incorporated in the analysis 
model. In addition, stresses occurring in fibre and matrix can be computed separately and directly 
so that each constituent can use its own yield function and flow rule if the constituent yields. 
The proposed analysis model was demonstrated to be quite useful for thermo-elastoviscoplastic 
analyses of composite plates under bending loads through a study of example problems. 
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