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Optimality Functions in Stochastic Programming

J.O. Royset∗

Operations Research Department, Naval Postgraduate School, Monterey, CA 93943, USA

March 11, 2011

Abstract. Optimality functions define stationarity in nonlinear programming, semi-infinite opti-

mization, and optimal control in some sense. In this paper, we consider optimality functions for

stochastic programs with nonlinear, possibly nonconvex, expected value objective and constraint

functions. We show that an optimality function directly relates to the difference in function values

at a candidate point and a local minimizer. We construct confidence intervals for the value of the

optimality function at a candidate point and, hence, provide a quantitative measure of solution

quality. Based on sample average approximations, we develop an algorithm for classes of stochastic

programs that include CVaR-problems and utilize optimality functions to select sample sizes.

Keywords: Stochastic programming; optimality conditions; validation analysis; algorithms.

1 Introduction

Stochastic optimization problems arise in numerous contexts where decisions must be made under

uncertainty; see, e.g., [19, 16, 46, 41] for algorithms, models, and applications. In this paper,

we specifically deal with problems defined in terms of expected values of random functions. Let

F j : IRn × Ω → IR, j = 0, 1, 2, ..., q, be random functions defined on a common probability space

(Ω,F ,P), with Ω ⊂ IRd and F ⊂ 2Ω being the Borel sigma algebra. Moreover, let the expected

value functions f j : IRn → IR ∪ {−∞,∞} be defined by

f j(x)
△
= E[F j(x,w)]

for all j ∈ q0
△
= {0} ∪ q, with q

△
= {1, 2, ..., q}. Problems involving such expected value functions

are generally challenging to solve due to the need for estimating expectations repeatedly. Even

assessing how “close” a given candidate point x ∈ IRn is to optimality or stationarity may be

nontrivial. We specifically consider the problem

P : min
x∈IRn

{f0(x) | f j(x) ≤ 0, j ∈ q}, (1)

where we adopt assumptions as in Theorem 7.52 and p. 146 of [41] that ensure that expectation

and gradient operators interchange and f j(·) are continuously differentiable. However, f j(·) may
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be nonconvex. We do allow certain classes of nonsmoothness in F j(·, ω), j ∈ q0, as described

below, which may arise in two-stage stochastic programs [16], investment portfolio optimization

[33], inventory control [48], and engineering design [35, 32]. Inventory control and engineering

design optimization as well as estimation of mixed logit models [3] may result in nonconvex models.

Expected value constraints appear, for instance, in investment portfolio and engineering design

optimization with restrictions on the Conditional Value-at-Risk (CVaR) (also called superquantile)

[33, 32]. Throughout the paper, we assume that an infeasible x ∈ IRn is meaningful, but undesirable,

as often is the case for CVaR-constrained problems. If an infeasible point has little meaning and

practical use, a chance-constrained model may be more suitable than P ; see for example [20] and

[41], Chapter 4. That topic, however, is outside the scope of the paper as in that case F j(·, ·) is an
indicator function, which is discontinuous and cannot easily be handled by our framework.

We consider two aspects of P . First, we focus on the assessment of the “quality” of a candidate

point x ∈ IRn, which we refer to as validation analysis. Second, we deal with algorithms that

generates such candidate points. We then adopt a more specific assumption that requires F j(·, ω)
to be given in terms of the maximum of a finite number of smooth random functions.

Stationary points of P are defined by the Karush-Kuhn-Tucker (KKT) or the Fritz-John (FJ)

first-order necessary optimality conditions. (Recall that the conditions are equivalent for example

under the Slater constraint qualification with convex inequality constraints.) However, the verifi-

cation of these conditions at a given x ∈ IRn in the present context is challenging as it requires

estimation of f j(x) and ∇f j(x), j ∈ q0.

Under the assumption of deterministic constraints, [42] develops confidence regions for ∇f0(x)
as well as hypothesis tests for whether a point x ∈ IRn satisfies the KKT conditions; see also

[11]. The results in [42] can be extended to constraints defined in terms of expectations [40].

The hypothesis tests require that the gradients of the active constraints are linearly independent,

the strict complimentary condition holds at x, and that the inverse of an estimate of a variance-

covariance matrix is nonsingular. For P , [6] develops a series of hypothesis tests using bootstrapping

for verification of KKT conditions that require relatively small sample sizes. Other hypothesis tests

for KKT conditions are found in [36, 37], which also consider equality constraints.

Section 5.2 of [41] (see also [39, 9, 3]) uses stochastic variational inequalities to analyze opti-

mality conditions for P . The results include conditions for almost sure convergence of stationary

points of sample average problems (constructed by replacing expectations in P by their sample av-

erages) to stationary points of P as the sample size grows. Extension of such results to second-order

optimality conditions are found in [3]. A similar result for the case with a nonsmooth objective

function and deterministic constraints is found in [48]. We find in Section 5.2 of [41] that under the

linear independence constraint qualification and the strict complementarity condition, a stationary

point of a sample average problem with sample size N is approximately normally distributed with

mean equal to a stationary point of P and with standard deviation proportional to N−1/2.
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Another approach to validation analysis is based on estimating bounds on the optimal value of

P ; see [12, 24, 21, 4]. Estimation of bounds in the case of constraints on expected value functions

utilizes the Lagrangian function [47, 41], p. 208. These bounding procedures are essentially limited

to convex problems as they require global minima of sample average problems, or as they make

use of strong duality. Even if global minima can be computed, nonconvex problems may have

substantial duality gaps and bounds based on the Lagrangian function may be weak.

There are numerous algorithms for solving stochastic programs similar to P including decom-

position algorithms in cases with special structure (see, e.g., [10]), stochastic approximations (see,

e.g., [19, 22]), other versions of stochastic search (see, e.g., [44]), and various algorithms based on

sample average approximations (SAA) (see, e.g., [41]). Since P may involve constraints on non-

convex expected value functions, stochastic approximations may not be applicable and we focus

on SAA. The SAA approach solves a sample average problem obtained from P by replacing P by

an empirical distribution based on a sample from P. Under mild assumptions, global minimizers

and global minima of sample average problems converge to a global minimizer and a global mini-

mum of P , respectively, as the sample size increases to infinity; see for example [41], Section 5.1.

The advantage of this approach is it simplicity and the fact that a large library of deterministic

optimization algorithm may be applicable to solve the sample average problem. A more involved

version of SAA approximately solves a sequence of sample average problems with gradually larger

sample size [14, 3, 35, 25]. This version may reduce the computational effort required to reach

a near-optimal solution as early iterations can utilize small sample sizes, but it needs a rule for

selecting the sequence of sample sizes [30, 25].

In this paper, we propose an optimization algorithm and validation analysis techniques for

P based on optimality functions. Optimality functions are optimal values of quadratic programs

involving linearizations of objective and constraint functions and were introduced by E. Polak for use

in nonlinear programming, semi-infinite optimization, and optimal control to characterize stationary

points [27, 28, 29]. Optimality functions have not been applied previously for validation analysis

and algorithm development in stochastic programming. As we see below, the use of optimality

functions in the context of P appears promising for three reasons. First, they result in validation

analysis procedures that appear more applicable than hypothesis test of KKT conditions as they

deal with the more general FJ conditions and do not require a constraint qualification. Second,

they lead to bounds on the distance between the objective function value at a feasible point and

a local minimum. Third, they result in sample-size adjustment rules that ensure convergence of

algorithms for P based on approximately solving sequences of sample average problems.

The contributions of the paper are four-fold. (i) We introduce an optimality function to the

area of stochastic programming and establish the properties of its estimator. (ii) We derive bounds

in terms of the optimality function on the distance between the objective function value at a feasible

point and a local minimum of P . (iii) We construct validation analysis techniques based on the
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optimality function and the FJ conditions. (iv) We develop an implementable algorithm for P and

prove its convergence to FJ points.

Section 2 defines optimality conditions in terms of an optimality function and show how that

function relates to the distance to a local minimum of P . Section 3 constructs and analyzes an

estimator for the optimality function. Section 4 develops procedures for validation analysis. Section

5 gives an algorithm for P . Section 6 presents numerical examples.

2 Optimality Function

In this section, we introduce an optimality function and prove a relationship between the optimality

function at a feasible point x ∈ IRn and the distance between f0(x) and a local minimum of P .

We start by giving assumptions that ensure that f j(·), j ∈ q0, are finite valued and continuously

differentiable and by stating optimality conditions.

Assumption 1. For a given set S ⊂ IRn, the following hold for any nonempty compact set X ⊂ S

and for all j ∈ q0:

(i) There exists a measurable function C : Ω → [0,∞) such that E[C(ω)] < ∞ and |F j(x, ω)| ≤
C(ω) for all x ∈ X and almost every ω ∈ Ω.

(ii) There exists a measurable function L : Ω → [0,∞) such that E[L(ω)] <∞ and

|F j(x, ω)− F j(x′, ω)| ≤ L(ω)∥x− x′∥

for all x, x′ ∈ S and almost every ω ∈ Ω.

(iii) For every x ∈ X, F j(·, ω) is continuously differentiable at x for almost all ω ∈ Ω.

Assumption 1 is commonly made in the literature (see for example Theorem 7.52 in [41])

and allows for certain classes of nonsmoothness in F j(·, ω) that may arise in two-stage stochastic

programs with recourse [16], CVaR problems [33], inventory control problems [48], and engineering

design problems [35] when P has a continuous cumulative distribution function. Assumption 1(iii)

excludes the possibility of atoms at a point ω ∈ Ω for which F j(·, ω) is nonsmooth at some x ∈ IRn.

This occurs, for example, in the newsvendor problem with a discrete demand distribution.

If Assumption 1 holds on an open set S and X ⊂ S is compact, then it follows from The-

orem 7.52 in [41] that f j(·), j ∈ q0, are continuously differentiable on X and that ∇f j(x) =

E[∇xF
j(x, ω)] for all x ∈ X and j ∈ q0.

We follow [29], see p. 190, and express the FJ conditions by means of a continuous optimality

function θ : IRn → (−∞, 0] defined by

θ(x)
△
= min

h∈IRn

{
max

{
− ψ+(x) + ⟨∇f0(x), h⟩,max

j∈q
{f j(x)− ψ+(x) + ⟨∇f j(x), h⟩}

}
+ 1

2∥h∥
2
}
, (2)
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where ψ+(x)
△
= max{0, ψ(x)}, with ψ(x) △

= maxj∈q f
j(x), is the constraint violation. We observe

that θ(x) is the minimum value of a linear approximation of objective and constraint functions at

x with a quadratic “regularizing” term. The dual problem of (2) takes the form:

θ(x) = − min
µ∈M

{
µ0ψ+(x) +

∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2}, (3)

where M △
= {µ ∈ IRq+1 |

∑
j∈q0

µj = 1, µj ≥ 0, j ∈ q0}; see Theorem 2.2.8 in [29]. Here and below

superscripts denote components of vectors. The optimality function equivalently expresses the FJ

conditions in the sense stated next (see Theorem 2.2.8 in [29]), where Xψ
△
= {x ∈ IRn | ψ(x) ≤ 0}.

Proposition 1. Suppose that x̂ ∈ Xψ and Assumption 1 holds on an open set S ⊂ IRn containing

x̂. Then, θ(x̂) = 0 if and only if x̂ is a FJ point.

From Proposition 1 and the continuity of θ(·), we see that an x ∈ IRn close to a feasible FJ

point yields a near-zero value of θ(x). Under a positive definite assumption at a local minimizer

x̂ of P , θ(x) also gives a bound on the distance between f0(x) and f0(x̂) for x ∈ Xψ near x̂ as

the next result shows. We find related results for finite minimax problems in [29], p. 176, and for

two-stage stochastic program with recourse in [11], but the present result is new.

Theorem 1. Suppose that x̂ ∈ IRn is a local minimizer of P and f j(·) is finite valued and twice

continuously differentiable near x̂ with ∇2f j(x̂) being positive definite for all j ∈ q0. Then, there

exist constants ρ ∈ (0,∞), c ∈ (0,∞), m ∈ (0, 1], and M ∈ [1,∞) such that

(θ(x)− c
√

−θ(x))/m ≤ f0(x̂)− f0(x) ≤ θ(x)/M (4)

for any x ∈ Xψ, with ∥x− x̂∥ ≤ ρ.

Proof: Due to its length, we refer to the Appendix for the proof.

The proof of Theorem 1 reveals that c is given by the size of ∥∇f0(x)∥ near x̂. Moreover, if

f j(·), j ∈ q0, satisfy a strong convexity assumption, then (4) holds for all x ∈ Xψ with x̂ being a

global minimizer. In view of the above results, θ(·) is a measure of quality of a candidate point.

The computation of θ(x) for a given x ∈ IRn requires the solution of a convex quadratic program

with linear constraints (see (3)), which can be achieved in finite time. However, the definition

of θ(x) involves f j(x) and ∇f j(x), j ∈ q0, that, in general, cannot be computed in finite time.

Consequently, we define an estimator for θ(x) using estimators for f j(x) and ∇f j(x), j ∈ q0.

3 Estimator of Optimality Function

Let ω1, ω2, ... be a sequence of independent random vectors each with value in Ω and distributed as P
and f jN (x)

△
= 1

N

∑N
l=l F (x, ωl),∇f

j
N (x)

△
= 1

N

∑N
l=l∇xF (x, ωl), ψN (x)

△
= maxj∈q f

j
N (x), and ψ

+
N (x)

△
=
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max{0, ψN (x)} be standard estimators of f j(x), ∇f j(x), ψ(x), and ψ+(x), respectively, for any

N ∈ IIN
△
= {1, 2, 3, ...}, j ∈ q0, and x ∈ IRn. Finally, we define the estimator of θ(x) by

θN (x)
△
= min

h∈IRn

{
max

{
− ψ+

N (x) + ⟨∇f0N (x), h⟩,max
j∈q

{f jN (x)− ψ+
N (x) + ⟨∇f jN (x), h⟩}

}
+ 1

2∥h∥
2
}
.

Similar to (3), the dual problem of θN (x) takes the form:

θN (x) = − min
µ∈M

{
µ0ψ+

N (x) +
∑
j∈q

µj [ψ+
N (x)− f jN (x)] +

1
2

∥∥∥ ∑
j∈q0

µj∇f jN (x)
∥∥∥2}. (5)

We next derive properties of θN (x) for a given x ∈ IRn. We start by stating consistency, which

follows from standard arguments (see for example the proof of Proposition 5.2 in [41]).

Proposition 2. Suppose that Assumption 1 holds on an open set that contains a given x ∈ IRn.

Then, θN (x) → θ(x), as N → ∞, almost surely.

We next examine the asymptotic distribution of θN (x) and adopt the following assumption.

Assumption 2. For a given x ∈ IRn, E[F j(x, ω)2] <∞ for all j ∈ q and E[(∂F j(x, ω)/∂xi)2] <∞
for all j ∈ q0 and i = 1, 2, ..., n.

In practice, one may need this assumption satisfied for all x in a region of interest as a specific

candidate point is typically not known a priori. We denote the set of minimizers in (3) by

M̂(x)
△
=

{
µ ∈ M

∣∣∣− θ(x) = µ0ψ+(x) +
∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2}, (6)

the set of active constraints by q̂(x)
△
= {j ∈ q | ψ(x) = f j(x)}, and the set of active functions

in ψ+(x) by q̂+(x), which equals q̂(x) ∪ {0} if ψ(x) = 0, q̂(x) if ψ(x) > 0, and {0} otherwise.

Moreover, for any x ∈ IRn, we let Y (x) denote the q+ (q+ 1)n-dimensional normal random vector

with zero mean and variance-covariance matrix V (x), where V (x) is the variance-covariance matrix

of the random vector (F 1(x, ω), F 2(x, ω), ..., F q(x, ω),∇xF
0(x, ω)′,∇xF

1(x, ω)′, ...,∇xF
q(x, ω)′)′.

Moreover, we define the q-dimensional random vector Y−1(x) and the n-dimensional random vectors

Yj(x), j ∈ q0, such that Y (x) = (Y−1(x)
′, Y0(x)

′, Y1(x)
′, ..., Yq(x)

′)′. The asymptotic distribution of

θN (x) then takes the following form, where ⇒ denotes convergence in distribution as N → ∞.

Theorem 2. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 is satisfied

on an open set containing x ∈ IRn. Then,

N1/2(θN (x)−θ(x)) ⇒ − min
µ∈M̂(x)

{
µ0W (x)+

∑
j∈q

µj [W (x)−Y j
−1(x)]+

∑
j∈q0

µj
⟨ ∑
k∈q0

µk∇fk(x), Yj(x)
⟩}
(7)

where W (x)
△
= maxj∈q̂+(x) Y

j
−1(x), with Y

0
−1(x)

△
= 0.
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Proof: The proof is given in the Appendix.

The following corollaries are of special interest.

Corollary 1. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 is

satisfied on an open set containing x ∈ IRn. Then, the following statements hold:

(i) If the vectors ∇f j(x), j ∈ q0, are linearly independent, then M̂(x) = {µ̂(x)} is a singleton and

N1/2(θN (x)− θ(x)) (8)

⇒ −µ̂0(x)W (x)−
∑
j∈q

µ̂j(x)[W (x)− Y j
−1(x)]−

∑
j∈q0

µ̂j(x)
⟨ ∑
k∈q0

µ̂k∇fk(x), Yj(x)
⟩
.

(ii) If x is a local minimizer of P and the vectors ∇f j(x), j ∈ q̂(x), are linearly independent, then

M̂(x) = {µ̂(x)} is a singleton and

N1/2θN (x) ⇒ −W (x) +
∑

j∈q̂+(x)

µ̂j(x)Y j
−1(x). (9)

Proof: (i) If the vectors∇f j(x), j ∈ q0, are linearly independent, then the matrix A(x) = (∇f0(x),
∇f1(x), ..., ∇f q(x)) has rank q+1. Hence, A(x)′A(x) is positive definite and the objective function

in (3) is strictly convex. Consequently, M̂(x) is a singleton and part (i) follows directly.

(ii) Since x ∈ IRn is a local minimizer of P , ψ(x) ≤ 0 and, from Proposition 1, θ(x) = 0.

Hence, it follows from (3) that there exists a µ̂(x) ∈ M̂(x) such that
∑

j∈q0
µ̂j(x)∇f j(x) = 0 and∑

j∈q µ̂
j(x)[ψ+(x) − f j(x)] = 0. Consequently, µ̂j(x) = 0 for all j ∈ q such that j ̸∈ q̂+(x). We

deduce from the KKT conditions for P that under the stated linear independence assumption,

M̂(x) is a singleton. Since Y 0
−1(x) = 0 by definition, (7) reduces to (9).

Corollary 2. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds

on an open set containing x ∈ IRn. If all constraints are deterministic, then

N1/2(θN (x)− θ(x)) ⇒ − min
µ∈M̂(x)

µ0
⟨ ∑
k∈q0

µk∇fk(x), Y0(x)
⟩
. (10)

Proof: This result follows by similar argument as those leading to Theorem 2.

The next corollary and (10) show that normality of θN (x) occurs when M̂(x) is a singleton or

no constraints exist. Let N (0, σ2) denote a zero-mean normal random variable with variance σ2.

Corollary 3. Suppose that Assumption 2 holds at a given x ∈ IRn and that Assumption 1 holds

on an open set containing x ∈ IRn. If there are no constraints in P , then

N1/2(θN (x)− θ(x)) ⇒ N (0,∇f0(x)′V0(x)∇f0(x)),

where V0(x) is the n-by-n variance-covariance matrix of Y0(x).
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Proof: This result follows directly from Theorem 2.

We next consider the bias E[θN (x)]− θ(x). (We use E to denote the expectation with respect

to any probability distribution. The meaning should be clear from the context.)

Proposition 3. Suppose that Assumption 2 holds at a given x ∈ IRn, Assumption 1 holds on

an open set containing x ∈ IRn, and there exists an ϵ > 0 such that supN∈IINE[|N1/2(θN (x) −
θ(x))|1+ϵ] <∞. Then,

E[θN (x)]− θ(x) (11)

= N−1/2E
[
− min
µ∈M̂(x)

{
µ0W (x) +

∑
j∈q

µj [W (x)− Y j
−1(x)] +

∑
j∈q0

µj
⟨ ∑
k∈q0

µk∇fk(x), Yj(x)
⟩}]

+ o(N−1/2).

Moreover, if M̂(x) is a singleton, then E[θN (x)]− θ(x) = −N−1/2E[W (x)] + o(N−1/2).

Proof: From Theorem 25.12 in [7] and Theorem 2, we directly obtain (11). Since Y j
−1, j ∈ q, and

Yj(x), j ∈ q0, have zero mean and
∑

j∈q0
µj = 1 for all µ ∈ M, the second part also holds.

We observe that the bias identified above is similar to that of the optimal value of minx∈Xψ f
0
N (x)

relative to the optimal value of minx∈Xψ f
0(x); see, for example p. 167 in [41]. In that case, the

bias is always nonpositive. In the present case, E[θN (x)] may be larger than θ(x). However, in the

absence of constraints in P , we find using Jensen’s inequality that for any N ∈ IIN, E[θN (x)] ≤ θ(x).

4 Validation Analysis

In this section, we develop confidence intervals of θ(x) and ψ(x) for a candidate point x ∈ IRn,

which may be used to assess “near-optimality” and “near-feasibility” of x. In view of Corollary 3,

confidence intervals can easily be obtained using standard techniques in the case of no constraint.

Hence, we focus on situations with constraints.

4.1 Near Feasibility in P

We adopt a simple batching approach to estimate the value of ψ(x). (We refer to [17] and [37] for

other approaches not pursued here.) By Jensen’s inequality, we find that ψ(x) ≤ E[ψN (x)]. Hence,

a confidence interval for E[ψN (x)] provides a conservative confidence interval for ψ(x), which we

construct next. For given N and M , let ψN,k(x), k = 1, 2, ...,M , be independent random variables

distributed as ψN (x). Then, ψN,M (x)
△
=

∑M
k=1 ψN,k(x)/M is an unbiased estimator of E[ψN (x)].

If E[F j(x, ω)2] <∞ for all j ∈ q, then ψN,M (x) is approximately normal with mean E[ψN (x)] and

variance V ar[ψN (x)]/M for large M . Hence,

(−∞, ψN,M (x) + zαsψ,N,M (x)/
√
M ] (12)

8



is an approximate one-sided 100(1 − α)%-confidence interval for E[ψN (x)] for large M and also a

conservative 100(1− α)%-confidence interval for ψ(x), where zα is the standard normal α-quantile

and s2ψ,N,M (x) is the standard unbiased estimator of V ar[ψN (x)].

4.2 Near Optimality in P

We propose two approaches for obtaining confidence intervals for θ(x). We note that the optimality

function synthesizes the lack of feasibility and optimality at a particular point into a real number.

Hence, it is natural to supplement a confidence interval for θ(x) by one for ψ(x) (see (12)), which

assesses feasibility exclusively.

The first approach for obtaining confidence intervals for θ(x) makes use of the following result.

Proposition 4. Suppose that Assumption 1 holds on an open set containing a given x ∈ IRn.

Then, for any µ ∈ M and N ∈ IIN,

θ(x) ≥ E
[
− µ0ψ+

N (x)−
∑
j∈q

µj(ψ+
N (x)− f jN (x))−

1
2

∥∥∥ ∑
j∈q0

µj∇f jN (x)
∥∥∥2]. (13)

Proof: For any µ ∈ M, let η̃ : IRq+(q+1)n → IR be defined by η̃(ζ)
△
= max{0,maxj∈q ζ

j
−1} −∑

j∈q µ
jζj−1 +

1
2∥

∑
j∈q0

µjζj∥2 for any ζ = (ζ ′−1, ζ
′
0, ζ

′
1, ...ζ

′
q) ∈ IRq+(q+1)n, with ζ−1 ∈ IRq and ζj ∈

IRn, j ∈ q0. Let fN (x)
△
= (f1N (x), f

2
N (x), ..., f

q
N (x))

′ and∇fN (x)
△
= (∇f0N (x)′,∇f1N (x)′, ...,∇f

q
N (x)

′)′.

By the convexity of η̃(·), Jensen’s inequality, (3), and the suboptimality of µ,

E[η̃((fN (x)
′,∇fN (x)′)′)] ≥ µ0ψ+(x) +

∑
j∈q

µj(ψ+(x)− f j(x)) + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2 ≥ −θ(x).

The conclusion then follows from the definition of η̃(·).
In view of Proposition 4, we construct a conservative confidence interval for θ(x) by com-

puting a confidence interval for the right-hand side in (13). We adopt a batching approach and,

for given N and M , let ηN,k, k = 1, 2, ...,M , be independent random variables distributed as

η̃((fN (x)
′,∇fN (x)′)′); see definition in the proof of Proposition 4. Then, ηN,M

△
= 1

M

∑M
k=1 ηN,k

is an unbiased estimator of E[η̃((fN (x)
′,∇fN (x)′)′)] that is approximately normal with mean

E[η̃((fN (x)
′,∇fN (x)′)′)] and variance V ar[η̃((fN (x)

′,∇fN (x)′)′)]/M for large M under integra-

bility assumptions on (fN (x)
′,∇fN (x)′). Then, it follows that

[−ηN,M − zαsη,N,M (x)/
√
M, 0] (14)

is an approximate 100(1− α)%-confidence interval for E[−η̃((fN (x)′,∇fN (x)′)′)] for large M and

also a conservative 100(1−α)%-confidence interval for θ(x). Here, s2η,N,M is the standard unbiased

estimator of V ar[η̃((fN (x)
′,∇fN (x)′)′)]. To compute (14), it is necessary to select a µ ∈ M. In

view of the proof of Proposition 4, we see that a tighter confidence interval can be expected when

µ ∈ M̂(x). However, even when µ ∈ M̂(x), the inequality in (13) may be strict.
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The second approach to constructing a confidence interval for θ(x) is motivated by a proce-

dure for obtaining bounds on the optimal value of optimization problems with chance constraints

[23]; see also Section 5.7.2 in [41]. The approach requires a slightly different sampling scheme.

While we above use common random numbers, i.e., f jN (x), ∇f
j
N (x), j ∈ q0, ψN (x), ψ

+
N (x), and

θN (x) are computed using the same sample, we now generate a sample of size N for each vector

(f jN (x),∇f
j
N (x)

′), j ∈ q0, independently, and also independently generate a sample of size N to

compute ψN (x). (Such independent sampling is for example discussed in [41], Chapter 5, Remark

9.) We refer to this modified scheme as the function-independent sampling scheme. Since the

function-independent sampling scheme is only discussed in this subsection and used in numerical

tests in Section 6, we slightly abuse notation by using the same notation for both sampling schemes.

From (2) we see that θ(x) = −ψ+(x) + u(x), where

u(x)
△
= min

(h,z)∈IRn+1
{z + 1

2∥h∥
2 | ⟨∇f0(x), h⟩ ≤ z, f j(x) + ⟨∇f j(x), h⟩ ≤ z, j ∈ q}. (15)

Here, −ψ+(x) is a measure of feasibility and u(x) is a measure of optimality. Using the function-

independent sampling scheme, we similarly let

uN (x)
△
= min

(h,z)∈IRn+1
{z + 1

2∥h∥
2 | ⟨∇f0N (x), h⟩ ≤ z, f jN (x) + ⟨∇f jN (x), h⟩ ≤ z, j ∈ q}. (16)

The next lemma provides a useful relationship between u(x) and uN (x).

Lemma 1. Suppose that Assumption 2 holds at a given x ∈ IRn, that Assumption 1 holds on an

open set containing x ∈ IRn, and that the function-independent sampling scheme is used. Then,

lim inf
N→∞

Prob[uN (x) ≤ u(x)] ≥ 1

2q+1
. (17)

Proof: Suppose that (ĥ, ẑ) ∈ IRn+1 is a feasible point in (15). We want to determine the probability,

denoted by p̂N , that (ĥ, ẑ) is feasible in (16). Since (ĥ, ẑ) ∈ IRn+1 is feasible for (15),

p̂N
△
= Prob

[{
⟨∇f0N (x), ĥ⟩ ≤ ẑ

}∩ ( ∩
j∈q

{
f jN (x) + ⟨∇f jN (x), ĥ⟩ ≤ ẑ

})]
(18)

≥ Prob
[{

⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0
}∩( ∩

j∈q

{
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

})]
.

In view of the function-independent sampling scheme, it follows that

p̂N ≥ Prob
[
⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0

]∏
j∈q

Prob
[
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

]
.

By Assumption 2, a central limit theorem, and the continuous mapping theorem, N1/2⟨∇f0N (x)−
∇f0(x), ĥ⟩ converges in distribution to a zero-mean normal random variable. Hence,

lim
N→∞

Prob
[
⟨∇f0N (x)−∇f0(x), ĥ⟩ ≤ 0

]
≥ 1/2. (19)
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Similarly, for all j ∈ q, N1/2(f jN (x) − f j(x) + ⟨∇f jN (x) −∇f j(x), ĥ⟩) converges in distribution to

a zero-mean normal random variable. Hence, for all j ∈ q,

lim
N→∞

Prob
[
f jN (x)− f j(x) + ⟨∇f jN (x)−∇f j(x), ĥ⟩ ≤ 0

]
≥ 1/2.

Consequently, lim infN→∞ p̂N ≥ 1/2q+1. Since this result holds for any (ĥ, ẑ) ∈ IRn+1 that is

feasible in (15), it also holds for the optimal solution in (15). If (ĥ, ẑ) ∈ IRn+1 is optimal in (15)

and it is also feasible in (16), then uN (x) ≤ ẑ + 1
2∥ĥ∥

2 = u(x). This completes the proof.

Lemma 1 provides the basis for the following procedure for obtaining a probabilistic lower

bound on u(x). This procedure is essentially identical to the one proposed in [23] in the context

of chance constraints. Let uN,k(x), k = 1, 2, ...,K, be independent random variables distributed as

uN (x). After obtaining realizations of these random variables, we order them with respect to their

values. Let ũN,1, ũN,2, ..., ũN,K , with ũN,k ≤ ũN,k+1, be this ordered sequence. That is, ũN,1 is the

smallest value of uN,k(x), k = 1, 2, ...,K, ũN,2 is the second smallest, etc. Suppose that γ̂N is a

lower bound on Prob[uN (x) ≤ u(x)] and suppose that for a given β ∈ (0, 1), K and L satisfy

L−1∑
k=0

(
K
k

)
γ̂kN (1− γ̂N )

K−k ≤ β. (20)

Then, using the same arguments as in Section 5.7.2 of [41], we obtain that Prob[ũN,L > u(x)] ≤ β.

Hence, [ũN,L, 0] is a 100(1− β)%-confidence interval for u(x). In view of Lemma 1, we recommend

a number slightly smaller than 1/2q+1 as an estimate of γ̂N when N is moderately large.

If ψN,M (x) of Subsection 4.1 is computed independently of the confidence interval for u(x),

then in view of the fact that θN (x) = −ψ+
N (x) + uN (x),[

−max{0, ψN,M (x) + zαsψ,N,M (x)/
√
M}+ ũN,L, 0

]
(21)

is an approximate 100(1−α)(1−β)%-confidence interval for θ(x) for largeM and N . The approach

requires the solution of K quadratic programs. If L = 1, then K ≥ log β/ log(1 − γ̂N ). Hence, K

is typically moderate. For example, if β = 0.01 and γ̂N = 0.49, then K = 7 suffices.

5 Algorithms and Consistent Approximations

In this section, we use the optimality function θ(·) and an optimality function of an approximating

problem to construct an implementable algorithms for P under the additional assumptions that

F j(·, ω), j ∈ q0, are given by the maximum of continuously differentiable random functions. We

therefore replace Assumption 1 by the following more specific assumption.

Assumption 3. The random functions F j : IRn × Ω → IR, j ∈ q0, are given by

F j(x, ω) = max
k∈rj

gjk(x, ω), j ∈ q0, (22)

where rj = {1, 2, ..., rj}, rj ∈ IIN, and for a given set S ⊂ IRn, the following hold for all j ∈ q0:
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(i) For all k ∈ rj and almost every ω ∈ Ω, gjk(·, ω) is continuously differentiable on S.

(ii) There exist a nonnegative-valued measurable function Cj : Ω → [0,∞) such that E[Cj(ω)] <

∞, |gjk(x, ω)| ≤ Cj(ω), and ∥∇xg
jk(x, ω)∥ ≤ Cj(ω) for all x ∈ S and k ∈ rj, and for almost

every ω ∈ Ω.

(iii) For all x ∈ S, the set r̂j(x, ω)
△
= {k ∈ rj | F j(x, ω) = gjk(x, ω)} is a singleton for almost every

ω ∈ Ω.

Assumption 3(iii) excludes the possibility of atoms at a point ω ∈ Ω for which there is more

than one maximizer in (22) at a given x. If Assumption 3 holds on S ⊂ IRn, then Assumption 1

also holds on S as the next result states.

Proposition 5. Suppose that Assumption 3 holds on an open set S ⊂ IRn. Then, (i) Assumption

1 holds on S and (ii) for any compact X ⊂ S, f j(·), j ∈ q0, are finite valued and continuously

differentiable on X with ∇f j(x) = E[∇xg
k̂j(x,ω)j(x, ω)], where k̂j(x, ω) ∈ r̂j(x, ω).

Proof: Assumption 1(i) holds directly from Assumption 3(i). For all j ∈ q0 and almost every

ω ∈ Ω, F j(·, ω) is Lipschitz continuous on bounded sets and has a directional derivative at x ∈ IRn

in direction h ∈ IRn given by dF j(x, ω;h) = maxk∈r̂j(x,ω)⟨∇xg
jk(x, ω), h⟩; see for example Theorem

5.4.5 in [29]. Hence, in view of Assumption 3(ii), F j(·, ω) is Lipschitz continuous on bounded sets

with an integrable Lipschitz constant. Hence, Assumption 1(ii) holds. From Assumption 3(iii) we

conclude that for all x ∈ S, F j(·, ω) is continuously differentiable at x and r̂j(x, ω) = {k̂j(x, ω)}
for almost every ω ∈ Ω. Hence, ∇xF

j(x, ω) = ∇xg
k̂j(x,ω)j(x, ω) and Assumption 1(iii) holds. The

conclusions then follows from Theorem 7.52 in [41].

If Assumption 1 holds on an open set S ⊂ IRn containing a compact set X, then f jN (x)

converges to f j(x) uniformly on X, as N → ∞, almost surely for any j ∈ q0; see Theorem 7.48

in [41]. While this fact is useful, f jN (·) is nonsmooth and, hence, standard nonlinear programming

algorithm may fail when applied to P with f j(·) replaced by f jN (·) for a given realization of {ωl}Nl=1.

Consequently, we construct smooth approximations of f jN (·), j ∈ q0.

5.1 Sample Average Approximations and Exponential Smoothing

We adopt the exponential smoothing technique first proposed in [18]; see also [48, 45] for recent

applications. For any ϵ > 0 and j ∈ q0, we define the smooth approximation F jϵ : IRn ×Ω → IR by

F jϵ (x, ω)
△
= ϵ log

∑
k∈rj

exp[gjk(x, ω)/ϵ]. (23)

Under Assumption 3, F jϵ (·, ω), j ∈ q0, ϵ > 0, are continuously differentiable for almost every ω ∈ Ω,

with

∇F jϵ (x, ω) =
∑
k∈rj

µjkϵ (x, ω)∇xg
jk(x, ω), (24)
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where

µjkϵ (x, ω)
△
=

exp[gjk(x, ω)/ϵ]∑
k′∈rj exp[g

jk′(x, ω)/ϵ]
, k ∈ rj . (25)

Moreover, for any j ∈ q0, ϵ > 0, x ∈ IRn, and ω ∈ Ω,

0 ≤ F jϵ (x, ω)− F j(x, ω) ≤ ϵ log rj . (26)

For any j ∈ q0, ϵ > 0, and N ∈ IIN, we define the smoothed sample average f jNϵ : IR
n → IR by

f jNϵ(x)
△
=

1

N

N∑
l=1

F jϵ (x, ωl). (27)

Finally, we define, for any ϵ > 0 and N ∈ IIN, the smoothed sample average problem

PNϵ : min
x∈IRn

{f0Nϵ(x) | f
j
Nϵ(x) ≤ 0, j ∈ q}. (28)

For given ϵ > 0, N ∈ IIN, and realization of {ωl}Nl=1, PNϵ is smooth and, hence, solvable by standard

nonlinear programming algorithms. We note that if rj is a singleton for all j ∈ q0, then smoothing

is not required and the above expressions simplify.

A simple approach for solving P is to select a small ϵ and a large N to ensure small smoothing

and sampling errors, respectively, and then to apply a standard algorithm to PNϵ. In the case

of deterministic constraints in P , the results of [48] provide theoretical backing for this approach

by showing that every accumulation point of a sequence of stationary points of smoothed sample

average problems of PNϵ (but with deterministic constraints) is a stationary point of P . In the next

subsection, we extend the result of [48] in one direction by considering a sequence of near-stationary

points of PNϵ (with expectation constraints) as expressed by optimality functions. We utilize this

result to obtain an implementable algorithm that approximately solves sequences of smoothed

sample average problems PNϵ for gradually smaller ϵ and larger N . There is evidence that such a

gradual increase in precision tends to perform better numerically than the simple approach of solving

a single approximating problem with high precision [42, 15, 14, 2, 35, 30, 5, 25, 26]. This effect is

often caused by the fact that substantial objective function and constraint violation improvements

can be achieved with low precision in the early stages of the calculations without paying the price

associated with high precision. In the present context, a high precision requires a large N , which

results in expensive function evaluations, and a small ϵ, which may cause ill-conditioning [26].

Hence, we proceed by considering a sequence of PNϵ with gradually higher precision.

5.2 Consistent Approximations

We analyze PNϵ within the framework of consistent approximations (see [29], Section 3.3), which

allow us to related near-stationary points of PNϵ to stationary points of P through their respective

optimality functions. We start by defining an optimality function for PNϵ.
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Let θNϵ : IR
n → (−∞, 0] denote an optimality function for PNϵ defined by

θNϵ(x)
△
= − min

µ∈M

{
µ0ψ+

Nϵ(x) +
∑
j∈q

µj [ψ+
Nϵ(x)− f jNϵ(x)] +

1
2

∥∥∥ ∑
j∈q0

µj∇f jNϵ(x)
∥∥∥2}, (29)

where ψ+
Nϵ(x)

△
= max{ψNϵ(x), 0}, with ψNϵ(x) = maxj∈q f

j
Nϵ(x). Similar results as in Proposition

1 hold for PNϵ and θNϵ(·), and hence if x ∈ IRn is feasible for PNϵ, then x is a FJ point of PNϵ

if and only if θNϵ(x) = 0. To avoid dealing with N and ϵ individually, we let {ϵN}∞N=1 be such

that ϵN > 0 for all N ∈ IIN and ϵN → 0, as N → ∞. We adopt the following definition of weakly

consistent approximations from Section 3.3 in [29].

Definition 1. The elements of {(PNϵN , θNϵN (·)}∞N=1 are weakly consistent approximations of (P, θ(·))
if (i) PNϵN epi-converges to P , as N → ∞, almost surely, and (ii) for any x ∈ IRn and {xN}∞N=1 ⊂
IRn with xN → x, as N → ∞, lim supN→∞ θNϵN (xN ) ≤ θ(x), almost surely.

We proceed by showing that {(PNϵN , θNϵN (·)}∞N=1 indeed are weakly consistent approximations

of (P, θ(·)). We need the following key result.

Proposition 6. Suppose that Assumption 3 holds on an open set S ⊂ IRn and that X ⊂ S is

compact. Then, for all j ∈ q0,

(i) f jNϵN (x) converges to f j(x) uniformly on X, as N → ∞, almost surely, and

(ii) ∇f jNϵN (x) converges to ∇f j(x) uniformly on X, as N → ∞, almost surely.

Proof: See appendix.

We need the following constraint qualification to ensure epi convergence.

Assumption 4. For a given set S ⊂ IRn the following holds almost surely. For every x ∈ S ∩Xψ,

there exists a sequence {xN}∞N=1 ⊂ S, with ψN (xN ) ≤ 0, such that xN → x, as N → ∞.

Theorem 3. Suppose that Assumptions 3 and 4 hold on an open set S ⊂ IRn, X ⊂ S is compact,

and Xψ ⊂ X. Then, {(PNϵN , θNϵN (·)}∞N=1 are weakly consistent approximations of (P, θ(·)).

Proof: Using Theorem 3.3.2 in [29], it follows directly from Proposition 6(i) and Assumption 4 that

PNϵN epi-converges to P , as N → ∞, almost surely. Next, we consider the optimality functions.

Let η : M×X → IR and ηN : M×X → IR be defined by

η(µ, x)
△
= µ0ψ+(x) +

∑
j∈q

µj [ψ+(x)− f j(x)] + 1
2

∥∥∥ ∑
j∈q0

µj∇f j(x)
∥∥∥2

and ηN (µ, x) similarly with ψ+(x), f j(x), and∇f j(x) replaced by ψ+
NϵN

(x), f jNϵN (x), and∇f jNϵN (x),
respectively. In view of Proposition 6, ηN (·, ·) converges to η(·, ·) uniformly on M×X, as N → ∞,

almost surely. Since θ(x) = −minµ∈M η(µ, x) and θNϵN (x) = −minµ∈M ηN (µ, x), we conclude that

θNϵN (·) converges to θ(·) uniformly on X, as N → ∞, almost surely, which completes the proof.
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Consistent approximations lead to an algorithm for P , which approximately solves sequences

of problems {PNϵN }N∈K, where K is an order set of strictly increasing positive integers with infinite

cardinality. As N increases, the precision with which PNϵN is solved increases too. We measure the

precision of a candidate point of PNϵN by means of θNϵN (·). When a point of sufficient precision is

obtained for PNϵN , the algorithm starts solving PN ′ϵN′ , where N
′ is the next integer in K after N .

We allow flexibility in the choice of optimization algorithm for approximately solving {PNϵN }N∈K.

We only require that the optimization algorithm converges to a feasible FJ point of PNϵN as the

next assumption formalizes. Here, we adopt the notation ANϵ(x) for the iterate obtained after a

fixed number of iterations of the optimization algorithm, starting from x ∈ IRn, when applied to

PNϵ.

Assumption 5. The following holds almost surely. For any N ∈ IIN and ϵ > 0, every accumulation

point x̂ ∈ IRn of {xi}∞i=0, with xi+1 = ANϵ(xi), i = 0, 1, 2, ..., satisfies θNϵ(x̂) = 0 and ψNϵ(x̂) ≤ 0.

The algorithm for P , stated next, is a straightforward adaptation of Algorithm Model 3.3.14

in [29]. We use the notation K(N) to denote the smallest N ′ ∈ K strictly greater than N .

Algorithm 1 (Solves P under Assumptions 3, 4, and 5)

Input. Function ∆ : IIN → (0,∞) with ∆(N) → 0, as N → ∞; ordered strictly increasing set

K ⊂ IIN with infinite cardinality; {ϵN}N∈K ⊂ (0,∞), with ϵN →K 0, as N → ∞; δ1, δ2 > 0;

N0 ∈ K; x0 ∈ IRn; and realizations {ωl}∞l=1 obtained by independent sampling from P.

Step 0. Set i = 0, x∗0 = x0, and N = N0.

Step 1. Compute xi+1 = ANϵN (xi).

Step 2. If θNϵN (xi+1) ≥ −δ1∆(N) and ψNϵN (xi+1) ≤ δ2∆(N), then set x∗N = xi+1 and replace N

by K(N).

Step 3. Replace i by i+ 1, and go to Step 1.

In view of Theorem 3, convergence of Algorithm 1 is deduced from Theorem 3.3.15 in [29]:

Theorem 4. Suppose that Assumptions 3, 4, and 5 hold on a sufficiently large open subset of

IRn. Moreover, suppose that Algorithm 1 has generated the sequences {x∗N} and {xi}∞i=0 and they

are bounded. Then, {x∗N} is an infinite sequence and every accumulation point x̂ of {x∗N} satisfies

θ(x̂) = 0 and ψ(x̂) ≤ 0 almost surely.

6 Numerical Examples

In this section, we present numerical tests of Algorithm 1 and the validation analysis procedures in

Section 4 as applied to five examples involving constraints. We also carried out validation analysis
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for an unconstrained example using Corollary 3. However, as the results are conceptually similar to

those below, they are omitted. All calculations are performed in Matlab 7.4 on a 2.16 GHz laptop

computer with 1 GB of RAM and Windows XP, unless stated otherwise.

6.1 Example 1: Validation Analysis for Deterministically Constrained Problem

This problem instance arises in search and detection applications where an area is divided into n

cells, one of which contains a stationary target. Let x ∈ IRn, with xi representing the number

of time units a searcher allocates to cell i. Then, the probability of not detecting the target

is f0(x) = E[F 0(x, ω)], where F 0(x, ω) =
∑n

i=1 pi exp(−ωixi), pi is the prior probability that the

target is located in cell i, and ω = (ω1, ω2, ..., ωn)′ is an independent lognormally distributed random

vector (with parameters1 ξi = 100ui and λi = 0, where ui ∈ (0, 1) are given data generated by

independent sampling from a uniform distribution) representing the random search effectiveness in

the cells. The searcher is constrained by
∑n

i=1 x
i ≤ 1 and x ≥ 0, where we use n = 100. Assumption

3 holds for this problem instance. We consider three candidate solutions: x1 ∈ IR100, which is nearly

optimal, x2 = (1/100, 1/100, ..., 1/100)′∈ IR100, and x3 = (1/50, 1/50, ..., 1/50)′ ∈ IR100, which is

infeasible. Hence, ψ(x1) = ψ(x2) = 0 and ψ(x3) = 1. We verify using long simulations (sample size

108) that θ(x1) ≈ 8 · 10−7, θ(x2) ≈ −0.00736, and θ(x3) ≈ −0.99318; see the last row of Table 1.

We consider both confidence intervals (14) and (21). To compute (14), we first determine µ

by solving (5) using sample size N . Second, we compute ηN,M using µ with M replications. In

(21), we use L = 1 which leads to K = 5 when β = 0.05; see (20). Table 1 provides 95%-confidence

intervals for θ(x1), θ(x2), and θ(x3) using (14) (rows 3-6) and (21) (rows 7-10) with varying sample

size N and replications M and K. We observe that the confidence intervals cover the exact value

of the optimality function. When the value of the optimality function is some distance from zero, a

tight confidence interval is obtained using a moderate sample size N . However, when the optimality

function is close to zero, a large sample size is required. While the confidence intervals reported

are from a single generation, we also verify the coverage and variability of the confidence intervals

across independent replications. Specifically, we confirm the confidence level in (21) by estimating

coverage probabilities, i.e., the probability that the random confidence interval (21) includes θ(x).

We find that 100%, 99%, 98% and 99% of 1000 (200 in the case ofN = 105) independent replications

of (21) cover θ(x1) for N = 102, 103, 104, and 105, respectively. Similar calculations for θ(x2) and

θ(x3) result in coverage percentages of at least 97%. All these percentages are well above the

stipulated 95%. We also compute the coefficients of variation across 20 replications of (14) and

(21), and obtain at most 11%, 2%, and 0.01% coefficients of variation in confidence interval for

θ(x1), θ(x2), and θ(x3), respectively, regardless of sample size or method used in Table 1. Hence,

the variability of the confidence intervals is modest across independent replications.

1We note that λi and ξi are the mean and standard deviation, respectively, of the normal distribution from which
the lognormal distribution is obtained.
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Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

102 30 - [−0.004254, 0] [−0.008125, 0] [−1.049167, 0]
103 30 - [−0.000630, 0] [−0.007837, 0] [−1.048609, 0]

(14) 104 30 - [−0.000050, 0] [−0.007783, 0] [−1.048554, 0]
105 100 - [−0.000006, 0] [−0.007483, 0] [−1.009602, 0]

102 - 5 [−0.001886, 0] [−0.007628, 0] [−0.994375, 0]
103 - 5 [−0.000464, 0] [−0.007497, 0] [−0.993391, 0]

(21) 104 - 5 [−0.000049, 0] [−0.007359, 0] [−0.993278, 0]
105 - 5 [−0.000006, 0] [−0.007365, 0] [−0.993201, 0]

“Exact” ≈ 8 · 10−7 ≈ −0.00736 ≈ −0.99318

Table 1: 95%-confidence intervals in Example 1 for θ(x1), θ(x2), and θ(x3) using (14) (rows 3-6)
and (21) (rows 7-10) with varying sample size N and replications M and K. The last row gives
approximate but accurate values of θ(x1), θ(x2), and θ(x3).

We also apply the hypothesis test of [42] and find a p-value of 0.65 for the case with x1. Hence,

we are unable to reject the null hypothesis that x1 is a KKT point using any reasonable test size. In

the case of x2 and x3, the p-values are essentially zero and the null hypothesis is rejected even with

a small test size. While these conclusions are reasonable, they do not directly provide information

about how “close” a candidate solution is to a FJ point. In practice, we are rarely able to obtain

a candidate solution that is a FJ point. Hence, the “distance” to such a point becomes important

as measured by the optimality function.

6.2 Example 2: Validation Analysis for Problem with Expectation Constraint

We next consider an engineering design problem where the cost of a short structural column needs

to be minimized subject to constraints on the failure probability and the aspect ratio; see [34].

The design variables are the width x1 and depth x2 of the column. In [35], we find that the failure

probability for design x = (x1, x2) can be approximated with high-precision by the expression E[1−
χ2
4(r

2(x, ω))], where ω is a four-dimensional standard normal random vector modeling random loads

and material property, χ2
4(·) is the cumulative distribution function of a Chi-squared distributed

random variable with four degrees of freedom, and r(x, ω) is the minimum distance from 0 ∈ IR4

to a limit-state surface describing the performance of the column given design x and realization

ω; see [34, 35]. The failure probability is constrained to be no greater than 0.00135. Hence,

we set f1(x) = E[1 − χ2
4(r

2(x, ω))]/0.00135 − 1. As in [34], we adopt the objective function

f0(x) = x1x2 and the additional constraints f2(x) = −x1, f3(x) = −x2, f4(x) = x1/x2 − 2, and

f5(x) = 0.5− x2/x1. In view of results in [35], Assumption 3 holds for this problem instance.

We consider three designs: x1 = (0.334, 0.586)′ is the best point reported in [34]; x2 =

(0.346, 0.553)′ is an infeasible solution reported in [34], and x3 = (0.586, 0.334)′ is the “mirror

image” of x1. Table 2 gives 95%-confidence intervals for ψ(x1), ψ(x2), and ψ(x3) for various sam-
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Confidence Intervals
N M ψ(x1) ψ(x2) ψ(x3)

102 30 (−∞, 0.1338] (−∞, 0.9153] (−∞, 10.1632]
103 30 (−∞, 0.0079] (−∞, 1.0616] (−∞, 10.1894]
104 30 (−∞,−0.0014] (−∞, 0.8175] (−∞, 10.2649]
105 100 (−∞,−0.0067] (−∞, 0.7898] (−∞, 9.9154]

Table 2: 95%-confidence intervals in Example 2 for ψ(x1), ψ(x2), and ψ(x3) using (12) with varying
sample size N and replications M .

Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

102 30 - [−0.2597, 0] [−0.8055, 0] [−10.2772, 0]
103 30 - [−0.0554, 0] [−0.7856, 0] [−10.0301, 0]

(14) 104 30 - [−0.0074, 0] [−0.8179, 0] [−10.1692, 0]
105 100 - [−0.0014, 0] [−0.7816, 0] [−9.8631, 0]

102 30 5 [−0.1540, 0] [−0.9465, 0] [−12.1029, 0]
103 30 5 [−0.0595, 0] [−0.8129, 0] [−10.6630, 0]

(21) 104 30 5 [−0.0031, 0] [−0.8229, 0] [−10.1777, 0]
105 30 5 [−0.0003, 0] [−0.8137, 0] [−10.3143, 0]

Table 3: 90%-confidence intervals in Example 2 for θ(x1), θ(x2), and θ(x3) using (14) (rows 3-6)
and (21) (rows 7-10) with varying sample size N and replications M and K.

ple sizes and replications. Table 3 presents confidence intervals for θ(x1), θ(x2), and θ(x3), with

α = 0.1 in (14) and α = β = 0.05 in (21). We see that (14) and (21) give comparable results and

that a near-optimal solution may require a large sample size to ensure a tight confidence interval.

6.3 Example 3: Optimization and Validation Analysis for Full Problem

We illustrate Algorithm 1 by considering the following randomly generated problem instance.

Let n = 20, F 0(x, ω) =
∑20

i=1 a
i(xi − biωi)2, where ai = i, bi = 21 − i, i = 1, 2, ..., 20, and

ω = (ω1, ω2, ..., ω20)′ is a vector of independent and uniformly distributed random variables be-

tween 0 and 1. F 1(·, ·) and F 2(·, ·) are defined similarly, but with ai and bi being randomly

and independently generated from a uniform distribution supported on [0, 10] and [0, 2], respec-

tively. Moreover, we subtract 100 from these expressions to construct constraints of the form

E[
∑20

i=1 a
i(xi − biωi)2 − 100] ≤ 0. The resulting instance of P involves 60 independent random

variables, an expected value objective function, and two expected value constraint functions.

We apply Algorithm 1 to this problem instance using x0 = 0, N0 = 100, ∆(N) = 1/
√
N , and

δ1 = δ2 = 1. Moreover, we let K(N) = 2N and ANϵ(x) be the iterate obtained after one iteration

of the Polak-He Phase 1-Phase 2 algorithm started from x; see Section 2.6 in [29]. We refer to

the iterations of Algorithm 1 with the same sample size N as a stage. No smoothing is required

as F j(·, ω), j = 0, 1, 2, are already smooth for all ω ∈ Ω. We run Algorithm 1 for ten stages and
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Candidate Confidence Intervals
Point N #iter. ψ(x∗N ) θ(x∗N ) f0(x∗N )

x∗0 100 - (−∞,−48.1472] [−431.1261, 0] [5296, 5447)
x∗100 100 302 (−∞,−2.0657] [−8.9403, 0] [3411, 3533]
x∗200 200 106 (−∞,−0.4903] [−3.5880, 0] [3439, 3521]
x∗400 400 104 (−∞, 0.5280] [−2.0762, 0] [3419, 3477]
x∗800 800 149 (−∞, 0.0672] [−1.4028, 0] [3458, 3498]
x∗1600 1600 66 (−∞,−0.0001] [−0.7915, 0] [3453, 3482]
x∗3200 3200 60 (−∞,−0.0107] [−0.4043, 0] [3462, 3482]
x∗6400 6400 75 (−∞, 0.0785] [−0.2027, 0] [3466, 3481]
x∗12800 12800 129 (−∞, 0.0125] [−0.1082, 0] [3470, 3480]
x∗25600 25600 79 (−∞, 0.0607] [−0.1085, 0] [3467, 3474]
x∗51200 51200 99 (−∞, 0.0499] [−0.0609, 0] [3467, 3472]

Table 4: 95%-confidence intervals in Example 3 for ψ(x∗N ) and f
0(x∗N ), and 90%-confidence intervals

for θ(x∗N ) for candidate points generated by Algorithm 1.

generate the candidate points x∗0, x
∗
100, x

∗
200,..., x

∗
51200. For each candidate point x∗N , we compute

the confidence intervals (12) and (21) using sample size 10N (1000 for x∗0), replicationsM = 30 and

K = 23, and L = 1; see Table 4. Columns 2 and 3 give the sample size and number of iterations

used in each stage, respectively. Columns 4 and 5 give 95% confidence intervals for ψ(x∗N ) and 90%

confidence intervals for θ(x∗N ), respectively. We also compute two-sided 95% confidence intervals

for f0(x∗N ) using the standard estimator; see column 6. The ten stages require 6900 seconds of run

time. The verification analysis needs 3300 seconds.

6.4 Examples 4 and 5: Engineering Design Optimization

We consider two engineering design problems where the goal is to minimize the design cost subject

to a buffered failure probability constraint and other constraints. Hence, the problem instances

involve the expectation of a random function of the form (22) as constraint [32]. We note that

a buffered failure probability constraint is essentially equivalent to a CVaR constraint [32]. Both

examples involve seven design variables and seven random variables. The first design example,

referred to as Example 4, is taken from [38] and use 10 random functions (r1 = 10 in (22)). The

second example, called Example 5, is taken from [31], pp. 472-473, and involves nine random

functions (r1 = 9); see [1] for details. We apply Algorithm 1, setting x0 equals to the variables

upper bounds, N0 = 1000, ϵN = 1000/N , and K(N) = N +min{104, ⌊0.5N⌋}. Instead of defining

∆(·) for the test in Step 2 of Algorithm 1, we simply set ∆(N) = 1 for all N and multiply the

parameters δ1 and δ2 by a factor ζ ∈ (0, 1) after each time both tests are satisfied. We use ζ = 0.1

and 0.8 in Examples 4 and 5, respectively. Since Examples 4 and 5 are more complex than Example

3, we utilize a desktop computer at 3.16 GHz with 3GB of RAM and let ANϵ(x) denote the iterate

obtained after 20 iterations of SNOPT [8] as implemented in TOMLAB [13], started at x.
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Final Confidence Intervals
Example sample size ψ(x∗N ) θ(x∗N )

4 65624 (−∞, 0.0066] [−0.0154, 0]
5 65624 (−∞, 0.2132] [−0.2408, 0]

Table 5: Sample sizes after one hour of calculations in Algorithm 1 when applied to Examples
4 and 5 as well as 95%- and 90%-confidence intervals for ψ(x∗N ) and θ(x∗N ), respectively, at the
corresponding solution.

Table 5 presents final sample sizes (column 2), 95%-confidence intervals for ψ(x∗N ) (column 3),

and 90%-confidence intervals for θ(x∗N ) (column 4) at the last point obtained by Algorithm 1 after

one hour of computations. The confidence intervals are based on (12) and (21) using sample size

106, replications M = 30 and K = 5, and L = 1. In the case of Example 4, the obtained design

appears feasible and nearly stationary. However, for Example 5, the one hour of calculation time

is insufficient to achieve a near-feasible and near-stationary design.

In view of the numerical results, the proposed procedures for estimating the optimality function

and constraint violation result in informative confidence intervals. The required sample size and

number of replications are typically modest except when estimating θ(x) for a solution x close to a

stationary point, where a large sample size is needed. We also see that the sample-size adjustment

rule of Algorithm 1 based on the optimality function yields reasonable results.

7 Conclusions

We have proposed the use of optimality functions for validation analysis and algorithm development

in nonlinear stochastic programs with expected value functions as both objective and constraint

functions. The validation analysis assesses the quality of a candidate solution x ∈ IRn by its

proximity to a Fritz-John stationary point as measured by the value of an optimality function at

x or, in practice, by a confidence interval for that value. In algorithmic development, optimality

functions determine the sample size in variable-sample size schemes. Preliminary numerical tests

indicate that the approach is promising.
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Appendix

Proof of Theorem 1. Let IB(x, ρ)
△
= {x′ ∈ IRn | ∥x′ − x∥ ≤ ρ} for any x ∈ IRn and ρ > 0. Since

f j(·) is finite valued and twice continuously differentiable near x̂ and ∇2f j(x̂) is positive definite
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for all j ∈ q0, there exist constants ρ̂ > 0 and 0 < m ≤ 1 ≤ M < ∞ such that f j(·), j ∈ q0, are

finite valued and twice continuously differentiable on IB(x̂, ρ̂) and that

m∥x′ − x∥2 ≤ ⟨x′ − x,∇2f j(x)(x′ − x)⟩ ≤M∥x′ − x∥2, (30)

for all x ∈ IB(x̂, ρ̂), x′ ∈ IRn, and j ∈ q0.

For a given x ∈ IRn, we define ψ̃(x, ·) : IRn → IR for any x′ ∈ IRn by ψ̃(x, x′)
△
= max{f0(x′)−

f0(x), ψ(x′)}. It follows by the mean value theorem and (30) that for any x ∈ IB(x̂, ρ̂) ∩ Xψ,

x′ ∈ IB(x̂, ρ̂), and some sj ∈ [0, 1], j ∈ q0,

ψ̃(x, x′) = max
{
⟨∇f0(x), x′ − x⟩+ 1

2⟨x
′ − x,∇2f0(x+ s0(x′ − x))(x′ − x)⟩,

max
j∈q

{f j(x) + ⟨∇f j(x), x′ − x⟩+ 1
2⟨x

′ − x,∇2f j(x+ sj(x′ − x))(x′ − x)⟩}
}

≤ 1

M
max

{
⟨∇f0(x),M(x′ − x)⟩+ 1

2∥M(x′ − x)∥2, (31)

max
j∈q

{f j(x) + ⟨∇f j(x),M(x′ − x)⟩+ 1
2∥M(x′ − x)∥2}

}
,

where we use that M ≥ 1 and x ∈ Xψ, and therefore Mf j(x) ≤ f j(x) for all j ∈ q.

Let h(x) denote the optimal solution of (2), which according to Theorem 2.2.8 in [29] is unique

and continuous as a function of x. Since x̂ is a FJ point, h(x̂) = 0. Hence, there exists a ρ′ > 0 such

that ∥h(x)∥ ≤ mρ̂/2 for all x ∈ IB(x̂, ρ′). Let ρ = min{ρ̂/2, ρ′}. For any x ∈ IB(x̂, ρ)∩Xψ, in view of

(2) and the property ψ+(x) = 0, the minimization of the right-hand side in (31) with respect to x′

yields an optimal value θ(x)/M . Let ξx ∈ IRn be the optimal solution of that minimization. Then,

due to the equivalence between minimization of the right-hand side in (31) with respect to x′ and

the minimization in (2), we find thatM(ξx−x) = h(x). Hence, ∥ξx−x∥ = ∥h(x)∥/M ≤ mρ̂/(2M).

Moreover, ∥ξx− x̂∥ ≤ ∥ξx−x∥+∥x− x̂∥ ≤ mρ̂/(2M)+ ρ̂/2 ≤ ρ̂. We therefore obtain by minimizing

the left-hand size of (31) with respect to x′ over IB(x̂, ρ̂) that

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) ≤ θ(x)/M (32)

for all x ∈ IB(x̂, ρ) ∩Xψ. Using similar arguments, we also obtain that

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) ≥ θ(x)/m (33)

for all x ∈ IB(x̂, ρ̂) ∩Xψ.

First, consider an x ∈ IB(x̂, ρ) ∩ Xψ and let x̂′ ∈ IRn be the unique optimal solution of

minx′∈IB(x̂,ρ̂) ψ̃(x, x
′). Since ψ̃(x, x) = 0, it follows that x̂′ ∈ Xψ. From (32), we obtain that

f0(x̂)− f0(x) = min
x′∈IB(x̂,ρ̂)

{f0(x′)− f0(x) | ψ(x′) ≤ 0}

≤ min
x′∈IB(x̂,ρ̂)

{ψ̃(x, x′) | ψ(x′) ≤ 0} = ψ̃(x, x̂′) ≤ θ(x)/M,
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which proves the right-most inequality in (4).

Second, we prove the left-most inequality and consider three cases. Let x ∈ IB(x̂, ρ̂) ∩Xψ and

x̂′ be as in the previous paragraph.

(i) Suppose that ψ(x̂′) < ψ̃(x, x̂′) and f0(x̂′)− f0(x) = ψ̃(x, x̂′). Then,

min
x′∈IB(x̂,ρ̂)

ψ̃(x, x′) = min
x′∈IB(x̂,ρ̂)

{f0(x′)− f0(x) | ψ(x′) ≤ 0} = f0(x̂)− f0(x).

Hence, by(33), θ(x)/m ≤ f0(x̂)− f0(x).

(ii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′) − f0(x) = ψ̃(x, x̂′). If x̂′ = x̂, then we find that

minx′∈IB(x̂,ρ̂) ψ̃(x, x
′) = ψ̃(x, x̂) = f0(x̂) − f0(x). Hence, in view of (33), θ(x)/m ≤ f0(x̂) − f0(x).

We next consider the possibility x̂ ̸= x̂′ and define ĥ = x̂− x̂′. Since x̂′ is the constrained minimizer

of ψ̃(x, ·) over IB(x̂, ρ̂), it follows that the directional derivative of ψ̃(x, ·) at x̂′ is nonnegative in

all feasible directions, i.e., dψ̃(x, x̂′; y − x̂′) = max{⟨∇f0(x̂′), y − x̂′⟩, dψ(x̂′, y − x̂′)} ≥ 0, for all

y ∈ IB(x̂, ρ̂). By strong convexity of f0(·) on IB(x̂, ρ̂),

⟨∇f0(x̂′), ĥ⟩ < (f0(x̂)− f0(x))− (f0(x̂′)− f0(x)) < 0. (34)

Consequently,

dψ(x̂′, ĥ) ≥ 0. (35)

Now, let j′ ∈ q̂(x̂′) (= {j ∈ q | ψ(x̂′) = f j(x̂′)}) be such that dψ(x̂′; ĥ) = ⟨∇f j′(x̂′), ĥ⟩. Then, by

the mean value theorem and (30), f j
′
(x̂) ≥ f j

′
(x̂′) + ⟨∇f j′(x̂′), ĥ⟩ + 1

2m∥ĥ∥2. Hence, using (35)

and (33), we obtain

ψ(x̂) ≥ f j
′
(x̂) ≥ ψ(x̂′) + dψ(x̂′; ĥ) + 1

2m∥ĥ∥2 ≥ θ(x)/m+ 1
2m∥ĥ∥2. (36)

Since ψ(x̂) ≤ 0, we find that ∥ĥ∥ ≤
√

−2θ(x)/m. There exists a constant c ∈ (0,∞) such that

∥∇f0(x′)∥ ≤ c/4 for all x′ ∈ IB(x̂, ρ̂). It now follows from (34) and (33) that

f0(x̂)− f0(x) > f0(x̂′)− f0(x) + ⟨∇f0(x̂′), ĥ⟩

≥ θ(x)/m− ∥∇f0(x̂′)∥∥ĥ∥ ≥ (θ(x)− c
√

−θ(x))/m.

(iii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′)− f0(x) < ψ̃(x, x̂′). Then, due to the optimality

of x̂′ for ψ̃(x, ·), dψ(x̂′, x′ − x̂′) ≥ 0 for all x′ ∈ IB(x̂, ρ̂). Using similar arguments as in (36), we

obtain that for any x′ ∈ IB(x̂, ρ̂),

0 ≥ ψ(x′) ≥ ψ(x̂′) + dψ(x̂′;x′ − x̂′) + 1
2m∥x′ − x̂′∥2 ≥ θ(x)/m+ 1

2m∥x′ − x̂′∥2

and ∥x′− x̂′∥ ≤
√

−2θ(x)/m. Hence, ∥x̂−x∥ ≤ ∥x̂− x̂′∥+∥x− x̂′∥ ≤ 2
√

−2θ(x)/m. It now follows

from strong convexity of f0(·) on IB(x̂, ρ̂) and (33) that

f0(x̂)− f0(x) > ⟨∇f0(x), x̂− x⟩ ≥ −∥∇f0(x)∥∥x̂− x∥ ≥ − c

m

√
−θ(x).
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The left-most inequality (4) now follows as a consequence of these three cases.

Proof of Theorem 2: The proof is based on the Delta Theorem 7.59 (see also Exercise 5.4, p.

249) in [41]. Let g : IRq+(q+1)n → IR be defined for any ζ = (ζ−1, ζ
′
0, ζ

′
1, ..., ζ

′
q) ∈ IRq+(q+1)n, with

ζ−1 ∈ IRq, ζj ∈ IRn, j ∈ q0, by

g(ζ)
△
= − min

µ∈M

{
µ0w(ζ) +

∑
j∈q

µj [w(ζ)− ζj−1] +
1
2

∥∥∥ ∑
j∈q0

µjζj

∥∥∥2},
where w : IRq+(q+1)n → IR is defined by w(ζ)

△
= max{0,maxj∈q ζ

j
−1}. Since

∑
j∈q0

µj = 1 for

all µ ∈ M, it follows that g(ζ) = −w(ζ) − ϕ(ζ), where ϕ : IRq+(q+1)n → IR is defined by

ϕ(ζ)
△
= minµ∈M{−

∑
j∈q µ

jζj−1 + 1
2∥

∑
j∈q0

µjζj∥2}. Let q̂w(ζ)
△
= {j ∈ q | maxk∈q ζ

k
−1 = ζj−1},

and

q̂+
w(ζ)

△
=


q̂w(ζ) ∪ {0} if w(ζ) = 0

q̂w(ζ) if w(ζ) > 0
{0} otherwise.

Moreover, let M̂ϕ(ζ)
△
= {µ ∈ M | ϕ(ζ) = −

∑
j∈q µ

jζj−1 +
1
2∥

∑
j∈q0

µjζj∥2}.
It follows from Danskin Theorem; see, for example, Theorem 7.21 in [41], that w(·) and ϕ(·)

are locally Lipschitz continuous and directional differentiable with directional derivatives at ζ ∈
IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by dw(ζ; ξ) = maxj∈q̂+

w(ζ)
ξj−1, with ξ

0
−1

△
= 0, and

dϕ(ζ; ξ) = min
µ∈M̂ϕ(ζ)

{
−

∑
j∈q

µjξj−1 +
∑
j∈q0

µj
⟨ ∑
k∈q0

µkζk, ξj

⟩}
.

Consequently, g(·) is locally Lipschitz continuous and directional differentiable with directional

derivatives at ζ ∈ IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by

dg(ζ; ξ) = − max
j∈q̂+

w(ζ)
ξj−1 − min

µ∈M̂ϕ(ζ)

{
−

∑
j∈q

µjξj−1 +
∑
j∈q0

µj
⟨ ∑
k∈q0

µkζk, ξj

⟩}
.

Hence, it follows from Proposition 7.57 in [41] that g(·) is Hadamard directional differentiable.

Let f(x)
△
= (f1(x), f2(x), ..., f q(x))′, fN (x)

△
= (f1N (x), f

2
N (x), ..., f

q
N (x))

′, ∇f(x) △
= (∇f0(x)′,

∇f1(x)′, ...,∇f q(x)′)′, and ∇fN (x)
△
= (∇f0N (x)′,∇f1N (x)′, ...,∇f

q
N (x)

′)′. Then, by a vector-valued

central limit theorem (e.g. Theorem 29.5 in [7]) and Delta Theorem 7.59 in [41], we obtain that

N1/2(g((fN (x),∇fN (x)′)′)− g((f(x),∇f(x)′)′)) ⇒ dg((f(x),∇f(x)′)′;Y (x)).

The result now follows from the facts that g((fN (x),∇fN (x)′)′) = θN (x), g((f(x),∇f(x)′)′) = θ(x),

q̂+
w((f(x),∇f(x)′)′) = q̂+(x), and M̂ϕ((f(x),∇f(x)′)′) = M̂(x) and from rearranging terms.

Proof of Proposition 6: Let j ∈ q0. First, we consider (i). Let δ > 0 be arbitrary. By Theorem

7.48 in [41], f jN (x) converges to f j(x) uniformly on X, as N → ∞, almost surely. Hence, there
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exists N0 ∈ IIN such that for all x ∈ X and N ≥ N0, |f jN (x)−f j(x)| ≤ δ/2, almost surely. In view of

(26), there exists an N1 ≥ N0 such that for all x ∈ IRn and N ≥ N1, 0 ≤ f jNϵN (x)−f
j
N (x) ≤ δ/2, for

every {ωl}∞l=1, with ωl ∈ Ω, l ∈ IIN. Consequently, for all x ∈ X and N ≥ N1, |f jNϵN (x)− f j(x)| ≤
|f jNϵN (x)− f jN (x)|+ |f jN (x)− f j(x)| ≤ δ, almost surely, which completes the proof of (i).

Second, we consider (ii) and adopt a similar argument as in Theorems 4.3 and 4.4 of [48] (see

also Theorem 2 in [43]). We define the set-valued random function G : IRn × [0, 1]× Ω → 2IR
n
by

Gj(x, ϵ, ω) △
=

{
∇xF

j
ϵ (x, ω), if ϵ > 0

cok∈r̂j(x,ω){∇xg
jk(x, ω)}, if ϵ = 0,

where co{·} denotes the convex hull. From (25), we find that for any k ∈ rj ,

µjkϵ (x, ω) =
exp[(gjk(x, ω)− F j(x, ω))/ϵ]∑

k′∈rj exp[(g
jk′(x, ω)− F j(x, ω))/ϵ]

. (37)

Let {xi}∞i=1 ⊂ S, {ϵi}∞i=1 ⊂ (0, 1], and x̂ ∈ S be such that xi → x̂ and ϵi → 0, as i → ∞. Also,

let ω ∈ Ω be such that gjk(·, ω), k ∈ rj , are continuously differentiable on S. From (37) we see

that if k /∈ r̂j(x̂, ω), then µjkϵi (xi, ω) → 0, as i → ∞. Moreover, since µjkϵi (xi, ω) ⊂ (0, 1) and∑
k∈rj µ

jk
ϵi (xi, ω) = 1 for all i ∈ IIN, it follows from (24) that the outer limit of {∇xF

j
ϵi(xi, ω)}∞i=1

in the sense of Painleve-Kuratowski is contained in cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}. Hence, it follows that

Gj(·, ·, ω) is outer semi-continuous in the sense of Rockafellar-Wets for almost every ω ∈ Ω.

Next, let {xN}∞N=1 ⊂ S, {ϵN}∞i=1 ⊂ (0, 1], and x̂ ∈ S be such that xN → x̂ and ϵN →
0, as N → ∞. Then using the fact that Gj(·, ·, ω) is outer semi-continuous for almost every

ω ∈ Ω and the proofs of Theorems 4.3 and 4.4 in [48], we obtain that {∇xf
j
NϵN

(xN )} tends to

E[cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}], as N → ∞, almost surely. In view of Assumption 3 and Proposition

5, we find that E[cok∈r̂j(x̂,ω){∇xg
jk(x̂, ω)}] = {∇f j(x̂)} and the result follows.
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