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ABSTRACT: We quantify uncertainty in complex systems by a flexible, nonparametric framework for esti-
mating probability density functions of output quantities of interest. The framework systematically incorporates
soft information about the system from engineering judgement and experience to improve the estimates and en-
sure that they are consistent with prior knowledge. The framework is based on a maximum likelihood criterion,
with epi-splines facilitating rapid solution of the resulting optimization problems. In four numerical examples
with few realizations of the system output, we identify the main features of output densities even for nonsmooth
and discontinuous system function and high-dimensional inputs.

1 INTRODUCTION

We address uncertainty quantification (UQ) in com-
plex systems by a flexible, nonparametric framework
for estimating probability density functions of ran-
dom output quantities of interest. The framework
systematically incorporates hard information derived
from physics-based sensors, field test data, and com-
puter simulations as well as soft information from en-
gineering knowledge and experience. Our ability to
account for soft information about the system over-
come, in part, the poor accuracy traditionally expe-
rienced when applying classical statistical methods
to UQ. The framework is based on epi-splines for
consistent approximation of infinite-dimensional op-
timization problems arising in the estimation process
as developed by Royset and Wets (2013).

UQ aims to characterize a random vector Y that de-
scribes the output (response) from some system, mod-
eled by a function g, subject to input given by a ran-
dom vector V. We use uppercase to denote random
variables and lowercase for their realizations. Bold-
face type indicates a vector. Specifically,

Y = g(V).

While the distribution of V may be known, or as-

sumed known, the distribution of Y is not easily avail-
able due to the complexity of g. In practice, g may
be given in terms of the solution of differential and
algebraic equations, or other computationally intense
problems. In this case, the time required to evaluate
g at a single point v limits the number of realiza-
tions of Y one can generate. Moreover, in the case
of physical experiments and other situations, we may
only have available a sample of input-output realiza-
tions (v1,y1), (v2,y2), ..., (vn,yn), with yj = g(vj),
of finite, and typically small, size that cannot be aug-
mented without exorbitant costs. In the absence of a
large set of realizations of Y, empirical estimates of
the mean, standard deviation, and other descriptions
of Y tend to be highly inaccurate and may lead to sig-
nificant underestimation of the variability. Since the
variability of the random vector V may be substan-
tial, sensitivity and perturbation methods (Ghanem
and Spanos 1991, Kleiber et al. 1992) applied near
the mean of V may be highly inaccurate as well.

Polynomial chaos expansion, stochastic Galerkin,
and stochastic collocation methods are frequently
used for UQ in an effort to overcome these diffi-
culties (Ghanem and Spanos 1991, Xiu and Karni-
adakis 2002, Babuska et al. 2004, Ganapathysubra-
manian and Zabaras 2007, Nobile et al. 2008, Eldred



et al. 2011). These methods build a model of g us-
ing polynomial functions and then estimate moments
of Y using that model and the (assumed) knowledge
of the distribution of V. Under certain assumptions,
the model may approach g exponentially fast as the
fidelity of the model tends to infinity, for example in
the mean-square sense. A main difficulty with expan-
sion methods is that the accuracy deteriorates as the
dimensionality of V grows, g becomes less ‘smooth,’
and the distribution of V deviates from those compat-
ible with polynomials in the Wiener-Askey scheme
(Xiu and Karniadakis 2002). Moreover, there is no
systematic way of including soft information about
the distribution of Y, for example from extensive ex-
perience with similar systems and specific properties
of g, in the estimation process. These difficulties are
present even if Y is scalar valued. Smolyak sparse-
grid approaches (Xiu and Hesthaven 2005, Gana-
pathysubramanian and Zabaras 2007, Nobile et al.
2008), separated representations based on alternating
least-squares approximation techniques (Doostan and
Iaccarino 2009), and related approaches are steps in
the direction towards handling moderate dimensions
of V, but still significant challenges remain when han-
dling high-dimensional cases. We refer to Helton and
Pilch (2011) for an overview of recent studies on UQ.

In this paper, we propose an approach to UQ that
is insensitive to the dimension of V, does not rely on
the smoothness of g, and handles an arbitrary density
for V. We estimate the probability density function
of Y (assuming it exists) using the available sample
{yj}nj=1, which may be small, and all available soft
information about Y. Such information may come in
the form of knowledge about the support of the prob-
ability density function, its continuity, smoothness,
unimodality, monotonicity, moments, and other char-
acteristics. Naturally, if soft information could be in-
cluded in the estimation process, it might greatly re-
duce estimator error and variance, and enhance vi-
sual appeal of the estimates. This effect is especially
prominent in the case of few observations of Y. While
our general approach applies to joint probability den-
sity functions, we here focus on a single output quan-
tify and the estimation of its density. Therefore in the
remainder of the paper, we let Y be scalar valued.

The consideration of soft information in density es-
timation is hardly new. Classical parametric estima-
tion selects a parametric family of densities, presum-
ably based on soft information, and determines the
‘best’ estimate within that family. Bayesian estima-
tion makes use of prior soft information extensively,
but results extend much beyond that premise (Wahba
1981, Van de Geer 1987, Thompson and Tapia 1990,
Wets 1991, Dupacova 1992, Samaniego and Reneau
1994, Geyer 1994, Groenenboom et al. 2001). In
nonparametric density estimation, practitioners may
also adjust estimates based on their experience in an
ad-hoc manner. Desirable density estimators can be
achieved by means of penalties (Good and Gaskin

1971, de Montricher et al. 1975, Leonard 1978, Klo-
nias 1982, Silverman 1982). While in principle many
types of constraints in the estimation problem can be
represented by penalty terms, the equivalence of such
reformulations depends on the successful selection of
multiplier and penalty parameters which is nontrivial
in practice. We view density estimation problems with
soft information as a constrained stochastic optimiza-
tion problem, where the goal is to determine a den-
sity that maximizes the likelihood function generated
by a sample subject to constraints on the density de-
rived from the soft information. While the connection
between density estimation and optimization has long
been recognized (see Thompson and Tapia (1990) and
Wets (1991) and more recently Dong and Wets (2007)
and Casey and Wets (2013)), our framework offers
flexibility in the inclusion of soft information and a
solid theoretical foundation of asymptotic results; see
Royset and Wets (2013) for details.

The remainder of the paper is organized as follows.
Section 2 defines epi-splines and the maximum like-
lihood problem. Section 3 discusses soft information
and its implementation. Section 4 illustrates the ap-
proach with four numerical examples. The paper ends
with conclusions in Section 5.

2 EXPONENTIAL EPI-SPLINE ESTIMATE

Given a sample y1, y2, ..., yn from Y , we consider an
estimate

fn(y) = exp(−sn(y)), y ∈ IR,

of the density of Y , where sn is an appropriately se-
lected epi-spline in view of the sample and other con-
siderations. Naturally, we refer to fn as an exponen-
tial epi-spline estimate. As we see below, we deter-
mine sn by maximizing the likelihood function asso-
ciated with the sample, while simultaneously ensuring
that constraints derived form soft information are met.
The use of the exponential function ensures a nonneg-
ative fn, which, of course, is a basic requirement for
a density. While finding an arbitrary function sn in-
volves an infinite-dimensional optimization problem,
the restriction to an epi-spline allows the use of a finite
number of parameters and still maintains flexibility to
approximate essentially any density. Once fn is de-
termined, the estimation of moments of Y and other
quantifies is easily carried out by numerical integra-
tion.

We observe that the estimation of fn implicitly ac-
counts for the system function g in two ways. The
first way relates to the generation of a sample. A
sample point yj is typically generated by sampling
or carefully selecting an input vj , evaluating g(vj),
and then setting yj = g(vj). Consequently, the sam-
ple y1, y2, ..., yn includes ‘hard’ information about g.
We do not examine the design of experiments, i.e., the
selection of v at which to evaluate g. However, a den-
sity established through the present framework for a
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Figure 1: Illustration of epi-spline.

given sample provides an informed basis for select-
ing a next sample point. The second way derives from
soft information. As we see in Section 3, soft informa-
tion about g may translate into soft information on Y ,
which is incorporated as constraints in the likelihood
maximization. In contrast to expansion methods for
UQ, we do not attempt to build a model of g directly.

2.1 Epi-Splines

We follow Royset and Wets (2013) and define an epi-
spline in terms of its order, given by a nonnegative in-
teger p, its number of partitions N , and its mesh m =
{mk}Nk=0, with mk−1 < mk, k = 1,2, ...,N . Given
these quantities, an epi-spline is a real-valued func-
tion defined on the closed interval [m0,mN ] that is
polynomial of degree p in each segment (mk−1,mk),
k = 1,2, ...,N , and that is finite valued at m0, m1, ...,
mN . For y ̸∈ [m0,mN ], we assign ∞ to the epi-spline.
Figure 1 gives an example of an epi-spline.

It is clear from the definition that an epi-spline is
uniquely defined by a finite number of parameters.
Each segment (mk−1,mk) requires p+ 1 parameters
to define a polynomial of degree p. Since there are N
segments and the N +1 mesh points are defined sepa-
rately, the total number of parameters is (p+2)N +1.
We organize these parameters into a vector

r = (s0, s1, ..., sN ,a1,a2, ...,aN),

where sk, k = 0,1, ...,N , are scalars giving the values
of an epi-spline at the mesh points and

ak = (ak,0, ak,1, ..., ak,p),

is a (p + 1)-dimensional vector representing the co-
efficients in the polynomial of the kth segment, k =
1,2, ...,N . We refer to r as the epi-spline parameter.
We use the notation yk = y −mk−1, k = 1,2, ...,N ,
and denote by 0k the k-dimensional zero vector, with
00 being a term that is omitted. Then, every epi-spline
s is of the form

s(y) = ⟨c(y), r⟩, y ∈ [m0,mN ],

where ⟨·, ·⟩ denotes the dot product and c is a vector
of basis functions. Specifically,

c(y) =


(0N+1+(p+1)(k−1),1, yk, ..., y

p
k,0(p+1)(N−k))

if y ∈ (mk−1,mk), k = 1,2, ...,N

(0k,1,0N−k+(p+1)N)

if y =mk, k = 0,1, ...,N.

In essence, if y coincides with a mesh point, c simply
assigns s(y) to be equal to the component of r corre-
sponding to that mesh point. If y ∈ (mk−1,mk), then
c selects the components of r that describe the poly-
nomial in that segment, i.e.,

s(y) =

p∑
i=0

ak,i(y−mk−1)
i.

It is clear that epi-splines relate to classical splines,
but we allow for jumps and our construction is dif-
ferent. An epi-spline of any order p can approxi-
mate to an arbitrary accuracy any lower- and upper-
semicontinuous function by increasing the number of
partitions N (Royset and Wets 2013). Consequently,
we have the ability to approximate essentially any
density that one may encounter in practice. In fact,
many common density functions are exactly repre-
sented on [m0,mN ]. For example, a normal density
is of the form exp(−s(y)), with s being an epi-spline
of order 2 for any number of partitions N and mesh
m. An exponential density is of the form exp(−s(y)),
with s being an epi-spline of order 1, for any num-
ber of partitions N and mesh m, with m0 = 0. Even
more densities, such as the lognormal and the Pareto,
are exactly represented on a bounded interval after a
logarithmic transformation.

2.2 Maximum Likelihood

We proceed by adopting a maximum likelihood cri-
terion to determine the best exponential epi-spline
that, of course, integrates to unity. For realizations
y1, ...., yn drawn from a density f(y) = exp(−s(y)),
the maximum likelihood function takes the form
n∏

j=1

f(yj) = exp(−
n∑

j=1

s(yj)) = exp(−
n∑

j=1

⟨c(yj), r⟩),

where the last equality follows from the assumption
that s is an epi-spline with epi-spline parameter r.
Since optimal solutions are invariant to a logarithmic
transformation, we prefer instead of maximizing this
expression to maximize

−
n∑

j=1

⟨c(yj), r⟩,

which is linear in r. Moreover, the maximization is
subject to the constraint∫ mN

m0

exp(−⟨c(y), r⟩)dy = 1, (1)



which ensures that the resulting solution actually is
a density, as well as any other constraints that may
be generated by soft information as discussed further
in Section 3. As we see below, the latter constraints
are typically linear and consequently easy to handle.
Under rather general assumptions, (1) can be relaxed
to a ≤ constraint, or even being moved to the objec-
tive function as a ‘penalty,’ resulting in a convex opti-
mization problem for which there are well-developed
algorithms. Even if the equality constraint must re-
main, the maximum likelihood problem can usually
be solved by nonlinear programming algorithms with
little difficulties; see Royset and Wets (2013) for de-
tails.

An optimal solution rn obtained by solving the
above maximum likelihood problem gives an estimate
fn(y) = exp(−⟨c(y), rn⟩), y ∈ [m0,mN ], of the ‘true’
density. Under general assumptions, the estimate con-
verges to the true one as the sample size n tends to
infinity. Moreover, moment estimates obtained by in-
tegrating fn converge also to the correct values. We
refer to Royset and Wets (2013) for a thorough analy-
sis.

3 SOFT INFORMATION

We next discuss how to specify and implement soft
information about Y . We consider specific examples,
but omit a discussion of tail-related soft information.
The latter information becomes important if the re-
sulting densities are to be used in reliability analysis.
However, since estimating tail behavior requires
special care in the presence of little data, we here
avoid this situation and instead focus on the ‘central’
characteristic of a density.

Support bounds and mesh. The choice of mesh
m = {mk}Nk=0 accounts for support bounds and m0

and mN should, ideally, correspond to the lower and
upper bounds of Y , respectively. If V is bounded and
g continuous, then m0 and mN can be determined,
at least in principle, by minimizing and maximizing
g over the possible input values, respectively. Even
if this is not possible, insight about the problem may
provide estimates of lower and upper bounds on Y
that can serve as m0 and mN . The mesh is often
selected to be uniform, but if discontinuities and
intervals with steep slopes can be anticipated other
choices may be preferred.

Continuity. We ensure that an exponential epi-spline
estimate is continuous by imposing the constraint

sk−1 = ak,0, sk =

p∑
i=0

ak,i(mk−mk−1)
i, k = 1, ...,N.

Of course, by omitting some of the above constraints,
one has the ability to ensure continuity at some but

not all mesh points. All of these constraints are linear.

Smoothness. We restrict the search to r-times contin-
uously differentiable densities, with r ≤ p, by impos-
ing the conditions for continuity and the linear con-
straints for k = 1,2, ...,N − 1, j = 1,2, ..., r,

p∑
i=j

j−1∏
l=0

(i− l)ak,i(mk −mk−1)
i−j = ak+1,j.

Higher order smoothness is automatically achieved
if these constraints are imposed with r = p. Again,
selective implementation of these constraints could
be a useful tool in practice.

Pointwise Fisher information. We define the point-
wise Fisher information of an exponential epi-spline
density f at y to be

f ′(y)/f(y) = −⟨c′(y), r⟩ = −
p∑

i=1

iak,i(y−mk−1)
i−1

for y ∈ (mk−1,mk). Upper and lower bounds on this
quantity result in linear constraints. The constraints
could be imposed at any number of values of y, but
we note that if p = 2 and the density is strongly
unimodal, as describe below, and continuously differ-
entiable, then lower bounds on f ′(y)/f(y) at m1, m2,
..., mN suffices to ensure that the constraints are sat-
isfied for all y ∈ [m0,mN ]. Similarly, an upper bound
on f ′(y)/f(y) need only be imposed at m0, m1, ...,
mN−1. In applications, one can obtain guidance for
appropriate values of upper and lower bounds on
these quantities by considering standard densities.
For example, a normal density with mean µ and
standard deviation σ has f ′(y)/f(y) = −(y − µ)/σ2.
For the exponential density with parameter λ,
f ′(y)/f(y) = −λ for all y ≥ 0.

Monotonicity. We achieve a nondecreasing (nonin-
creasing) density by imposing nonnegativity (nonpos-
itivity) on f ′(y)/f(y) for all y ∈ (mk−1,mk), k =
1,2, ...,N as described above as well as for k =
1,2, ...,N ,

sk−1 ≥ (≤)ak,0, sk ≤ (≥)

p∑
i=0

ak,i(mk −mk−1)
i.

Again, simplifications arise, for example, if p= 2 and
the density is strongly unimodal. Then, it suffices to
impose that ak,1 + 2ak,2(mk −mk−1) ≤ 0 (ak,1 ≥ 0),
k = 1,2, ...,N .

Strongly unimodal. We recall that a density is
strongly unimodal if it is continuous and log-
concave. Consequently, if f(y) = exp(−⟨c(y), r⟩),
y ∈ [m0,mN ], strong unimodality requires that
⟨c(y), r⟩ is a convex function in y. This condition is



ensured if (i) continuity is imposed (see above), (ii)
for k = 1,2, ...,N − 1, the epi-spline’s left derivatives
at mk is no larger than its right derivative, i.e., for
k = 1,2, ...,N − 1,

p∑
i=1

iak,i(mk −mk−1)
i−1 ≤ ak+1,1,

and (iii) on each (mk−1,mk), k = 1,2, ...,N , ⟨c(y), r⟩
is a convex function in y, i.e., for k = 1,2, ...,N , y ∈
(mk−1,mk),

p∑
i=2

i(i− 1)ak,i(y−mk−1)
i−2 ≥ 0.

Here, the obvious interpretations are required when
p = 0,1. The latter condition simplifies to ak,2 ≥ 0,
k = 1,2, ...,N , when p = 2.

Bounds on density values. It is also straightforward
to impose pointwise upper and lower bounds u(y) and
l(y) on the value of f(y) = exp(−⟨c(y), r), with 0 <
l(y)≤ u(y)<∞. It suffices to set for y ∈ (mk−1,mk),

− log l(ξ) ≥
p∑

i=0

ak,i(ξ −mk−1)
i ≥ − logu(ξ)

and for y =mk,

− log l(ξ) ≥ sk ≥ − logu(ξ), k = 0,1, ...,N.

These constraints are also linear.

Kullback-Leibler divergence. In some applications,
it is useful to only seek densities that are close to some
known density in some sense. ‘Distances’ between
densities are conveniently measured by the Kullback-
Leibler divergence from a density f1 to a density f2
as given by

dKL(f1||f2) =
∫ ∞

−∞
f1(y) log

f1(y)

f2(y)
dy.

Here we make the standard interpretation that
β1 logβ1/β2 = 0 when β1 = 0 regardless of the value
of β2 and β1 logβ1/β2 =∞ when β1 > 0 and β2 = 0.
If f2 is an exponential epi-spline, with epi-spline pa-
rameter r and f2(y) > 0 whenever f1(y) > 0, then

dKL(f1||f2)

=

⟨∫
Y

c(y)f1(y)dy, r
⟩
+

∫
Y
(log f1(y))f1(y)dy,

where Y is the part of the real line with f1(y)> 0. (We
observe that if f2(y) = 0 for more than a countable
number of y with f1(y) > 0, then dKL(f1||f2) = ∞

and the comparison is less interesting.) Consequently,
a linear constraint⟨∫

Y
c(y)f1(y)dy, r

⟩
+

∫
Y
(log f1(y))f1(y)dy ≤ κ

in the likelihood maximization ensures that the result-
ing estimate fn(y) = exp(−⟨c(y), rn⟩) is no further
away from the reference density f1 than κ, as mea-
sured by the Kullback-Leibler divergence. The choice
of κ in applications can be informed by the fact that
the Kullback-Leibler divergence between two normal
densities, ϕ1 and ϕ2, with mean and standard devia-
tion µ1, σ1 and µ2, σ2, respectively, takes the form

dKL(ϕ1||ϕ2) = log(σ2/σ1)−
1

2

+
1

2σ2
2

(σ2
1 + (µ1 − µ2)

2 + 2(σ2
1 + µ2

1 − µ2
2)).

For two exponential densities, f1 and f2, with param-
eters λ1 and λ2, respectively,

dKL(f1||f2) = log(λ1/λ2)− 1 + λ2/λ1.

Bounds on moments. Soft information may result in
a constraint on the j-th moment of the form

l ≤
∫ mN

m0

yje−⟨c(y),r⟩dy ≤ u,

where l, u ∈ IR, l ≤ u are given constants. The
right-most inequality results in a convex constraint
on r, while the left-most in a nonconvex constraint.

Bounds on cumulative distribution functions. If the
cumulative distribution function at γ ∈ [m0,mN ] of
the estimated density fn must lie between the lower
bound l and the upper bound u, then we obtain the fol-
lowing constraints for the maximum likelihood prob-
lem:∫ γ

m0

e−⟨c(y),r⟩dy ≤ u and
∫ mN

γ

e−⟨c(y),r⟩dy ≤ 1− l,

which are both convex.

Gradient information. If the input v is a scalar and
the derivative of g is known at a point v, then the den-
sity f of Y must satisfy

f(g(v)) ≥ ϕ(v)

|g′(v)|
, (2)

where ϕ is the density of V , with equality holding
if g is strictly increasing or strictly decreasing.
Consequently, the right-hand side provides a lower
bound on the density estimate fn in the likelihood
maximization problem.



4 NUMERICAL EXAMPLES

We illustrate the UQ approach with four examples,
where likelihood maximization problems are solved
by ‘fmincon’ in Matlab versions 7.10.0 and con-
tinuously differentiable epi-splines of order 2 with
equally spaced mesh are used. If not otherwise stated,
we use N = 50 partitions. If there is no soft infor-
mation about support bounds, we set m0 (mN) to
two standard errors below (above) the average sam-
ple point. The Gauss-Legendre quadrature rule with
20 points evaluates the integrals over each segment
(mk−1,mk) when needed. (Only a highly varying
density demands such accuracy, but we default to this
as it comes at little computational cost.) For compar-
ison, we also compute kernel estimates of densities
using ‘ksdensity’ in Matlab, with the default normal
kernel.

4.1 Example 1: Bar with random Young’s modulus

We consider the differential equation

(E(x,v)u′(x))′ = 0, x ∈ (0,1) (3)

with boundary conditions u(0) = u0 and
E(1,v)u′(1) = 1 describing the displacement of
a bar with unit length, where E(x,v) is Young’s mod-
ulus at x under realization v = (v1, v2, ..., v100). We let
E(x,v) = vi on ((i− 1)/100, i/100), i= 1,2, ...,100,
i.e., piecewise constant. We assume that v is unknown
and we model it by a 100-dimensional random vector
V, with each component being uniformly distributed
on [0.1 0.5] and independent.

Figure 2 illustrates the estimated density fn of the
endpoint displacement u(1), which is random due
to the randomness in E, based on a sample of size
n = 10 of that displacement. The sample is obtained
by drawing independently 10 realizations of V and
then solving (3), and is illustrated by circles in Fig-
ure 2. The solid curve gives fn under the additional
soft information requiring that the density is unimodal
and within 0.01 in Kullback-Leibler divergence from
a normal density with mean 4 and standard deviation
0.2. Moreover, in this case it is easy to determine up-
per and lower bounds of the endpoint displacement,
which are 10 and 2, respectively. The kernel estimate,
using the same sample, is given by a dashed curve. We
note that the kernel estimate is unable to take advan-
tage of the unimodal and Kullback-Leibler soft infor-
mation. (In this case, the kernel estimate is unimodal
by coincidence.) The dotted curve in Figure 2 gives
the ‘true’ density as estimated by a sample of size 105.
We find that the exponential epi-spline estimate fn is
quite close to the true density even with only 10 sam-
ple points.
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Figure 2: Density of endpoint displacement in Example 1.

4.2 Example 2: Linear system under harmonic
excitation

The next example is taken from Chopra (1995, Sec-
tion 12.1) and deals with a two degree-of-freedom lin-
ear system governed by

m1ü1(t) + (k1 + k2)u1(t)− k2u2(t) = po sinvt

m2ü2(t)− k2u1(t) + k2u2(t) = 0

where m1 and m2 are the masses for nodes one and
two, respectively, k1 and k2 are the corresponding
stiffnesses, po is the excitation magnitude, v the exci-
tation frequency. We let po = 1, m1 = 1/2, m2 = 1/4,
k1 = 1, and k2 = 1/2. Then, the natural frequencies of
the first and second nodes are ω1 = 1 and ω2 = 2. We
concentrate on the displacement of the second node,
which in steady-state is u2(t) = u2o sinvt, with

u2o =
1

(1− v2)(1− v2/4)
. (4)

Suppose that v is unknown and modeled by a ran-
dom variable V distributed by a mixture of beta den-
sities. Specifically, with probability 1/3, V follows a
beta(2,2) distribution on [0,1], with probability 1/3,
V follows a beta(2,2) distribution on [1,2], and with
probability 1/3, V follows a beta(2,2) distribution
on [2,3]. We seek to estimate the density of u2o. Of
course, the distribution of u2o is therefore also a mix-
ture and a prior insight about this may help the con-
struction of exponential epi-spline estimates. How-
ever, we do not pursue that here. While one could
attempt UQ by means of polynomial expansion, the
choice of polynomial is nontrivial as the mixture of
beta distributions is not a standard Askey distribution.
More importantly, further difficulties arise since (4) is
discontinuous at the natural frequencies 1 and 2.

Using a sample of size 100, we obtain the expo-
nential epi-spline estimate in Figure 3; see the solid
curve. Here we include the soft information that the
density is unimodal on the upper 30% of the support
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Figure 3: Density of second-node displacement magnitude in
Example 2.
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Figure 4: Density of second-node displacement magnitude in
Example 2 under gradient information.

and likewise for the lower 30%. For comparison, we
use a sample of size 107 to obtain a highly accurate
estimate of the true density, which is illustrated by the
dotted curve. As can be expected from the form of g,
the true density is highly varying with a discontinuity
at approximately −1.78. Even in the presence of the
incorrect soft information about continuous differen-
tiability, we find that the exponential epi-spline esti-
mate captures the essence of the variability in u2o. In
comparison, the kernel estimate (see the dashed curve
in Figure 3) poorly represents the true density.

Figure 4 presents similar results but for a smaller
sample of only 20 draws, but now with also gradient
information at those 20 points utilized in (2). We also
extend the unimodality constraint to 40% to achieve
less volatile tails. The gradient information requires
additional flexibility in the epi-spline and we increase
the number of partitions N to 100. We again see that
the exponential epi-spline captures the essence of the
true density even with the low sample size.
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Figure 5: Density of Sobol function output in Example 3.

4.3 Example 3: Sobol function

In this example, we use a Sobol function

g(V) =
5∏

j=1

|4Vj − 2|+ aj
1 + aj

, (5)

with Vj being independent and uniformly distributed
on [0,1] and aj ≥ 0. As in Eldred et al. (2011), we use
a = (0,1,2,4,8). Using 10 sample points, we obtain
the exponential epi-spline estimate in Figure 5 (see
the solid curve). We assume that the support is non-
negative, the density is unimodal, and the pointwise
Fisher information is in the interval [−1,0]. We use
N = 20. We see that our estimate follows the true den-
sity (estimated using a sample of size 107; see the dot-
ted curve) quite well, especially in the upper tail. In
contrast, the kernel estimate oscillates near zero. This
is also a case where there are difficulties in obtaining
accurate polynomial expansions as g is nonsmooth.

4.4 Example 4: Aeroshell Dynamics

This example is taken from Swiler et al. (2009) and
deals with a bonding material in an aeroshell. A 3-
D finite-element model gives the frequency in shear
mode, which is our main concern. The frequency is
uncertain due to unknown Young’s modulus E and
Poissons ratio ν in a material component. Each evalu-
ation of the finite-element model takes about 2 hours
and few values of E and ν can be examined. We con-
sider a data set of 10 frequencies corresponding to
various values of E and ν (see Swiler et al. 2009) and
aim to estimate the density of the frequency.

Figure 6 shows the estimated density (solid curve)
given unimodality and support bounds [813,2884] de-
duced from experience with the system. We use N =
20. The sample is illustrated by circles. We find that
the exponential epi-spline estimate gives a reasonable
representation of the uncertainty, while, in contrast,
the kernel estimate (dashed curve) exhibits oscilla-
tions that ca not be expected for this system.
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Figure 6: Density of shear mode frequency in Example 4.

5 CONCLUSIONS

We present a novel approach to UQ based on prob-
ability density estimation for an output quantity
of interest. We are able to achieve good-quality
estimates of such densities even for small data sets
by including soft information that may be derived
from engineering insight and judgement. With as
little as 10-100 realizations of the output, we are able
to identify the main features of the densities even for
nonsmooth and discontinuous system function and
high-dimensional inputs. The densities can lead to
new understanding of the system uncertainty and pro-
vide means for estimating moments and resampling
as may be needed in further analysis and optimization.
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