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On Solving Large-Scale Finite Minimax Problems

using Exponential Smoothing∗

E. Y. Pee† and J. O. Royset‡

This paper focuses on finite minimax problems with many functions, and their solution by means of exponential

smoothing. We conduct run-time complexity and rate of convergence analysis of smoothing algorithms and compare

them with those of SQP algorithms. We find that smoothing algorithms may have only sublinear rate of convergence,

but as shown by our complexity results, their slow rate of convergence may be compensated by small computational

work per iteration. We present two smoothing algorithms with active-set strategies and novel precision-parameter

adjustment schemes. Numerical results indicate that the algorithms are competitive with other algorithms from the

literature, and especially so when a large number of functions are nearly active at stationary points.

Key Words. Finite minimax, exponential smoothing technique, rate of convergence, run-time complexity.

1 Introduction

There are many applications that can be expressed as finite minimax problems of the form

(P ) min
x∈Rd

ψ(x), (1)

where ψ : Rd → R is defined by

ψ(x)
4
= max

j∈Q
f j(x), (2)

and f j : Rd → R, j ∈ Q 4
= {1, 2, ..., q}, q ∈ N 4

= {1, 2, ...}, are smooth functions. Minimax

problems of the form (P ) may occur in engineering design [1], control system design [2], port-

folio optimization [3], best polynomial approximation [4], or as subproblems in semi-infinite

minimax algorithms [5]. In this paper, we focus on minimax problems with many func-
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tions, i.e., large q, which may result from finely discretized semi-infinite minimax problems

or optimal control problems.

The non-differentiability of the objective function in (P ) poses the main challenge for

solving minimax problems, as the standard unconstrained optimization algorithms cannot

be applied directly. Many algorithms have been proposed to solve (P ); see for example [6–8]

and references therein. One approach is sequential quadratic programming (SQP), where

(P ) is first transcribed into the standard nonlinear constrained problem

(P ′) min
(x,z)∈Rd+1

{z | f j(x)− z ≤ 0 ∀j ∈ Q} (3)

and then a SQP algorithm is applied to (P ′), advantageously exploiting the special structure

in the transcribed problem [6, 9]. Other approaches also based on (P ′) include interior point

methods [8, 10, 11] and conjugate gradient methods in conjunction with exact penalties and

smoothing [12].

The SQP algorithm in [6], which solves two quadratic programs (QPs) per iteration,

appears especially promising for problems with many sequentially related functions, as in

the case of finely discretized semi-infinite minimax problems, due to its aggressive active-set

strategy. Recently, a SQP algorithm was proposed in [9] requiring to solve only one QP per

iteration, while retaining global convergence and superlinear rate of convergence as in [6].

There is no active-set strategy in [9].

In general, an active-set strategy only considers functions that are nearly active at the

current iterate, and thus greatly reduces the number of function and gradient evaluations at

each iteration of an algorithm. While the number of iterations to solve a problem to required

precision may increase, the overall effect may be a reduction in the number of function and

gradient evaluations. For example, [13] reports a 75% reduction in the number of gradient

evaluations. Reductions in computing time is also reported for active-set strategies in [6].

In smoothing algorithms (see for example [7, 12–15]), the exponential penalty function

[16] is used to produce a smooth approximation of ψ(·). Since the problem remains un-

constrained, one can use any standard unconstrained optimization algorithm to solve the

smoothed problem such as the Armijo Gradient or Newton methods [7] and Quasi-Newton

method [13].
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A fundamental challenge for smoothing algorithms is that the smoothed problem be-

comes increasingly ill-conditioned as the approximation gets more accurate. Consequently,

the use of smoothing techniques is complicated by the need to balance accuracy of approx-

imation and problem ill-conditioning. The simple static scheme of constructing a single

smoothed problem and solving it is highly sensitive to the choice of accuracy and has poor

numerical performance [7]. An attempt to address this challenge by using a sequence of

smoothed problems was first made in [15], where a precision parameter for the smooth ap-

proximation is initially set to a pre-selected value and then increased by a factor of two

each iteration. Effectively, the algorithm approximately solves a sequence of gradually more

accurate approximations. This open-loop scheme to precision adjustment is sensitive to the

multiplication factor [7].

In [7], the authors propose an adaptive precision-parameter adjustment scheme to en-

sure that the smoothing precision parameter is kept small (and thus controlling the ill-

conditioning) when far from a stationary solution, and is increased as a stationary solution

is approached. The numerical results show that the scheme produces a better management

of ill-conditioning than with static and open-loop schemes. The smoothing algorithms in

[15] and [7] do not incorporate any active-set strategy.

Using the adaptive precision-parameter adjustment scheme in [7], [13] presents an active-

set strategy for smoothing algorithms that tackles (P ) with large q. We note that the

convergence result in Theorem 3.3 of [13] may be slightly incorrect as it claims stationarity

for all accumulation points of a sequence constructed by their algorithm. However, their

proof relies on [7], which guarantees stationarity for only one accumulation point.

This paper examines smoothing algorithms for (P ) with large q from two angles. First,

we discuss run-time complexity and rate of convergence for such algorithms. While com-

plexity and rate of convergence have been studied extensively for nonlinear programs and

minimax problems (see for example [17–23]), the topics have been largely ignored in the

specific context of smoothing algorithms for (P ). A challenge here is the increasing ill-

conditioning of the smoothed problem as the smoothing precision improves. We quantify

the degree of ill-conditioning and use the result to analyze complexity and rate of conver-

gence. We find that the rate of convergence may be sublinear, but low computational effort
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per iteration yields a competitive run-time complexity in terms of q.

Second, we consider implementation and numerical performance of smoothing algo-

rithms. A challenge here is to construct schemes for selecting the precision parameter that

guarantee convergence to stationary points and perform well numerically. As discussed

above, static and open-loop precision-parameter adjustment schemes result in poor numeri-

cal performance and, thus, we develop two adaptive schemes. In extensive tests against other

algorithms, smoothing algorithms with the adaptive schemes are competitive, and especially

so when a large number of functions are nearly active at stationary points.

The next section describes the exponential smoothing technique. Section 3 defines a

smoothing algorithm and discusses its run-time complexity and rate of convergence. Section

4 presents two adaptive precision-parameter adjustment schemes, the resulting smoothing

algorithms, and their proofs of convergence. Section 5 contains numerical results.

2 Exponential Smoothing

In this section, we describe the exponential smoothing technique and include for completeness

some known results that will be used in later sections.

For ease of analysis of active-set strategies, we consider the problem

(PΩ) min
x∈Rd

ψΩ(x), (4)

where ψΩ(x)
4
= maxj∈Ω f

j(x), and Ω ⊆ Q. When Ω = Q, (PQ) is identical to (P ). For

simplicity of notation, we drop subscripts Q in several contexts below. Next, for any p > 0

and Ω ⊆ Q, we define a smooth approximating problem to (PΩ) by

(PpΩ) min
x∈Rd

ψpΩ(x), (5)

which we refer to as the smoothed problem, where

ψpΩ(x)
4
=

1

p
log

(∑
j∈Ω

exp
(
pf j(x)

))
= ψΩ(x) +

1

p
log

(∑
j∈Ω

exp
(
p(f j(x)− ψΩ(x))

))
(6)

is the exponential penalty function. We denote (PpQ) by (Pp) for brevity. This smoothing

technique was introduced in [16] and used in [7, 12–15].
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We denote the set of active functions at x ∈ Rd by Ω̂(x)
4
= {j ∈ Ω|f j(x) = ψΩ(x)}.

Except as stated in Appendix B, we denote components of a vector by superscripts.

The parameter p > 0 is the smoothing precision parameter, where a larger p implies

higher precision as formalized by the following proposition; see for example [13].

Proposition 2.1. Suppose that Ω ⊆ Q and p > 0.

(i) If the functions f j(·), j ∈ Ω, are continuous, then ψpΩ(·) is continuous, and for any

x ∈ Rd, ψpΩ(x) decreases monotonically as p increases.

(ii) For any x ∈ Rd,

0 ≤ log |Ω̂(x)|
p

≤ ψpΩ(x)− ψΩ(x) ≤ log |Ω|
p

, (7)

where | · | represents the cardinality operator.

(iii) If the functions f j(·), j ∈ Ω, are continuously differentiable, then ψpΩ(·) is continuously

differentiable, with gradient

∇ψpΩ(x) =
∑
j∈Ω

µjp(x)∇f j(x), (8)

where

µjp(x)
4
=

exp(pf j(x))∑
k∈Ω

exp(pfk(x))
=

exp(p[f j(x)− ψΩ(x)])∑
k∈Ω

exp(p[fk(x)− ψΩ(x)])
∈ (0, 1), (9)

and
∑

j∈Ω µ
j
p(x) = 1 for all x ∈ Rd.

(iv) If the functions f j(·), j ∈ Ω, are twice continuously differentiable, then ψpΩ(·) is twice

continuously differentiable, with Hessian

∇2ψpΩ(x) =
∑
j∈Ω

µjp(x)∇2f j(x) + p
∑
j∈Ω

µjp(x)∇f j(x)∇f j(x)T

−p

[∑
j∈Ω

µjp(x)∇f j(x)

][∑
j∈Ω

µjp(x)∇f j(x)

]T
(10)

for all x ∈ Rd.

We define a continuous, nonpositive optimality function θΩ : Rd → R for all x ∈ Rd by

θΩ(x)
4
= − min

µ∈ΣΩ

∑
j∈Ω

µj(ψΩ(x)− f j(x)) + 1
2

∥∥∥∥∥∑
j∈Ω

µj∇f j(x)

∥∥∥∥∥
2
 , (11)
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where ΣΩ
4
= {µ ∈ R|Ω| | µj ≥ 0 ∀j ∈ Ω,

∑
j∈Ω µ

j = 1}, which results in the following

optimality condition for (PΩ); see Theorems 2.1.1, 2.1.3, and 2.1.6 of [24].

Proposition 2.2. Suppose that the functions f j(·), j ∈ Q, are continuously differentiable

and that Ω ⊆ Q. If x∗ ∈ Rd is a local minimizer for (PΩ), then θΩ(x∗) = 0.

The continuous, nonpositive optimality function θpΩ : Rd → R defined for all x ∈ Rd by

θpΩ(x)
4
= − 1

2
‖∇ψpΩ(x)‖2 characterizes stationary points of (PpΩ).

3 Rate of Convergence and Run-Time Complexity

In this section, we examine the following basic smoothing algorithm, for which we develop

a series of complexity and rate of convergence results. The algorithm applies the Armijo

Gradient Method1 to (Pp) for a fixed value of p.

Algorithm 3.1. Smoothing Armijo Gradient Algorithm

Data: Tolerance t > 0, x0 ∈ Rd.

Parameter: δ ∈ (0, 1).

Step 1. Set p∗ = (log q)/((1− δ)t).

Step 2. Generate a sequence {xi}∞i=0 by applying Armijo Gradient Method to (Pp∗).

When they exist, we denote optimal solutions of (P ) and (Pp) by x∗ and x∗p, respectively,

and the corresponding optimal values by ψ∗ and ψ∗p. Algorithm 3.1 has the following property.

Proposition 3.1. Suppose that q ≥ 2 and Step 2 of Algorithm 3.1 has generated a point

xi ∈ Rd such that ψp∗(xi)− ψ∗p∗ ≤ δt. Then, ψ(xi)− ψ∗ ≤ t.

Proof. By the optimality of ψ∗p∗ and (7), ψ∗p∗ ≤ ψp∗(x
∗) ≤ ψ∗ + (log q)/p∗. Thus, −ψ∗ ≤

−ψ∗p∗ + (log q)/p∗. Based on (7), ψ(xi) ≤ ψp∗(xi) and hence, ψ(xi) − ψ∗ ≤ ψp∗(xi) − ψ∗p∗ +

(log q)/p∗. Since ψp∗(xi)− ψ∗p∗ ≤ δt and p∗ is as in Step 1, the conclusion follows.

For a fixed p > 0, the rate of convergence of the Armijo Gradient Method as applied to

(Pp) is well known (see for example [24], p. 60). However, the value of the precision parameter

p∗ in Algorithm 3.1 is dictated by q and t (see Step 1), which complicates the analysis. For

1The Armijo Gradient Method uses the steepest descent search direction and the Armijo stepsize rule to solve an uncon-

strained problem; see for example Algorithm 1.3.3 of [24].
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large values of q or small values of t, p∗ is large and hence (Pp∗) may be ill-conditioned as

observed empirically [7]. In this paper, we quantify the ill-conditioning of (Pp) as a function

of p and obtain complexity and rate of convergence results for Algorithm 3.1.

3.1 Ill-Conditioning of Smoothed Problem

We examine the ill-conditioning of (Pp) under the following strong convexity assumption.

Assumption 3.1. The functions f j(·), j ∈ N, are

(i) twice continuously differentiable and

(ii) there exist an m > 0 such that

m‖y‖2 ≤ 〈y,∇2f j(x)y〉, (12)

for all x, y ∈ Rd, and j ∈ N.

Lemma 3.1. Suppose that Assumption 3.1 holds. For any x, y ∈ Rd, q ∈ N, and p > 0,

m‖y‖2 ≤
〈
y,∇2ψp(x)y

〉
, (13)

with m as in Assumption 3.1.

Proof. From (10) and (12), we obtain that

〈
y,∇2ψp(x)y

〉
=

∑
j∈Q

µjp(x)
〈
y,∇2f j(x)y

〉
+ p

∑
j∈Q

µjp(x)
〈
y,∇f j(x)∇f j(x)Ty

〉
− p

〈
y,

[∑
j∈Q

µjp(x)∇f j(x)

][∑
j∈Q

µjp(x)∇f j(x)

]T
y

〉
=

∑
j∈Q

µjp(x)
〈
y,∇2f j(x)y

〉
+ p

∑
j∈Q

µjp(x)
〈
y,∇f j(x)

〉2

− p

〈
y,

[∑
j∈Q

µjp(x)∇f j(x)

]〉2

≥ m‖y‖2 + p
∑
j∈Q

µjp(x)
〈
y,∇f j(x)

〉2 − p

〈
y,

[∑
j∈Q

µjp(x)∇f j(x)

]〉2

.

Hence, we only need to show that the difference of the last two terms is nonnegative. Let

g : Rd → R be the convex function defined as g(z) = 〈y, z〉2 for y, z ∈ Rd.
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Hence, it follows from Jensen’s inequality (see for example p. 6 of [25]) that

∑
j∈Q

µjp(x)g
(
∇f j(x)

)
≥ g

(∑
j∈Q

µjp(x)∇f j(x)

)
. (14)

Since p > 0, the result follows.

For any matrix A ∈ Rm×n, we adopt the matrix norm ‖A‖ 4= max‖u‖=1 ‖Au‖, where u ∈

Rn. Under Assumption 3.1(i), |f j(x)|, ‖∇f j(x)‖, and ‖∇2f j(x)‖ are bounded on bounded

subsets of Rd for given j ∈ N. We also assume that the bounds are uniform across the family

of functions as stated next, which holds for example under standard assumptions when f j(·),

j ∈ N, arise from discretization of semi-infinite max functions.

Assumption 3.2. For any bounded set S ⊂ Rd, there exists a K ∈ (0,∞) such that

max{|f j(x)|, ‖∇f j(x)‖, ‖∇2f j(x)‖} ≤ K for all x ∈ S, j ∈ N.

Under this assumption, we obtain the following useful result.

Lemma 3.2. Suppose that Assumptions 3.1(i) and 3.2 hold. Then, for every bounded set

S ⊂ Rd,

〈y,∇2ψp(x)y〉 ≤ pL‖y‖2, (15)

for all x ∈ S, y ∈ Rd, q ∈ N, and p ≥ 1, where L = K + 2K2, with K as in Assumption 3.2.

Proof. Recall that for matrices A ∈ Rm×n, B ∈ Rn×r, and vector x ∈ Rn, we have that

‖Ax‖ ≤ ‖A‖‖x‖, ‖AB‖ ≤ ‖A‖‖B‖, and ‖xxT‖ = ‖x‖2 (see for example p. 26 of [26]). We

consider each of the three parts of ∇2ψp(·); see (10). Recall that
∑

j∈Q µ
j
p(x) = 1 for all

x ∈ Rd, q ∈ N, and p > 0. For any x ∈ S, y ∈ Rd, and q ∈ N, under Assumption 3.2, we

obtain for the first part that〈
y,
∑
j∈Q

µjp(x)∇2f j(x)y

〉
≤ ‖y‖

∥∥∥∥∥
(∑
j∈Q

µjp(x)∇2f j(x)

)
y

∥∥∥∥∥
≤ ‖y‖2

∑
j∈Q

µjp(x)
∥∥∇2f j(x)

∥∥ ≤ K‖y‖2, (16)

where K is the constant in Assumption 3.2 corresponding to S. Next, for the second part
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of ∇2ψp(·),〈
y,
∑
j∈Q

µjp(x)∇f j(x)∇f j(x)Ty

〉
≤ ‖y‖2

∥∥∥∥∥∑
j∈Q

µjp(x)∇f j(x)∇f j(x)T

∥∥∥∥∥
≤ ‖y‖2

(∑
j∈Q

µjp(x)
∥∥∇f j(x)∇f j(x)T

∥∥)
≤ K2‖y‖2. (17)

For the third part, we obtain that

−

〈
y,

[∑
j∈Q

µjp(x)∇f j(x)

][∑
j∈Q

µjp(x)∇f j(x)

]T
y

〉

≤ ‖y‖2

∥∥∥∥∥∥
[∑
j∈Q

µjp(x)∇f j(x)

][∑
j∈Q

µjp(x)∇f j(x)

]T∥∥∥∥∥∥ ≤ K2‖y‖2. (18)

Hence, for all x ∈ S, y ∈ Rd, q ∈ N and p ≥ 1, 〈y,∇2ψp(x)y〉 ≤ (K + pK2 + pK2)‖y‖2 ≤

p(K + 2K2)‖y‖2.

Lemma 3.2 enables us to quantify the rate of convergence of the Armijo Gradient Method

for (Pp), as a function of p ≥ 1, which we consider next. Let N0
4
= N ∪ {0}.

Proposition 3.2. Suppose that Assumptions 3.1 and 3.2 hold. For any bounded set S ⊂ Rd,

there exists a k ∈ (0, 1) such that the rate of convergence for the Armijo Gradient Method

to solve (Pp), initialized by x0 ∈ S, is linear with coefficient 1 − k/p for any p ≥ 1 and

q ∈ N. That is, for all sequence {xi}∞i=0 ⊂ Rd generated by the Armijo Gradient Method

when applied to (Pp), for any p ≥ 1, q ∈ N, and x0 ∈ S, we have that

ψp(xi+1)− ψ∗p ≤
(

1− k

p

)(
ψp(xi)− ψ∗p

)
for all i ∈ N0. (19)

Proof. It follows by Lemma 3.1 and Assumption 3.2, and the fact that x0 ∈ S, that there

exists a bounded set S ′ ⊂ Rd such that all sequences generated by Armijo Gradient Method

on (Pp), initialized by x0 ∈ S, are contained in S ′ for all p ≥ 1, q ∈ N, x0 ∈ S. Let m be as

in Assumption 3.1 and K be the constant in Assumption 3.2 corresponding to S ′. In view

of Lemmas 3.1 and 3.2,

m‖y‖2 ≤
〈
y,∇2ψp(x)y

〉
≤ pL‖y‖2, (20)

for all x ∈ S ′, y ∈ Rd, q ∈ N, and p ≥ 1, where L = K + 2K2. Hence, we deduce from

Theorem 1.3.7 of [24] that the rate of convergence for Armijo Gradient Method to solve (Pp)
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is linear with coefficient 1− 4mβα(1− α)/(pL) ∈ (0, 1) for all p ≥ 1, q ∈ N, x0 ∈ S, where

α, β ∈ (0, 1) are the Armijo line search parameters. Hence,

k = 4mβα(1− α)/L, (21)

which is less than unity because α(1− α) ∈ (0, 1/4] and m ≤ L in view of (20).

3.2 Complexity

The above results enable us to identify the run-time complexity of Algorithm 3.1 under

the following assumption on the complexity of function and gradient evaluations. We let

t0
4
= ψ(x0)− ψ∗ for a given x0 ∈ Rd and q ∈ N.

Assumption 3.3. There exist constants a, b < ∞ such that for any d ∈ N, j ∈ N, and

x ∈ Rd, the computational work to evaluate either f j(x) or ∇f j(x) is no larger than adb.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, and 3.3 hold, and that Algorithm 3.1

terminates after n iterations with ψ(xn) − ψ∗ ≤ t. Then, for any d ∈ N and bounded

set S ⊂ Rd, there exist constants c, c′, t′ ∈ (0,∞) such that the computational work until

termination for Algorithm 3.1 is no larger than

c
q log q log c′

δt

(1− δ)t
, (22)

for all q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0, t′].

Proof. Let q ≥ 2 and t ∈ (0, log q], which ensures that p∗ = (log q)/[(1 − δ)t] > 1. Thus,

Proposition 3.2 applies and the number of iterations of the Armijo Gradient Method to

generate {xi}ni=0 such that ψp∗(xn)− ψ∗p∗ ≤ δt is no larger than⌈
log δt

t0

log(1− k
p∗

)

⌉
, (23)

where k is the constant in Proposition 3.2 corresponding to S and d·e denotes the ceiling

operator. In view of Proposition 3.1, xn also satisfies ψ(xn)− ψ∗ ≤ t. Since the main com-

putational work in each iteration for the Armijo Gradient Method is to determine ∇ψp∗(xi),

it follows by Assumption 3.3 that there exists a, b <∞ such that the computational work in

each iteration of the Armijo Gradient Method when applied to (Pp∗) is no larger than aqdb.
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Thus, the computational work in Algorithm 3.1 to termination at xn is no larger than (23)

multiplied by aqdb. Let f 1∗ denote the minimum value of f 1(·), which is finite according to

Assumption 3.1. Let K be the constant in Assumption 3.2 corresponding to S. We then

find that t0 = ψ(x0) − ψ∗ ≤ K − f 1∗ 4= c′, for any x0 ∈ S and q ∈ N. It follows that the

computational work in Algorithm 3.1 to termination at xn is no larger than

aqdb

⌈
log δt

c′

log(1− k
p∗

)

⌉
(24)

for any q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0, log q]. Since log x ≤ x− 1 for x ∈ (0, 1],

it follows by the choice of p∗ that the computational work in Algorithm 3.1 to termination

at xn is no larger than

aqdb

 log δt
c′

log
(

1− k(1−δ)t
log q

)
 ≤ aqdb

⌈
log c′

δt
k(1−δ)t

log q

⌉
, (25)

for all q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0,min{log q, c′}].

There exists a t′ ∈ (0,min{log q, c′}] such that
log q log c′

δt

k(1−δ)t ≥
1
2

for all t ∈ (0, t′], q ∈ N, q ≥ 2,

and δ ∈ (0, 1). This then implies that for all q ∈ N, q ≥ 2, x0 ∈ S, δ ∈ (0, 1), and t ∈ (0, t′],

aqdb

⌈
log q log c′

δt

k(1− δ)t

⌉
≤ 2aqdb

(
log q log c′

δt

k(1− δ)t

)
=

2adb

k

(
q log q log c′

δt

(1− δ)t

)
. (26)

Since k (see (21)) only depends on m from Assumption 3.1, K from Assumption 3.2, and

user-defined parameters, the conclusion follows.

We deduce from Theorem 3.1 and its proof that the number of iterations of Algo-

rithm 3.1 required to achieve a solution with value within t of the optimal value of (P ) is

O((1/t) log 1/t) for fixed q ≥ 2, d ∈ N, and δ ∈ (0, 1). This is worse than for example the

Pshenichnyi-Pironneau-Polak (PPP) min-max algorithm (Algorithm 2.4.1 in [24]) and the

modified conjugate gradient method in [17], pp. 282-283, which achieve O(log 1/t). The SQP

algorithm in [6] may also require a low number of iterations as it converges superlinearly,

but its complexity in t is unknown. The worse complexity for Algorithm 3.1 is caused by

the fact that the Armijo Gradient Method exhibits slower rate of convergence as p increases

(see Proposition 3.2) and a larger p is required in Algorithm 3.1 for a smaller t.

When we also include the work per iteration of Algorithm 3.1, we see from Theorem 3.1

that for fixed t ∈ (0, t′], d ∈ N, and δ ∈ (0, 1), the run-time complexity is O(q log q). For

11



comparison, the run-time complexity of SQP and PPP algorithms to achieve a near-optimal

solution of (P ) is larger as we see next.

The main computational work in an iteration of a SQP algorithm involve solving a

convex QP with d+ 1 variables and q inequality constraints [6]. Introducing slack variables

to convert into standard form, this subproblem becomes a convex QP with d+1+q variables

and q equality constraints. Based on [27], the number of operations to solve the converted

QP is O((d + 1 + q)3). Assuming that the number of iterations a SQP algorithm needs

to achieve a near-optimal solution of (P ) is O(1), and again focusing on q, the run-time

complexity of a SQP algorithm to achieve a near-optimal solution of (P ) is no better than

O(q3). The same result holds for the PPP algorithm. This complexity, when compared with

O(q log q) of Algorithm 3.1, indicates that smoothing algorithms may be more efficient than

SQP and PPP algorithms for (P ) with large q. We carry out a comprehensive numerical

comparison of smoothing algorithms with SQP and PPP algorithms in Section 5. We note

that the modified conjugate gradient method in [17], pp. 282-283, may also have a low

run-time complexity in q, but this depends on its implementation and the method is only

applicable to convex problems.

3.3 Optimal Parameter Choice

We see from Theorem 3.1 that the computational work in Algorithm 3.1 depends on the

algorithm parameter δ. In this subsection, we find an “optimal” choice of δ. A direct

minimization of (22) with respect to δ appears difficult and thus, we carry out a rate analysis

and determine an optimal δ in that context.

We first consider the situation as t ↓ 0 and let δt ∈ (0, 1) be a choice of δ in Algorithm

3.1 for a specific t. For fixed d ∈ N, q ∈ N, q ≥ 2, S ⊂ Rd, and x0 ∈ S, let c and c′ be as in

Theorem 3.1 and let wt denote (22) viewed as a function of t > 0, with δ replaced by δt, i.e.,

wt
4
= c̃

log c′

δtt

(1− δt)t
(27)

with c̃ = cq log q for all t > 0. The next result shows that the choice of {δt ∈ (0, 1) | t > 0}

influences the rate with which wt → ∞, as t ↓ 0. However, any constant δt for all t > 0

results in the slowest possible rate of increase in wt, an asymptotic rate of 1/t, as t ↓ 0.

12



Theorem 3.2. For any {δt ∈ (0, 1) | t > 0},

lim sup
t↓0

logwt
log t

≤ −1. (28)

If δt = a ∈ (0, 1) for all t > 0, then

lim
t↓0

logwt
log t

= −1. (29)

Proof. There exists a t1 ∈ (0,∞) such that log c′

δtt
≥ 1 for all t ∈ (0, t1], and any {δt ∈

(0, 1) | t > 0}. Hence, for any t ∈ (0,min{1, t1}) and δt ∈ (0, 1),

logwt
log t

=
log c̃

log t
+

log log c′

δtt

log t
− log(1− δt)

log t
− log t

log t
(30)

≤ log c̃

log t
− 1.

and the first part follows. Taking limits in (30), with δt = a, yields the second part.

We next consider the situation as q → ∞ and, similar to above, let δq ∈ (0, 1) be a

choice of δ in Algorithm 3.1 for a specific q ∈ N. For fixed d ∈ N and S ⊂ Rd, let c and c′

be as in Theorem 3.1. There exists a t1 ∈ (0,∞) such that log(c/t) ≥ 0 and log(c′/t) ≥ 1

for all t ∈ (0, t1]. For any given q ∈ N, q ≥ 2 and t ∈ (0, t1], let wq denote (22) viewed as a

function of q, with δ replaced by δq, i.e.,

wq
4
=
(c
t

) q log q log c′

δqt

(1− δq)
. (31)

The next result shows that the choice of {δq}∞q=2 influences the rate with which wq →∞,

as q → ∞. However, for sufficiently small tolerance t > 0, as above, any constant choice of

δq for all q ∈ N results in the slowest possible rate of increase in wq, as q →∞. Hence, any

constant δ ∈ (0, 1) in Algorithm 3.1 is optimal in this sense and results in the asymptotic

rate of q, as q →∞.

Theorem 3.3. For any sequence of {δq}∞q=3, with δq ∈ (0, 1), we have that

logwq
log q

≥ 1, (32)

for all q ∈ N, q ≥ 3, t ∈ (0, t1]. If δq = a, where a ∈ (0, 1) is a constant, then

lim
q→∞

logwq
log q

= 1. (33)
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Proof. For q ≥ 3,

logwq
log q

=
log c

t

log q
+

log q

log q
+

log log q

log q
+

log log c′

δqt

log q
− log(1− δq)

log q
(34)

≥
log c

t

log q
+ 1 +

log log c′

δqt

log q
.

Since wq is defined only for t ∈ (0, t1], and log(c/t) ≥ 0 and log(c′/t) ≥ 1 for all t ∈ (0, t1],

it follows that (logwq)/ log q ≥ 1 for all q ≥ 3, t ∈ (0, t1], and {δq}∞q=3. The proof for the

second part follows from taking the limit in (34).

3.4 Rate of Convergence

The previous subsection considers the effect of the algorithm parameter δ on the compu-

tational work required in Algorithm 3.1. This parameter defines the precision parameter

through the relationship p∗ = (log q)/((1− δ)t); see Step 1 of Algorithm 3.1. In this subsec-

tion, we do not restrict Algorithm 3.1 to this class of choices for p∗ and consider any positive

value of the precision parameter. In particular, we examine the progress made by Algorithm

3.1 after n iterations for different choices of p∗. Since the choice may depend on n, we denote

by pn the precision parameter used in Algorithm 3.1 when terminated after n iterations. We

examine the rate of decay of an error bound on ψ(xn)−ψ∗, and also determine the “optimal

choice” of pn that produces the fastest rate of decay of the error bound as n→∞.

Suppose that Assumptions 3.1 and 3.2 hold. For a given bounded set S ⊂ Rd, let k be

as in Proposition 3.2 and let {xi}ni=0, with x0 ∈ S, be a sequence generated by Algorithm

3.1 using p∗ = pn for some pn > 0. Then, in view of (7) and Proposition 3.2,

ψ(xn)− ψ∗ ≤ ψpn(xn)− ψ∗pn +
log q

pn

≤
(

1− k

pn

)n (
ψpn(x0)− ψ∗pn

)
+

log q

pn

≤
(

1− k

pn

)n
(ψ(x0)− ψ∗) +

2 log q

pn
. (35)

We want to determine the “best” {pn}∞n=1 such that the error bound on ψ(xn)− ψ∗ defined

by the right-hand side of (35) decays as fast as possible as n → ∞. We denote that error

bound by en, i.e., for any n ∈ N,

en
4
= t0

(
1− k

pn

)n
+

2 log q

pn
. (36)
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We need the following trivial technical result.

Lemma 3.3. For x ∈ [0, 1/2], −2x ≤ log(1− x) ≤ −x.

We next obtain that en asymptotically decays with a rate no faster than 1/n, as n→∞,

regardless of the choice of pn, and that rate is attained with a particular choice of pn.

Theorem 3.4. The following hold about en in (36):

(i) For any {pn}∞n=1, with pn ≥ 1 for all n ∈ N, lim infn→∞ log en/ log n ≥ −1.

(ii) If pn = ζn/ log n for all n ∈ N, with ζ ∈ (0, k], then limn→∞ log en/ log n = −1.

(iii) If pn = n1−ν/ log n for all n ∈ N, with ν ∈ (0, 1), then limn→∞ log en/ log n = −1+ν.

Proof. See Appendix A.

We see from Theorem 3.4 that the “best” choice of pn = ζn/ log n, with ζ ∈ (0, k], and

it results in an asymptotic rate of 1/n. The constant k may be unknown as it depends on

m of Assumption 3.1 and K of Assumption 3.2; see (21). Consequently, pn = ζn/ log n may

be difficult to implement unless there are conservative estimates of m and K. Theorem 3.4

shows that the choice pn = n1−ν/ log n with a small ν ∈ (0, 1) is almost as good (it results

in asymptotic rate 1/n1−ν instead of rate 1/n) and is independent of k.

Roughly speaking, the error rate of no better than 1/n indicated by Theorem 3.4 trans-

lates to a rate of increase in the required number of iterations of at least 1/t, where t is

the stipulated error (tolerance). In view of Theorem 3.2, the rate 1/t is attained with the

precision parameter choice in Step 1 of Algorithm 3.1. Hence, in some sense, the choice in

Step 1 of Algorithm 3.1 for the precision parameter cannot be improved.

Theorems 3.2 and 3.4 indicate that Algorithm 3.1 may only converge sublinearly. In

contrast, Theorem 3.1 shows that smoothing algorithms may still be capable of yielding

competitive run times against other algorithms when q is large due to low computational

effort per iteration. For smoothing algorithms to be competitive in empirical test, however,

we need to go beyond the basic Algorithm 3.1 and develop more sophisticated, adaptive

precision-adjustment schemes as discussed next.
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4 Smoothing Algorithms and Adaptive Precision Adjustment

The previous section shows that the choice of precision parameter influences the rate of

convergence as the degree of ill-conditioning in (Pp) depends on the precision parameter. In

this section, we present two smoothing algorithms with novel precision-adjustment schemes

for (P ). In view of [7] and our preliminary numerical tests, we focus on adaptive precision-

adjustment schemes as they appear superior to static and open-loop schemes in their ability

to avoid ill-conditioning.

The first algorithm, Algorithm 4.1, is the same as Algorithm 3.2 in [13], but uses a much

simpler scheme for precision adjustment. The second algorithm, Algorithm 4.2, adopts a

novel line search rule that aims to ensure descent in ψ(·) and, if that is not possible, increases

the precision parameter. Previous smoothing algorithms [7, 13] do not check for descent in

ψ(·). The new algorithms implement active-set strategies adapted from [13].

We use the following notation. The ε-active set, ε > 0, is denoted by

Qε(x)
4
= {j ∈ Q|ψ(x)− f j(x) ≤ ε}. (37)

As in Algorithm 3.2 of [13], we compute a search direction using a d× d matrix BpΩ(x). We

consider two options. When

BpΩ(x) = I, (38)

the d×d identity matrix, the search direction is equivalent to the steepest descent direction.

When

BpΩ(x) = ηpΩ(x)I +HpΩ(x), (39)

the search direction is a Quasi-Newton direction, where

HpΩ(x)
4
= p

∑
j∈Ω

µjp(x)∇f j(x)∇f j(x)T −

(∑
j∈Ω

µjp(x)∇f j(x)

)(∑
j∈Ω

µjp(x)∇f j(x)

)T
 ,

(40)

ηpΩ(x)
4
= max{0, ϕ− epΩ(x)}, (41)

ϕ > 0, and epΩ(x) is the smallest eigenvalue of HpΩ(x). The quantity ηpΩ(x) ensures that

BpΩ(x) is positive definite. The Quasi-Newton direction given in (39)-(41) is adopted from

[13]. As stated in [13], the justification for ignoring the first term of the Hessian function in

(10) is the observation that when p→∞, the first term becomes negligible.
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We next present the two algorithms and their proofs of convergence.

Algorithm 4.1.

Data: x0 ∈ Rd.

Parameters: α, β ∈ (0, 1), p0 ≥ 1, ω = (10 log q)/p0, function BpΩ(·) as in (38) or (39),

ε0 > 0, ξ > 1, ς > 1, ϕ ≥ 1.

Step 1. Set i = 0, j = 0,Ω0 = Qε0(x0).

Step 2. Compute the search direction hpiΩi(xi) by solving the equation

BpiΩi(xi)hpiΩi(xi) = −∇ψpiΩi(xi). (42)

Step 3. Compute the stepsize λi = βki , where ki is the largest integer k such that

ψpiΩi(xi + βkhpiΩi(xi))− ψpiΩi(xi) ≤ −αβk‖hpiΩi(xi)‖2 (43)

and

ψpiΩi(xi + βkhpiΩi(xi))− ψ(xi + βkhpiΩi(xi)) ≥ −ω. (44)

Step 4. Set

xi+1 = xi + βkihpiΩi(xi), (45)

Ωi+1 = Ωi ∪Qεi(xi+1). (46)

Step 5. Enter Subroutine 4.1, and go to Step 2 when exit Subroutine 4.1.

Subroutine 4.1. Adaptive Precision-Parameter Adjustment using Optimality Function

If

θpiΩi(xi+1) ≥ −εi, (47)

set x∗j = xi+1, set pi+1 = ξpi, set εi+1 = εi/ς, replace i by i + 1, replace j by j + 1, and exit

Subroutine 4.1.

Else, set pi+1 = pi, set εi+1 = εi, replace i by i+ 1, and exit Subroutine 4.1.

Steps 1 to 4 of Algorithm 4.1 are adopted from Algorithm 3.2 of [13]. We note the

unusual choice of the right-hand side in (43), where −‖hpiΩi(xi)‖2 is used instead of the

conventional 〈∇ψpiΩi(xi), hpiΩi(xi)〉. Test runs show that Algorithm 4.1 with −‖hpiΩi(xi)‖2

is slightly more efficient than with the conventional 〈∇ψpiΩi(xi), hpiΩi(xi)〉. To allow direct

comparison with Algorithm 3.2 of [13], we use −‖hpiΩi(xi)‖2 in Algorithm 4.1.
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The test in (44) prevents the construction of a point xi+1 where ψ(xi+1) is much greater

than ψ(xi) during the early iterations when the set Ωi is small; see [13].

The key difference between Algorithm 4.1 and Algorithm 3.2 of [13] is the simplified

scheme to adjust pi in Subroutine 4.1. This difference calls for a different proof of convergence

as compared to [13], and will be based on consistent approximation. Let P denote an

increasing sequence of positive real numbers that approach infinity. Modified to our context,

we define consistent approximation as in [24], p. 399:

Definition 4.1. For any Ω ⊂ N, we say that the pairs ((PpΩ), θpΩ(·)) in the sequence

{((PpΩ), θpΩ(·))}p∈P are consistent approximations to ((PΩ), θΩ(·)), if (i) (PpΩ) epi-converges

to (PΩ), as p →P ∞, and (ii) for any infinite sequence {xp}p∈P0 ⊂ Rd, P0 ⊂ P, such that

xp → x∗, lim supp→∞ θpΩ(xp) ≤ θΩ(x∗).

Recall that epi-convergence of (PpΩ) to (PΩ) refers to set convergence (in the sense of

Painlevé-Kuratowski) of a sequence of epigraphs of (PpΩ) to the epigraph of (PΩ); see section

3.3.1 of [24] and Sections 1B, 4B, and 7B of [28] for a detailed exposition of epi-convergence.

The following result is required in the proof of convergence of Algorithm 4.1.

Theorem 4.1. Suppose that Assumption 3.1(i) holds. Then, for any Ω ⊂ N, the pairs

((PpΩ), θpΩ(·)) in the sequence {((PpΩ), θpΩ(·))}p∈P are consistent approximations to ((PΩ), θΩ(·)).

Proof. We follow the proofs of Lemmas 4.3 and 4.4 in [29], but simplify the arguments as

[29] deals with min-max-min problems. By Theorem 3.3.2 of [24], Proposition 2.1(ii), and

the continuity of ψΩ(·), it follows that (PpΩ) epi-converges to (PΩ), as p→∞.

We next consider the optimality functions. Let {xi}∞i=0 ⊂ Rd and {pi}∞i=0, pi > 0 for all

i, be arbitrary sequences and x∗ ∈ Rd be such that xi → x∗ and pi → ∞, as i → ∞. Since

µjp(x) ∈ (0, 1) for any j ∈ Ω, p > 0, and x ∈ Rd, {µpi(xi)}∞i=0 is a bounded sequence in R|Ω|

with at least one convergent subsequence. For every such subsequence K ⊂ N0, there exists

a µ∞ ∈ ΣΩ such that µpi(xi)→K µ∞, as i→∞. Moreover, since µ∞ ∈ ΣΩ,
∑

j∈Ω µ
j
∞ = 1.

If j /∈ Ω̂(x∗), then there exist a t > 0 and i0 ∈ N such that f j(xi)− ψΩ(xi) ≤ −t for all

i ≥ i0. Hence, from (9), µjpi(xi) → 0, as i → ∞, and therefore µj∞ = 0. By continuity of

∇f j(·), j ∈ Ω,

θpiΩ(xi)→K −1

2
‖
∑
j∈Ω

µj∞∇f j(x∗)‖2 4= θ∞Ω(x∗), (48)
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as i→∞. Since µ∞ ∈ ΣΩ and µj∞ = 0 for all j /∈ Ω̂(x∗), we find in view of (11) that

θ∞Ω(x∗) = −
∑
j∈Ω

µj∞(ψΩ(x∗)− f j(x∗))− 1

2
‖
∑
j∈Ω

µj∞∇f j(x∗)‖2 ≤ θΩ(x∗). (49)

This completes the proof.

The next result is identical to Lemma 3.1 in [13].

Lemma 4.1. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm 4.1. Then,

there exists an i∗ ∈ N0 and a set Ω∗ ⊆ Q such that working sets Ωi = Ω∗ for all i ≥ i∗.

Proof. By construction, Ωi ⊆ Ωi+1 for all i ∈ N0. Since the set Q is finite, the lemma must

be true.

The following result is a proof of convergence of Algorithm 4.1.

Theorem 4.2. Suppose that Assumption 3.1(i) holds. Then, any accumulation point x∗ ∈ Rd

of a sequence {x∗j}∞j=0 ⊂ Rd constructed by Algorithm 4.1 satisfies the first-order optimality

condition θ(x∗) = 0.

Proof. Let Ω∗ ⊆ Q and i∗ ∈ N0 be as in Lemma 4.1, where Ωi = Ω∗ for all i ≥ i∗. As

Algorithm 4.1 has the form of Master Algorithm Model 3.3.12 in [24] for all i ≥ i∗, we con-

clude based on Theorem 3.3.13 in [24] that any accumulation point x∗ of a sequence {x∗j}∞j=0

constructed by Algorithm 4.1 satisfies θΩ∗(x
∗) = 0. The assumptions required to invoke

Theorem 3.3.13 in [24] are (i) continuity of ψΩ∗(·), ψpΩ∗(·), θΩ∗(·), and θpΩ∗(·), p > 0, which

follows by Assumption 3.1(i), Proposition 2.1(i), Theorem 2.1.6 of [24], and Proposition

2.1(iii); (ii) the pairs ((PpΩ∗), θpΩ∗(·)) in the sequence {((PpΩ∗), θpΩ∗(·))}p∈P are consistent

approximations to ((PΩ∗), θΩ∗(·)), which follows by Theorem 4.1; and (iii) if Steps 1 to 4 of

Algorithm 4.1 are applied repeatedly to (PpΩ∗) with a fixed p > 0, then every accumula-

tion point x̂ of a sequence {xk}∞k=0 constructed must be a stationary point of (PpΩ∗), i.e.,

θpΩ∗(x̂) = 0, which follows by Theorem 3.2 in [13].

Since θΩ∗(x
∗) = 0, from (11), there exists a µ ∈ ΣΩ∗ such that∑

j∈Ω∗

µj(ψΩ∗(x
∗)− f j(x∗)) + 1

2

∥∥∥∥∥∑
j∈Ω∗

µj∇f j(x∗)

∥∥∥∥∥
2

= 0. (50)

Let π ∈ ΣQ, πj = 0 for j ∈ Q− Ω∗, and πj = µj for j ∈ Ω∗. Thus, it follows from (11) that

θ(x∗) ≥ −
∑
j∈Q

πj(ψ(x∗)− f j(x∗))− 1
2

∥∥∥∥∥∑
j∈Q

πj∇f j(x∗)

∥∥∥∥∥
2

= 0. (51)
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Since θ(·) is a nonpositive function, the result follows.

Algorithm 4.2.

Data: x0 ∈ Rd.

Parameters: α, β ∈ (0, 1), function BpΩ(·) as in (38) or (39), ε > 0, ϕ ≥ 1, p0 ≥ 1, p̂ �

p0, κ� 1, ξ > 1, γ > 0, ν ∈ (0, 1),∆p ≥ 1.

Step 0. Set i = 0,Ω0 = Qε(x0), k−1 = 0.

Step 1. Compute BpiΩi(xi) and its largest eigenvalue σmax
piΩi

(xi). If

σmax
piΩi

(xi) ≥ κ, (52)

compute the search direction

hpiΩi(xi) = −∇ψpiΩi(xi). (53)

Else, compute the search direction hpiΩi(xi) by solving the equation

BpiΩi(xi)hpiΩi(xi) = −∇ψpiΩi(xi). (54)

Step 2a. Compute a tentative Armijo stepsize based on working set Ωi, starting from the

eventual stepsize of the previous iterate ki−1, i.e., determine

λpiΩi(xi) = max
l∈{ki−1,ki−1+1,...}

{βl|ψpiΩi(xi+βlhpiΩi(xi))−ψpiΩi(xi) ≤ αβl〈∇ψpiΩi(xi), hpiΩi(xi)〉}.

(55)

Set

yi = xi + βlhpiΩi(xi). (56)

Step 2b. Forward track from yi along direction hpiΩi(xi) as long as ψ(·) continues to decrease

using the following subroutine.

Substep 0. Set l′ = l,

zil′ = xi + βl
′
hpiΩi(xi) and zil′−1 = xi + βl

′−1hpiΩi(xi). (57)

Substep 1. If

ψ(zil′−1) < ψ(zil′), (58)

replace l′ by l′ − 1, set zil′−1 = xi + βl
′−1hpiΩi(xi), and repeat Substep 1.

Else, set zi = zil′ .
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Substep 2. If pi ≤ p̂, go to Step 3. Else, go to Step 4.

Step 3. If

ψ(zi)− ψ(xi) ≤ −
γ

piν
, (59)

set xi+1 = zi, pi+1 = pi, ki = l′, set Ωi+1 = Ωi ∪Qε(xi+1), replace i by i+ 1, and go to Step 1.

Else, replace pi by ξpi, replace Ωi by Ωi ∪Qε(zi), and go to Step 1.

Step 4. If (59) holds, set xi+1 = zi, ki = l′, set pi+1 = pi + ∆p, set Ωi+1 = Ωi ∪ Qε(xi+1),

replace i by i+ 1, and go to Step 1.

Else, set xi+1 = yi, ki = l, set pi+1 = pi + ∆p, set Ωi+1 = Ωi ∪ Qε(xi+1), replace i by i + 1,

and go to Step 1.

As is standard in stabilized Newton methods (see for example Section 1.4.4 of [24]),

Algorithm 4.2 switches to the steepest descent direction if BpΩ(·) is given by (39) and the

largest eigenvalue of BpΩ(·) is large; see Step 1. Compared to Algorithm 3.2 in [13], which

increases p when ‖∇ψpiΩi(xi)‖ is small, Algorithm 4.2 increases the precision parameter only

when it does not produce sufficient descent in ψ(·), as verified by the test (59) in Steps 3 and

4 of Algorithm 4.2. A small precision parameter may produce an ascent direction in ψ(·)

due to the poor accuracy of ψpiΩi(·). Thus, insufficient descent is a signal that the precision

parameter may be too small. All existing smoothing algorithms only ensure that ψpiΩi(·)

decreases at each iteration, but do not ensure descent in ψ(·). Another change compared to

[7, 13] relates to the line search. All smoothing algorithms are susceptible to ill-conditioning

and small stepsizes. To counteract this difficulty, Algorithm 4.2 moves forward along the

search direction starting from the Armijo step, and stops when the next step is not a descent

step in ψ(·); see Step 2b.

Algorithm 4.2 has two rules for increasing pi. In the early stages of the calculations,

i.e., when pi ≤ p̂, if sufficient descent in ψ(·) is achieved when moving from xi to zi ((59)

satisfied), then Algorithm 4.2 sets the next iterate xi+1 to zi, retain the current value of the

precision parameter as progress is made towards the optimal solution of (P ). However, if

(59) fails, then there is insufficient descent and the precision parameter or the working set

needs to be modified to generate a better search direction in the next iteration. In late stages

of the calculations, i.e., pi > p̂, Algorithm 4.2 accepts every new point generated, even those

with insufficient descent, and increases the precision parameter with a constant value.
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The next lemma is similar to Lemma 4.1.

Lemma 4.2. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm 4.2. Then,

there exists an i∗ ∈ N0 and a set Ω∗ ⊆ Q such that working sets Ωi = Ω∗ and ψΩ∗(xi) = ψ(xi)

for all i ≥ i∗.

Proof. The first part of the proof follows exactly from the proof for Lemma 4.1. Next, since

Q̂(xi) ⊆ Ωi for all i; see Steps 3 and 4 of Algorithm 4.2, ψΩ∗(xi) = ψ(xi) for all i ≥ i∗.

Lemma 4.3. Suppose that Assumption 3.1(i) holds, and that the sequences {xi}∞i=0 ⊂ Rd

and {pi}∞i=0 ⊂ R are generated by Algorithm 4.2. Then, the following properties hold: (i) the

sequence {pi}∞i=0 is monotonically increasing; (ii) if the sequence {xi}∞i=0 has an accumulation

point, then pi →∞ as i→∞, and
∑∞

i=0 1/pi = +∞.

Proof. We follow the framework of the proof for Lemma 3.1 of [7]. (i) The precision

parameter is adjusted in Steps 3 and 4 of Algorithm 4.2. In Step 3, if (59) is satisfied, then

pi+1 = pi; if (59) fails, pi is replaced by ξpi > pi. In Step 4, pi+1 = pi + ∆p ≥ pi + 1 > pi.

(ii) Suppose that Algorithm 4.2 generates the sequence {xi}∞i=0 with accumulation point

x∗ ∈ Rd, but {pi}∞i=0 is bounded from above. The existence of an upper bound on pi implies

that pi ≤ p̂ for all i ∈ N0, because if not, Algorithm 4.2 will enter Step 4 the first time at

some iteration i′ ∈ N0, and re-enter Step 4 for all i > i′, and pi → ∞ as i → ∞. Thus, the

existence of an upper bound on pi implies that Algorithm 4.2 must never enter Step 4.

The existence of an upper bound on pi also implies that there exist an iteration i∗ ∈ N0

such that (59) is satisfied for all i > i∗, because if not, pi will be replaced by ξpi repeatedly,

and pi → ∞ as i → ∞. This means that ψ(xi+1) − ψ(xi) ≤ −γ/piν for all i > i∗. Since

pi ≤ p̂ for all i ∈ N0, ψ(xi)→ −∞ as i→∞. However, by continuity of ψ(·), and x∗ being

an accumulation point, ψ(xi)→Kψ(x∗), where K ⊂ N0 is some infinite subset. This is a

contradiction, so pi →∞.

Next, we prove that
∑∞

i=0 1/pi = +∞. Since pi → ∞, there exist an iteration i∗ ∈ N0

such that pi > p̂ for all i ≥ i∗. This means that the precision parameter is adjusted by the

rule pi+1 = pi + ∆p for all i ≥ i∗. The proof is complete by the fact that
∑∞

i=1 1/i =∞.

Lemma 4.4. Suppose that Assumption 3.1(i) holds. Then, for every bounded set S ⊂ Rd

and parameters α, β ∈ (0, 1), there exist a K < ∞ such that, for all p ≥ 1, Ω ⊆ Q, and
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x ∈ S,

ψpΩ(x+ λpΩ(x)hpΩ(x))− ψpΩ(x) ≤ −αK‖∇ψpΩ(x)‖2

p
, (60)

where λpΩ(x) is the stepsize defined by (55), with pi replaced by p, Ωi replaced by Ω, and xi

replaced by x.

Proof. If hpΩ(x) is given by (54) with BpΩ(x) as in (38), then the result follows by the same

arguments as in the proof for Lemma 3.2 of [7]. If hpΩ(x) is given by (54) with BpΩ(x) as

in (39), then the result follows by similar arguments as in the proof for Lemma 3.4 of [7],

but the argument deviates to account for the fact that the lower bound on the eigenvalues

of BpΩ(x) takes on the specific value of 1 in Algorithm 4.2.

Lemma 4.5. Suppose that Assumption 3.1(i) holds and that {xi}∞i=0 ⊂ Rd is a bounded

sequence generated by Algorithm 4.2. Let Ω∗ ⊆ Q and i∗ ∈ N0 be as in Lemma 4.2, where

Ωi = Ω∗ for all i ≥ i∗. Then, there exist an accumulation point x∗ ∈ Rd of the sequence

{xi}∞i=0 such that θΩ∗(x
∗) = 0.

Proof. Suppose that {xi}∞i=0 is a bounded sequence generated by Algorithm 4.2. Suppose

that there exist an ρ > 0 such that

lim inf
i→∞

‖∇ψpiΩ∗(xi)‖ ≥ ρ. (61)

Since {xi}∞i=0 is a bounded sequence, it has at least one accumulation point. Hence, by

Lemma 4.3, pi →∞, as i→∞. Consider two cases, xi+1 = yi or xi+1 = zi in Algorithm 4.2.

If xi+1 = yi, by Lemma 4.4, there exist an M <∞ such that

ψpiΩ∗(xi+1)− ψpiΩ∗(xi) ≤ −
αM‖∇ψpiΩ∗(xi)‖2

pi
, (62)

for i ≥ i∗. Hence,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) = ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi+1) + ψpiΩ∗(xi+1)− ψpiΩ∗(xi)

≤ −αM‖∇ψpiΩ
∗(xi)‖2

pi
, (63)

for i ≥ i∗, where we have used the fact from Proposition 2.1 that

ψpi+1Ω∗(xi+1) ≤ ψpiΩ∗(xi+1), (64)
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for i ≥ i∗, because pi+1 ≥ pi from Lemma 4.3.

Next, if xi+1 = zi, then (59) is satisfied. It follows from (7) and Lemma 4.2 that,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ ψΩ∗(xi+1) +
log |Ω∗|
pi+1

− ψΩ∗(xi)

= ψ(xi+1) +
log |Ω∗|
pi+1

− ψ(xi)

≤ − γ

piν
+

log |Ω∗|
pi

=
−γ + pi

ν−1 log |Ω∗|
piν

. (65)

From (63) and (65), for all i ≥ i∗,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ max

{
−αM‖∇ψpiΩ

∗(xi)‖2

pi
,
−γ + pi

ν−1 log |Ω∗|
piν

}
(66)

By Proposition 2.1, ‖∇ψpiΩ∗(xi)‖ is bounded because {xi}∞i=0 is bounded. Since ν ∈ (0, 1),

there exist an i∗∗ ∈ N0, where i∗∗ ≥ i∗, such that

−αM‖∇ψpiΩ
∗(xi)‖2

pi
≥ −γ + pi

ν−1 log |Ω∗|
piν

, (67)

for all i ≥ i∗∗. Therefore, from (66),

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ −
αM‖∇ψpiΩ∗(xi)‖2

pi
, (68)

for all i ≥ i∗∗. Since by Lemma 4.3,
∑∞

i=0 1/pi = +∞, it follows from (63) and (68) that

ψpiΩ∗(xi)→ −∞, as i→∞. (69)

Let x∗ be an accumulation point of {xi}∞i=0. That is, there exist an infinite subset K ⊆ N0

such that xi→Kx∗. Based on (7), Lemma 4.3, and continuity of ψΩ∗(·), it follows that

ψpiΩ∗(xi)→KψΩ∗(x
∗), as i→∞, which contradicts (69). Hence, lim infi→∞ ‖∇ψpiΩ∗(xi)‖ = 0.

Consequently, there exists an infinite subset K∗ ⊆ N0 and an x∗ ∈ Rd such that xi → x∗ and

θpiΩ∗(xi) →K∗ 0, as i → ∞, which implies that lim supi→∞ θpiΩ∗(xi) ≥ 0. From Definition

4.1, Theorem 4.1, and the fact that θΩ∗(·) is a nonpositive function, θΩ∗(x
∗) = 0.

Theorem 4.3. Suppose that Assumption 3.1(i) holds. (i) If Algorithm 4.2 constructs a

bounded sequence {xi}∞i=0 ⊂ Rd, then there exists an accumulation point x∗ ∈ Rd of the se-

quence {xi}∞i=0 that satisfies θ(x∗) = 0. (ii) If Algorithm 4.2 constructs a finite sequence
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{xi}i
∗
i=0 ⊂ Rd, where i∗ < ∞, then Step 2b constructs an unbounded infinite sequence

{zi∗l′}−∞l′=l with

ψ(zi∗l′−1) < ψ(zi∗l′), (70)

for all l′ ∈ {l, l − 1, l − 2, ...}, where l is the tentative Armijo stepsize computed in Step 2a.

Proof. First, we consider (i). Let the set Ω∗ ⊆ Q be as in Lemma 4.2, where Ωi = Ω∗ for

all i ≥ i∗. Based on Lemma 4.5, there exist an accumulation point of the sequence {xi}∞i=0,

x∗ ∈ Rd such that θΩ∗(x
∗) = 0. The conclusion then follows by similar arguments as in

Theorem 4.2.

We next consider (ii). Algorithm 4.2 constructs a finite sequence only if it jams in

Step 2b. Then, Substep 1 constructs an infinite sequence {zi∗l′}−∞l′=l satisfying (70) for all

l′ ∈ {l, l− 1, l− 2, ...}. The infinite sequence is unbounded since hpiΩi(xi) 6= 0 as (70) cannot

hold otherwise, and β ∈ (0, 1).

Next, we consider the run-time complexity in q for a fixed d ∈ N of Algorithms 4.1

and 4.2 to achieve a near-optimal solution of (P ). Suppose that all functions f j(·) are

active, i.e., Ωi = Q, near an optimal solution. If BpΩ(·) is given by (38), then the main

computational work in each iteration of Algorithms 4.1 and 4.2 is the calculation of ∇ψp(·),

which takes O(q) operations under Assumption 3.3; see the proof of Theorem 3.1. If BpΩ(·)

is given by (39), then the main computational work is the calculation of (39) and hpΩ(x).

Under Assumption 3.3, it takes O(q) operations to compute µjp(x), j ∈ Q, O(q) to compute

∇f j(x), j ∈ Q, O(q) to sum
∑

j∈Ω µ
j
p(x)∇f j(x)∇f j(x)T , O(q) to sum

∑
j∈Q µ

j
p(x)∇f j(x),

and the other operations take O(1). In all, the number of operations to obtain BpΩ(x) is

O(q). A direct method for solving a linear system of equations to compute hpΩ(x) depends on

d, but is constant in q. Hence, if BpΩ(·) is given by (39), then the computational work in each

iteration of Algorithms 4.1 and 4.2 is O(q). It is unclear how many iterations Algorithms

4.1 and 4.2 would need to achieve a near-optimal solution as a function of q. However, since

they may utilize Quasi-Newton search directions and adaptive precision adjustment, there is

reason to believe that the number of iterations will be no larger than that of Algorithm 3.1,

which uses the steepest descent direction and a fixed precision parameter. Thus, suppose

that for some tolerance t > 0, the number of iterations of Algorithms 4.1 and 4.2 to generate
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{xi}ni=0, with the last iterate satisfying ψ(xn)− ψ∗ ≤ t, is no larger than O(log q), as is the

case for Algorithm 3.1. Then, the run-time complexity of Algorithms 4.1 and 4.2 to generate

xn is no larger than O(q log q), which is the same as for Algorithm 3.1.

5 Numerical Results

We present an empirical comparison of Algorithms 4.1 and 4.2 with algorithms from the

literature over a set of problem instances from [6, 7] as well as randomly generated instances;

see Appendix B and Table 1. This study appears to be the first systematic comparison of

smoothing and SQP algorithms for large-scale problems, with up to two orders of magnitude

larger q than previously reported.

Specifically, we examine (i) Algorithm 2.1 of [6], an SQP algorithm with two QPs that

we refer to as SQP-2QP, (ii) Algorithm A in [9], a one-QP SQP algorithm that we refer to

as SQP-1QP, (iii) Algorithm 3.2 in [13], a smoothing Quasi-Newton algorithm referred to

as SMQN, (iv) Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in [24]),

referred to as PPP, (v) an active-set version of PPP as stated in Algorithm 2.4.34 in [24];

see also [30], which we refer to as ε-PPP, and (vi) Algorithms 4.1 and 4.2 of the present

paper. We refer to Appendix C for details about algorithm parameters. With the exception

of PPP and SQP-1QP, the above algorithms incorporate active-set strategies and, hence,

appear especially promising for solving problem instances with large q. We implement and

run all algorithms in MATLAB version 7.7.0 (R2008b) (see [31]) on a 3.73 GHz PC using

Windows XP SP3, with 3 GB of RAM. All QPs are solved using TOMLAB CPLEX version

7.0 (R7.0.0) (see [32]) with the Primal Simplex option, which preliminary studies indicate

result in the smallest QP run time. We also examined the LSSOL QP solver (see [33]), but

its run times appear inferior to that of CPLEX for large-scale QPs arising in the present

context.

Algorithm 2.1 of [6] is implemented in the solver CFSQP [34] and we have verified that

our MATLAB implementation of that algorithm produces comparable results in terms of

number of iterations and run time as CFSQP. We do not directly compare with CFSQP

as we find it more valuable to compare different algorithms using the same implementation
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environment (MATLAB) and the same QP solver (CPLEX).

We carry out a comprehensive study to identify an ε (see (37)) in the algorithms’ active-

set strategies that minimizes the run time for the various algorithms over a wide range of ε

(1,000 to 10−20). We find that SQP-2QP is insensitive to the selection of ε, primarily because

the algorithm includes additional steps to aggressively trim the working set. ε-PPP is highly

sensitive to ε with variability within a factor of 200 in run times. SMQN, Algorithm 4.1, and

Algorithm 4.2 accumulate functions in the working set and therefore are also sensitive to ε.

The run times of SMQN, Algorithm 4.1, and Algorithm 4.2 tend to vary within a factor of

ten. The below results are obtained using the apparent, best choice of ε for each algorithm.

For Algorithm 4.2, we mainly use the Quasi-Newton direction with BpΩ(x) as defined

in (39), because preliminary test runs show that generally, the alternate steepest descent

direction with BpΩ(x) as defined in (38) produces slower run times. We examine all problem

instances from [6, 7] except two that cannot be easily extended to large q. As the problem

instances with large dimensionality in [6, 7] do not allow us to adjust the number of functions,

we create two additional sets of problem instances; see Appendix B for details. We report

run times to achieve a solution x that satisfies

ψ(x)− ψtarget ≤ t, (71)

where ψtarget is a target value (see Table 1) equal to the optimal value (if known) or a slightly

adjusted value from the optimal values reported in [6, 7] for smaller q. We use t = 10−5.

Although this termination criteria is not possible for real-world problems, we find that it is

the most useful criterion in this study.

Table 2 summarizes the run times (in seconds) of the various algorithms, with columns

2 and 3 giving the number of variables d and functions q, respectively. Run times in boldface

indicate that the particular algorithm has the shortest run time for the specific problem

instance. The numerical results in Table 2 indicate that in most problem instances, the

run times are shortest for SQP-2QP or Algorithm 4.2. Table 2 indicates that SQP-2QP

is significantly more efficient than SQP-1QP for problem instances ProbA-ProbG. This is

due to the efficiency of the active-set strategy in SQP-2QP, which is absent in SQP-1QP.

However, for ProbJ-ProbM, SQP-1QP is comparable to SQP-2QP. This is because at the
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optimal solution of ProbJ-ProbM, all the functions are active. This causes the active-set

strategy in SQP-2QP to lose its effectiveness as the optimal solution is approached.

Table 2 indicates also that Algorithm 4.1 is significantly more efficient than SMQN for

most problem instances. As the only difference between the two algorithms lie in their

precision-parameter adjustment scheme, this highlights the sensitivity in the performance of

smoothing algorithms to the control of their precision parameters. Table 2 also shows that

Algorithm 4.2 is more efficient than Algorithm 4.1 and SMQN for most problem instances.

Table 2 indicates that SQP-2QP is generally more efficient than Algorithm 4.2 for prob-

lem instances with small dimensionality, d ≤ 4 (specifically ProbA-ProbG), and vice versa.

This is consistent with the common observation that SQP-type algorithms may be inefficient

for instances of large dimensionality; see for example [6].

Table 2 shows that some algorithms return locally optimal solutions for some problem

instances (labeled “local” in Table 2). In view of these results, there is an indication that

smoothing algorithms (SMQN, Algorithms 4.1 and 4.2) tend to find global minima more

frequently than PPP and SQP algorithms.

Table 3 presents similar results as in Table 2, but for larger q. We do not present results

for PPP and SQP-1QP as the required QPs exceed the memory limit. The comprehensive

sensitivity studies for ε show significant improvement for Algorithm 4.2 for ProbJ-ProbM if

a large ε is used. Hence, we include the results for Algorithm 4.2 with ε = 1000 in Table 3.

This ε-value means that there is effectively no active-set strategy. Sensitivity tests conducted

for the other algorithms with a larger ε show no improvement in their run times.

The observations from Table 3 are similar to those for Table 2. Table 3 indicates that

Algorithm 4.2 with ε = 1000 is efficient for ProbJ-ProbM, which has large d and a significant

number of functions active at the optimal solution. For completeness, the run times for

Algorithm 4.2 with ε = 1000 for ProbJ-ProbM in Table 2 are 2.8, 14.3, 0.36 and 3.0 seconds

respectively, while the run times for the other problem instances are slower than Algorithm

4.2 with ε = 10−20.

The results in Tables 2 and 3 indicate that among the algorithms considered, SQP-

2QP and Algorithm 4.2 are the most efficient algorithms for minimax problems with a large

number of functions. The run times for ProbJ-ProbM indicate that SQP-2QP is less efficient
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for problem instances with a significant number of the functions that is nearly active at the

solution, as the active-set strategy loses its effectiveness.

The problem instances from the literature examined in Tables 2 and 3 include either

cases with few functions ε-active at an optimal solution (ProbA-ProbI) or cases with all

functions ε-active (ProbJ-ProbM). We also examine randomly-generated problem instances

with an intermediate number of functions ε-active at the optimal solution; see ProbN in

Table 1. The optimal values are unknown in this case but the target values given in Table

1 appear to be close to the global minima.

Table 4 presents the run times for Algorithm 4.2 and SQP-2QP on ProbN. As the

problem instances are relatively well-conditioned, Algorithm 4.2 with BpΩ(·) given by (38),

i.e., a steepest descent (SD) direction, may perform well and is included in the table. The

parameter ε for Algorithm 4.2 is set to 1000 for this set of problem instances, as preliminary

test runs show that it is consistently better than other choices. Table 4 indicates that SQP-

2QP is less efficient than Algorithm 4.2 for problem instances with large d, and where there

is a significant number of functions ε-active at the optimal solution. The last row in Table

4 shows that for problem instances with d ≥ 10, 000, the storage of the d× d HpΩ(·) matrix

for both SQP-2QP and Algorithm 4.2, with BpΩ(·) given by (39), causes both algorithms

to terminate due to memory limitations. Thus, Algorithm 4.2, with BpΩ(·) given by (38),

which do not have any matrix to store, may be a reasonable alternative when d is large.

6 Conclusions

This paper focuses on finite minimax problems with many functions and presents com-

plexity and rate of convergence analysis of smoothing algorithms for such problems. We

find that smoothing algorithms may only have sublinear rate of convergence, but their run-

time complexity in the number of functions is competitive with other algorithms due to

small computational work per iteration. We present two smoothing algorithms with novel

precision-adjustment schemes and carry out a comprehensive numerical comparison with

other algorithms from the literature. We find that the proposed algorithms are competitive,

and especially efficient for problem instances with a significant number of functions nearly
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active at stationary points.
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Appendix A. Proof of Theorem 3.4

Proof. For any n ∈ N, we see from (36) that

log en = log

(
exp

[
log t0 + n log

(
1− k

pn

)]
+

2 log q

pn

)
≥ log

(
max

{
exp

[
log t0 + n log

(
1− k

pn

)]
,
2 log q

pn

})
= max

{
log

(
exp

[
log t0 + n log

(
1− k

pn

)])
, log

2 log q

pn

}
.

Hence, for any n ∈ N, n > 1,

log en
log n

≥ max

 log t0
log n

+
n log

(
1− k

pn

)
log n

,− log pn
log n

+
log 2

log n
+

log log q

log n

 . (72)

Let ε > 0 be arbitrary. Then, there exists a n0 ∈ N such that (log log q)/ log n ≥ −ε for all

n ≥ n0. If (log pn)/ log n ≤ 1 and n ≥ max{2, n0}, then

log en
log n

≥ − log pn
log n

+
log 2

log n
+

log log q

log n
≥ − log pn

log n
− ε ≥ −1− ε. (73)

Alternatively, suppose that (log pn)/ log n > 1. Hence, n/pn < 1, and if n ≥ 2k, then

k/pn ∈ (0, 1/2]. Based on Lemma 3.3 and (72),

log en
log n

≥ log t0
log n

+
n log

(
1− k

pn

)
log n

≥ log t0
log n

+
n
(
− 2k
pn

)
log n

≥ log t0
log n

− 2k

log n
(74)
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for all n ≥ 2k such that (log pn)/ log n > 1. Thus, there exists n1 ≥ max{n0, 2k} such that

log t0
log n

− 2k

log n
≥ −1− ε (75)

for all n ≥ n1. Hence, for all n ≥ n1, (log en)/ log n ≥ −1− ε. Since ε is arbitrary, the first

part follows. Next, we prove the second part of the theorem. From (36), with pn = ζn/ log n,

where ζ ∈ (0, k],

log en = log

(
exp

[
log t0 + n log

(
1− k log n

ζn

)]
+

2 log q log n

ζn

)
. (76)

There exists a n2 ∈ N such that (k log n)/ζn ∈ [0, 1/2] for all n ≥ n2. Thus, by Lemma 3.3,

log

(
exp

[
log t0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)
≤ log en

≤ log

(
exp

[
log t0 + n

(
−k log n

ζn

)]
+

2 log q log n

ζn

)
(77)

for all n ≥ n2. We first consider the lower bound in (77),

log

(
exp

[
log t0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)
= log

(
2 log q log n

ζn

[
exp

(
log t0 + log n−2k/ζ

)
2 log q logn

ζn

+ 1

])

= log

(
2 log q log n

ζn

)
+ log

(
t0ζn

1− 2k
ζ

2 log q log n
+ 1

)
. (78)

Since ζ ∈ (0, k] and by continuity of the log(·) function,

lim
n→∞

log

(
t0ζn

1− 2k
ζ

2 log q log n
+ 1

)
= 0. (79)

Continuing from (78), and using (79), we obtain that

lim
n→∞

log
(

2 log q logn
ζn

)
+ log

(
t0ζn

1− 2k
ζ

2 log q logn
+ 1

)
log n

= lim
n→∞

log 2 + log log q + log log n− log ζ − log n

log n
= −1. (80)

Similar arguments yield that the upper bound in (77) also tends to −1, as n→∞. Hence,

the second conclusion follows. The third part of the theorem follows by similar arguments.
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Appendix B. Problem Instances

Table 1 describes the problem instances used. Most columns are self-explanatory. Columns 2

and 3 give the number of variables d and functions q, respectively. The target values (column

7) are equal to the optimal values (if known) or a slightly adjusted value from the optimal

values reported in [6, 7] for smaller q. The same target values are used for ProbA-ProbM in

Tables 2 and 3.

In this appendix, we denote components of x ∈ Rd by subscripts, i.e., x = (x1, x2, ..., xd) ∈

Rd. When the problem is given in semi-infinite form, as in (82a) - (82i), the set Y is dis-

cretized into q equally spaced points if

ψ(x) = max
y∈Y

φ(x, y), (81a)

and q/2 equally spaced points if

ψ(x) = max
y∈Y
|φ(x, y)|. (81b)

ProbA is defined by (81a) and (82a), and ProbB-ProbI by (81b) and (82b)-(82i), respectively.

φ(x, y) = (2y2 − 1)x+ y(1− y)(1− x), Y = [0, 1] (82a)

φ(x, y) = (1− y2)− (0.5x2 − 2yx), Y = [−1, 1], (82b)

φ(x, y) = y2 − (yx1 + x2 exp(y)), Y = [0, 2], (82c)

φ(x, y) =
1

1 + y
− x1 exp(yx2), Y = [−0.5, 0.5], (82d)

φ(x, y) = sin y − (y2x3 + yx2 + x1), Y = [0, 1], (82e)

φ(x, y) = exp(y)− x1 + yx2

1 + yx3

, Y = [0, 1], (82f)

φ(x, y) =
√
y − [x4 − (y2x1 + yx2 + x3)2], Y = [0.25, 1], (82g)

φ(x, y) =
1

1 + y
− [x1 exp(yx3) + x2 exp(yx4)], Y = [−0.5, 0.5], (82h)

φ(x, y) =
1

1 + y
− [x1 exp(yx4) + x2 exp(yx5) + x3 exp(yx6)], Y = [−0.5, 0.5], (82i)
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ProbJ-ProbM are defined by ψ(x) = maxj∈Q f
j(x), with f j(x) as in (82j)-(82m), respectively.

f j(x) = x2
j , j = {1, ..., q}, (82j)

f j(x) = x2
(j−1)2+1 + x2

2j, j = {1, ..., q}, (82k)

f j(x) = x2
(j−1)4+1 + x2

(j−1)4+2 + x2
(j−1)4+3 + x2

4j, j = {1, ..., q}, (82l)

f j(x) = x2
kj

+ x2
lj
, j =

{
1, 2, 3, ...,

(
d

2

)}
, (82m)

where (kj, lj) are all 2-combinations (see Section 3.3 of [35]) of {1, 2, 3, ..., d}, and

f j(x) = ajx
2
i + bjxi + cj, j = {1, ..., q}, (82n)

where i =
⌈

j
q/d

⌉
, and aj, bj, cj are randomly generated from a uniform distribution on [0.5, 1].

Appendix C. Algorithm Details and Parameters

PPP. Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in [24]) use α =

0.5, β = 0.8, and δ = 1. We use the same Armijo parameters α and β for all algorithms.

ε-PPP. ε-Active PPP algorithm (Algorithm 2.4.34 in [24]; see also [30]) use the same pa-

rameters as above. We implement the most recent version [30].

SQP-2QP. Sequential Quadratic Programming with two QPs in each iteration (Algorithm

2.1 of [6]) use parameters recommended in [6] and monotone line search. (We examined the

use of nonmonotone line search in CFSQP, but find it inferior to monotone line search on

the set of problem instances.)

SQP-1QP. Sequential Quadratic Programming with one QP in each iteration (Algorithm

A in [9]) use mid-point values stated in Algorithm A, α = 0.25 (not the Armijo parameter),

τ = 2.5, and H0 = I. The same settings for α and H0 are used by a co-author in [36].

SMQN. Smoothing Quasi-Newton algorithm (Algorithm 3.2 in [13]) use p0 = 1, B(·) = I,

and Parameter Adjustment subroutine version “Case (A)” of [7].

Algorithm 4.1. This algorithm uses the same parameters as SMQN, except for in the

Adaptive Penalty Parameter Adjustment subroutine, where it uses ξ = 2, ς = 2.

Algorithm 4.2. This algorithm use parameters t = 10−5, p0 = 1, p̂ = (log q/t) · 1010, κ =

1030, ξ = 2, γ = t · 10−10, ν = 0.5,∆p = 10.
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00
0,

00
0

3
3
2
.9

2
2
.9

1
8
5
.9

2
1
.7

7
4
.1

1
8
.1

P
ro

b
G

4
1,

00
0,

00
0

lo
ca

l
2
7
.2

2
5
7
.8

2
2
0
.1

1
2
2
2
7

1
6
9
.5

P
ro

b
H

4
1,

00
0,

00
0

1
2
3
2
2

lo
ca

l
3
6
2
.8

2
4
0
.4

4
15

7
2
3
8
.4

P
ro

b
I

6
1,

00
0,

00
0

lo
ca

l
lo

ca
l

4
2
6
2

4
0
1
6

3
7
1
7

lo
ca

l

P
ro

b
J

4,
00

0
4,

00
0

*
*

*
*

*
*

*
*

9
2
.8

*
*

P
ro

b
K

4,
00

0
2,

00
0

*
*

*
*

*
*

*
*

9
1
.8

*
*

P
ro

b
L

4,
00

0
1,

00
0

*
*
*

*
*

*
*

1
0
6
.6

1
3
2
7
3

P
ro

b
M

20
0

19
90

0
*

2
4
.7

6
6
.1

9
1
7
.3

8
.6

2
.5
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Table 4: Run times (in seconds) of algorithms on problem instance ProbN. “SD” and “QN” indicate that

Algorithm 4.2 uses BpΩ(·) given by (38) and (39), respectively. The word “mem” indicates that the algorithm

terminates due to insufficient memory.

d q SQP-2QP Algo 4.2 SD Algo 4.2 QN

(ε = 1) (ε = 1000) (ε = 1000)

10 10,000 0.42 0.64 0.62

100 10,000 0.82 0.48 0.54

1,000 10,000 124.9 0.38 4.8

10 100,000 4.1 3.8 4.2

100 100,000 11.5 3.8 4.1

1,000 100,000 mem 4.3 9.7

1,000 1,000,000 mem 37.2 42.5

1,000 10,000,000 mem 421.8 492.5

10,000 100,000 mem 6.3 mem

40


