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The problem of approximating the tristimulus coordinates of light reflected from a surface from those of the
source and the surface is considered. A variation on a well-known and widely used approximate method for
accomplishing this task is presented. This variation uses the XYZ primaries that have unique properties that
yield a straightforward analysis of the approximation error. We develop the notion of a calorimetric seminorm
and derive an error bound by using techniques from functional analysis. This approach gives some useful in-
sight into the factors that affect accuracy.

INTRODUCTION

I am interested in determining the color appearance of an
illuminated Lambertian surface. In an ideal physical
model, light emanating from the surface has a spectral
radiant power distribution that is proportional to PAp(A),
the product of the spectral radiant power of the illumi-
nant PA and the spectral reflectance of the surface p(A).
The tristimulus coordinates of the reflected light, and
hence the color appearance of the surface, can be found by
evaluating the following definite integrals:

R= P(A)r(A)dA,

G = f PAp(A(AdA,

B = f PAp(A)b(A)dA, (1)

where r(A), g(A), and b(A) are the color-matching functions
and v is the interval corresponding to the visible spec-
trum (bee Ref. 1).

This is a convenient physical model but requires that
the spectral properties of both the source and surface be
known in full. Unfortunately, in many applications this
is not the case. For example, in computer graphics it is
common to have only the tristimulus coordinates of the
various sources and surfaces2 ; no spectral information is
known (see Ref. 3). This situation is a disadvantage but
not a defeat. Since tristimulus spaces are exact models
for additive mixture and scaling, many illumination phe-
nomena can be modeled with just this information. How-
ever, the type of reflections under consideration here
cannot be modeled exactly with these data. The problem
stems from the fact that metameric sources (lights with
distinct spectral radiant power distributions but identical
tristimulus values) do not always produce the same color
when they illuminate surfaces that are not spectrally
white. Similarly, a pair of surfaces may have identical
color appearance under spectrally white illumination, and

hence the same tristimulus values, but dissimilar appear-
ance under some other illuminant (this phenomenon is fa-
miliar to anyone who has had their hand stamped with an
invisible design that only appears under UV illumination).
Since these sources and surfaces cannot be distinguished
by way of their tristimulus values, it follows that the tri-
stimulus values do not contain sufficient information to
model these reflections correctly.

Given that there can be no exact method for modeling
reflections with only tristimulus values, it seems worth-
while to investigate the accuracy of an approximate
method. The method that will be considered is one that
is common in computer graphics and simply mimics the
exact method used in the spectral domain. In particular,
the tristimulus values of the illuminated surface are as-
sumed to be given by the product of the tristimulus values
of the source and the surface. For example,

Rreflected Rsource Rsurface,

Greflected GsourceGsurface,

B reflected Bsource Bsurface. (2)

This approximation works quite well in practice. In-
deed, Cowan and Ware3 describe a similar method and
note its surprising effectiveness in realistic scenes. Moti-
vated by this, we shall consider the same approximation
but will use the XYZ4 primaries:

Xreflected Xsource Xsurface,

Yreflected Ysource Ysurface )

Zreflected Zsource Zsurface. (3)

Note that the choice of primaries here is not at all ar-
bitrary. Rather, these primaries are chosen because
the XYZ system has convenient properties that will sim-
plify the derivation of bounds on the approximation error.
They are as follows:

(1) All realizable stimuli (those that satisfy PA > 0)

have nonnegative tristimulus coordinates.
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(2) The tristimulus coordinates of an equal energy
white (PA 1.0) are X = Y = Z = 1.0.

The first property implies that the XYZ matching func-
tions are nonnegative over the visible interval; that is,
x(A), Y(A), 2(A) ' 0 for all A E t. The second property im-
plies that

fr(A)dA = 1.0,

fY(A)dA = 1.0,

| (A)dA = 1.0. (4)

Matching functions that satisfy Eqs. (4) will be called
normalized.

ERROR ANALYSIS
To expedite the analysis that follows, we shall consider the
error associated with a single generic primary with a nor-
malized nonnegative matching function. Determining
the behavior of the error for this primary is sufficient be-
cause the results can later be applied directly to the XYZ
primaries since they also have normalized nonnegative
matching functions. Let the matching function of this
generic primary be denoted i(A) and consider the ap-
proximation error given by

Err(f g)= f f(A)g(A)im(A)dA

-f f(A)ffl(A)dA g(A)mi(A)dA, (5)

where f and g represent a spectral power distribution and
a reflectance function (there is no reason to enforce any
distinction between the two objects; both are simply func-
tions). For mathematical expedience, assume that m(A),
f(A), and g(A) are all elements of Cy, the set of real-valued
functions that are continuous on 0V; this condition will en-
sure that all the integrals exist and are bounded.

Given the problem in this form, it is a relatively straight-
forward matter to bound the error with the use of tech-
niques from functional analysis (Kreyszig5 is an excellent
reference for this material). First, notice that the error
term of Eq. (5) is a Hermitian form that maps C x Cy
to 91. We can verify this term by taking f g, h E Cv and
noting that

Err(f + g, h) = J(f + g)hffi(A)dA

- (f + g)mi(A)d(A) h(A)dA

= f fhmn-(A)dA - f fini(A)dA f hii(A)dA

+ |ghffi(A)dA

- J gm(A)dA| hi(A)dA

and that

Err(af g) = fafgffi(A)dA - f af ff(A)dAf gimi(A)dA

= a[f fg in(A)dA - f fin-(A)dA f gim-(A)dA]

= aErr(f g) (7)

for any a E 91.
Second, notice that the error term of Eq. (5) is positive

semidefinite. To verify this fact, consider

Err(f f) = f f 2 m(A)dA - fm(A)dA] . (8)

Since (A) is nonnegative, the Schwarz inequality gives

(9)[| fffi(A)dA] s | f2 m(A)dA,

which implies that

0 | f2m(A)dA - [ fffi(A)dA. (10)

Hence the error functional is positive semidefinite.
The following lemma shows that the Schwarz inequality

holds for any positive semidefinite Hermitian form (see
Ref. 5). This will enable us to impose a bound on the
magnitude of the error functional.

Lemma 1: Let X be a vector space and h a positive
semidefinite Hermitian form mappingX x X to 91. Then
h satisfies the Schwarz inequality

h2(x, y) s h(x, x)h(y, y). (11)

Proof If y = 0 then formula (11) clearly holds since
h2(x, 0) = 0. Assume that y • 0. Given any scalar a,
we have

0 s h(x - ay, x - ay)

= h(x, x) - ah(x, y) - a[h(y, x) - ah(y, y)]. (12)

If we choose a = h(y, x)/h(y, y), then the term in brackets
is zero and the remaining inequality is

0 s h(x,x) - h(Y x)h(xy).
h(y, y)

(13)

Using the fact that h(x, y) = h(y, x) and multiplying by
h(y, y) yield

0 s h(x,x)h(y,y) - h2(x,y). (14)

Hence

h2(x, y) s h(x, x)h(y, y). (15)

Applying the Schwarz inequality to the error functional
yields

[Err(/, g)] 2 S Err(f f)Err(g, g). (16)

(6) This is a bound on the error of the approximation. Now,
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note that

IfII. = f 2 i(A)dA- f fffi(A)dA (17)

is a seminorm on the space Cv (see Ref. 5). We shall call
11 ,Im the colorimetric seminorm with respect to the match-
ing function m(A). The error bound is given by

IErr(fg)I < IifiImiigIIm, (18)

and it is seen that the absolute error can be no worse than
the product of the lengths of the spectral reflectance func-
tion and the spectral radiant power distribution with re-
spect to this seminorm. This is useful because it makes
it possible to determine, a priori, whether this method is
an appropriate approximation for a given set of sources
and surfaces. If the various spectral functions are suffi-
ciently small with respect to this seminorm then it is rea-
sonable to assume that the method will work well.

We point out that this method (multiplying the tristimu-
lus values) can be used with any tristimulus space. How-
ever, with more general matching functions the error
analysis becomes far more involved mathematically and is
omitted here (a complete analysis can be found in Ref. 6).

The reader should note that, so far, no use has been
made of the fact that the matching function is normalized.
To see why this condition is useful, suppose that the source
(or surface) is spectrally white; that is, f(A) _ a for some
a E 91. Equation (5) yields, after some manipulation,

Err(a, g) = [1 - f i(A)dA]a fg(A)fi(A)dA. (19)

If the matching function is normalized, then the error is
zero and hence the approximation is exact when applied to
spectrally white sources or surfaces.

In fact, there are other conditions under which the ap-
proximation is exact. One case of particular interest is
when the von Kries adapted tristimulus values for a given
source and surface are the same as the tristimulus values
for the surface under spectrally white illumination. In
particular,

| PAp(A)Y(A)dA

v
|, PAY(A)dA

v

f PAp(A)2(dA|, Py(A)dA

= f p(A)R(A)dA,

f p(A)y(A)dA,

will occur have been carefully analyzed in Refs. 7 and 8
and will not be considered here. See also Refs. 9 and 10
for more detailed discussions of chromatic adaptation.

PERTURBATION ANALYSIS

It is informative to examine the behavior of this method
when it is subjected to small perturbations of the inputs.
In particular, let us investigate the change in the error
when a small amount of a contaminant light is added to
the source illuminant. We shall consider the following
experiment. We have a single surface with spectral re-
flectance p(A) and two distinct light sources with spectral
power densities IA(A) and IB(A). We start with the surface
illuminated by light source A at unit intensity and con-
sider what happens as we add a small amount of illumina-
tion from light source B. If we let e denote the amount of
light source B that is added, then the total illumination is
given by

IA(A) + EIB(A).

The approximation error is

Err[IA(A) + EIB(A),p(A)].

(21)

(22)

The linearity of the error functional implies that

Err[IA(A) + EIB(A), p(A)] = Err[IA(A), p(A)]

+ E Err[IB(A), p(A)]. (23)

Hence the change in the error as a result of perturbing the
light source is simply

e Err[IB(A), p(A)]. (24)

2And, since Err[IB(A), p(A)] is well defined and does not
change in response to the magnitude of the perturbation,
it follows that the error varies linearly with the size of the
perturbation. Moreover, the linear coefficient of change
[i.e., the first partial derivative of Formula (22) with re-
spect to e] is bounded in absolute value by the product of
the colorimetric seminorms of the perturbation source
and the surface.

This situation will help to illustrate one of the reasons
why this approximation works so well in realistic situa-
tions. Note that most common sources of illumination
are nearly white. It is reasonable to represent a nearly
white source with a spectral radiant power distribution of
the following form:

PA = a + eIp(A), (25)

where a is a constant, e is much smaller than a, and Ip(A)
is a spectral power density. If p(A) is the spectral reflec-
tance of the surface, then applying Eqs. (6) and (19) yields

(20) (26)Err[a + eIp(A), p] = e Err[Ip(A), p].

The relative absolute error is given by

,EIErr[Ip(k), p1IMultiplying both sides by the tristimulus coordinates of
the source shows that the trichromatic approximation is
exact in this case. That is, the trichromatic approxima-
tion is exact whenever von Kries chromatic adaptation
gives color constancy. The conditions under which this

(27)

f [a + eIp(A)]p(A)rn(A)dA

which, following formula (18) and the fact that eIp(A) and
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Fig. 1. Relative spectral power of daylight (CIE standard illumi-
nant D55).
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Fig. 2. Spectral reflectance functions of the two surfaces.

p(A) are nonnegative, is certainly less than

E (IIp(A)|mjjp||m (28)

a p(A)mi(A)dA

Since we assumed that << a, then the relative error will
be small as long as

VIVIlM11pilm (29)

| p(A)m(A)dA

is not large.

PROBABILISTIC APPROACH TO ERROR
ANALYSIS

Note that a normalized matching function can also be
thought of as a probability density function on V. This
fact permits an alternative mathematical derivation of the
error term. Let A be a continuous random variable with
probability density

p(A)= n-(A) Aerw
p() {0 otherwise (0

Consider the random variable defined by f(A). Apply-
ing the fundamental theorem of expectation (see Ref. 11)
yields the expected value of f(A):

E[f(A)] = f(A)iii(A)dA. (31)

Hence, the error term from Eq. (5) can be rewritten as

Err(f g) = E[f(A)g(A)] - E[f(A)]E[g(A)]

= CovI f(A),g(A)], (32)

where E[ ] signifies expectation and Cov[f(A), g(A)] is the
covariance. Recall that the covariance of two random
variables is also given by the product of both variances
and a correlation coefficient. Since the correlation coef-
ficient of two random variables always lies between -1
and 1, the error bound follows directly as

IErr(f g)l om(f)offl(g), (33)

where12

o(f) = {Cov[f(A), f(A)]}" 2 . (34)

So both the error term and its analytic bound can be
arrived at with a probabilistic approach. This situation
does not imply that the probabilistic derivation of the
error term has any particular physiological interpretation.
Whether it does or does not is beyond the scope of this
paper. This analysis is presented because, to many of us,
probability is a far more familiar mathematical setting
than is functional analysis. From a purely mathematical
perspective, the two derivations are completely equivalent.

EXAMPLE

I briefly demonstrate this method with two surfaces (one
rose and one green) and a standard daylight energy source
whose spectral distributions appear in Figs. 1 and 2.
Only the reflection will be considered here; effects related
to scene geometry will be ignored (e.g., Lambert's cosine
law and the inverse square law). It is straightforward to
compute the actual coordinates of the source and the two
surfaces as well as the actual and approximated coordi-
nates of the reflections (see Table 1). A brief calculation
yields the error bounds and the observed approximation
errors that appear in Table 2. In these examples the er-
ror bounds indicate that the approximation will be accu-
rate to within ±6% for the X and Y primaries and ±15%
for the Z primary. This is an excellent result considering
how little information is needed to make the approxima-
tions. By applying a standard transformation we can put
the data from Table 1 in a more familiar form-RGB dis-
play coordinates for a 24-bit frame buffer. These coordi-

Table 1. CIE XYZ Coordinates of the Source and Surfaces from the Example and the Actual and
Approximated Coordinates for the Diffuse Reflections

Daylight-Rose Daylight-Green
Coordinate Daylight Rose Green Actual Approximate Actual Approximate

X 94.008545 0.246095 0.190821 22.473387 23.135039 18.611805 17.938802
Y 98.369507 0.119954 0.360694 11.241696 11.799859 36.161922 35.481281
Z 90.521194 0.151974 0.132420 12.321855 13.756877 13.032540 11.986803
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Table 2. Observed Errors and Analytic
Error Bounds of the Trichromatic Approximations

from the Example

Daylight-Rose Daylight-Green

Coordinate Error Bound Error Bound

X 0.661652 1.470889 0.673003 1.142348
Y 0.558163 0.694311 0.680641 0.804540
Z 1.435022 1.683958 1.045737 1.932217

Table 3. Actual and Approximated
Tristimulus Values for the Example in Standard

RGB Coordinates for a 24-Bit Frame Buffer

Daylight-Rose Daylight-Green

Coordinate Actual Approximate Actual Approximate

R 83 85 31 30
G 0 1 134 132
B 28 31 21 19

nates appear in Table 3 and show that the approximation
is quite accurate (the actual and approximated colors are
virtually indistinguishable on a standard display device).

CONCLUSIONS

I have presented a variation on a widely used approxima-
tion for surface illumination. This method is appealing
because of its low computational costs and its minimal
storage requirements. I derived simple analytic bounds
on the error associated with this approximation, using
classical results from functional analysis (and probability
theory), and gave some indication of why it might be ex-
pected to work well in realistic scenes. Furthermore, I
have indicated that there is a relationship between this
approximation and the von Kries coefficient law. In par-
ticular, this approximation is exact when used with a
source-surface pair that yields color constancy under von
Kries chromatic adaptation. I have also introduced the
notion of a colorimetric seminorm that can be used to
bound the approximation error and yields valuable in-

sights into the change in approximation error as a result
of perturbations.
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