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Abstract

We begin by considering the problem of fitting a single Bézier curve segment to a set of ordered data so that
the error is minimized in the total least squares sense. We develop an algorithm for applying the Gauss–Newton
method to this problem with a direct method for evaluating the Jacobian based on implicitly differentiating a
pseudo-inverse. We then demonstrate the simple extension of this algorithm to B-spline curves. We present some
experimental results for both cases. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A degreen Bézier curve segment is a parametric polynomial curve whose shape is determined by an
ordered set of control points(xj , yj ) for j = 0,1,2, . . . , n. In particular, for 0� t � 1, the components
of the curve are given by

x(t) =
n∑

j=0

Bn
j (t)xj and y(t) =

n∑
j=0

Bn
j (t)yj ,

whereBn
j (t) is thej th Bernstein polynomial of degreen, that is

Bn
j (t) =

(
n

j

)
tj (1− t)n−j .
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The problem we are interested in solving can be stated as follows. Given an ordered set of data points
{(ui, vi)}m

i=1 and a non-negative integern < m, find nodes{ti}m
i=1 and control points{(xj , yj )}n

j=1 that
minimize

m∑
i=1

{(
ui −

n∑
j=1

Bn
j (ti)xj

)2

+
(

vi −
n∑

j=1

Bn
j (ti)yj

)2}
. (1)

In short, we are looking for the best total least-squares fit of a Bézier curve segment to a set of ordered
data points in the plane.

We will find it much easier to proceed if we recast the problem in a more convenient linear algebra
setting. To this end we introduce the following definition:

Definition 1. Given a vectort ∈ R
m and a non-negative integern we define theBernstein matrixof degree

n, which we denote byBn(t), to be the realm× (n+ 1) matrix whosei, j element isBn
j (ti). In particular

Bn(t) =




Bn
0(t1) Bn

1(t1) . . . Bn
n (t1)

Bn
0(t2) Bn

1(t2) . . . Bn
n (t2)

...
...

...

Bn
0(tm) Bn

1(tm) . . . Bn
n (tm)


 .

Be warned that for ease of notation we will generally omit the arguments of matrix functions when no
confusion is possible.

This definition allows us to rewrite the objective function in expression (1) as follows∥∥∥∥
[

u
v

]
−
[
Bn

Bn

][
x
y

]∥∥∥∥
2

2

, (2)

wherex,y,u, andv are vectors whose elements are thexi, yi, ui, andvi respectively.
It is of particular interest that the variables in this problem are of two distinct types—those that appear

linearly (the control points) and those that appear non-linearly (the nodes). Note that for a fixedt the
optimal associated control points are found by solving a linear least squares problem. Formally we may
write[

x
y

]
=
[
B−

n

B−
n

][
u
v

]
, (3)

whereB−
n is ageneralized inverse(see (Rao and Mitra, 1971)) ofBn. Specifically,B−

n is any(n+ 1)×m

matrix function satisfying the following equations

BnB−
n Bn = Bn, (4)

(BnB−
n )T = BnB−

n . (5)

We note that the Moore–Penrose generalized inverse,B+
n , is one such matrix although there can be

others.1

1 This is a formal derivation and it is important to note that one should not form generalized inverses as a method for
computingsolutions to linear least-squares problems.
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This structure leads to a useful approach to solving the problem. In particular, one can substitute (3)
into the objective function (2) and formallyuncouplethe variables. It is then possible to solve for the
optimal t independently of the control points by minimizing thevariable projection functional

r(t) =
∥∥∥∥
[

u
v

]
−
[
BnB−

n

BnB−
n

][
u
v

]∥∥∥∥
2

2

. (6)

It is important to note thatr(t) = rTr, where the residual vector,r, is also a function oft and is given
by

r(t) =
[

P ⊥
Bn

u

P ⊥
Bn

v

]
, (7)

wherePBn
= BnB−

n is the orthogonal projector onto the range ofB andP ⊥
Bn

= I − PBn
is the orthogonal

projector onto the null-space ofBT
n . Note that both of these are also matrix functions although we have

suppressed their arguments.

1.1. Numerical evaluation ofr(t)

From a computational standpoint, we may reliably evaluate the variable projection functional by
exploiting the QR factorization (see (Golub and Van Loan, 1996)) of the Bernstein matrix. In particular,
there exists a permutation matrixΠ such that

BnΠ = [Q1 Q2]
[

R1,1 R1,2

0 0

]
,

where[Q1 Q2] is anm× m orthogonal matrix andR1,1 is r × r , upper-triangular, and invertible where
r = rank(Bn). Note thatR1,2 vanishes wheneverBn is full rank. It is easily verified that

B−
n = Π

[
R−1

1,1Q
T
1

0

]
(8)

satisfies Eqs. (4) and (5), from which it follows directly that

PBn
= Q1Q

T
1,

P ⊥
Bn

= Q2Q
T
2,

whence

r(t) = ∥∥QT
2u
∥∥2

2 + ∥∥QT
2v
∥∥2

2.

2. Minimizing the variable projection functional

In this section we will concern ourselves with minimizing the variable projection functional which
amounts to solving a non-linear least-squares problem. Although a variety of methods exist for such
problems we will explore the Gauss–Newton approach.

The Gauss–Newton approach involves using an affine model at the current pointtk as follows

mk(t) = r(tk) + J (tk)(t − tk),
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where thei, j element of the Jacobian matrix is

J (t)i,j = ∂ri(t)
∂tj

.

Minimizing mk(t) yields

tk+1 = tk − J +(tk)r(tk).

For a variety of reasons it is prudent to use some form of stepsize control which leads to the following
algorithm

tk+1 = tk − αkJ
+(tk)r(tk),

where−J +(tk)r(tk) gives a descent direction andαk is usually chosen to guarantee that the step does in
fact decrease the residual.

The critical step for us is computing the Jacobian since this involves differentiating an expression
involving a generalized inverse of the Bernstein matrix. In particular, thej th column of the Jacobian
matrix is given by

∂r(t)
∂tj

=

 ∂P⊥

Bn

∂tj
u

∂P⊥
Bn

∂tj
v


 .

Notice that the Jacobian has an upper and a lower half, and furthermore, that to evaluate them we need
to be able to evaluate

∂P ⊥
Bn

∂tj
x,

wherex can be eitheru or v. It is essential therefore that we are able to differentiate a generalized inverse
and we will find the following theorem will quite useful in this regard (see also (Hanson and Lawson,
1969) or (Golub and Pereyra, 1973)).

Theorem 1. Let A be anm × n matrix function and letA− be ann × m matrix function such that
AA−A = A and(AA−)T = AA−. Then

∂P ⊥
A

∂tk
= −P ⊥

A

∂A

∂tk
A− −

(
P ⊥

A

∂A

∂tk
A−
)T

. (9)

Proof. First we note that by the product rule

∂PAA

∂tk
= ∂PA

∂tk
A + PA

∂A

∂tk

and sincePAA = A we have

∂A

∂tk
= ∂PA

∂tk
A + PA

∂A

∂tk
,

whence

∂PA

∂tk
A = ∂A

∂tk
− PA

∂A

∂tk
= P ⊥

A

∂A

∂tk
.
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Multiplying both sides on the right byA− and using the fact thatPA = AA− yields

∂PA

∂tk
PA = P ⊥

A

∂A

∂tk
A−.

Transposing both sides and invoking the symmetry ofPA we also have

PA

∂PA

∂tk
=
(

P ⊥
A

∂A

∂tk
A−
)T

.

Now, sincePA is idempotent

∂PA

∂tk
= ∂P 2

A

∂tk
= ∂PA

∂tk
PA + PA

∂PA

∂tk

= P ⊥
A

∂A

∂tk
A− +

(
P ⊥

A

∂A

∂tk
A−
)T

.

Finally, we note thatP ⊥
A = I − PA and hence

∂P ⊥
A

∂tk
= −∂PA

∂tk

from which the result follows. ✷
Applying this to our case yields

∂P ⊥
Bn

∂tj
= −Q2Q

T
2

∂Bn

∂tj
Π

[
R−1

1,1Q
T
1

0

]
−
[

R−1
1,1Q

T
1

0

]T

ΠT ∂BT
n

∂tj
Q2Q

T
2.

It is clear that∂Bn

∂tj
is all zeros with the exception of itsj th row which is

∂

∂tj

[
Bn

0(tj ) Bn
1(tj ) . . . Bn

n (tj )
]

and this structure may be exploited to reduce the total number of operations required to evaluate the
Jacobian. In particular, we can simultaneously compute all of the columns in the following way. Let
B′

n(t) be the derivative of the Bernstein matrix which can be easily computed with

B′
n(t) = n

{[
0
¯

Bn−1(t)
]− [

Bn−1(t) 0
¯

]}
,

where 0
¯

is a single column of zeros. Then the Jacobian is given by[
Q2Q

T
2 diag(P u) + P T diag(Q2Q

T
2u)

Q2Q
T
2 diag(P v) + P T diag(Q2Q

T
2v)

]
, (10)

where

P = B′
nΠ

[
R−1

1,1Q
T
1

0

]
.

Careful implementation of this formula is important to maximize economies.
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3. Implementation details

As we are fitting a single Bézier segment the problem may be simplified, without loss of generality, by
fixing the nodes associated with the first and last data points to occur at the ends of the curve segment, in
particular we sett1 = 0 andtm = 1 respectively. This has the effect of preventing the curve segment from
growing excessively outside the region of the data set. Although it does not force the endpoints of the
curve segment to coincide with the first and last points of the data set, it does restrict them to be tangents
to circles centered at these points.

Indeed, experience shows that failure to enforce this restriction generally leads to serious problems
as the curve segment tends to expand without bound. With this restriction it is useful to reduce the
dimension of the search vector tom − 2 by deleting the first and last elements (t1 andtm). The Jacobian
matrix becomes(2m) × (m − 2) and may be computed by replacing the first and last rows ofB′

n with
zeros, then evaluating formula (10), and finally deleting the first and last columns from the resulting
matrix.

In our implementation we have used the stepsize control parameterαk to enforce the condition that
the nodal values satisfy 0� ti � 1 for all i. If taking a full step would violate this constraint, then we set
αk to a value that will preserve it. Having done this, we then use a primitive line search before taking the
step. In particular, we check to see if the current step will in fact decrease the residual. If not, then we
repeatedly halveαk until it does.

As with any iterative method, a good initial guess can be most valuable. The simplest is the chord-
length parameterization. In particular, we letdi = [ui vi]T and make our initial guess for the nodal values

ti =
∑i

j=1 ‖di − di−1‖2∑m
j=1 ‖di − di−1‖2

for i = 1,2, . . . ,m with t0 = 0.
This works reasonably well but we have noted better results using an affine invariant norm (see

(Nielson, 1987)) in place of the 2-norm in the formula given above. In particular, we use the norm
defined by

‖x‖2
V = xTV x,

whereV is the inverse of the data covariance matrix, which is given by

V =
(

1

m

m∑
i=1

didT
i

)−1

.

Another excellent method is theaffine invariant anglemetric which is developed in the very elegant
paper of Foley and Nielson (1989). It is somewhat more involved in its computation but worked very
well in our experiments.

Finally, we use a traditional test for convergence and stop when
rcurrent− rlast

rlast
< tol,

wherercurrent is the squared residual at the current step,rlast is the squared residual at the last step, and tol
is an arbitrary tolerance. In order to push the algorithm to the extreme we set tol= 10−12 for the examples
presented in the next section.
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4. Bézier curve examples

In our first example we consider a fitting a data set of 23 points taken from an experiment on a reacting
chemical system which may have multiple steady states (see (Marin and Smith, 1994)). The experiment
samples the steady state oxidation rateR achieved by a catalytic system for an input concentration of
carbon monoxideCCO. The data is in log-log format and we show the results of fitting with segments of
different degree in Figs. 1–6. The sixth-degree fitting (Fig. 6) is excellent and shows the proper ordering
of the data from the first data point,d1 at the left to the final data point,d23 at the lower right. Note that
even with this very tight tolerance the convergence is fast in all but the fifth degree fittings (Fig. 5). If tol
is reduced to 10−6 then the fifth degree fit converges in only 65 iterations with a final squared residual of
0.331× 10−2.

Of course, there may be local minima as is evidenced in the fitting of the fourth degree curve. In
this case the algorithm converges to a local minimum that does not preserve the nodal ordering of the
points (see Fig. 3). If, however, we use the affine invariant angle metric (see (Foley and Nielson, 1989))
to generate our initial guess then we converge to a different fit (Fig. 4) which does preserve the nodal
ordering and has a squared residual that is about half as large.

The second set of fittings are to a Dillner 20-32-C low Reynolds number airfoil (all of the airfoil data
used in this paper can be found at the UIUC Airfoil Data Site which can be accessed via world-wide web
at http://amber.aae.uiuc.edu/˜m-selig/ads.html). The results of this experiment appear in Figs. 7 and 8.
The airfoil is represented by 35 points ordered counterclockwise starting from the top of the trailing
edge. This airfoil has a relatively simple geometry and is easily fitted by the algorithm.

Fig. 1. Reaction rate data fitted with a third degree Bézier curve. The final squared residual was 0.567× 10−1 which took 22
iterations. Note that a loop has appeared and the nodal points do not preserve the ordering of the data.
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Fig. 2. Reaction rate data fitted with a fourth degree Bézier curve. The final squared residual was 0.136× 10−1 which took 40
iterations. Note that the nodal points do not preserve the ordering of the data.

Fig. 3. A close-up of the fourth degree fitting. You can see that we have come to a local minimum as the nodal points associated
with thed10 andd12 are not the closest points on the curve.
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Fig. 4. Reaction rate data fitted with a fourth degree Bézier curve using a different starting guess yields a final squared residual
of 0.602× 10−2 and does preserve the nodal ordering.

Fig. 5. Reaction rate data fitted with a fifth degree Bézier curve. The final squared residual was 0.330× 10−2 which took 2371
iterations. Note the appearance of a cusp.
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Fig. 6. Reaction rate data fitted with a sixth degree Bézier curve. The final squared residual was 0.234× 10−2 which took 35
iterations.

Fig. 7. Dillner 20-32-C low Reynolds number airfoil fitted with a single fifth degree Bézier curve segment. The final squared
residual was 0.210× 10−4 which took 22 iterations.
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Fig. 8. Dillner 20-32-C low Reynolds number airfoil fitted with a single sixth degree Bézier curve segment. The final squared
residual was 0.113× 10−4 which took 44 iterations.

The final set of fittings are to a NACA/Munk M-27 airfoil. This airfoil is represented by 33 points
also ordered counterclockwise starting from the top of the trailing edge. This airfoil has a more involved
geometry than the first with more changes in concavity. Although the fifth-degree fitting has a small
residual, it is not a good representation of the airfoil (Fig. 9). We can also see that convergence is relatively
slow. However, when we use a sixth-degree segment (which does have sufficient flexibility to model the
changes in concavity) we get a far more appealing fit (Fig. 10) and much faster convergence.

The speed of convergence can be improved by using a more sophisticated line search approach before
taking each step. In some cases the higher per step costs are offset by substantial reduction in the number
of iterations. We tested this by changing the step strategy to the following: If the Newton step decreases
the residual, take it as is. If not then perform a line search to find the optimal stepsize in current direction
and take that step. For the majority of the experiments presented here, this change in strategy causes little
or no change in speed of convergence because it seldom comes into play (the full Newton step usually
gives a decrease). However, when applied to the fifth degree fit of the reaction rate data it reduces the
number of iterations from 2371 to 180. For the NACA/Munk M-27 airfoil fifth degree fit, this approach
reduces the number of iterations from 689 to 201.

5. Extension to B-spline curves

It is very straightforward to extend preceding algorithm to the more general class of B-spline curves.
Given a positive integern and a non-decreasing knot sequencek0, k1, . . . , kL, whereL � 2n − 1 we let
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Fig. 9. NACA/Munk M-27 airfoil fitted with a single fifth degree Bézier curve segment. The final squared residual was
0.114× 10−2 which took 689 iterations. This is a rather unappealing fit as a cusp has appeared at the leading edge.

Fig. 10. NACA/Munk M-27 airfoil fitted with a single sixth degree Bézier curve segment. The final squared residual was
0.745× 10−6 which took 13 iterations.
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Fig. 11. Reaction rate data fitted with a third order B-spline curve with knot sequence 0,0,0,1,2,2,2. The final squared residual
was 0.361× 10−1 which took 28 iterations.

Fig. 12. Reaction rate data fitted with a third order B-spline curve with knot sequence 0,0,0,1.95,2,2,2. The final squared
residual was 0.102× 10−1 which took 19 iterations.
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Fig. 13. NACA/Munk M-27 airfoil fitted with a third order B-spline curve with knot sequence 0,1,2,3,4,5,6,7,8,9. The final
squared residual was 0.649× 10−3 which took 22 iterations.

Fig. 14. NACA/Munk M-27 airfoil fitted with a third order B-spline curve with knot sequence 0,1,2,3,4,5,6,7,8,9,9. The
final squared residual was 0.719× 10−5 which took 43 iterations (the same result is achieved in 31 iterations using a warm
restart with the nodes from the fitting in Fig. 13).
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Nn
i (t) for i = 0,1,2, . . . ,L − n be the associatednth order B-spline basis functions (see (Farin, 1996)).

The objective function becomes

m∑
i=1

{(
ui −

L−n∑
j=0

Nn
j (ti)xj

)2

+
(

vi −
L−n∑
j=0

Nn
j (ti)yj

)2}
. (11)

Another matrix function will simplify the notation. So

Definition 2. Given a vectort ∈ R
m, a positive integern, and a non-decreasing knot sequence

k0, k1, . . . , kL, whereL � 2n − 1 we define theB-spline matrix, which we denote byN (t), to be the
realm × (L − n + 1) matrix whosei, j element isNn

j (ti). In particular

N (t) =




Nn
0 (t1) Nn

1 (t1) . . . Nn
L−n+1(t1)

Nn
0 (t2) Nn

1 (t2) . . . Nn
L−n+1(t2)

...
...

...

Nn
0 (tm) Nn

1 (tm) . . . Nn
L−n+1(tm)


 .

The remainder of the derivation is the same as that for the Bézier curve segment (indeed the Bézier
curve segment is a special case). One need only replace all occurences of the Bernstein matrix with the
B-spline matrix. The greater generality of the B-spline curve is quite useful in fitting as one may use
multi-segment curves. For our experiments we have used the same starting guesses as were used with the
Bézier curve algorithm except that the values are affinely mapped to the domain of the given B-spline
curve. The extremal data points are tied to the endpoints of the curve for the same reasons as before. We
note that if a fitting is not acceptable it is reasonable to simply modify the knot sequence and try again.
This brings up the possibility of using awarm restart, that is, using the nodal values from the previous
fit as starting values for the new fit. Experience shows mixed results when doing this (see the example
in Fig. 14 for an instance of this approach). Although the warm restart does sometimes lead to faster
convergence, other times it actually leads to slower convergence.
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