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Probability Density Function Transformation Using
Seeded Localized Averaging

Nedialko B. Dimitrov, Valentin T. Jordanov Senior Member, IEEE

Abstract—Seeded Localized Averaging (SLA) is a spectrum
acquisition method that averages pulse-heights in dynamic win-
dows. SLA sharpens peaks in the acquired spectra. This work
investigates the transformation of the original probability density
function (PDF) in the process of applying the SLA procedure.
We derive an analytical expression for the resulting probability
density function after an application of SLA. In addition, we
prove the following properties: 1) for symmetric distributions,
SLA preserves both the mean and symmetry. 2) for unimodal
symmetric distributions, SLA reduces variance, sharpening the
distributions peak. Our results are the first to prove these prop-
erties, reinforcing past experimental observations. Specifically,
our results imply that in the typical case of a spectral peak
with Gaussian PDF the full width at half maximum (FWHM) of
the transformed peak becomes narrower even with averaging of
only two pulse-heights. While the Gaussian shape is no longer
preserved, our results include an analytical expression for the
resulting distribution. Examples of the transformation of other
PDFs are presented.

I. INTRODUCTION

UNIQUE radioactive elements and their associated decay
chains produce unique energy spectra. This property has

motivated extensive study in the ability to identify radioactive
material based on its energy spectrum [1], [2], [3]. The main
objective of the radiation spectroscopy is to record a spectrum
from a radiation detector, and a standard method of recording
a spectrum is a multi-channel pulse height analyzer (MCA).
The spectrum provides information about both the incident
radiation and the response of the radiation detector. However,
to accurately identify a radioactive material, we would like
accurate information solely on the incident radiation.

An example of radiation spectrum is shown in Figure 1.
The horizontal axis is the channel number. The vertical axis
represents the channel content - number of counts. There are
different features in the spectra that are associated not only
with the energy of the detector events but also with the detector
itself and the signal processor properties. The most important
characteristic of the spectroscopy system is the resolution
(energy, time, etc.). The full-width at half-maximum (FWHM)
of the spectral peaks is a measure of the spectroscopy system
capability to resolve incident radiation. The FWHM depends
on various factors such as statistical fluctuations of the detector
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signal, noise contribution of the signal processor, external
interference, temperature and long term drifts, etc [4].

Statistical fluctuations determine the theoretical limit of the
energy resolution for a given detector. The effect of the other
sources can be reduced by using appropriate noise filtering and
other electronic techniques. One way to reduce the detector
statistical fluctuations is to use averaging of more than one
pulse height in the process of spectrum acquisition. In this
paper, we analyze a spectrum acquisition technique called
Seeded Localized Averaging (SLA), that allows for a real
time reduction of the FWHM in acquired spectra [5], [6]. In
addition to demonstrating the benefits of SLA through both
experimental and simulated examples (see Figure 1), we prove
basic theoretical properties of the transformation.

There are methods to post-process the acquired energy spec-
tra using spectral-deconvolution that reduce peak FWHM [7].
Those methods are based on modeling the observed energy
spectrum as a function of two random variables, the input
energy spectrum and the detector response function. The de-
tector response function can be modeled as a joint probability
distribution on input pulse heights to output pulse heights. At
least three such methods exist, using regularisation [8], max-
imum likelihood [9], and maximum entropy [10]. However,
modeling the detector’s energy-response function for spectral-
deconvolution “can be a very computing-intensive task [7].”

The main difference between SLA and spectral-
deconvolution methods is that SLA is a real-time spectrum
acquisition technique which requires no knowledge of the
detector response function. In other words, SLA can be
carried out in hardware, in real time, as pulse heights are
measured by the detector. In addition, because SLA uses
averaging to reduce instrument noise, SLA does not require
an explicitly formulated noise model for the detector. This
is practically advantageous, because SLA can be readily
used with varying detector equipment. On the other hand,
having a computationally-intensive, data-driven model of
the noise from a specific instrument may result in cleaner
post-processing spectra.

The remainder of this paper is structured as follows. In Sec-
tion II, we describe Seeded Localized Averaging, its variants,
and its basic theoretical properties. In Section III, we demon-
strate some specific examples of the SLA transformation to
different distributions and its sensitivity to its input parameters.
In Section V, we draw some conclusions. The detailed proofs
of the properties of SLA are left to Appendix A.

II. DESCRIPTION OF SEEDED LOCALIZED AVERAGING

In conventional spectroscopy, the increment of the spec-
troscopy channels is based on a single pulse height mea-
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Fig. 1: Comparison of conventional spectrum acquisition to a spectrum acquired with seeded localized averaging (SLA).
Figure 1a shows a low energy spectrum example from NaI(Tl) scintillation detector and Am241 radiation source. Both spectra
have the same total number of counts. The spectrum on the left was acquired with conventional pulse height analysis, the
spectrum on the right was acquired using SLA. The full-width half-maximum of the peak is significantly reduced. Figure 1b
also shows conventional pulse height analysis (left) and SLA (right) using an old fluorescent watch dial source, Ra226, and a
NaI(Tl) scintillation detector. Both spectra have the same total number of counts. SLA again reduces the FWHM.

surement. That is, every pulse height measurement causes
increment of the channel content.

In order to improve energy resolution, Seeded Localized
Averaging uses the average of a predetermined number of
pulse heights to determine a channel to increment. The es-
sential feature of SLA and the fundamental difference from
the conventional pulse height analysis method is the use of
more than one pulse height measurement to increment the
spectroscopy channels. That is, the channel number is derived
and the channel content increments only after the average of
two or more pulse heights is obtained.

Using simple pulse height averaging of all measured pulse
heights destroys the differential between distinct energy peaks
in the spectrum. Therefore, SLA implements a selective ap-
proach to carry out the averaging, averaging only over a narrow
window of pulse heights. The window size naturally alters the
results, and has to be carefully chosen in order to preserve
the spectral information. The window size selection should be

made taking into account the FWHM of the spectrum obtained
by the conventional pulse height analyzer.

Selection of an appropriately narrow averaging window is
not sufficient by itself; it is also necessary to select the position
of the averaging window. If the averaging window has a
fixed position, the post-averaging spectrum would simply be
a step-function of the original spectrum, not providing any
decrease in the FWHM. Thus, the key to SLA is that it
alters the position of the averaging window as the averaging
is performed.

The SLA process has two parameters, the size of the
averaging window, and the predetermined number of pulse
heights to average. Simply, in SLA, when the first pulse height
is measured, it creates an averaging range around it based on
the averaging window. For example, if the averaging window
is 3 and a pulse height of 100 is measured, the averaging range
is from 97 to 103. When a second pulse height is measured
that falls within that averaging range, the two pulse heights are



averaged and the center of the averaging range is moved to
the computed average. For example, suppose the second pulse
height measured is 98. The second pulse height is within the
averaging range created by the first pulse height. The averaging
range is re-centered at the average of the two pulse heights,
99, and now spans 96 to 102. The process is repeated until a
fixed number of pulse heights have been averaged, as specified
by the SLA parameter. For example, if the number of pulse
heights to average is 2, the running example has averaged two
pulse heights, and we output 99 as a channel increment.

Figure 2 graphically depicts an implementation of SLA.
To implement SLA, the averaging of the pulse heights is
done using an averaging memory. The averaging memory
has similar structure as spectral memory; it has channels that
typically have the same width as the spectral channels. Each
of the averaging memory channels holds two values: average
sum and average number.

Since there may be multiple averaging ranges active at the
same time, it is easier to think of SLA’s averaging window
parameter as specifying a search range around the recently
measured pulse height.

Initially, the entire content of the averaging memory is set to
zero. When a pulse arrives its pulse height is used to center the
search range. The average number is checked within the search
range. If all channels within the search range hold zero than
the pulse height becomes the seed of new average sum. The
pulse height seeds the average sum, and the average number
is incremented by one (Figure 2a).

After some average sums are seeded, when a pulse height
is measured, not all channels in the search range will hold
zero. If there is only one channel with non-zero average sum
in the search range, then the measured pulse height is added
to the average sum of that channel. If more than one channel
has non-zero average sum in the search range, the measured
pulse height is added to the average sum of the channel closest
to the measured pulse height. If the measured pulse height is
exactly between two channels containing average sums, a fair
coin is flipped and the pulse height is added to one of the two
channels. Every time a pulse height is added to the average
sum, the average number is incremented by one. Then, an
average pulse height is computed by dividing the average sum
by the average number. If the average pulse height points to
a new channel in the averaging memory, the average sum and
the average number are moved to this new channel. The old
average sum and average number locations are set to zero
(Figure 2b).

Eventually, the average number of an averaging channel
reaches the predetermined number of pulse heights to average.
At that point, the average sum is divided by the average
number. The result of this division is an average pulse height
that is used to point to the channel of the spectral memory.
The channel of the spectral memory increments. The locations
of the average sum and the average number are set to zero
(Figure 2e).

A. Theoretical Properties of SLA
Theoretically, SLA can be viewed as a probability density

function (pdf) transformation. The energy spectrum produced

by the directly measured pulse heights describes a probability
density over energy levels. SLA takes as input such a proba-
bility density, and transforms it to a new probability density
over the same energy levels.

Let the energy spectrum before SLA describe pdf f(x) and
associated cumulative distribution function (cdf) F (x). Let r
be the averaging window parameter. Let n be the number of
pulse heights to average parameter, and for simplicity let us fix
it to 2. Let X0 be a random variable (r.v.) describing the initial
pulse height measured; with a pdf f(x) and cdf F (x). The
pulse height X0 specifies an averaging range, [X0−r,X0+r].
Let X1 be a r.v. describing the second pulse height to fall
within the averaging range. The distribution of X1 has the
same pdf as X0 but restricted to the interval [X0− r,X0 + r]
and normalized so that it integrates to 1. The energy channel
incremented at the end of SLA is the average of the two
measured pulse heights, corresponding to the random variable
P0 = X0+X1

2 . An input probability density function, f(x),
completely specifies the distributions of X0 and X1, and the
SLA transformation produces the probability density function
of P0.

For the remainder of this section, we describe the theoretical
properties of SLA, and what they mean practically. The proofs
of these properties are relegated to the appendix. We discuss
the properties with the parameter n fixed to 2, for simplicity.
For a larger value of n, we would have P0 =

Pn−1
i=0 Xi

n , where
the distribution of Xj for j = 1 . . . n − 1 is the same as that
of X0 but restricted to the interval [

Pj
i=0Xi

j−1 − r,
Pj−1

i=0 Xi

j + r]
and normalized so that it integrates to 1. Properties for those
versions of the SLA transformation can be derived in a similar
manner as the ones stated here.

It is possible to explicitly characterize the pdf and cdf re-
sulting from the SLA transformation, in terms of the parameter
r and the initial pdf, f(x) and cdf, F (x), regardless of their
specific shapes.

Lemma II.1. The random variable P0 has cdf

Pr[P0 ≤ y] =
∫ y− r

2

−∞
f(x) dx

+
∫ y+ r

2

y− r
2

f(x0)
∫ 2y−x0

x0−r

f(x1)
F (x0 + r)− F (x0 − r)

dx1dx0

and pdf

fp(y) =
∫ y+ r

2

y− r
2

2f(x)f(2y − x)
F (x+ r)− F (x− r)

dx.

The most basic, desirable property of the SLA transfor-
mation is not to shift the locations of peaks in the energy
spectrum. This is clearly not true for an arbitrary setting for
the parameters. For example, setting r to infinity and n to
a very large constant makes to SLA transformation take a
simple average of n measured pulse heights, regardless of their
location. For those parameter settings, the SLA transformation
would produce a delta function at the mean of the original
distribution, f(x). Using the characterization of Lemma II.1,
it is possible to show that SLA does not shift or alter the
symmetry of the original distribution.
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Fig. 2: Example of SLA implementation. The averaging window in this example is set to 3, making the search range encompass
a total width of seven channels - three from each side of the pulse height channel and the pulse height channel itself. Figures 2a
and 2c show a seeding operation, when there is no average sum within the search range. The rest of the figures illustrate the
average sum build-up process. The number of pulse heights to average in this example is set to four. This number is reached
in Figure 2e which illustrates the process of incrementing the spectrum memory channels.



Lemma II.2. If f(x) is symmetric about µ, then fp(y) is also
symmetric about µ. As a corollary, if f(x) is symmetric with
mean µ, then fp(y) is also symmetric with the same mean, µ.

Intuitively, the above lemma states that regardless of the
parameter values for SLA, the SLA transformation does not
shift the distribution, and maintains symmetry. In particular,
if the original distribution were a single Gaussian peak, the
resulting distribution would have the same mean, maintaining
the peak location, and would also be symmetric.

The second basic, desirable property of the SLA transfor-
mation is that it reduces FWHM of the original distribution,
sharpening the peaks. For a single Gaussian peak, the FWHM
is related to the variance of the distribution. We can charac-
terize SLA’s impact the variance of f(x) with the following
lemma.

Lemma II.3. If f(x) is symmetric and increasing towards its
mean, µ, then P0 has a smaller variance than X0.

Intuitively, the above lemma states that for any distribution
that looks like a single peak, in other words is symmetric and
increasing towards the mean, the SLA transformation reduces
the variance, and thus the FWHM. Intuitively, for distributions
with multiple peaks, if r is small, at a local level of radius r,
the distribution behaves like a distribution with a single peak.
In Section III, we show explicit examples of these theoretical
results that help in their interpretation.

III. EXAMPLES OF SEEDED LOCALIZED AVERAGING

To get a better understanding of the SLA transformation,
Figure 3 depicts the transformation as applied to a standard
normal distribution. Figure 3a depicts the original distribution,
and the resulting transformed distributions from SLA with n
fixed to 2 and different values of r. The decrease in the FWHM
of the peak is evident in the figure. Figure 3b depicts the
theoretical distribution resulting from SLA with n = 2 and
r = 4 versus a histogram derived through simulation.

Different values of r provide different levels of variance
reduction, as can be seen in Figure 3a. We can understand
what levels of variance reduction are possible, both theoret-
ically and practically. Theoretically, as r goes to zero, X1

is approximately equal in value to X0, and thus P0 = X0,
providing no variance reduction. As r goes to infinity, X1

has the same distribution as X0, and thus P0 = X0+X1
2 is

the sum of two independent, identically distributed Gaussians
divided by two. Because of standard results on the sums of
Gaussians, if X0 is standard normal, the variance of P0 is 1

2 ,
providing a factor of 2 variance reduction. As n increases,
this variance reduction would be greater. Figure 4 depicts the
variance reduction of SLA when changing the parameter r and
holding n fixed to 2.

For a symmetric distribution without a peak, such as
the uniform distribution, SLA maintains both the mean and
symmetry, as guaranteed by Lemma II.2. The result of the
SLA transformation on the uniform distribution is depicted in
Figure 5. When the averaging window, r, is equal to 1, the
SLA transformation outputs the average of two independent

Fig. 4: SLA variance reduction when applied to a standard
normal distribution. The horizontal axis shows different values
of the averaging window parameter, r. The parameter n is
fixed at 2.. The vertical axis shows the variance of the result-
ing distribution. The results agree with theoretical arguments
showing that the variance of the output distribution must be
between 1 and 0.5.

identically distributed uniform variables, giving the familiar
triangular shaped distribution in Figure 5a. Figure 5b demon-
strates agreement between a simulated histogram of SLA with
n = 2, r = 0.25 applied to the uniform against the theoretical
distribution as specified by Lemma II.1.

Finally, consider a distribution with two peaks, such as a
mixture of two Gaussians. Figure 6 depicts the SLA trans-
formation acting on a mixture of two standard normals, one
centered at -2 and the other at 2. For small values of r, the SLA
transform reduces the FWHM, as shown for the value 1. For
larger values of r, the original distribution no longer locally
(an interval with radius r) acts as a distribution with one peak.
Thus, for larger values of r, 4 in the example, we see a new
peak introduced at 0, the mean of the original distribution. For
any distribution, there is a value of r small enough so as not
to introduce such artifacts. And, even for large values of r,
the SLA transform maintains the mean of the original pdf and
symmetry as guaranteed by Lemma II.2.

IV. SLA SIMULATIONS AND EXPERIMENTAL TESTS

Analytical solutions of the PDF transformation due to SLA
become complicated when a larger number of pulse heights
are averaged. Numerical simulations allow investigation of
the properties of SLA by synthesizing artificial peaks that
model real spectroscopy peaks. These simulations allow for
controlling parameters such as FWHM and the total number
of counts under the peak. To illustrate this, an example of
two overlapping peaks is shown in Fig. 7a. A random number
generator produces a sequence of pulse heights that can be
processed either conventionally (MCA) or using SLA. The
two Gaussian peaks P1 and P2 in Figure 7 are obtained using
an MCA technique. In this example P1 represents exactly 1
million counts while P2 has counts that are fraction of the P1
counts. This fraction of counts is indicated in percentage in
Figure 7a. The FWHM MCA of both peaks is 50 channels. The
space between the centroids of the peaks is exactly 1.5 FWHM
MCA. The same sequence of pulse heights is processed by
SLA routine with averaging window of 0.5 FWHM MCA.
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Fig. 3: The Seeded Localized Averaging transformation applied to a standard normal distribution. Figure 3a depicts the original
Gaussian pdf, and the resulting pdfs from several variants of SLA, all with n = 2 but with varying averaging window, r. The
figure demonstrates the decrease in the FWHM. Figure 3b demonstrates agreement between a simulated histogram of SLA
with n = 2, r = 4 applied to a standard normal against the theoretical distribution as specified by Lemma II.1.

(a) (b)

Fig. 5: The Seeded Localized Averaging transformation applied to a uniform distribution. Figure 5a depicts the original uniform
pdf, and the resulting pdfs from several variants of SLA, all with n = 2 but with varying averaging window, r. Figure 5b
demonstrates agreement between a simulated histogram of SLA with n = 2, r = 0.25 applied to the uniform against the
theoretical distribution as specified by Lemma II.1.

Fig. 6: SLA applied to a mixture of two Gaussian distributions.
The original pdf is of two standard normals, centered at 2 and
−2. When r is sufficiently small, about 1 in this example, the
FWHM of both peaks is reduced, and the dip between the
peaks is exaggerated. When r becomes larger, the original pdf
no longer behaves like a single peak locally. With r = 4, the
output density’s pdf has a peak at 0, the mean of the original
density. Because the original distribution is symmetric, the
output distribution is also symmetric, following the theoretical
result of Lemma II.2.

Fig. 8: X-ray fluorescent spectrum of the Mn K-lines obtained
with a silicon drift detector. SLA reduces the FWHM from
145eV (MCA) to 85eV (SLA). The peaks are more than 3
FWHM MCA, and the ratio of the peak areas under MCA
and SLA are identical.

The number of averaging pulse heights is variable in general
(Table I), however, Figure 7b shows an example of an SLA
spectrum averaging 16 pulse heights. To preserve the total
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Fig. 7: A simulation of SLA for two Gaussian peaks of differing sizes. In this example P1 represents exactly 1 million counts
while P2 has counts that are fraction of the P1 counts, as indicated in Figure 7a. Both peaks have a FWHMA MCA of 50
channels, and the space between their centroids is 1.5 FWHM MCA. Figure 7a depicts spectra acquired using MCA. Figure 7b
depicts spectra acquired with SLA, an averaging window of 0.5 FWHM MCA, and averaging 16 pulse heights. To preserve
the total number of counts SLA with pipeline pulse height recycling is used [11].

number of counts SLA with pipeline pulse height recycling is
used [11].

One important question about SLA is its ability to preserve
the relative area of the peaks in the process of PDF transfor-
mation. While a theoretical or in-depth experimental analysis
of the relative peak area is out of the scope of this paper,
we provide some quick check simulation analysis for this
question. We consider two separate simulations. In the first,
we consider peaks with centroid spacing less than 3 FWHM
MCA, and in the second we consider peaks with centroid
spacing more than 3 FWHM MCA.

For close peaks, with centroid spacing less than 3 FWHM
MCA, the simulation shown in Figure 7 allows for performing
a quick check on the peak area ratio (P2/P1) using simple
count integration in the regions of interest (ROI). A set of SLA
spectra using different numbers of pulse heights to average
are recorded and the P2/P1 ratio is calculated (see Table I).
Table I also shows the dependence of FWHM SLA on the
number of pulse heights to average. For this particular example
it is evident that SLA improves not only the FWHM but the
peak area ratio which can be viewed as a direct sequence of

the resolution improvement. Specifically, consider the example
where P2 has 10% of the counts of P1. Because the two peaks
are close and overlap, the ratio of the ROI for P2/P1 in an
MCA acquired spectrum is not 10% but about 14%. On the
other hand, when 16 pulse heights are averaged for an SLA
acquired spectrum, the ratio of the ROI for P2/P1 is 10.8%.
More detailed results are available in Table I.

The study in Figure 8 considers peaks with centroids spaced
at distance larger than 3 FWHM MCA. The figure shows an
x-ray fluorescent spectrum of the Mn K-lines obtained with
a silicon drift detector. The resolution obtained with MCA
is 145 eV. The resolution of the SLA spectrum is 85eV and
exceeds the statistical limit of the conventional spectroscopy
using silicon detectors. The peak areas and the ratio between
K-alpha and K-beta peaks obtained with MCA and SLA are
identical.

V. CONCLUSIONS

Figure 2 compares spectra obtained with conventional spec-
troscopy system and spectroscopy system using SLA. The



TABLE I: The behavior of SLA as we vary the number of pulse heights to average. The first row of the table represents SLA
when only 1 pulse height is averaged, which is equivalent to standard MCA spectrum acquisition. The columns on the right
hand side of the table represent studies for different spectra depicted in Figure 7. For example, a count ratio of P2/P1 of 10%
means that P2 has 10% of the counts of P1. Because the two peaks are very close and overlap, when integrating the regions
of interests (ROI) under each peak, the ratio need not be 10%. For example, an MCA acquired spectrum when the count ratio
is 10% results in an ROI area ratio of 13.97%. SLA improves the FWHM and achieves an ROI area ratio of P2/P1 that is
closer to the original count ratio when compared to MCA.

Number of pulse
heights to average

FWHM SLA
FWHM MCA

SLA P2
P1

when
count ratio is 10%

SLA P2
P1

when
count ratio is 20%

SLA P2
P1

when
count ratio is 50%

SLA P2
P1

when
count ratio is 100%

1 (MCA) 1 13.97 ± 0.04 % 23.53 ± 0.05 % 52.18 ± 0.07 % 100.02 ± 0.1 %

2 0.87 13.04 ± 0.04 % 22.67 ± 0.05 % 51.60 ± 0.07 % 99.98 ± 0.1%

4 0.75 12.03 ± 0.03 % 21.82 ± 0.05 % 51.01 ± 0.07 % 100.00 ± 0.1%

8 0.58 11.34 ± 0.03 % 21.22 ± 0.05 % 50.68 ± 0.07 % 100.04 ± 0.1%

16 0.42 10.80 ± 0.03 % 20.72 ± 0.05 % 50.44 ± 0.07 % 100.01 ± 0.1%

figure shows the improvement in FWHM when the SLA
technique is used.

This paper demonstrates both a practical and theoretical
description of the Seeded Localized Averaging transformation.
The theoretical description leads to proofs of the fundamental
properties of SLA, and investigation of the SLA transformation
and its sensitivity on basic examples such as a Gaussian
peak (Figures 3 and 4), the uniform distribution (Figure 5),
and a mixture of two Gaussians (Figure 6). For a symmetric
distribution with a single peak, the SLA transformation always
maintains the mean, maintains symmetry, and reduces the
FWHM. For distributions with multiple peaks, if the averaging
window is small enough, SLA reduces the FWHM. Simula-
tions and experimental results have shown advantages of using
SLA to improve the FWHM of the spectral peaks.

One drawback of SLA is the reduced number of counts
in the channels compared to the conventional method. The
total number of the counts in the SLA spectra is reduced
by a factor equal to the predetermined maximum number of
pulse heights in the average sum (the parameter n). Some
techniques are available to mitigate this effect [11]. For
example, a large number of pulse height measurements may be
collected, and then repeatedly, randomly sub-sampled to apply
the SLA transformation. However, the theoretical analysis of
such techniques is beyond the scope of this presentation.

SLA provides a real-time processing method for reducing
detector noise, with provable theoretical guarantees, and con-
tributes to a related body of work on spectral-deconvolution
methods.

APPENDIX

RANDOM VARIABLE DEFINITIONS

Let r be SLA averaging window. Let X0 have a pdf f(x)
and cdf F (x). Let X1, which depends on X0, have the same
pdf as X0 but restricted to the interval [X0 − r,X0 + r] and
normalized so that it integrates to 1.

We define the seeded localized average as the random
variable P0 = X0+X1

2 .

PDF AND CDF OF SEEDED LOCALIZED AVERAGING

Lemma A.1. The random variable P0 has cdf:

Pr[P0 ≤ y] =
∫ y− r

2

−∞
f(x) dx

+
∫ y+ r

2

y− r
2

f(x0)
∫ 2y−x0

x0−r

f(x1)
F (x0 + r)− F (x0 − r)

dx1dx0.

Proof:
We can split the event {P0 ≤ y} into two mutually exclusive

events. The first event is {X0 ≤ y− r
2}, in which any value of

X1 makes {P0 ≤ y}. The second event is that X0 is bigger,
but X1 is small enough that P0 is less than y anyway: this
happens when ({y − r

2 ≤ X0 ≤ y + r
2}) and ({X0 − r ≤

X1 ≤ 2y −X0}). The two terms in the cdf expression in the
lemma reflect the probabilities of these two mutually exclusive
events, where f(x1)

F (x0+r)−F (x0−r) is the pdf of X1 in the interval
(X0 − r,X0 + r).

Lemma A.2. The random variable P0 has pdf:

fp(y) =
∫ y+ r

2

y− r
2

2f(x)f(2y − x)
F (x+ r)− F (x− r)

dx

Proof: We begin with the definition of pdf and the result



of Lemma A.1:

fp(y) =
d

dy
Pr[P0 ≤ y]

=
d

dy

 Z y− r
2

−∞
f(x) dx

+

Z y+ r
2

y− r
2

f(x0)

Z 2y−x0

x0−r

f(x1)

F (x0 + r)− F (x0 − r)
dx1dx0

!
= f(y − r

2
)

+
d

dy

 Z y+ r
2

y− r
2

f(x0)

Z 2y−x0

x0−r

f(x1)

F (x0 + r)− F (x0 − r)
dx1dx0

!

= f(y − r

2
) +

d

dy

 Z y+ r
2

y− r
2

f(x0)
F (2y − x0)− F (x0 − r)

F (x0 + r)− F (x0 − r)
dx0

!

= f(y − r

2
)− f(y − r

2
)
F (2y − (y − r

2
))− F ((y − r

2
)− r)

F ((y − r
2
) + r)− F ((y − r

2
)− r)

+

Z y+ r
2

y− r
2

f(x0)f(2y − x0) · 2
F (x0 + r)− F (x0 − r)

dx0

+ f(y +
r

2
)
F (2y − (y + r

2
))− F ((y + r

2
)− r)

F ((y + r
2
) + r)− F ((y + r

2
)− r)

= f(y − r

2
)− f(y − r

2
)
F (y + r

2
)− F (y − 3d

2
)

F (y + r
2
)− F (y − 3d

2
)

+

Z y+ r
2

y− r
2

f(x0)f(2y − x0) · 2
F (x0 + r)− F (x0 − r)

dx0

+ f(y +
r

2
)

F (y − r
2
)− F (y − r

2
)

F (y + 3d
2

)− F (y − r
2
)

=

Z y+ r
2

y− r
2

f(x0)f(2y − x0) · 2
F (x0 + r)− F (x0 − r)

dx0,

where we have used the fundamental theorem of calculus to
take derivatives, and a change of dummy variables completes
the theorem statement.

PROPERTIES OF SEEDED LOCALIZED AVERAGING

Lemma A.3. If f(x) is symmetric about µ, then fp(y) is also
symmetric about µ.

Proof: We show that fp(µ−δ) = fp(µ+δ). We start with
the left hand side and the definition of fp(x) from Lemma A.2:

fp(µ− δ) =
∫ µ−δ+ r

2

µ−δ− r
2

2f(x)f(2(µ− δ)− x)
F (x+ r)− F (x− r)

dx.

Now, we substitute x = µ− δ − r
2 + z to get

fp(µ− δ) =
∫ r

0

2f(µ− δ − r
2 + z)f(µ− δ + r

2 − z)
F (µ− δ + r

2 + z)− F (µ− δ − 3d
2 + z)

dz

=
∫ r

0

2f(µ− (δ + r
2 − z))f(µ+ (−δ + r

2 − z))
F (µ+ (−δ + r

2 + z))− F (µ− (δ + 3d
2 − z))

dz.

(1)

We continue with the right hand side

fp(µ+ δ) =
∫ µ+δ+ r

2

µ+δ− r
2

2f(x)f(2(µ+ δ)− x)
F (x+ r)− F (x− r)

dx,

and we substitute x = µ+ δ + r
2 − z to get

fp(µ+ δ) =
∫ 0

r

−
2f(µ+ δ + r

2 − z)f(µ+ δ − r
2 + z)

F (µ+ δ + 3d
2 − z)− F (µ+ δ − r

2 − z)
dz

=
∫ r

0

2f(µ+ (δ + r
2 − z))f(µ− (−δ + r

2 − z))
F (µ+ (δ + 3d

2 − z))− F (µ− (−δ + r
2 + z))

dz.

(2)

Because f(x) is symmetric about µ, for any value b we have
f(µ−b) = f(µ+b), and thus the numerators of equations (1)
and (2) are equal. Also because f(x) is symmetric about µ,
for any values a and b we have F (µ+a)−F (µ−b) = F (µ+
b)−F (µ−a), and thus the denominators of equations (1) and
(2) are equal. Intuitively, the property F (µ+a)−F (µ− b) =
F (µ+b)−F (µ−a) simply says that the area under the curve
f(x) in the interval (µ− b, µ+ a) is the same as the area in
the interval (µ− a, µ+ b).

Because both the numerators and denominators of equations
(1) and (2) are equal, we have that fp(µ− δ) = fp(µ+ δ).

Corollary A.4. If f(x) is symmetric with mean µ, then fp(y)
is also symmetric with the same mean, µ.

Proof: Follows from Lemma A.3.

Lemma A.5. If f(x) is symmetric and increasing towards its
mean, µ, then P0 has a smaller variance than X0.

Proof: Without loss of generality, we assume µ = 0. The
lemma statement then reduces to showing E[(X0+X1

2 )2] <
E[X2

0 ]. We begin by using linearity of expectation

E

[(
X0 +X1

2

)2
]

= E

[
1
4
(
X2

0 +X2
1 + 2X0X1

)]
=

1
4
(
E
[
X2

0

]
+ E

[
X2

1

]
+ 2E [X0X1]

)
≤ 1

4
(
2E
[
X2

0

]
+ 2E [X0X1]

)
=

1
2
(
E
[
X2

0

]
+ E [X0X1]

)
where the inequality is because X1 is a restricted version of
X0.

To show the lemma statement, the only thing that remains
is to show E [X0X1] < E[X2

0 ]. We have

E [X0X1] =
∫ ∞
−∞

f(x0)E[x0X1|X0 = x0] dx0

=
∫ ∞
−∞

f(x0)x0E[X1|X0 = x0] dx0. (3)

Because f(x) is symmetric and increasing towards the mean
(0, since we assume µ = 0) we have: 1) if x0 = µ = 0 then
E[X1|X0 = x0] = x0 and 2) if x0 6= µ then |E[X1|X0 =
x0]| < |x0| . Thus, continuing from equation (3),

E [X0X1] =
∫ ∞
−∞

f(x0)x0E[X1|X0 = x0] dx0

<

∫ ∞
−∞

f(x0)x2
0 dx0

= E[X2
0 ]



completing the proof.
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