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Christian Klaus and Timothy H. Chung

Abstract— This paper investigates the effect on the perfor-
mance of a mobile searcher caused by altering the search
environment. We model the search environment as a simple
connected undirected graph. By adding non-existing edges
to the graph we change the search environment’s model.
Our objective is to optimize search performance, that is, to
minimize the (expected) time needed to find the target, in the
context of probabilistic search. We first analyze two different
methods to generate random connected graphs, then evaluate
a number of methods to augment a graph by means of the
algebraic connectivity of the graph and its associated (Fiedler)
eigenvector. The relationship between the graph topology and
the performance of the search is highlighted, including a com-
parative evaluation of different search strategies employed by
the mobile searcher. Extensive simulation studies and resulting
statistical and theoretical models show that adding a few wisely
chosen edges to a sparse graph is sufficient to dramatically
increase search performance. Further, we propose a novel
method for incorporating prior information about the target’s
likely location by defining a subgraph on which the presented
approach is performed, resulting in even greater improvements
in search performance.

I. INTRODUCTION
The Laplacian matrix of a graph and its eigenvalues are

used in various areas of mathematics with interpretations
in several problems in physics, electrical engineering and
many others. Among all eigenvalues of the graph Laplacian
one of the most extensively studied is the second smallest,
including seminal work by M. Fiedler [1],[2]. In terms
of graph theory this eigenvalue is denoted the algebraic
connectivity of the graph. Because of its importance and in
honor of Fiedler’s work, the eigenvector associated with this
eigenvalue is known as the Fiedler vector. Classifications
of bounds relating other graph properties as a function of
algebraic connectivity are shown in [3] and more recently
summarized in [4].

While the way of assigning edge weights to graphs in
order to maximize the algebraic connectivity has been widely
studied and applied to various problems [5], [6], [7], the
problem of adding some non-existing edges to achieve the
same goal remains challenging. In fact, this problem is
shown to be NP -hard [8]. In this research area, [9] is of
particular interest. Boyd and his co-authors identified and
provided a common framework for a class of these edge-
weight problems using a semidefinite program (SDP) [10].
In [11], they introduce a relaxation to the boolean constrained
semidefinite program as well as an approach employing
the Fiedler vector to guide the augmentation of the graph.
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While the relaxed SDP does provide an optimal non-integer
solution, which represents an upper bound for the augmented
graphs algebraic connectivity, it does not directly yield a
solution to the original problem in that the simple rounding
of the edge weights makes this a heuristic method. Neither
the Fiedler vector method nor the relaxed SDP guarantees
an optimal solution. In the case of growing a graph by only
one edge, [12] defines a method that uses the Fiedler vector
and provides the optimal solution.

Probabilistic search theory has been extensively studied
in operations research communities, stemming from the
application of probability and optimization models in search
of submarines [13]. Numerous works have considered op-
timization of searcher paths in both the OR (see [14] for
a survey) and robotics communities (e.g., [15]), but few
have investigated the structure of the search environment and
its modification as they pertain to the probabilistic search
process. The connection between algebraic connectivity and
search performance has been studied in [16], leveraging a
framework for decision making in probabilistic search found
in [17]. To the best of our knowledge, this is the first work
that provides insight in the relation between augmenting a
given connected graph and probabilistic search performance.

We consider a simple connected graph without multiple
edges or loops, G = (V,E) with n = |V | nodes (vertices,
cells) and m = |E| edges. The complement of the graph
G = (V,E) contains m edges s.t. e

ij

/2 E(G). G(V,E [
E) = K

n

, the complete graph with 1
2n(n � 1) edges. The

number of neighbors of a node v is called the degree of v
and is denoted by deg(v). Furthermore, the largest degree in
the graph is denoted by �(G) and the smallest degree by
�(G). A simple connected graph with n vertices has at least
n�1 edges.

The ij-entry of the n⇥n adjacency matrix, Adj
ij

, is one
if e

ij

2 E and zero otherwise. The degree matrix, Deg, is
defined by Deg

ii

= deg(v
i

) and zero for i 6= j. The edge
vector, a

e

2 Rn, corresponding to the edge, e
ij

, has two
nonzero entries, a

ei = 1 and a
ej = �1.

The n⇥n graph Laplacian can be written as

L = Deg �Adj =

mX

e=1

a
e

aT

e

The algebraic connectivity, �2(L), has the following prop-
erties [1]:

• �2 is monotonically non-decreasing with adding edges
to the graph G,

• �2 = 0 if and only if G is not connected,
• �2 = m if G = K

n

,
• �2  �(G).
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The main contributions of this work include a comparative
evaluation of methods for adding edges to improve the
topology of a graph. The resulting approach is used to
highlight the relationship between the graph structure and the
performance of a mobile searcher as measured by the time
until a stationary target is found. Statistical studies provide
the basis for an analytic model which describes an expo-
nential dependence of search performance on the number
of edges added to the graph. Further, a novel approach to
incorporate prior information on likely target locations using
a subgraph is proposed.

The problem of augmenting a graph with additional edges
is formulated in Section II, in addition to the models for
probabilistic search. Section III offers analysis of simulation
studies and provides resulting analytic models describing
search performance. Finally, a summary of results and mul-
tiple avenues for future work are highlighted in Section IV.

II. PROBLEM FORMULATION
A. Optimization Problem

Because of the demonstrated relationship between alge-
braic connectivity and search time [16], we are going to
grow the graph by k edges, in order to maximize �2(G).
We briefly review three methods for augmenting the graph.

1) Brute Force: This method simply tries all possible
combinations of edges to add and thus is an exact algorithm,
i.e., it is guaranteed to find the optimal solution. Unfortu-
nately, it takes

�|E|
k

�
eigenvalue computations. We use this

method for benchmarking purposes for cases with small k but
is clearly infeasible for larger problems of practical interest.

2) Fiedler vector method: This method (FVM) uses the
Fiedler vector, i.e., the eigenvector associated with the second
smallest eigenvalue of the original graph, to determine an
edge to add. It was first introduced as a greedy perturbation
heuristic in [11]. Each of the k edges are added sequentially,
that is, one at a time, choosing the edge e

ij

from the candi-
date set of edges currently not in the graph with the largest
(v

i

�v
j

), where v is the Fiedler vector of the current graph
Laplacian. We need to perform k eigenvector computations
to find k edges to add. This method does very well in many
cases but does not guarantee an optimal solution, neither for
adding one edge nor for the sequence of edges.

3) Semidefinite programming: In his 1973 paper [1],
Fiedler already stated and showed that ˜M = M �
�2

�
I� n�1J

�
is semidefinite for any n⇥n semidefinite

matrix M with corresponding second smallest eigenvalue
�2, where I is the identity matrix and J the matrix of all
ones. The graph Laplacian L with �

i

� 0, i = 1, 2, . . . , n
is always positive semidefinite. Boyd used the semidefinite
property to formulate a relaxation of the original semidefinite
program in [11] to maximize the algebraic connectivity by
adding edges to the graph.

max s

s.t. s
�
I� 11T /n

�
� L +

X
m

e=1
x

e

a
e

aT

e

1T x = k,

0  x  1

The decision variable is x 2 {0, 1}m, where x
e

> 0 defines
the fraction of edge e that belongs to the solution. The integer
number of edges to add is smeared over all the possible edges
to add. To solve the original problem, this method requires
a heuristic to determine which edge to choose from the SDP
solution. The authors in [11] propose a simple rounding to
find the k best edges, which is not guaranteed to be optimal.

B. Probabilistic Search
The primary question in search is to determine where the

target is located in a region A, given uncertainty in the
target’s location and in the searcher’s observations. If the
target is considered stationary and is known to be located
somewhere in the region we have a good chance to answer
the question.

Consider a discretized search region A, with cells c 2
{1, . . . , |A|}. In addition we define a virtual cell ; that
represents all space outside the search environment. A target
can be either in one of the search region cells or in the virtual
cell. The presence in one of those cells is a Bernoulli random
variable, denoted as X

c

or X;. At the beginning of the search
process (time, t = 0) there may be a particular probability,
that the target is inside the cth search cell, p0

c

def
= P (X

c

= 1)

or outside the search region, p0
;

def
= P (X; = 1) = 1�

|A|P
c=1

p0
c

.

The single searcher’s position will be in one of the search
region’s cells at any time. We can define another Bernoulli
random variable Y

s(t) that determines whether the searcher
detects the target in cell s(t) at time t.

Besides correct detections the searcher can make false
detections:

P (Y
c

= 1|X
c

= 0)

def
= ↵ false positive

P (Y
c

= 0|X
c

= 1)

def
= � false negative

Applying the law of total probability and Bayes’ Theorem:

P (B) =

kX

i=1

P (B|A
i

)P (A
i

)

P (A
j

|B) =

P (A
j

[B)

B
=

P (B|A
j

)P (A
j

)

kP
i=1

P (B|A
i

)P (A
i

)

j = 1 . . . k

we can update the probabilities conditioned on the search
result after each search step. As an example, the probability
or belief that the target is present in cell c at time t (i.e.,
after t observations) is given by the recursion:

pt

c

= (Xt

c

= 1|Y t

c

= 1) =

(1� �)pt�1
c

(1� �)pt�1
c

+ ↵(1� pt�1
c

)

Depending on the false detection probabilities, ↵ and �, it
takes more or less effort (that is, the number of observations)
to find the target, and time increases to infinity if our initial
belief of the target’s presence (1�p0

;) is incorrect and the
target is not located inside the search region. We define
a lower B

l

and upper B
u

threshold and stop searching
at time t if for any cell pt

c

> B
u

or if 1�p0
; < B

l

.
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This defines a search termination criterion studied in other
contexts, including [18], [19].

Fig. 1 shows the aggregate belief history, that is, the sum
belief that the target is present in search area A, for a search
on a random graph with |A|=n=50 and m=60 for searchers
equipped with different sensors. Target location and searcher
position at t=0 are the same. We do not know if the target
is present in A at the beginning of the search process, which
is reflected in an aggregate belief of 1

2 . Given the target is
present, suppose it could be located in any cell with equal
likelihood, which corresponds to the searcher’s lack of any
prior information. Thus, the initial cell belief in each cell
is p0

c

=

1
100 . We say the initial probability map is uniform

with belief 1
2 . The remaining 50 percent of the probability

mass is assigned to the virtual cell, p0
; =

1
2 . At this point we

refer to [16] for detailed information, including closed-form
recursion expressions and further studies on sensitivity of the
search performance on sensor characteristics (↵,�).
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Fig. 1. Belief of target presence - Evolution of two searches on a graph
with n=50 and m=60 with different sensor characteristics are illustrated.
The initial probability map is assumed uniform with aggregate belief 1

2 .
Target is assumed stationary at the same location for both searches as well
as the initial searcher’s position. The search decision thresholds are set to
be Bl=0.05 and Bu=0.97.

III. ANALYSIS AND RESULTS
A. Random Graph Generation

In order to evaluate the proposed methods for augmenting
a graph in a statistically rigorous manner, we require methods
for quickly generating random simple connected graphs,
including those with large node number. We investigate and
contrast the following two methods, in which we find the
former is faster in creating random graphs, but produces
graphs with higher maximum degree values, �, which can
bias the resulting search performance. The latter approach is
seen to mitigate this bias and offers a more uniform sample
set of random graphs on which to perform the statistical
studies for optimizing the algebraic connectivity, and thus
the search performance, of the resulting graphs.

1) The Spanning Tree Method: Every connected graph
has a spanning tree, a subgraph containing n nodes and
(n�1) edges that is connected. Conversely, a graph having
such a spanning tree must be connected. We start with an

empty graph and mark the nodes as available. We choose an
available node and an already connected node, place an edge
between those and mark the available nodes as connected.
After repeating this n times we have found a spanning tree
and can place more edges to the graph without destroying
the connectivity.

This is a fast algorithm and we can produce graphs with
a specific number of edges. The downside is that the first
chosen nodes to become connected are more likely to end
up with higher degree. They get more chances to be chosen
from the already connected node set. Simulation shows that
this effect is rather influential for sparse graphs and vanishes
with increasing number of edges.

2) Acceptance-Rejection Method: Suppose we want to
generate a connected graph with n nodes and m edges.
The number of possible edges is n(n�1)

2 . The algorithm
draws a binomial random variable with probability of success
p =

2·m
n(n�1) for any of those possible edges. It adds an edge

to the edge set E(G) if the coin flip succeeded. In a second
step we have to check if the graph is connected, an easy
task calculating �2(L) and we have to check if the number
of actual edges is in the desired range.

This method is unbiased in producing random connected
graphs but it can take many trials to finally find a graph
that is accepted, especially for sparse graphs with a larger
number of nodes.

B. How to Grow the Graph
Knowing the algorithm presented in [12] that always finds

the optimal edge to add in order to increase �2(L), we
analyze if we could get some advantage from this fact. We
grow a graph sequentially by putting the optimal edge for the
current state and run brute force to find the optimal solution
for the same number of edges. Sequential adding of current
state optimal edges is just another heuristic method without
guarantee to return optimal solutions.

We compare the results from the Fiedler vector method
(FVM) (sequential) to the SDP result (simultaneous). Uti-
lizing brute force, we can rank all missing edges according
to the resulting value of �2 if added. We assess which edge
is chosen by FVM and SDP and match it to the ten best
optimal edges. A plot is shown in Fig 2. We have not
incorporated the fact that the SDP is capable of finding
more than one edge simultaneously with one calculation. We
now add more than one edge to graphs with different edge
densities. The result is shown in Fig. 3 This analysis shows
that the greedy algorithm, that is, the sequential Fiedler
vector method, outperforms the SDP approach for random
graphs of varying sizes. The algebraic connectivity of the
grown graph, though not optimal, is better than a SDP result
after rounding to integer values. For each edge that we want
to add to a graph, we must compute the graph Laplacian. The
eigenvalue and eigenvector calculation takes approximately
O(

4
3n3

) operations. To lower the amount of computational
effort, we also propose a method for selecting more than
one edge, that is, a block of edges, after each Fiedler vector
calculation. Fig. 4 illustrates the use of block sizes of three
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Fig. 2. Fiedler vs. SDP, add one edge to a random graph - The edges
found by the Fiedler vector method and by a semidefinite program were
matched to the ten best known edges (calculated by brute force). The plot
shows the number of times a method hit a specific edge. The simulation
was repeated 2000 times for each different edge density with n = 20.
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Fig. 3. Fiedler vs. SDP, add more than one edge to a random graph -
A random graph was grown by a certain number of edges using the Fiedler
vector method and a SDP. The plot shows the number of times a method
returned a graph with higher �2 than the other method. The simulation
was repeated 500 times for each different edge density and each different
number of edges to add.

or ten edges, found by computing the three or ten pairs of
valid nodes (represented by elements in the Fiedler vector)
yielding the greatest differences. The algebraic connectivity
for augmented graphs using this approach is also compared
with the nominal Fiedler vector method (i.e., with block size
1) and random selection of a valid edge to add.

C. Search on Augmented Graphs
Let us grow a randomly generated graph and analyze

the influence on the time to find the target or to abort
the search. Consider a set of randomly generated graphs,
initially sparse with n = 20 and m  50. We can use
the greedy algorithm based on the Fiedler vector using a
block size of three edges for each iteration. We can repeat
this augmentation up to 46 times (for m = 50) before the
resulting graph is nearly a complete graph on 20 nodes, K20.
For each iteration, we conduct 2000 replications of the search
process for the stationary target, which is assumed uniform
among all nodes. For all runs, the searcher possesses a perfect
sensor (↵ = � = 0) and behaves myopically, that is, at
time t the searcher moves to the adjacent cell with highest
probability pt

c

. Note that the current search cell is considered
self-adjacent, which allows the searcher to repeatedly search
the same location if necessary. If the searcher can choose
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Fig. 4. Different methods to grow a graph - The initial random simple
connected graph with n = 20 and m = 40 grew to a complete graph using
different methods to choose the next edge or block of edges respectively.
The shaded areas represent one, two and three standard deviations for the
randomly grown graph (1000 replications used).

from more than one equally likely cell to move to, it will
choose arbitrary. The plot in Fig. 5 shows the results for
an illustrative example graph starting with m = 27 edges.
The expected number of time steps till the target is found,
i.e., the mean of the 2000 search times for every iteration of
augmenting the graph can be seen to decrease with increasing
number of edges in the graph. For comparison, we grow the
same graph 46 times with three randomly chosen edges and
compare the algebraic connectivity and search times for the
graphs resulting from these random additions, noting that
both approaches will eventually achieve the known upper
bound for �2 =n.
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Fig. 5. Change of TTD with adding edges by greedy algorithm -
The initial graph with n = 20 and m = 27 was grown in steps of three
edges by the greedy algorithm. 2000 myopic searches were conducted for
each growing state. The searcher was considered perfect and the target
was located uniformly. The same graph was grown by the same number
of edges randomly chosen. Searcher and target properties stayed the same.
We included the calculated expected number of steps for a K20.

The time to find the target levels off and hits a minimum
value for a complete graph, for which we derive a closed-
form expression for the expected time and its variance as
follows. The myopically-behaving searcher will visit the
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nodes of a complete graph of n nodes, K
n

, according to
the probability {p0

s

, p0
1⇤ , . . . , p

0
k

⇤}, where s is the start cell,
p0
1⇤ � p0

2⇤ � . . . � p0
k

⇤ and k⇤=n�1. If the searcher
is perfect, it will never visit the same cell twice. We use
this information to calculate the expected number of cell
searches, E[S

n,

1
n
] on a K

n

by means of a recursion where
the target is located in any cell with uniform probability 1

n

.

E[S
n,

1
n
] =

⇢
1 , p =

1
n

1 + E[S(n�1), 1
n�1

] , p = 1� 1
n

For a K2, we can search one of the two cells to know the
target’s location, provided the target is present, since the
result from a single observation will either declare the target
present in the observed cell (for a positive detection) or in
the other cell (for a negative detection). Setting the initial
conditions E[S2,

1
2
] = 1 and solving the recurrence gives the

closed form:

E[S
n,

1
n
] =

nP
k=2

k

n
=

n (n + 1)� 2

2n

The same idea can be used for any initial nonuniform target
distribution, conditioned on the target’s presence.

E[S
n, pn ] = p0

s

+

n�2X

i=1

(i + 1) · p0
i

⇤ + (n� 1) · p0
k

⇤

V ar[S
n, pn ] = (1� E[S

n, pn ])

2 · p0
s

+

n�2X

i=1

(i + 1� E[S
n, pn ])

2 · p0
i

⇤

+(n� 1� E[S
n, pn ])

2 · p0
k

⇤

To validate this result for all graphs, we repeat the simulation
several times for different numbers of nodes. Fig. 6 and 7
are two examples studied extensively in simulation.
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Fig. 6. Conducting searches on 15 growing sparse graphs with 50 nodes
- The initial graphs with n = 50 and 55  m  60 were grown in steps of
five edges by the greedy algorithm. 2000 myopic searches were conducted
for each growing state. The searcher was considered perfect and the target
was located uniformly. We included the calculated expected number of steps
for a K50.

We can fit an exponential curve of the form a + b · ec·x

to the simulation data. Parameter a is the expected time to
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Fig. 7. Conducting searches on 10 growing sparse graphs with 100
nodes - The initial graph with n = 100 and 120  m  150 were
grown in steps of ten edges by the greedy algorithm. 2000 myopic searches
were conducted for each growing state. The searcher was considered perfect
and the target was located uniformly. We included the calculated expected
number of steps for a K20.

decision on the complete graph K
n

and b turns out to be
consistently about half of that value. Additional studies are
necessary with graphs of different node numbers to develop
a statistical relation for the parameter c, and is left for near
term future study. Using this fitted curves equation we can
estimate the number of edges one must add to a sparse
graph in order to increase search performance by a desired
amount. The denser the initial graph, the more edges are
needed to get a significant decrease in expected time to find
the target, demonstrating the effect of diminishing returns
by additional edges. The actual number of edges to add is
seen to be dependent on the number of nodes in the graph,
though common among all graphs, independent of number
of nodes, is the fact that at some point, there is no further
improvement with the addition of more edges.

To illustrate the value of the fitted model, consider that
for a sparse graph with n=50 (refer to Fig. 6), one can add
just ten edges to decrease the search time by half relative to
the lowest possible time, i.e., the theoretically derived lower
bound. In other words, we gain 50% of the possible search
improvement by adding just 0.857% of the total possible
edges available for addition! The analytic formulation that
captures this relationship is one of the main contributions of
this work.

D. Other Search Behavior
The already described myopic search behavior offers a

simple method without much computational expense. A
shortest path behavior, leveraging global information over
merely local data, seems to offer advantages if the initial
target distribution is other than uniform. For the proposed
alternate search strategy, a shortest path algorithm, such
as Dijkstra’s, dictates that the searcher follows the shortest
route to search the highest probability cell as soon as
possible. During transit from the current cell to this highest
probability cell, the searcher can be assumed to either collect
observations en route or not conduct any searchers at all. We
can easily find practical applications for both behaviors, for
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example, the use of a towed sonar array (for observations en
route) or the use of a dipping sonar (for observations only
at the goal location).

Simulations show that search using these shortest paths
perform worse than using the myopic search behavior. Since
the searcher does not care about cells via transit while cal-
culating the next search leg, it may visit previously searched
cells. As such, the searcher often spends too much time in
transit and possibly searching low probability cells.

Another effect that increases search time is an alternating
search of adjacent search cells. The idea was to avoid
revisiting of search cells after a short time. We coded an
aggressive myopic search algorithm that searches a cell as
long as one of its neighbors has a lower probability. The
searcher will leave the cell after its probability is squeezed
to the lowest among the adjacent cells. This becomes the
threshold to leave the next cell. That means we have to push
down the next cell’s probability even further, which takes
more search time. The result of this behavior is to increase
the time to decision dramatically, especially in the event the
target is not present in the search area to begin with.

Though far from exhaustive, the study of different search
strategies identifies the myopic search strategy as providing
the best performance among them, where utilizing just local
information rather than global information offers the highest
“bang for the buck.”

E. Incorporating Probability Information
The initial uniform target distribution is a suitable model

whenever we do not have information about the target’s loca-
tion within the search area. While the previously described
greedy algorithm for selecting edges to add did so among
all candidate edges in a uniform manner, incorporating the
probability information to guide the augmentation of the
graph could improve the search performance even more.
Intuitively, for nonuniform target distributions, the searcher
is more likely to find the target in regions of higher target
probability, and therefore should stay in and search these
higher probability areas more frequently. The following ex-
tension of the proposed work recognizes and incorporates the
advantage of additional information, and represents another
novel contribution.

We extract a subgraph from the original graph that
contains only high probability cells and all corresponding
incident edges. This subgraph is then augmented according
to the procedure proposed in the previous sections (i.e., the
Fiedler vector method) to optimize its algebraic connectivity.
Consider an example of a 7-by-7 grid graph to illustrate this
idea, as depicted in Fig. 8(b). In this example, there are two
areas in the search environment where the target is most
likely to be. We incorporate this information into the initial
probability map, shown in Fig. 8(a) as a bimodal distribution.
Selection of nodes to be included in the subgraph is done
by finding the smallest set of nodes such that the sum of
the nodes’ cell beliefs represents a specified percentage of
the total probability. This procedure amounts to generating
an ordered list of nodes, from highest cell belief to lowest,

and sequentially adding nodes to the subgraph until the given
percentage is met. Fig. 8 shows the original graph and the
induced subgraph, where the darkened nodes collectively
represent 75% of the probability mass of the target’s pres-
ence. The graph growing algorithm is performed on this
subgraph, such that the algebraic connectively of the induced
subgraph is maximized (e.g., for the allowable number of
additional edges), after which we embed the augmented
subgraph back into the original graph. By decreasing the
time to find the target while searching on the augmented
subgraph alone, this procedure necessarily decreases the
time to find the target searching on the entire graph. The
enhanced connectivity of the embedded augmented subgraph
ensures that the searcher remains longer in the areas of higher
probability, effectively prioritizing search in these regions. In
the limit where the subgraph is augmented until it itself is
complete, the behavior of the searcher in the overall graph
is to exhaustively search the high probability cells before it
leaves to search the parts of the overall graph with lower
probability of containing the target.

Specification of the probability threshold that dictates the
selection of nodes to form the subgraph is a tuning parameter,
and is likely related to the entropy H of the initial target
distribution. The higher the entropy, one can expect the larger
the subgraph. For example, for a uniform distribution, since
no node is preferential over any other node, i.e., it does
not make any sense to exclude any nodes, the subgraph is
G itself. Increasing certainty of the target’s location results
in a smaller induced subgraph, and thus reduces the total
number of edges to add to this subgraph to achieve signif-
icant improvements. Empirical studies show that generating
subgraphs comprising 80% of the total probability mass
and growing these subgraphs generally produced improved
search effectiveness. More detailed analyses of this threshold
specification and its relationship to the search performance
is subject of ongoing research.
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Fig. 8. (a) Probability map incorporating information about the target
location, which is used to extract (b) a subgraph (darker colored nodes)
from the initial 7-by-7 grid graph which represents 75% of the probability.
The subgraph is augmented by the greedy algorithm before it gets merged
back to the graph

IV. CONCLUSIONS AND FUTURE WORKS

This paper investigated the relationship between the addi-
tion of edges to a graph representing a search environment
and improvement in the search performance, as measured
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by the time necessary to complete the search. This work
leverages existing results pertaining to the second smallest
eigenvalue of the graph Laplacian, also known as the alge-
braic connectivity of the graph, and performs comparison
studies to identify a greedy method based on the Fiedler
vector as an effective and efficient choice for augmenting
a graph. Statistical simulation studies and analysis using
randomly generated graphs validate this finding.

Further, this work enhances the understanding of the
positive correlation between �2 and the search time until the
target is found in problems of probabilistic search. In fact,
search performance on sparse graphs can be significantly
improved by adding only a few wisely chosen edges, and
the relation between number of edges to add and the search
time is modeled as exponential. This analytic model offers
guidance on the necessary additional number of edges needed
to achieve a specified improvement in search for a target.
This result also highlights the fact that adding edges beyond
a certain number does little to improve search performance,
and that knowledge of the relationship between number of
additional edges and enhancement of search will limit the
expense of adding unhelpful edges.

Simulation studies also shows that it is sufficient for the
searcher to utilize local information in conducting its adap-
tive search of the environment. Such a myopic search strategy
is seen to outperform other approaches that may involve
global information but are wasteful in forcing the searcher to
transit through previously visited or low probability regions
in the search environment.

This work also proposed a novel method for further
enhancing the improvement in search performance by par-
titioning the regions of high and low probability of target
presence. By extracting the former region as a subgraph and
adding edges using the greedy method found to be most
effective, this approach offers a means of incorporating prior
information on the target’s likely locations into the graph
augmentation process.

There are numerous avenues for future research, including
extensions to account for heterogeneous edge weightings,
which can represent, e.g., physical distances between lo-
cations. Searcher trajectories which address the constrained
paths will enhance the relevance of the proposed models to
practical applications. Additional modifications to the model
for realistic scenarios address the need to account for the time
it takes to search a cell in addition to transit times, where
a variant of the shortest path search algorithm investigated
herein might become more attractive.

The inclusion of correct information pertaining to the tar-
get location is seen to be beneficial to the searcher; however,
using incorrect information, either by misdirection or by
mistake, is significantly detrimental to the search process.
In other words, if the searcher erroneously attributes a low
likelihood to the true target location, the myopic searcher
will search for a long time until that cell is finally searched.
However, the myopic searcher may have an advantage over a
searcher with global information by restricting the search to
local regions. Such advantages may further be accentuated

in the case of mobile targets, which is another area of future
study. Addition of edges may improve the searcher’s ability
to localize the target, but also hinders the search by providing
greater access for a moving target to maneuver on the graph.
Investigation of this trade off is subject of active and ongoing
research efforts.
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